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High-Dimensional Frequency-Encoded Quantum Information Processing
with Passive Photonics and Time-Resolving Detection
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In this Letter, we propose a new approach to process high-dimensional quantum information encoded in
a photon frequency domain. In contrast to previous approaches based on nonlinear optical processes, no
active control of photon energy is required. Arbitrary unitary transformation and projection measurement
can be realized with passive photonic circuits and time-resolving detection. A systematic circuit design for
a quantum frequency comb with arbitrary size has been given. The criteria to verify quantum frequency
correlation has been derived. By considering the practical condition of the detector’s finite response time,
we show that high-fidelity operation can be readily realized with current device performance. This work
will pave the way towards scalable and high-fidelity quantum information processing based on high-

dimensional frequency encoding.
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A scalable approach to generate and control large-scale
quantum systems is critical to realize meaningful quantum
information processing [1-4]. While increasing the number
of subsystems is required to realize the exponential scaling
in quantum information processing, the implementation
of multiple-level subsystems nevertheless boosts the effi-
ciency for increasing the Hilbert space size of quantum
systems. [5-8]. The photon frequency degree of freedom
has provided an ideal platform for realizing high-
dimensional encoding of quantum states, due to its intrinsic
multimode property [9,10]. The classical optical comb can
provide hundreds of frequency modes [11,12], and quan-
tum correlation among more than 60 frequency modes has
been demonstrated [13]. Furthermore, both continuous-
variable and discrete-variable quantum frequency combs
have been realized [9,13,14]. Multiple platforms have been
developed, including optical parametric oscillators [13,14],
filtered parametric down-conversion [15], and four-wave
mixing with nanophotonic ring cavities [16—18].

While the generation of high-dimensional quantum
states in a frequency domain has achieved great progress,
the capability to manipulate these states is still limited.
Coherent control of photon frequency modes requires
active nonlinear optical processes to change photon energy.
Four-wave mixing was first utilized to realize frequency
beam splitters [19]. However, the manipulation beyond two
modes has not been demonstrated as a large number of
phase-locked lasers are required. Recently, a new approach
based on electro-optic modulation and optical phase shap-
ing was demonstrated to realize frequency beam splitters
and tritters [20]. However, the extension to multimodes also
requires a complex modulation scheme by stacking multi-
ple modulators and pulse shapers, and the design of such
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devices relies on extensive optimization processes [21].
More importantly, this approach has intrinsic loss due to
sidebands outside desirable frequency range [20,21].
Practically, the limited modulation frequency also intro-
duces extra loss as high-order sidebands are normally
used [17]. Thus a new approach to process quantum
information encoded in photon frequency degree of free-
dom is highly desired.

In this Letter, we provide a novel approach to process
high-dimensional quantum states encoded in a photon
frequency domain without active nonlinear optical proc-
esses. Frequency modes are converted into spatial modes
with passive photonic circuits. Therefore unitary trans-
formation of spatial modes will also be applied to fre-
quency modes, and time-resolving detection of spatial
modes performs the projection measurement of frequency
modes. The derivation of our proposed approach focuses
on discrete-variable frequency combs in the single-photon
regime, detected with ultrafast single-photon detectors. The
influence of a finite response time on measurement fidelity
is estimated, showing that high fidelity is within reach of
current technology. Based on this approach, we further
propose a new method to verify quantum correlation in a
frequency domain.

As well-defined discrete frequency modes are generally
used for high-dimensional frequency-encoded single-
photon quantum states, we start with a quantized optical
field consisted of N frequency modes
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with ¢, the complex amplitude and &Z,k the creation

operator for the kth frequency mode. Such states have
been generated with parametric down-conversion and four-
wave-mixing processes in the low pump power regime,
where multipair processes are neglected [15—18]. For such
a discrete Hilbert space, we can define a complete set
of projection operators {M; = |[M;)(M;|} with |M;) =

