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A B S T R A C T

The Amazon forest’s main protection against fire is its capacity to create a moist understory microclimate. Roads,
deforestation, droughts, and climate change have made this natural firebreak less effective. The southern
Amazon, in particular, has become more flammable and vulnerable to wildfires during recent droughts. The
drought of 1997/98 first showed that fires could escape from agricultural fields and burn standing primary
forests that were once considered impenetrable to fire. The spread of forest fires during other 21st-century
droughts suggests that this pattern may well be the new normal. With the landscape becoming more flammable,
reducing sources of ignition and the negative effects of deforestation is crucial for avoiding severe degradation of
Amazon forests. Unfortunately, recent increases in deforestation suggest that Brazil is moving in the opposite
direction. Keeping pace with the rapid changes in the region’s fire regimes would require innovation; co-
operation across political boundaries; and interagency communication on a scale never seen before. While
Brazil’s past success in reducing deforestation suggests that it could be an effective leader in this regard, its
sluggish response to the 2019 fires tells quite a different story. But the fact remains that the future of the Amazon
depends on decisive action now.

Every single day, several hundred hectares of primary forests are
cleared in the Amazon (INPE, 2019). The loss of native neotropical
savannas is even greater (Strassburg et al., 2017). By the minute, exotic
African grasses and croplands replace native vegetation—a result of
ferocious competition for land. Farmers have found in the tropics a
place to expand commodity crop production, transforming the ecotone
between Amazonia and Cerrado into one of the world’s largest agri-
cultural frontiers (Macedo et al., 2012) (Fig. 1). Several other tropical
landscapes across the globe are undergoing similar transformations
(Curtis et al., 2018). This rapid land-use change brings with it novel
disturbances (Brando et al., 2019a). Fire is one that can rapidly damage
Amazon forests, whose trees lack adaptations needed to resist fire-re-
lated damage (Barlow et al., 2003; Brando et al., 2012). Combined with
global climate change, fire and other disturbances will determine what
kind of forests will exist in the future – and whether these forests can
sustain key habitat types and ecosystem services over the long term or
will enter a downward spiral characterized by widespread degradation
(Nobre et al., 2016).

But it was not always like this. During Pre-Columbian times, fire was

rare in the Amazon. High moisture levels underneath the canopy of
healthy forests largely prevented dead leaves, small branches, and twigs
(the fine fuels that carry a fire) from reaching flammable levels (e.g.,
relative moisture ≤ 23%) (Ray et al., 2005). Even when moisture levels
dropped unusually low – which can often be the case at the drier
southern edges – the ignition sources to start widespread wildfires were
probably scarce. At the time, ignitions were typically associated with
slash-and-burn agriculture by indigenous peoples (Heckenberger et al.,
2003) or lightning-related savanna fires (Bush et al., 2008). These
characteristics help to explain why fire return intervals within Ama-
zonia averaged several hundred years.

Beginning in the 1960s and 1970s, massive investments in infra-
structure (for regional development) started a wave of environmental
destruction (Nepstad et al., 2001). Legal and illegal roads opened the
region to production, timber extraction, and deforestation, as well as
malicious land-grabbing and land speculation (Sparovek et al., 2019;
Azevedo-Ramos and Moutinho, 2018). By the mid-1980s, deforestation
and associated forest degradation (i.e. via edge effects) were already
taking a huge toll on the ability of forests to protect themselves against
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fire (Nepstad et al., 1999). As deforestation soared in the 1980s and
1990s, people relied on fire as a management tool to clear deforested
areas. It was just a matter of time before those management fires began
escaping from open deforested fields into the degraded forest edges that
connect agricultural fields to primary standing forests (Cochrane,
2003).

The thick canopies of Amazon forests act as an ecological firebreak.
To maintain their canopy during dry-season months and avoid severe
drought stress, many tree species tap into deep soil water, sometimes
down to 15 m (Nepstad et al., 1994). During extreme drought condi-
tions, tree water demand often exceeds the water supply, requiring
trees to rely on more extreme strategies to avoid failure of their hy-
draulic systems (Nepstad et al., 2007; Brando et al., 2008). Shedding
leaves, twigs, and branches allows trees to regulate their water balance
and prevent severe damage (Cochrane, 2003). Yet a thinner canopy also
invites more solar radiation to penetrate and can create dry and hot
microclimate conditions in the forest understory. The leaves and twigs
that accumulate on the forest floor are fuels that greatly increase forest
flammability (Ray et al., 2005, 2010). These changes are compounded
by edge formation during deforestation and logging, because they fur-
ther thin the canopy and increase the likelihood of high-intensity fires
(Alencar et al., 2006).

