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Determining the Source of Period-Doubling Instabilities in Spiral Waves*

Stephanie Dodson and Bjorn Sandstedef

Abstract. Spiral wave patterns observed in models of cardiac arrhythmias and chemical oscillations develop
alternans and stationary line defects, which can both be thought of as period-doubling instabilities.
These instabilities are observed on bounded domains and may be caused by the spiral core, far-field
asymptotics, or boundary conditions. Here, we introduce a methodology to disentangle the impacts of
each region on the instabilities by analyzing spectral properties of spiral waves and boundary sinks
on bounded domains with appropriate boundary conditions. We apply our techniques to spirals
formed in reaction-diffusion systems to investigate how and why alternans and line defects develop.
Our results indicate that the mechanisms driving these instabilities are quite different; alternans are
driven by the spiral core, whereas line defects appear from boundary effects. Moreover, we find that
the shape of the alternans eigenfunction is due to the interaction of a point eigenvalue with curves
of continuous spectra.
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1. Introduction. Systems of oscillatory and excitable media frequently express spiral wave
patterns. Spiral waves are observed in laboratory settings in chemical oscillations in the
Belousov—Zhabotinsky reaction [51, 49] and cell signaling in slime molds [35], and have been
associated with arrhythmic heart rhythms [47, 48, 33]. These systems support rigidly rotating
spirals with constant shape, but transitions to complex dynamics and unstable spirals are
common.

In cardiac dynamics, accelerated tachycardiac rhythms have been linked to electrical ac-
tivity organized as rotating spiral wave patterns on the surface of the heart. The transition
from tachycardiac to fibrillation is believed to be initiated by spiral wave breakup [36, 32].
Clinical studies indicate a primary driver of breakup is conduction block following a long-short
temporal modulation of the action potential duration, in what is known as the alternans in-
stability. Alternans are visible on electrocardiograms and have become a clinical warning sign
of sudden cardiac death [36, 32]. In spiral waves, alternans physically correspond to variation
in spiral band width (Figure 1). For a detailed review of spiral waves in cardiac dynamics,
see the review article [2] and recent results published in the special issue [9)].

Spirals are also produced and studied in chemical oscillations, for example the Belousov—
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Figure 1. (a) Stationary line defect in the w-component of the Rossler system. (b) Time evolution of

alternans instability in the u-component of the Karma model on a square of side length 16cm with homogeneous
Neumann boundary conditions. System parameters as defined in section 2.
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Zhabotinsky reaction [51, 49]. In these systems, spirals are experimentally observed to form
stationary line defects [50, 31] (Figure 1(a)), which have been reproduced in numerical sim-
ulations [19, 42]. Across the defect lines, wave amplitudes are out of phase (Figure 1). Both
alternans and line defects lead to a spiral wave with twice the period of the original planar
wave.

Nonlinear reaction-diffusion systems qualitatively capture transitions to complex mean-
dering, drifting, and the period-doubled line defects and alternans patterns. In these systems,
planar spiral waves are stationary solutions in a rotating polar coordinate frame and converge
to one-dimensional periodic traveling waves away from the core. Stability and bifurcations
can be studied by considering the spectra of the operator obtained by linearizing the nonlinear
system about the spiral wave solution. The spectrum consists of isolated eigenvalues and a
set determined by the operator in the far-field limit.

Bounded domains are of interest in applications to cardiac dynamics and laboratory ex-
periments. Neumann boundary conditions naturally represent lower conductance tissue sep-
arating regions of the heart or the physical walls of containers. Mathematically, on finite
domains planar spiral waves are truncated and matched with a boundary sink, which adds
extra structure to the spiral wave and alters the spectrum of the linear operator [16, 38, 37].
The boundary sink itself directly contributes an additional set of eigenvalues, and the finite
domain modifies the spectrum associated with the far-field dynamics. Furthermore, radial
growth in the eigenfunctions is permitted, and those that would not be integrable on the full
plane now emerge as true eigenfunctions on the bounded domain [16, 38, 37]. These eigenval-
ues are associated with intrinsic properties of the spiral wave and are attributed to the spiral
core. The spectrum of the operator on a bounded domain is therefore a union of three disjoint
sets that are associated with instabilities from the far-field, boundary conditions, and core.
Knowing which set an unstable eigenvalue belongs to provides information about how these
instabilities will manifest on an unbounded or bounded domain.

Meander and drift instabilities are the result of a Hopf bifurcation originating from the
core: the emerging dynamics is understood through actions of the symmetry group of trans-
lations and rotations on the plane and a center manifold reduction [5, 44]. However, previous
studies investigating alternans and line defects provide inconsistent and incomplete evidence
for which spectral set the unstable eigenvalues belong to.
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Due to the clinical significance, the alternans instability has been a recent area of focus in
the cardiac dynamics community. In single cells, alternans are widely attributed to a period-
doubling instability observed in simple one-dimensional maps [21]. However, this condition,
known as the restitution hypothesis, has received contradictory evidence [11, 7] and does
not appear to be relevant for excitable tissues that support traveling waves. The formation
and stability of alternans in waves propagating on a ring and line have been analyzed with
kinematic descriptions [15] and through linear stability analyses [4, 14, 3, 6]. Stability analysis
in one dimension predicts that alternans are the result of a Hopf bifurcation [20], yet analysis
of the one-dimensional traveling waves cannot fully capture two-dimensional features.

Linear stability analysis of spirals on bounded domains in the Karma and Fenton-Karma
models found a variety of unstable eigenmodes responsible for the formation of alternans
[27, 28, 1]. In [27, 28], Marcotte and Grigoriev find that formation of alternans depends on
the domain size. Furthermore, they determine that the alternans eigenmodes are not spatially
localized near the core.

The rigorous analysis of spiral waves in [42] indicates that period-doublings are initiated
by a series of Hopf bifurcations with imaginary parts of the eigenvalues sitting robustly at
multiples of half the spiral frequency. These Hopf eigenvalues may be induced by period-
doubling of the far-field dynamics or boundary sinks. Stationary line defects are hypothesized
to stem from bifurcations of the boundary sink, but no direct evidence supporting this claim
was found in [42].

The goal of this paper is to further investigate how and why these period-doubling like
instabilities arise on bounded domains. Specifically, we seek to answer which spectral set the
unstable eigenvalues belong to and gain a better understanding of how the spirals destabilize
and on what domains the instabilities are relevant. To tackle this problem, we introduce a
methodology for disentangling the contributions of each region by forming related patterns
on domains whose spectra will contain eigenvalues arising from a subset of the resulting
spectra. Three cases are considered and compared with essential and absolute spectra from
wave trains: (1) a spiral on a bounded disk with Neumann boundary conditions to provide
the full spectrum, (2) a boundary sink to demonstrate effects of boundary conditions, and (3)
a spiral on a disk with nonreflecting boundary conditions to remove boundary eigenvalues.