N0 Ui, [0)®Y and uj the jk component of unitary
matrix U. These projection operators show the process of a
unitary transformation U of a high-dimensional frequency-
encoded quantum state followed by a projection measure-
ment in the new eigenbasis. In contrast to traditional
methods utilizing nonlinear optical processes to build
frequency-domain beam splitters, we show that these
operations can be realized with passive photonic circuits
and time-resolving detection [Fig. 1(a)]. First, discrete
frequency modes are associated with different spatial
modes through operator S, which can practically be
realized by a prism, optical grating, or Mach-Zehnder
interferometer (MZI) array

N-1

- Z Ck&I}k~rk|O>®N2 (2)

k=0
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where 7, is the spatial mode that carries the @, frequency
component. For a quantum frequency comb with evenly
distributed frequency modes, one possible design of the
passive photonic circuit is shown in Fig. 1(b). For the case
the frequency mode number N =2" with n a positive
integer, the operator S can be realized with 2" — 1 unbal-
anced MZIs [22] arranged hierarchically into n levels
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FIG. 1. (a) High-dimensional frequency-encoded unitary trans-

formation and projection measurement with passive photonic
circuit and time-resolving detection. Different colors indicate
different frequency modes, and the gradient color shows a
superposition of multiple frequency modes. (b) Photonic circuit
to realize S for a quantum frequency comb with evenly distrib-
uted frequency modes, 7; = 7/ (2U=D6w). (c) Photonic circuit to
realize unitary transformation U.

[Fig. 1(b)]. For the jth level, the relative time delay of
the MZIs is set to be 7; = z/(2U~Vsw), with sw the free-
spectral range of the quantum frequency comb [23]. For the
case 27! < N < 2", the same circuit can be used and the
redundant modes can be dropped. Then the N spatial modes
are sent into an N-port passive photonic circuit to realize
unitary transformation U in a spatial domain [24-26]. Since
spatial modes simultaneously represent frequency modes,
the interference in a spatial domain also results in mixing of
associated frequency modes

Z u/k (Uol\ut’j (3)

where r; indicates the jth output spatial mode of the
photonic circuit [Fig. 1(c)]. Then the output spatial modes
are measured with ultrafast detectors. The outcome of jth

output port is expressed as
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with 7 the detector’s response time, H =
SN ha(ab,a,, +1), and E, (1) = YNl e,

representing the equivalent photon phase change due to
detection jitter. With infinitely small 7, the measurement
outcome in a spatial domain approaches the desired
projection measurement in a frequency domain.

lim P;(£;T) = Tr(M;y) (w]) (5)

T-0"

Therefore, the complete set of projection operators in a
frequency domain can be realized with passive photonic
circuits and time-resolving detection. This approach is
based on the Fourier correspondence between frequency
and temporal correlations [27-30].

Considering the practical condition of the detector’s
finite response time, the fidelity of the projection meas-
urement can be expressed as

F = TMLEDMP (6)
Tr[M;(#; T)"M;(t; T)]TT(M;'M./‘)

with M;(1;T) = t’:’TT//Zz(dr/ T)M;() the effective projec-
tion. Practically, the system’s total response time 7 is
dominated by phase instability in the photonic circuit or
detector jitter. A large response time will inevitably degrade
the fidelity of projection measurement (Fig. 2). In order to
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FIG. 2. The measurement fidelity with finite response time T
and dimension N when the projection measurement is onto
(a) the two-mode superposition with largest frequency difference

1/v2(ad, +awo (V-1 5w)|0> and (b) the Fourier basis
1/VN Y5 Az)o+k5m|0>

achieve high-fidelity operation, the response time needs to
be much smaller than the beating period of the quantum
frequency comb, T < 27/6w. In addition, the fidelities of
the projection measurement with different bases have
different dependencies on the response time 7. The
projection onto the basis with fast temporal evolution,
such as two-mode superposition with large frequency
difference [Fig. 2(a)] and the Fourier basis [Fig. 2(b)],
|

(N/2]-1 ok
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will be more sensitive to the error induced by the finite
response time. In contrast, the fidelity of the projection
measurement onto the computational basis with single
frequency modes will not be influenced.