During 1997–1998, a severe drought disrupted much of the
Amazon’s ecological firebreak. The levels of drying and warming in that
year stressed trees to the point that a disproportionate amount of
leaves, branches and twigs dropped. Because sources of fire ignition
were abundant that year, ≈39,000 km2 of primary Amazon forests

burned. Almost a third of the Brazilian Amazon became flammable
(Nepstad et al., 2004) and the burning forests caught the world’s at-
tention. A Time Magazine article, dated September 18, 1998, posed the
question: “Torching the Amazon: Can the Amazon be saved?”. The
Kayapó indigenous leader, Raoni Metuktire, and many other influential
spokespeople echoed the message that deforestation and fires pose an
existential threat to the Amazon’s future. Although major droughts had
stressed Amazonian trees before, the 1997/1998 drought was among
the first to coincide with widespread sources of ignition and abundant
forest edges.

When forests burn during unusually hot and dry years, the fires not
only affect a much larger area but also tend to kill many more trees. In
fact, the switch from a low- to a high-intensity fire can mean the dif-
ference between life and death for a tree. Experimental fires conducted
in southeast Amazonia showed that post-fire annualized tree mortality
rates jumped from 10% to 90% when wildfires occurred along hot,
flammable edges during drought years, compared with non-drought
years (Brando et al., 2014, 2019b). In other words, when coupled with
severe droughts and forest edges, fires can be catastrophic and have
long-lasting ecological effects (Silvério et al., 2019).

Changes in forest structure associated with fire-related tree mor-
tality often cascade to faunal communities. Those same experimental
fires that triggered widespread tree mortality following high-intensity
fires caused the extinction of forest specialists and an influx of open-
habitat specialists in ants (Paolucci et al., 2017) and butterflies
(Andrade et al., 2017). There are also reports of wildfires driving the
impoverishment of bird (Barlow and Peres, 2004) and dung beetle

Fig. 1. Classes of canopy cover in percent (a), total number of fire occurrences (“hot-pixels”) by micro watershed (b), land surface temperature (c), and dry-season
length (d) across the Amazon basin. The inset maps for each variable show more detailed patterns for the southeast Amazon, where forest fragmentation is
widespread. To produce these maps, we used the following datasets: The Global Forest Change (Hansen et al., 2013; panel “a”); thermal anomalies (MOD14A1; Giglio
et al., 2016) from the Moderate Resolution Imaging Spectroradiometer (MODIS; panel “b”); MODIS Land Surface Temperature and Emissivity (MOD11A1; Wan et al.,
2015; panel “c”) and, the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS; Funk et al., 2015; panel “d”).
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(Andrade et al., 2014) communities in other parts of Amazonia. Since
these organisms perform key ecosystem functions (Paolucci et al., 2016;
França et al., 2020), their losses can cause important declines in forest
resilience (Barlow et al., 2016). For instance, ants disperse seeds of
Amazon tree species (e.g. Paolucci et al., 2016), while dung beetles
remove dung and seeds (e.g. França et al., 2020), two important eco-
system functions. On the other hand, animal groups capable of per-
sisting in degraded forests can help facilitate forest recovery (Paolucci
et al., 2019).

If droughts occurred only occasionally, high-intensity wildfires
would be extremely rare events in the Amazon, as in the past. The
problem is that drought events like the one in 1997/1998 are becoming
increasingly common in the region and interacting with land-use
change and global climate change (Aragão et al., 2018). The clear-
cutting of a few hectares of forest may have negligible effects on the
regional climate, but when entire landscapes are cleared for the ex-
pansion of croplands and pastures, there is less solar energy available to
drive the hydrological cycle (Coe et al., 2016). The Brazilian Amazon
alone has lost close to 800,000 km2 of forest as of March 2020 – an area
larger than most countries (e.g. More than twice the size of Germany)
(Fig. 1). This massive deforested area is altering the region’s hydro-
logical cycle (Nobre et al., 2016). When Amazon trees are replaced by
shallow-rooted vegetation – generally with more homogenous canopies
and lower evapotranspiration capacity – water cycling can drastically
diminish, with direct consequences for the local and regional climate
(Silvério et al., 2015). The dry season length over the southeast Amazon
has increased by ≈0.6 days per year since the 1970s, in part because of
these deforestation-related changes to the hydrological cycle (Lee et al.,
2013; Fu et al., 2013; Leite-Filho et al., 2019). Together with the global
rise in air temperature from climate change, this lengthening of the dry
season is contributing to longer, hotter, drier fire seasons (Brando et al.,
2020).

During the 21st century, the Amazon has already experienced three
widespread droughts, all of which triggered massive forest fires
(Morton et al., 2013; Aragão et al., 2018). With climate change and
edge effects increasing forest flammability across the region (Fig. 1), the
likelihood of catastrophic fires is poised to increase. The question now
is what to do about it. A recent study projected that ending Amazon
deforestation could reduce burned area by half. But if deforestation
continues unabated, 16% of the region’s remaining forests will likely
burn by 2050 (Brando et al., 2020). These results suggest that curbing
deforestation should be Brazil’s top priority to reduce sources of igni-
tion and avoid catastrophic wildfires in the near future. With less de-
forestation, there are fewer fires, a more stable regional climate, and
fewer flammable edges (Fig. 2b).