We apply this methodology to reaction-diffusion models and discover that the mechanisms
driving alternans and line defects are rather different. We find that line defects arise from the
boundary sink and thus will only appear under the correct conditions on bounded domains. In
contrast, alternans originate from instabilities associated with the spiral core and will develop
independent of the domain. Furthermore, the spectral computations reveal that the structure
of the alternans instability develops due to an interaction of an unstable point eigenvalue
and curves of continuous spectra. Our results have important consequences for reproducing
patterns such as line defects and provide justification for extending analysis of alternans from
simple bounded disks to the complex geometry of the heart.

In the sections that follow, we begin by describing the mathematical set-up and notation of
the reaction-diffusion models. We include a review of relevant spectral properties for operators
on the plane and how these properties are modified by bounded domains. Procedures used
to compute the spirals and spectra are described in the methods section. Finally, we present
the results of the analysis applied to the Rossler and Karma models to study line defects and
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alternans, respectively.

2. Models. Reaction-diffusion systems display a rich set of patterns and are commonly
used to model systems in biology and nature. General planar reaction-diffusion systems are
of the form

(2.1) U, =DAU + F(U), U€eR", DeR™ zecR?

where U = (u1,...,un)T is a vector of species that diffuse at rates given by the nonnegative
elements 9; of the diagonal matrix D, and A is the Laplace operator. Kinetic reactions of the
different species are captured by the typically nonlinear function F(U).

Cardiac models range in complexity from biophysically detailed ion-channel models to
simplified systems which capture qualitative features, with both categories falling under the
reaction-diffusion framework. The Karma system is a two-variable reduction of the Noble
ion-channel model [30] and was developed to be a simplified model that reproduces alternans
[24, 25]. The model is given by

2
(2.2) uy = 1.1Au + 400 (—u + (1.5414 — v*) (1 — tanh(u — 3)) “) ,
1
vy =0.1Av+4 mﬁ(u—l)—v ,

where the fast variable u represents voltage and v acts as a slower gating variable. As in
[27, 28, 1], we use the function ¥(u) = (1 + tanh(4u)) /2. Alternans are observed in this
system when the real bifurcation parameter pg is increased above one [25].

The Rossler model is commonly used to study chaotic turbulence in chemical oscillations
and is known to produce spirals with line defects. This three-variable system is also of the
general reaction-diffusion form and is given by

(2.3) up = 0.4Au —v —w,
v = 0.4Av 4+ u + 0.2v,
wy = 0.4Aw + uw — prw + 0.2.

Bifurcations to line defects are observed for parameter values up > 3 [19, 42].

Here, we write both models in a general form and define the bifurcation parameters to
be ux and pp, respectively. We remark that in (2.2) and (2.3) we selected values for several
parameters that are often allowed to vary. We refer the reader to Table 1 in Appendix A for
the general form of these models.

3. Review of spiral waves and their spectral properties. In our context, periodic travel-
ing waves, also referred to as wave trains, serve as building blocks of spiral waves. Therefore,
we first consider the existence and stability properties of wave trains on R and their restriction
to bounded domains before describing spiral waves on the plane and bounded disks. Further
details can be found in [16, 38, 37, 23].
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3.1. Wave trains and boundary sinks. On R, the reaction-diffusion system (2.1) reduces
to

(3.1) Uy=DUy + F(U), z€R.
Wave trains are solutions to (3.1) of the form
U(z,t) = Uso(kx — wt),

where Uy is 27m-periodic in its argument, so that x is the spatial wave number, and w is
the temporal frequency. In the traveling coordinate £ = kx — wt, wave trains are stationary
solutions of

(3.2) Uy = k*DUge +wUe + F(U), ¢€R.

Generically, wave trains arise as one-parameter families for which w and x are connected by the
nonlinear dispersion relation w = w (k) and the profile U (&; k) depends smoothly on . To
keep the notation as simple as possible, we will refer to the wave train from now on as Us (&)
and drop the dependence of the profile on the wave number x unless this dependence should
be emphasized. The group velocity of the wave train is defined from the nonlinear dispersion
relation as ¢g = 3—“;: it is equal to the speed with which perturbations are transported along
the wave train in the original laboratory frame.

To prepare for our discussion of spiral waves on bounded domains, we introduce the
concept of boundary sinks, which connect wave trains of (3.1) at * = —oo with a Neumann
boundary condition at x = 0. We say that U(x,t) = Upqy(z,wt) is a boundary sink, provided
Ubdy(x, T) is 2m-periodic in 7, satisfies the one-dimensional equation

(3.3) wU,; = DUy, + F(U), (2,7) € (—00,0) x S%,
Uz(0,7) =0, 7€ St

in the laboratory frame on the half line with Neumann boundary conditions, and converges
to a wave train Us(kz — 7; k) with ¢g > 0 as © — —oo such that

|Ubay (2, ) — Uso(kx — +; fs)|cl(51) —0 as x — —00.

An example of a boundary sink is shown in Figure 2.

3.2. Planar spiral waves and truncation to bounded disks. We say that the reaction-
diffusion system (2.1) has a planar spiral wave solution of the form U(x,t) = U(r, ¢ — wt),
where (r, ¢) are polar coordinates, if there exist an w € R and a smooth function 6(r) with
¢'(r) — 0 such that U, satisfies (2.1) and

|Us(r, - — wt) — Uso(kr + 0(1) + - — wit)|c1(g1) = 0 as 7 — oo,

where Us (k1 — wt) is a wave train with c¢g > 0. Here, w is the temporal rotational frequency
and 0(r) acts as a phase correction to match solutions at the core with asymptotic wave trains.
The spatial wave number k is selected by the spiral, and the wave train connects w and s
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Figure 2. (a) Illustration of a boundary sink. The effect of Neumann boundary condition is highlighted by
the temporal cross section on the right. (b) Comparison between planar spiral wave (left) and spiral wave on a
bounded disk with Neumann boundary conditions (right). Both spirals shown on disks for comparison purposes.

through the nonlinear dispersion relation w = wy (k). Spiral waves are stationary solutions in
the co-rotating polar frame (r,¢) = (r, ¢ — wt):

(3.4) U = DAT,QZ)U + wU¢ + F(U)

Finite domains are physically and numerically realistic, and bounded disks in particular
are common computational domains, as they incorporate rotational symmetry properties of
the spiral. When considered on Br(0), the disk of radius R centered at the origin, planar
spiral waves are truncated and solutions with positive group velocity emitted from the core
are now matched with time 27 /w-periodic boundary sinks Upqgy (&, t). Spirals formed on Bg(0)
with homogeneous Neumann boundary conditions are stationary solutions of the system in
the rotating polar frame

(3.5) Uy = DA, U +wpUy + F(U), (r,¢) € [0,R) x S*,
UT(R’d}) = 07 QJZ) € Sl-

The temporal frequency of the bounded spiral converges to that on the infinite domain wg —
ws a8 R — oo. An example of spiral waves on bounded disks and the entire plane is shown
in Figure 2. Note how the homogeneous Neumann boundary conditions influence the spiral
near the outer boundary at the top of the spiral, similar to the boundary sink.