With the capability to realize arbitrary projection meas-
urement, we further develop the approach to verify bipartite
high-dimensional quantum entanglement encoded in a
frequency domain with passive photonic circuits and
time-resolving detection [31,32]. Two sets of projection
bases, time-delayed Fourier basis and time-delayed
inverse Fourier basis, can be defined for photon a and b,
respectively.

1 N—-1
|M — exp{ <—+5a)t> }aw |0)®N
N = !
=, p{'( 2 s z)k}bT 10)®N
XpRi| ———+ ow w
]\,k:0 N N-1-k

(7)

where integer j labels the index of output port. Both sets of
projection measurement can be realized with the photonic
circuits shown in Fig. 1. The generalized high-dimensional
entanglement indicator can be written as

ty,—k —1) + P(t,,1,,k) + P(t,.t,,—k)]

_ N-1
— [Pty ty,—k— 1)+ P(t,, t,. k) + P(t,, 1, —k — 1) + P(t,, 1),k + 1)]} (8)
T
Pltatn ) =35 [ md"”z' Mai(ta + 1. My (iymoaalt + 1)) P ©)

with 7,,, £, and t,, 1, corresponding to different settings of the
photonic circuits, thus different projections bases, for photon
a and b, respectively [32]. Classically, the maximum value
of Sy is 2. The quantum limit of S, which is above 2, can be
achieved with the high-dimensional Bell state

_|00)®N, (10)

by setting the detection time 7, —t, = (z/2Néw) and
t,—t, =1, —t, = (r/Néw). While the exact value of
Sy is dependent on the size N of high-dimensional systems
[32], we use the two-frequency case as an example to
illustrate our approach and the effect of a finite response
time. In two-frequency systems, the photonic circuits shown
in Fig. 1 can be simplified to a single unbalanced MZI for
each photon [Fig. 3(a)], and the corresponding projection

[

basis can be represented on the Bloch sphere [Fig. 3(b)].
With two frequency modes w; and w,, the criterion for
quantum entanglement can be simplified to the Clauser-
Horne-Shimony-Holt (CHSH) inequality, which can be
maximally violated with the Bell state

lw) = ) [00) &Y

v ab,b

[
ﬁ(awlb (11)

By setting both relative delay 7, and 7, giving z/2 and
—n/2 phase difference for mode w; and w, respectively
[23], the projection bases are placed on the equator of the
Bloch sphere,

|Mc,/(t)>—7[cwl (=1)e2s,][0)®V  (12)
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FIG. 3. (a) Setup to verify two-frequency bipartite entangle-
ment. (b) Bloch sphere for two-frequency systems. Red shaded
area is the time averaging range with the designed and equivalent
measurement shown as arrows.

where subscripts ¢ = a, b and Jj = 1,2 label the photon and
measurement output, respectively. Photon clicks at output 1
and 2 correspond to +1 and —1 in the original CHSH
scheme, respectively [33—35]. Then the CHSH value can be
defined through the correlation coefficient E(7,, #,) and the
coincidence rate C;j(t,. 1)

S2:E(ta’th)_E(ta’tZ)+E(t£utb)+E(til’t/b)

E(t,ty)= Cyy(t0.15)+Co(1,.1,) = Cra(1,.1,) = Cay (1,.15)

" Chi(tasty)+Con(tnty) + Cra(tanty) +Coy (14.13)
_ 1 (112

Cij(ta’tb)“_Q/ drdt’ | (M, ;(t,+1). M), (1, +1)|w)|*.
T° J-1)2

(13)

The maximum value of S, is achieved when photon
detection time satisfies 1, —1, = (x/46w), t,—1t, =
(n/26w) and ), —t,, = (—7/26w). These conditions cor-
respond to fixing the angle between projection bases for
photon a and b to be 45° degree, and the bases are rotated
by 90° along the z axis of the Bloch sphere between the two
measurements. The finite response time will inevitably
degrade the measurement results. In this particular setup,
the effect of the finite response time corresponds to
averaging along an arc on the Bloch sphere equator
[Fig. 3(b)]. And the angle of the arc is equal to T - dw.
The calculated result of S, with fixed optimum #, — 7,
1, — t, and varying t, — 1, values is shown in Fig. 4(a). The
violation of the classical limit of S, is clearly observed with
a small response time. And the theoretical limit 2\/5 can be
achieved with an infinitely small response time. With a
larger response time, the measured maximal S, decreases
[Fig. 4(a)]. When the response time is larger than the
threshold value T, with sinc?(8wT,/2) = 1/+/2 corre-
sponding to Ty ~ 0.32 x (27/5w), the maximal measurable
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FIG. 4. (a) CHSH quantity S, values with varying detection
time difference ¢, —t, and fixed 7z, and 7,. (b) Maximal
measurable S,y With dependence on response time 7.