The decade spanning 2004–2013 clearly demonstrated that Brazil
has the capacity to fight illegal deforestation effectively. During this
period, a combination of monitoring and enforcement, supply chain
interventions, and the expansion of protected areas drove a 70% re-
duction in deforestation across the Brazilian Amazon (Nepstad et al.,
2014). At the same time, agricultural production increased by 300%
and cattle productivity by 150% in Mato Grosso, Brazil’s most dynamic
agricultural frontier at the time (Macedo et al., 2012). However, current
political and economic forces have reversed this trend; recent rises in
Amazon deforestation may be accelerating us towards an irreversible
climatic tipping point (Nobre et al., 2016). Wildfires are the most
pernicious symptom of this reversal, and will likely become the main
catalyzer of forest degradation if this scenario continues (Nepstad et al.,
2008; Brando et al., 2019b).

The events of 2019 provide a clear example of the potentially cat-
astrophic feedbacks among deforestation, fire activity, and poor man-
agement. As deforestation began climbing towards the total of 9,762
km2 cleared between August 2018 and July 2019, Brazil simply took no
action at first. Furthermore, by August of 2019 (halfway through the
dry season), the Brazilian Institute for Space Research (INPE) reported a
three-fold increase in fire activity compared to the previous year. They

warned that this was already a bad fire season, even in the absence of a
drought. This was not a surprise. High deforestation rates detected by
INPE in the previous months were generating huge amounts of necro-
mass (dead trees, branches, leaves, and roots), and fire is the most
common tool to remove biomass from newly cleared fields (Fig. 2a). By
the end of 2019, INPE had detected the highest number of active fires in
the Amazon since 2010 (Barlow et al., 2020).

Instead of leaping into action to control these illegal fires early on,
the government got mired in a false debate about the facts – first de-
nying the data, then arguing that the fires were normal or blaming it on
the weather, and finally pointing to fires in other countries as a way to
distract attention from Brazil. At the end of the day, all of those nar-
ratives proved false and the world was left with this simple fact: by
willfully ignoring three independent systems for real-time monitoring
of deforestation, Brazil missed the opportunity to avoid substantial
emissions of both CO2 and human-sickening smoke to the atmosphere.
Most of the deforestation-related fires in 2019 did not escape into pri-
mary Amazon forests (e.g. Fig. 2c,d), at least in Brazil. But had 2019
been a drought year, Brazil’s slow response to fighting deforestation
and related fires would most likely have ignited catastrophic wildfires
across the region, as was observed in drier regions of Bolivia and pre-
dicted by fire models (Brando et al., 2020).

If Brazil fails to take decisive action to stop deforestation, prevent
associated fires, and encourage a transition towards fire-free land
management, protecting the region’s remaining forests will depend
entirely on fire suppression to fight illegal wildfires. To achieve both
goals, Brazil must: (1) rapidly increase command-and-control opera-
tions against illegal agricultural fires; (2) expand the existing network
of well-trained and equipped fire brigades; and (3) improve specialized
weather forecast systems and fire behavior models to guide fire sup-
pression efforts, hopefully months before the fire season starts.
Socioeconomic activities that depend on slash-and-burn systems will
require new fire management techniques to prevent the escape of
agricultural fires into neighboring forests, without placing an undue
burden on the smallholders, traditional communities, and indigenous
peoples that rely on these systems for their livelihoods.

Brazil is well-positioned to adapt to this new reality, and to imple-
ment innovative strategies to reduce fire activity. The country has the
technology and proven scientific capacity to forecast, monitor, and
verify deforestation and fire-related forest degradation. It also has a
history of engaging the private sector in environmental solutions, evi-
denced by the key role of large farmers and commodity traders in re-
ducing Amazon deforestation (Gibbs et al., 2015). This suggests that,
with the right incentives, the private sector could make important
contributions to curbing illegal deforestation and associated fires in the
future (Stabile et al., 2020). Finally, Brazil has the world’s largest
network of protected areas and indigenous lands, both of which have
proven effective in slowing deforestation and acting as firebreaks that
buffer the region against further degradation (Walker et al., 2020).
Maintaining these assets will no doubt require new investments and
adaptions to cope with the rapidly changing Amazon landscape.

By ignoring its strengths, Brazil is squandering decades of efforts to
strengthen institutions; historic engagement of the private sector; and
the stewardship of indigenous peoples and traditional communities that
have kept the Amazon from crossing a tipping point. We have never
been so capable of identifying the problems haunting the Amazon as we
are in 2020. Our challenge now is to act fast on the solutions, before
climate change makes it much harder to solve the wildfire problem in
the Amazon.
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