3.3. Spectral stability of linear operators. Here, we give a review of relevant spectral
and stability concepts. First, general spectral definitions and terminology are defined. Then
the spectra of the one-dimensional wave trains are described, followed by those of spirals on
unbounded domains. In each case, we first consider the patterns on infinite domains and then
describe how spectra are modified by bounded domains.
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Figure 3. (a) Illustration of spectral sets for a general linear operator. In this example, the operator £ — A
s Fredholm with indez 0 in the unshaded region; elements in the point spectrum (squares) can be found in this
region and coincide with those values of A for which the operator L — X is not invertible. The operator L — X is
not Fredholm along the curve ¥rs and is Fredholm with nonzero index in the shaded region. (b) Illustration of
spectra for the linearization about a spiral wave, where insets show the distribution of spatial eigenvalues vj(\):
dots (crosses) indicate spatial eigenvalues v;(\) that have positive (negative) real part for A > 1. The Fredholm
boundary is given by those A for which Imv;(\) = 0 for at least one index j. The absolute spectrum is defined
by those X\ for which a “dot” and a “cross” align to have the same real part.

The spectrum ¥ of a closed, densely defined linear operator £ : X — X on the Banach
space X is defined as

s={)eC ’ (L —X): X = X does not have a bounded inverse} .
If £ is Fredholm, the spectrum can be decomposed into the following disjoint sets [23]:
Y =%pt U Ypred U XFB,
where

Ypt = {A € C: L — X\ is Fredholm with index 0 but not invertible},
Yrg ={A € C: L — X is not Fredholm},
Yred = {A € C: L — X is Fredholm with nonzero index} .

The set X, is referred to as the point spectrum and contains elements called eigenvalues,
which are typically discrete. Often, the essential spectrum e is defined by Xegs = 3 /35 =
Ytred U XrB. The contents of each set will depend on the operator, and some of these sets
may be empty. These sets are illustrated in Figure 3(a).

We now provide some heuristic descriptions of these spectral sets for operators £ that
arise as the linearization of a reaction-diffusion model about a wave train or a planar spiral
wave. The Fredholm index is generally a measure for the solvability of the linear equation
(L — XNu = h for u given h. The index is zero if there is a unique solution u for each h,
positive if we can solve for each h but obtain infinitely many solutions, and negative if we
cannot solve for each h. In terms of dynamical properties, the operator £ — A is typically
not Fredholm when the linear equation u; = Lu exhibits plane-wave solutions of the form
u(z,t) = eMe**u(kr — wt). We will make this statement more precise in the next sections.
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3.4. Stability of wave trains. Stability of wave trains in the co-moving coordinate frame
¢ = kxr — wt is analyzed by considering the spectrum of the operator

(3.6) L2V = k*DVee + wVe + Fy(Uss)V

on L?(R) formed by linearizing (3.2) about the solution U,,. There are no nontrivial solutions
V € L*(R) in the kernel of £ — X\, and the sets Ypt and Ypreq are empty; that is, X,y =
Ypred = 0. The spectrum X of L2 consists only of Fredholm borders ¥pp, which can be
computed as follows. The linearization Fy(Us) is 2m-periodic, so by Floquet theory we seek

nontrivial solutions to L2V = AV of the form V(¢,t) = e*¢/%V(§) with V(€ + 27) = V(€)
for v € C and obtain the relation

(3.7) LM\ )V = D (ke +v)>V + % (kO + 1) V + Fy(Uso)V — AV =0,

which connects the temporal eigenvalues A and spatial Floquet exponents v. Therefore, the
spectrum X of LV is given by

Swt := {A € C: 3 v € iR and nontrivial 27-periodic V(£) so that L5 (X\,v)V =0 V¢ € R} .

It can be shown that Xy, is the union of smooth curves of the form A = A (v) with v = iy €
iR, which are often referred to as linear dispersion curves. For each fixed A € C, equation (3.7)
admits finitely many Floquet exponents v € C, and at least one Floquet exponent crosses the
imaginary axis as A crosses through a spectral curve.

In the laboratory frame, the linearized equation is

(3.8) Vi = DV + Fy (Uso(kx — wt)) V.

Functions of the form V (x,t) = eMe"®V (kx —wt) for nontrivial 27-periodic V (kz —wt) = V (€)
satisfy (3.8) if and only if

(3.9) LN V)V = D (k0 +v)° V +wVe + Fy (Uso(€)) V — AV =0,

which defines essential spectrum curves A = A (v) for v € iR. We note that the essential
spectra in the co-moving (3.7) and laboratory frames (3.9) are different: comparing L2V (A, v)
to £12P(\, 1), we see that the spectral curves are related via [39, 42]

(3.10) Aab (V) = Ao (V) — %u +iwl, (€.

Essential spectra computed in the laboratory frame have vertical periodic branches param-
eterized by ¢ € Z, which arise from Floquet ambiguity. Additionally, for each fixed A € C
in (3.9), there are infinitely many v € C and nontrivial 27-periodic functions V' such that
LEP(\ V)V = 0. We order the spatial Floquet eigenvalues v; for fixed A > 1 by their real
part,

(3.11) ---<Rev_j_1 <Rev_j<---<Rev_; <0<Rerv; <.---<Revj <Revjy <---,

so that Rev_; < 0 < Rery. Upon crossing an essential spectrum curve (Fredholm border),
at least one spatial eigenvalue crosses the imaginary axis. Figure 3 shows curves of essential
spectrum with insets indicating the distribution of the spatial Floquet eigenvalues v.
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3.5. Stability of spiral waves. Stability of planar spirals can be determined similarly to
the one-dimensional case by considering the spectrum of the operator formed by lineariz-
ing (3.4) about Uy (r,v),

1 1
(3.12) LV =D (87»7« + 0 + Tzaw,) V+wVy + Fu(Us(r, ¥))V,

and considering the operator £, on L?(R?) with domain H?(R?). Here, the spectrum ¥
contains A = 0 and A = +iw, which arise from rotational and translational symmetries of the
planar spiral.