value of §, falls below the classical limit, meaning the
quantum correlation cannot be distinguished. Here, we
assume unity detection efficiency. Lower efficiency will
inevitably limit the overall projection measurement effi-
ciency and decrease the signal-to-noise ratio in experi-
ments. For certain applications, such as the loop-hole free
CHSH test [36,37], overall efficiency above certain thresh-
old will be required.

Discussion and outlook.—In addition to eliminating
nonlinear optical processes, another major advantage of
our approach is scalability. From a theoretical perspective,
the systematic approach to design the photonic circuit for a
quantum frequency comb with an arbitrary large size has
been carried out as shown in Fig. 1. From the experimental
perspective, the complete photonic circuit can be robustly
fabricated on nanophotonic platforms such as silicon and
silicon nitride at large scale with standard CMOS technology
[38]. Such a photonic circuit can also be conveniently tuned
through thermal-optic effect to realize different projection
bases [38]. Moreover, superconducting single photon detec-
tors have been integrated on various nanophotonic circuits
with high efficiency and low jitter [39,40]. Therefore, our
approach can be scalable when fabricated with complete
integrated quantum photonic platforms. Extra caution should
be taken to minimize the frequency dependence of unitary U.
One possible approach is to design phase shifters using
waveguides with length L = (27zc/n,6w) and near-zero
dispersion. Furthermore, the achievable length of the optical
delay line with nanophotonic circuits limits the frequency
resolution of the circuits. Currently, a nanophotonic optical
delay line with length above 30 m and loss below
0.08 dB/m has been demonstrated [41], leading to a
frequency resolution well below 1 GHz.

While fidelity of processing frequency-encoded quantum
states with our approach depends critically on the response
time, the major limiting factor is the detector jitter.
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Currently, superconducting single photon detectors have
achieved a jitter time below 3 ps, with a theoretical limit
below 1 ps [42,43]. Current jitter performance is enough to
maintain fidelity above 90% for an 85-mode free-space
quantum frequency comb, with free spectral range nor-
mally below 1 GHz. The maximum frequency range that
can preserve quantum effect is determined by the two-mode
CHSH test, dw/27 ~ 0.32/T ~ 100 GHz, which is acces-
sible by most integrated photonic platforms.

Finally, a few remarks are in order on potential uses of
our proposed method for continuous-variable (CV) pho-
tonic quantum information processing. While our deriva-
tion is based on the single-photon state, the extension to
arbitrary multiphoton input states with photon-number-
resolving (PNR) detectors is straightforward. The proba-
bility distribution of the output photon pattern will be
determined by the passive photonic circuit, and a collective
postprocessing of all output ports is needed. This is of
critical importance for CV quantum information process-
ing. One possible application with high impact will be
Gaussian boson sampling (GBS) [44]. We start with an
N-mode CV Gaussian quantum frequency comb generated
with an optical parametric oscillator (OPO), and use our
proposed method to implement projection measurement
with fast PNR detection on all output ports. In this case,
GBS can be realized in a frequency domain with a very
compact device and high efficiency [4,10,45].

In conclusion, we have proposed a novel approach to
realize high-dimensional quantum information processing
encoded in a photon frequency domain with passive
photonic circuit and time-resolving detection. This
approach features no active nonlinear optical process, high
scalability, and no intrinsic loss. The capability to process
high-dimensional frequency-encoded quantum photonic
states can be dramatically improved, benefiting critical
quantum applications including cluster-model quantum
computing [5], high-dimensional quantum correlation veri-
fication [31,32], and high-efficiency Boson sampling [46].
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