Features of Y. depend purely on asymptotic properties of the spiral [38, 39]. In the
formal limit » — oo, the linear operator L, becomes

(3.13) L. = DOy +wdy + Fy(Us).
Eigenfunctions in the far-field limit take the form [40]
(3.14) V() ="V (sr +4), V(E+2m) =V(Q),

where radial growth or decay is characterized by the real part of the spatial eigenvalue v and
V(&) is a periodic eigenfunction of the asymptotic wave train. Substitution into £,V = AV
gives

(3.15) L.\ V)V =D (kg +v)*V 4wV + Fiy(Uso)V — AV.

The Fredholm borders of the essential spectrum are defined by A = A\.(v), for which one
spatial eigenvalue is purely imaginary [38], and we see that the far-field spiral-wave operator
reduces to the case of the laboratory frame wave train (3.9), that is, A\«(v) = Aap(v). In
general,

Yess (L) = {)\ € C: L.(\,v)V = 0 has a nontrivial solution V € H? (S') for v € iR}
U{X € C: L — )\, is Fredholm with nonzero index},

and this set is connected to the essential spectrum of periodic wave trains in the co-moving
frame via relation (3.10) [39]. Since v € iR, the mapping does not modify stability properties,
and Yegs (Loo) and Yegs (L£4) destabilize under the same conditions. The additional vertical
periodic branches at integer multiples of iw are distinct branches for the spiral and no longer
artifacts from Floquet theory, as here far-field rotational symmetry implies that if V(r, 1)
is an eigenfunction, then so is €YV (r,1). As in the laboratory frame, there exist infinitely
many spatial eigenvalues v for each temporal eigenvalue A\, which we will order by real part,
as in (3.11).

The pertinent linear operator for spiral waves on the bounded disk Br(0) with Neumann
boundary conditions is

(3.16) LRV = DAV +wVy + Fy (U, g)V, (r,¢) € [0,R) x St
Vo(R,¢) =0, 1 esh.
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The spectrum ¥, g of L, r contains only point spectrum, as the operator L, r — A is Fredholm
with index zero for all A. Naturally, we expect that the discrete eigenvalues in ¥, r resemble
the spectra 3(L,) of the planar spiral wave; however, we will see that this is not true in
general. Instead, eigenvalues in ¥, g will converge to the union of three sets: the extended
point spectrum ey, the absolute spectrum X, and the spectrum Xyqy, of the boundary
sink. We describe these sets and their properties below.

Intuitively, the essential spectrum describes convective instabilities, in which growing per-
turbations are transported away to infinity [38]. When posed on a bounded disk, convective
instabilities are no longer relevant. Instead, perturbations that grow in norm at every point
in space become significant. These so-called absolute instabilities are captured in the limit
R — oo by the absolute spectrum, which is defined via the far-field linear dispersion relation

Li(A\,v) as
Yabs = {A € C:Rev_1(\) =Reri(N\)}.

The absolute spectrum consists typically of curves that are parameterized by 5 = |Imv_; —
Im vy |, where 8 = 0 at the end points. Elements of ¥,,5 do not correspond to eigenvalues of
L, r but rather represent accumulation points of infinitely many discrete eigenvalues of L, g as
the domain size R goes to infinity [38]. Note that the absolute spectrum is still defined by the
limiting operator £, for the planar spiral wave, but it is generally distinct from the essential
spectrum. The spatial eigenvalues corresponding to elements in the absolute spectrum are
also illustrated in Figure 3.

To motivate the extended point spectrum Y.y, we first discuss discrete eigenvalues to the
right of the essential spectrum of the spiral wave. The corresponding eigenfunctions decay
exponentially as r — oo, and the intuition is therefore that they do not see the domain
boundary when posing the spiral wave on a large bounded disk: in particular, we expect that
the eigenvalues will persist for the spiral on a bounded disk. We refer the reader to [38] for
dynamical-systems arguments that provide a rigorous foundation to this intuition. To explain
the general case of the extended point spectrum Yeyt, we introduce spaces with exponential
weight functions in polar coordinates on R? with given weight n € R in the radial direction
via

ng (RQ) ={u e L120c : |U|L$] < oo}, |u]%% = / ‘u(x)eﬁlx\‘de‘
R2

For every A ¢ Y., there exists an 7 € R such that Rev_;(A) < n < Reri(A). Using
exponentially weighted spaces, we can then define the extended point spectrum Y. via
[38, 16]
Yext = {)\ € C\ Xaps : L« — A is not boundedly invertible on L727, where 7)
is such that Rev_1(\) <n < Rer(\)}.

The weight permits exponential radial growth of eigenfunctions up to rate 7. Exponentially
weighted norms are equivalent on bounded domains; therefore, we can expect that elements
in the extended point spectrum of planar spiral waves Yoyt (L) persist as eigenvalues for the
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operator on each bounded disk, which we can attribute to instabilities caused by the core; see
again [38] for details.

Finally, the boundary conditions may contribute additional point eigenvalues, which be-
long to the spectrum Y4y of the boundary sink defined above in (3.3). The pertinent linearized
operator is given by

(3.17) LiayV = —wV; + DV + Fyy(Upay)V, (2,7) € (—00,0) x S,
Vo(0,7) =0, 7eSh

The relevant eigenvalues of the boundary sink are those that persist on finite domains [38, 42].
Therefore, the extended point spectrum of the boundary sink provides the eigenvalues of the
spiral caused by the boundary conditions, and we have Xpgqy = Yext (Lbdy)-

We summarize our discussion in the following theorem; see [38, 39, 43] for additional
details.

Theorem 3.1. The spectrum ¥ (L. r) of Li.r on L* ([0, R] x [0,27)) with Neumann bound-
ary conditions converges:

by ('C*,R) — Eabs (£*> U Eext (ﬁ*) U Eext (Ebdy) as R — 0,

where L, is the operator for a planar spiral wave on L*(R?) and Ly 18 the boundary sink
operator. Convergence is uniform on bounded subsets of the complex plane in the symmetric
Hausdorff distance. Moreover, the multiplicity of eigenvalues in the extended point spectrum
is preserved; in contrast, the number of eigenvalues, counted with multiplicity, in any fixed
open neighborhood of any point X\ € Xaps (Ly) converges to infinity as R — oo.

Therefore, on bounded domains, eigenvalues fall into one of three sets: (1) the extended
point spectrum that persists under truncation, (2) eigenvalues converging to and emerging
from the absolute spectrum, and (3) the spectrum of the boundary sink.

We note that it was proved in [41] that, under certain conditions on the asymptotic
equations, isolated eigenvalues in Y.y may emerge from absolute spectrum branch points
at predictable angles and destabilize prior to the absolute spectrum. The location of these
isolated eigenvalues is predicted by including 1/r curvature terms into the asymptotic problem
[41, 46].

4. Methods. Alternans and line defects are observed on bounded domains. To investigate
whether unstable eigenvalues that generate these instabilities originate from X,.ps, Zext, OF
Ypdy, we consider spirals formed on three domains, each of which contains eigenvalues from a
portion of the spectral sets.

The first domain is the standard bounded disk of radius R with homogeneous Neumann
boundary conditions, which we denote by Br(0). Here, spirals U, r(r,) are solutions of
(3.5), and the spectrum of the operator

(4.1) £*7RV = DATﬂ/,V—i—de, —|—FU(U*)V

on L*(Bg(0)) with domain {V(z) € H*(Bg(0)): V»(R,-) =0} provides information about
stability. From Theorem 3.1, the spectrum contains contributions from the core, the far field,
and the boundary sink captured by the sets Yex¢, Yaps, and Ypqy, respectively.
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Core instabilities associated with Yyt are analyzed by computing spirals on the bounded
disk radius R with nonreflecting boundary conditions. Nonreflecting boundary conditions
mimic an infinite domain by matching the spiral to the asymptotic wave train on the bound-
ary, allowing the spiral to naturally pass through it without interference. These boundary
conditions have been previously used to study spiral waves on bounded domains without com-
promising symmetry properties (see, for instance, [12, 22]). Nonreflecting spirals Uy, (7, 1) are
solutions to

0= DA, U +wUy + F(U) for (r)€0,R)x S,
(4.2) 0=U,—krU;, at r=R, eSS,

where the boundary condition is obtained by taking derivatives of the asymptotic matching
condition U, (r, 1) = Ux(kr — 1). The linear operator Ly n, for the nonreflecting spirals is

(4.3) ERVMV = DATJ/,V + wVw + FU(Unr)V,

which acts on eigenfunctions in {V'(z) € H? (Bg(0)) : V;(R,¥) = kVy(R, %) }.

Finally, effects of the boundary and eigenvalues associated with X,qy are captured by direct
computation of the boundary sinks. The boundary sink Upqy is posed on a two-dimensional
spatiotemporal domain ,qy = [—L,0] x S 1 with Neumann boundary conditions at = = 0
and 27-periodic boundary conditions in 7 so that Upgy(x, ) is a solution to

(4.4) wU,; = DUy, + F(U), (2,7) € [~L,0) x S,
U,(0,7) =0, 7 € S..

Stability of the boundary sink is given by considering the operator
(4.6) Ebdy,LV = —wV.+ DV, + FU(Ubdy)V

on the space {V(z,7) € H'([-L,0] x S) : V;(0,-) = 0}. Boundary sinks for the Réssler and
Karma models are shown in Figures 5(a) and 8(b) and will be discussed in further detail
below.

Boundary sinks have far-field dynamics and boundary conditions but lack the core: con-
versely, nonreflecting spirals contain the core but lack outer boundary effects. On each domain,
stability properties are given by spectra of the operator linearized around the solution. Com-
paring the spectra of these three operators will indicate which region and spectral set are
responsible for observed instabilities. We expect all operators to have eigenvalues aligning
along the absolute spectrum due to the far-field dynamics, but the spectrum of Lyqy 1, will
not contain isolated core eigenvalues from Yex (L£4), and Lg nr will not have eigenvalues from
the boundary sink. We remark that for nonreflecting boundary conditions in Lg nr discrete
eigenvalues from the far field will still converge to the absolute spectrum. These expectations
are summarized in the following lemma [43].

Lemma 4.1. The spectra of the operators defined above have the following limits, where L,
is the linear operator for the planar spiral wave on L? (RQ) with domain H? (RQ) defined in
(3.12), and Lyqay is the boundary sink defined in (3.17):
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1. Bounded disk:
Y (Lar) = Vext (L4) U Bext (Lbdy) U Xabs (L£4) as R — oo.
2. Nonreflecting disk:
Y (Lrnr) = Zext (L) UZaps (L£4) as R — oo.
3. Boundary sink:
Y (Lpay,.) = Yext (Lbdy) U Xabs (L4)  as L — oo.

4.1. Numerical methods. The patterns and spectra of each operator are computed nu-
merically in MATLAB [29]. Here, we describe the numerical methods, and MATLAB code
can be found online [13]. Patterns are formulated as roots of equations of the form F(U) =0
representing the discretized PDE posed on an appropriate domain. Solutions are found using
the built-in root finding algorithm fsolve.

Periodic wave trains Uy (&) are found by solving

(4.7) 0 = k*DUg¢ + wUe + F(U)

on the domain ¢ € [0,27) with periodic boundary conditions Us (€ + 2m) = U (§). Trans-
lational symmetry creates a family of solutions, and to select a unique solution and create a
square system the phase condition

2T
(48) 0= /0 (Ue(y), Uoa(y) — U()) dy

is added to F(U), where Uyq(&) is the initial guess for the wave train. One-dimensional peri-
odic domains are discretized using Fourier spectral differentiation matrices with Ng = 128 grid
points. Continuous spectra of the wave train are calculated through numerical continuation
of the linear dispersion relation £2(\,v)V = 0 using methods described in [34], which gives
Yrp of spiral waves via the relation (3.10).

On large bounded disks, spiral waves are computed as roots of the equation
1 1
0=D (arr+ ;ar + 728¢¢) U+wU¢+F(U)

with appropriate boundary conditions (homogeneous Neumann or nonreflecting). The spiral
angular frequency wg depends on the radius R of the disk and is added as a free parameter in
the spiral calculation. Rotational symmetry also creates a family of solutions, and the phase
condition for one-dimensional waves (4.8) is applied at » = R/2 to fix the phase of the spiral
wave and select a unique solution.

Operators for disk domains Br(0) and By (0) are discretized with a fourth-order centered
finite difference scheme with N, = 200 grid points in the radial direction and periodic Fourier
spectral methods with Ny = 100 grid points in the angular coordinate. Grid sizes and dis-
cretizations are chosen to ensure numerical accuracy and to capture a sufficient number of
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spiral bands for convergence of eigenvalues to occur, while maintaining efficient calculations.
Radii of R = 125 and R = 5 are used for the Rossler and Karma models, respectively, which
results in capturing at least three spiral bands due to the spatial wave numbers. A Neumann
compatibility condition is enforced at the origin of the polar grid. As in [46], two variations
of polar grids are used for the spiral and eigenvalue computations. Spiral solutions are solved
on a grid of size Ny x N,, where the origin contains Ny grid points. A grid with only one grid
point at the origin is used for eigenvalue calculations. Neumann boundary conditions on the
outer radius are implemented into the finite difference matrices via the ghost point method
[45, section 1.4].

The boundary sink operator on the rectangular domain ()4, was discretized similarly
using fourth-order centered finite differences with N; grid points in the spatial direction and
a Fourier spectral method with V; grid points in the periodic temporal direction. Following
the methods and terminology in [26, 18], the boundary sink is computed numerically by
decomposing the domain into a “far-field” region where the boundary sink resembles the
asymptotic wave train and a “core” region where the Neumann boundary condition has an
effect on the wave shape. Note that in this case the core refers to the area near the boundary.
The spatial wave number x and the resulting wave train Us (kz — 7; k) in the far-field region
are fixed to match the wave number of the spiral wave. We then seek the boundary sink in
the form

Updy(z,7) = (1 — x(2)) Uso(kx — 73 K) + x ()W (2, T),

where smooth cut-off functions of the form x(z) = 1/2 (1 + tanh(z — d)) are used to decom-
pose the boundary sink into the wave train Uy (kz — 7;k) in the far field and a correction
term W (x,7) in the core. Substituting the form of Upgy into (3.3) allows us to calculate
the correction term W (x,7) with Newton’s method. The far-field solution Us(kx — T3 K) is
computed by first calculating the asymptotic wave train U (§; ) using (4.7) and the phase
condition (4.8) with the angular frequency and spatial wave number specified by the spiral
and then generating the space-time solution Uy, (kz — 7; k) by substituting £ = kx — 7.

To account for numerical inaccuracies, the temporal frequency w is set as a free parameter
and an integral phase condition is added to match the solutions U (k2 — 7; k) and W (x, 7).
In summary, boundary sinks are computed by solving the system

— w@TUbdy + DamUbdy + F (Ubdy) =0, (:C, 7') S (—L,O) X Sl,
=0, Test,

W, (0,7)
0 2m

/ / Ul (kx — )W (z,7) d7 dz =0,
—27/k JO

KUY + wUlL 4+ F(Uss(€) =0, Uso(2m 4 &) = Uso(€)

for W (zx,7) and w with « fixed. Applying x(x) to the solution Uy (kz — 7; k) yields an initial
guess for Wz, ).

Domain sizes were selected to fit six periods of the wave train, which accurately captured
both the Neumann boundary conditions and convergence to the far-field dynamics. Asymp-
totic wave trains were computed from the one-dimensional problem (3.2) using Fourier spectral
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Figure 4. Rossler model: (a) Spectra for L. r representing a stable spiral on a disk with parameter pr = 2
and radius R = 125. Labels on right side of imaginary axis indicate half-multiples of angular frequency. (b)
Spectra of unstable spiral, pr = 3.4. (c) Spiral on bounded disk of radius R = 125 exhibiting a single stationary
line defect. Parameter ur = 3.4. (d) Unstable point eigenfunction responsible for line defects with ur = 3.4.
Corresponds to eigenvalue A = 0.043 + 0.54¢ = 0.043 + w/24.

methods on a periodic grid of Ny points. The translation of wave train to boundary sink re-
sulted in Ny = 6Ng. To take spatial derivatives, the pattern was initially posed on a larger
spatial grid of eight periods with Neumann boundary conditions on each end. When solving
for the final pattern, the left two periods were removed to eliminate left-hand side boundary
effects and simulate a half-infinite line.

5. Results. Spirals on each domain are numerically calculated for the Karma and Rossler
models, and the influence of the spiral regions is determined by comparing the spectra of the
three operators Ly g, LR nr, and Lygy.

5.1. Rossler model: Line defects are driven by the boundary. At the onset of period-
doubling, point eigenvalues with imaginary parts approximately equal to 5§ + (w, £ € Z,
destabilize, followed by branches of essential and then absolute spectra upon increasing ug
further. The unstable eigenfunctions are localized at the boundary (Figure 4), indicating that
line defects are a result of instabilities of the boundary conditions. The spectra of Ly r, LR nrs
and Lyqy are compared in Figure 5. As expected, all patterns have eigenvalues from the far-
field dynamics aligning along the absolute spectrum. However, only domains with boundary
conditions, that is, the spiral on Br(0) and boundary sink on gy, contain the unstable line
defect eigenvalues. Thus, the instability is confirmed to arise from the boundary conditions,
and a bounded domain is necessary for the defects to occur.

To further probe for influence of the boundary conditions, we can modify them by changing
k in (4.2); k = 0 corresponds to homogeneous Neumann conditions, and k = k. is nonreflect-
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Figure 5. Rdssler model: (a) Image of boundary sink. Neumann boundary conditions on the right at &€ = 0.
Domain is periodic in time (vertical) direction. (b) Spectra of operators L« r, LR nr, Lbdy-

ing. Therefore, we can start at x = 0 with the homogeneous Neumann boundary spiral from
Bgr(0), numerically continue in s until reaching the spatial wave number of the spiral k.,
and track the evolution of an unstable eigenvalue. The spiral is already formulated as a root
finding problem, and the eigenvalue problem can be as well by solving Lg n,V — AV = 0. Each
continuation stage is a 2-step process. First, a new spiral with updated boundary conditions
is computed, and, second, the linearized operator LRy, is modified and an eigenpair (A, V)
is computed. Starting the continuation at x = 0 allows the unstable eigenfunction from L, g
to be used in the first continuation step. If the eigenvalue is unchanged with the boundary
continuation, then it does not originate from the boundary sink.

Figure 6 shows the evolution of the point eigenvalue during the x-continuation. The
eigenvalue changes with k, first tracking along the essential spectrum and then jumping on
the absolute spectrum. Increasing x corresponds to a mixed boundary condition and results
in different shapes of unstable eigenfunctions, demonstrating that the boundary conditions
will change the observed instability. The eigenfunctions in Figure 6(b) show the transition
from localization at the boundary to localization at the core as k is increased from 0 to k..
Similar results are obtained for unstable point eigenvalues at other multiples of % + iw/,
as these eigenvalues arise due to the asymptotic ¥V (r,4) symmetry of the eigenfunctions.
Finally, the s-continuation only modifies the unstable point eigenvalues that originate from
the boundary spectrum; the unstable point eigenvalues that align with the absolute spectrum
fall into a disjoint spectral set that does not directly depend on the form of the separated
boundary conditions and are thus unaffected by such a continuation.

5.2. Karma model: Alternans are driven by the core. As the bifurcation parameter pg
is increased above one in the Karma model, the essential spectrum destabilizes in an Eckhaus
instability, followed by a single complex-conjugate pair of eigenvalues with imaginary part near
3w/2. Meandering and alternans appear with the Hopf bifurcation from the point eigenvalues.
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Figure 6. Rdssler model: (a) Boundary condition continuation of line defect eigenvalue (black curve),
starting with k = 0 on the right and ending on absolute spectrum with Kk = kK«. Inset highlights direction of
eigenvalue continuation and tracking of eigenvalue along essential spectrum. (b) Eigenfunctions from continu-
ation. Locations of eigenvalues indicated by green circles on eigenvalue continuation in (a). Eigenfunctions on
a disk of radius R = 125.

Shown in Figure 7(d), the unstable point eigenfunction, and hence the form of the instability,
has highest magnitude at the boundary of the spiral bands, leading to the observed alternans.

The single pair of eigenvalues suggests they arise from Yy and are instabilities of the
core. In this case, comparison of the three operators indicates that alternans eigenvalues are
present in the spiral spectra for £, g and Lgn, but are absent in the boundary sink Lyqy.
Modification of the boundary conditions in Bg n(0) by continuing « results in no change to the
alternans eigenvalue or eigenfunction. Furthermore, the pair is not emitted from the absolute
spectrum; continuation of the absolute spectrum branch point Ay, and alternans eigenvalue
Aa in parameter px shows that the difference Re Ay, — Re A4 is positive over an appropriate
range of parameter values (Figure 8(c)). Thus, the point eigenvalues causing the alternans
instability stem instead from the unstable pair of eigenvalues originating from Y., affiliated
with the core.

5.3. Alternans from interaction of point and essential spectrum. More can be said
about the alternans eigenfunction. To leading order, spiral eigenfunctions are of the form
(3.14), and as the unstable alternans point eigenvalue A passes through the essential spectrum,
the eigenfunction inherits properties of the essential spectrum [40]. In particular, Re v is close
to zero when the eigenvalue \ is near the essential spectrum, and we therefore have v ~ iv,
where v depends on the location of A\ on the essential spectrum curve. Using this information
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Figure 7. Karma model: (a) Spectra for stable spiral, px = 0.6. Labels on right side of imaginary
azis indicate half-multiples of angular frequency. (b) Spectra of unstable spiral, px = 1.4. (c) Development
of alternans in time evolution of spiral on bounded square with homogeneous-Neumann boundary conditions.
Parameter ux = 1.4. Square of side length 16cm. (d) Unstable point eigenfunction responsible for alternans.
Corresponds to eigenvalue A = 2.6 4+ 75.97 = 2.6 + 3w/2i, ux = 1.4. Domain radius R = 5 with homogeneous-
Neumann boundary conditions.
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Figure 8. Karma model: (a) Spectra of operators L. g, LR nr, Lbay. (b) Image of boundary sink. Neumann
boundary conditions on right at &€ = 0. Periodic in time (vertical) direction. (c) Distance between real part of
alternans point eigenvalue and branch point of absolute spectrum as function of parameter pg.
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Figure 9. (a) Shown are the actual alternans eigenfunction of the Karma model from Figure 7(d) (bottom
left) and the approzimate alternans eigenfunction computed using (5.1) (top left). (b) Comparison between
the absolute value of the derivative UL, of the wave train (blue) and the essential spectrum eigenmode Vess
(orange dots) computed from the linear dispersion relation of the wave train and used in (5.1). Note how the
two functions have a similar overall form. (c) Radial growth of the actual alternans eigenfunctions as the value
of the bifurcation parameter px varies.
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in (3.14), we see that the spiral eigenfunction is, to leading order in the radius, given by
(5.1) V(r, ) = €7 Vg (ki + 1)

for some 27-periodic function Vg that is determined by the wave train. An eigenfunction
for the spiral wave constructed using (5.1) is shown in the top left panel of Figure 9(a).
The structure of the constructed eigenfunction is qualitatively in good agreement with the
alternans eigenfunction from L, g, which is reproduced in the bottom left panel of Figure 9(a).
Note that the derivative U/ () of the wave train is the eigenfunction of the essential spectrum
with eigenvalue \ = ifw for £ € Z. The alternans eigenfunction crosses Y near one of these
points, and since the eigenfunction changes slowly along an essential spectrum curve, Vegs(§)
has a structure similar to U._(), as visible in Figure 9(b). The derivative of the wave train is
the highest at the wave fronts and backs, and it is this overall shape that leads to the changing
width of the spiral bands and form of alternans.

When the alternans eigenvalue is to the left of the essential spectrum, approximately
pur < 1.4, the overall shape of the eigenfunction is comparable to those shown in Figure 9(a),
but there is slight radial growth toward the boundary, corresponding to a spatial eigenvalue,
v, with a small positive real part. Radial growth of the alternans eigenfunction for several
values of bifurcation parameter pg is visible in Figure 9(c). As the eigenvalue approaches the
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essential spectrum, radial growth decreases and is near zero for pux near 1.4, as seen in the
solid black curve in Figure 9(c). Alternans appear when this eigenvalue first destabilizes, but
the strength of the instability on the core and far-field regions is determined by the proximity
of the point eigenvalue to the essential spectrum.

6. Discussion. Instabilities in patterns observed on finite domains may be initiated by
unstable eigenvalues stemming from a variety of sources. Determining where unstable eigen-
values originate from yields insight into what creates the accompanying instabilities and what
their spatial shape looks like. Here, we present a methodology for unfolding the origin of
these eigenvalues and apply it to the specific case of period-doubling instabilities of spiral
waves on bounded disks. The technique of comparing the spectra of the three operators can
be applied to additional models that support spiral waves and, more generally, to pattern
forming systems on any domain, as long as the patterns of interest can be computed as roots
of an appropriate system.

Our results predict that line defects in the Rossler model will only be seen on bounded
domains and that the shape and type of boundary conditions will likely affect the structure of
the instability. Furthermore, the interaction of the outer bands of multiple spirals can induce
a nontrivial boundary condition between the spirals, and line defects or similar structures may
be generated in these situations. Therefore, for instabilities of the boundary sink, an accurate
representation of the boundary conditions and domain is a necessary factor when matching
models and theory with experiments.

We find that alternans are a product of unstable eigenvalues in the extended point spec-
trum associated with the spiral core, implying that, as long as the core does not directly
interact with the boundary, the shape of the domain and the precise form of boundary con-
ditions are insignificant factors in the spiral stability and formation of alternans. This result
has direct impacts for cardiac dynamics, in that conclusions for the development of alternans
on bounded disks can be extended to irregular and complex geometries such as the heart.
Unstable alternans eigenfunctions do exhibit slight radial growth or decay, depending on the
value of parameter p g, which may influence which regions of the spiral are impacted the most
by the instability or how prevalent alternans are on a small domain. Our results are consistent
with [27, 28], which find that alternans development is most sensitive to perturbations near
the core.

Despite the bounded domain, the essential spectrum provides useful information about
the source of the alternans instability. Alternans on a ring were previously attributed to
destabilization of the continuous spectra [3]. We find that, on a bounded disk, an unstable
point eigenvalue passing through the Eckhaus unstable essential spectrum is fundamental to
the alternans structure. Translational symmetry of the wave train ensures existence of the
eigenvalue-eigenfunction pair (A = 0,V = UL ), meaning that the essential spectrum curve
that passes through the origin for one parameter set must contain the origin for all parameter
values. Therefore, these branches generically destabilize through an Eckhaus instability. Point
eigenvalues that interact with these essential spectrum branches acquire an eigenfunction with
shape close to U/, which impacts the wave fronts and backs leading to the observed form of
the alternans instability. The unstable essential spectrum also implies that the associated
wave trains on R undergo an instability as well.
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In the Réssler model, point eigenvalues do not interact with unstable essential spectra
branches and unstable continuous spectra branches do not pass through the origin. Our results
suggest that alternans instability will appear if a point eigenvalue crosses an essential spectrum
that has destabilized through an Eckhaus instability. Future work includes investigation into
whether an Eckhaus instability is necessary or sufficient for the formation of alternans. If
the continuous spectrum can be attributed to formation of alternans, the one-dimensional
computation of the essential spectrum provides a tractable tool for analysis of more realistic
and complex models.

There are a number of differences between the spectra of the two models. In the Rossler
system, countably many discrete eigenvalues destabilize ahead of distinct period-doubling
essential and absolute spectrum branches. In contrast, it is a single pair of unstable com-
plex conjugate eigenvalues with imaginary part approximately 3w/2 that leads to alternans.
Generically, continuous spectra curves are symmetric around the lines i§ + iw/, £ € Z, which
may take the form of smooth curves that intersect with or coincide with symmetry lines or
disjoint branches that do not intersect [42]. The first case is observed in the Rdssler system
and the latter in Karma. Furthermore, in the Rossler system, the point Im A = § + w/ on the
continuous spectra has spatial eigenvalue Im v = /2, which corresponds with robust period-
doubling of the far-field dynamics [42]. On bounded domains, discrete eigenvalues limit to
absolute spectra curves, meaning an unstable absolute spectrum for the Rossler system will
result in instabilities with temporal frequencies precisely w/2+¢w. On the other hand, the dis-
joint absolute spectrum branches in the Karma model result in an unstable absolute spectrum
contributing many frequencies close to, but not specifically, period-doubling.

Spatial concordance is another feature that distinguishes these two models. Alternans
are said to be spatially concordant if each action potential in a traveling wave remains either
short or long during propagation and are otherwise said to be spatially discordant [8]. This
distinction is of interest, as there is strong evidence that discordant alternans cause spiral-wave
break-up in cardiac dynamics [17, 36]. The period-doubling bifurcation in the Rossler model
can be thought of as creating alternans in the amplitude rather than in the action potential
length, with alternating short and tall peaks along each ray. As illustrated in Figure 10, the
instability in the Rossler model creates spatially concordant alternans, as each peak maintains
the same amplitude during propagation, while the alternans considered here in the Karma
model are discordant. Given the spatial geometry of spiral waves, which connects all action
potentials spatially through the spiral arm, concordant alternans in single-armed spiral waves
can exist only in conjunction with a line defect.

In real cardiac systems, discordant alternans lead to spiral break-up, providing evidence
that they originate through a subcritical bifurcation [17, 36]. Numerical studies show both
immediate break-up and short-time alternans persistence [10, 24, 25], and it is therefore not
clear whether the bifurcation to alternans is sub- or supercritical. In [20], alternans are shown
analytically to originate from a subcritical Hopf bifurcation, but this analysis is limited, as
it relies on a specific normal form for systems near a saddle node of a traveling wave, which
is not satisfied in all alternans generating models. The debate of a sub- versus supercritical
bifurcation can be investigated in models by determining whether an alternans spiral is stable
when considered as a time-periodic three-dimensional structure on a bounded disk.
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Figure 10. (a) Alternans in the far field of the Rdssler model are spatially concordant, as each peak
maintains a constant amplitude. (b) The Karma model displays discordant alternans in the far-field since the
action-potential duration of individual waves changes during propagation.
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Appendix A. Karma and Rossler models. The standard form of the Karma model in the
laboratory frame for z € R? is

2
Ey =~yAE + * <—E + (E* — nM) (1 — tanh(F — E}y)) g) ,
TE

nt:(SATl-i-:n (]i%ﬁs(E—En)—n> s
where E' = FE(x,t) represents membrane voltage and n = n(xz,t) takes the place of a slower
gating variable [24, 25]. In the notation of the main paper, the variables u and v represent
E and n, respectively. The Heaviside function has been replaced by the smoothed function
¥s(u) = (1+tanh(su))/2 for s = 4. Full parameter values are given in Table 1. The bifurcation
parameter (typically called the restitution parameter) px = Re is increased from 0.6 to 1.4
and controls recovery properties of the excitable media. All other parameters are held fixed
in our study.
In the laboratory frame, the Rossler model is given by [19]

u = 01Au — v — w,
v = 02Av + u + av,
w; = 03Aw + uw — cw + b.

The bifurcation parameter c is increased from 2 to 3.4, with line defects appearing as up = ¢
passes through 3. Parameters are given in Table 1.

MATLAB code to compute the patterns and spectra using these forms of the models can
be found online [13].

Acknowledgments. We would like to thank David Lloyd and Ryan Goh for their helpful
discussions and assistance with the numerical computation of boundary sinks.
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Table 1
Model parameters: Angular frequency w is selected by spirals, and given intervals align with bifurcation
parameter.
Karma Rossler
v =11 5. =04
§=0.1 62 =04
7 = 0.0025 03 =0.4
Tn = 0.25 a=0.2
E* =1.5414 b=0.2
M =4 UR =c € [2,3.4]
s=4 w € [1.08,1.06]
E,=3
E,=1
ux =Re € [0.6,1.4]
w € [60.02,46.13]
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