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Abstract

We investigate stationary, spatially localized patterns in lattice dynamical systems that exhibit bista-
bility. The profiles associated with these patterns have a long plateau where the pattern resembles one
of the bistable states, while the profile is close to the second bistable state outside this plateau. We show
that the existence branches of such patterns generically form either an infinite stack of closed loops (iso-
las) or intertwined s-shaped curves (snaking). We then use bifurcation theory near the anti-continuum
limit, where the coupling between edges in the lattice vanishes, to prove existence of isolas and snaking in
a bistable discrete real Ginzburg-Landau equation. We also provide numerical evidence for the existence
of snaking diagrams for planar localized patches on square and hexagonal lattices and outline a strategy

to analyse them rigorously.

1 Introduction

We are interested in patterns that form in spatially extended systems due to bistability. Imagine a system
that supports two stable stationary states, say a homogeneous rest state up(x) = 0 and a patterned state
up(x) that may be spatially periodic. We can then attempt to find stationary states u(z) so that u(x) ~ wu,(z)
for |z| < L and u(x) ~ 0 for |x| > L; these states therefore resemble the patterned state over a domain of
diameter L and are close to the homogeneous rest state outside of this region; see Figure 1 for an illustration
in the spatially one-dimensional case. Localized patterns of this form have been observed in many different
systems, ranging from semiconductors [35] and chemical reactions [39] to vegetation patterns [27, 34], crime
hot spots [22, 37], and ferrofluids [15]; additional references can be found in the review papers [14, 18].

As shown in Figure 1, localized patterns can arrange themselves in intricate existence diagrams upon varying
a systems parameter. In many cases, their spatial L2-norm goes to infinity along the associated bifurcation
curve — this case is often referred to as snaking. Alternatively, it is also possible that these patterns exist
along an infinite number of closed bifurcation curves, so-called isolas.

Understanding these intriguing diagrams has been the focus of much attention over the past decades. Early
investigations considered systems that admit a Lyapunov function or energy, which decreases strictly in time
along non-stationary solutions, and focused on the apparent paradox that, even in the bistability regime, one
of the two patterns involved should have lower energy and therefore invade the second state — in particular,
localized states of the form described above should exist only at the unique parameter value (the so-called
Maxwell point) for which the two patterns have equal energy. Heuristic explanations focused on the role
of spatial periodicity of the patterned state to explain why localized patterns of arbitrary extent L can
exist for an open parameter interval rather than just a single parameter value [13, 31, 40]. However, these

early investigations could not predict the exact shape of bifurcation diagrams. In [9, 20], Chapman and
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Figure 1: Shown are the bifurcation diagrams of localized patterns to (1.1) with d = 0.5: on-site and off-
site solutions exist along the dashed (red) and solid (blue) curves, respectively, while asymmetric states arise
along the connecting dotted (green) branches. Representative solution profiles are shown in the insets: on-site

solutions have an odd number of points along their plateaus, whereas off-site solutions have an even number.

Kozyreff used formal asymptotics beyond all orders to show that small-amplitude localized patterns emerge
near Turing bifurcations and form a snaking bifurcation diagram. The authors of [3] pursued a different,
complementary approach that relies on spatial dynamics to derive conditions for large-amplitude localized
patterns to form snaking diagrams or isolas based on the existence properties of fronts that connect the
homogeneous state ug to the patterned state w,. Other contributions focused on asymmetric states [6, 7],
stability [25], symmetry breaking [19, 24, 32], and nonexistence of snaking [1].

Despite this progress, much remains unknown. For instance, we are not aware of examples where the
conditions for isolas and snaking for large-amplitude patterns can be checked analytically. Furthermore,
little is known about the properties of planar localized patterns: while the bifurcation diagrams of some of
these patterns can be explained using spatial dynamics [2], hexagon or rhombus patches form very complex

bifurcation curves [23] that are largely unexplained; see Figure 2 for an example.

To understand better what causes localized patterns to organize themselves in snaking diagrams or isolas, we
focus in this paper on lattice dynamical systems. Lattice systems consist of an identical differential equation
for each point on the lattice that are then coupled by a linear bounded operator that reflects nearest-
neighbour interaction. It is well documented that localized patterns in lattice dynamical systems can exhibit
snaking [10, 21, 29, 36, 40, 41]. In particular, the existence of homoclinic tangles in the discrete maps that
capture stationary structures explains the coexistence of many localized structures [8, 13, 40], though this is
not sufficient to explain how localized structures are connected globally to yield snaking diagrams or isolas.

A concrete example that we will use in this paper is the real cubic-quintic Ginzburg—Landau equation
Unp =d(Upsr + Up_y —2U,) — pU, +2U2 - U2, nelZ (1.1)

posed on Z, where U,, € R denote the state variables, d > 0 represents the strength of the coupling between
nearest neighbours, and p is a bifurcation parameter. Equation (1.1) and its discrete cubic-quintic nonlinear
Schrodinger version have a long history in nonlinear optics, for instance as a model for rotating waves in
optical waveguides, and many papers have been devoted to the existence, stability, and bifurcations of its

localized structures, primarily using numerical techniques; we refer to [8, 11, 41] and the monograph [30] for



sample results and further references. As shown in Figure 1, the Ginzburg-Landau equation (1.1) exhibits
snaking for sufficiently small positive values of the coupling parameter d, and our goal is to explain this

phenomenon rigorously.

The analysis we shall present in this paper consists of two parts. In part I, we will use spatial dynamics
to understand the existence branches corresponding to localized stationary patterns of a general lattice
dynamical system posed on Z, assuming we know the properties of fronts that connect two different patterned
states. This analysis will, in particular, predict when patterns arrange themselves in snaking curves or in
isolas. Our approach is similar to our previous analysis in [3] for the case of partial differential equations.

To use (1.1) as an illustration, its stationary solutions satisfy the discrete dynamical system

Up+1 = Un,
1 s s (1.2)
Un+1 = 20, — Uy + g(ﬂ'vn - 2Un + Un)7
where (un,vn) = (Up—1,Uy), and we can find fronts and localized patterns of (1.1) as heteroclinic and

homoclinic orbits of (1.2).

In part II, we will focus on the concrete system (1.1) and exploit the fact that its anti-continuum limit,
which corresponds to the uncoupled system that arises when setting d = 0, provides a regime that is readily
accessible analytically. We will show that we can verify the conditions of our general theory near this limit
for 0 < d < 1 and demonstrate that both snaking and isolas can occur in (1.1). We note that the anti-
continuum limit of (1.1) was studied analytically in [12] via a justification of its variational approximation,

though the connection to snaking and isolas was not studied there.

We emphasize that the methods we use to analyse patterns near the anti-continuum limit do not rely on
spatial dynamics and can therefore be applied more broadly to other lattices. To illustrate this aspect
of our work, select an arbitrary discrete set A C R™ as the index set, consider, for instance, the map
F : 0°(A) x R — ¢°°(A) that acts by [F(U, p)]x := —pUx +2U3 — U3 with A € A, and choose any bounded
linear operator L : £>°(A) — £°°(A) to reflect coupling between lattice points. The resulting lattice dynamical
system is then given by

U=dLU + F(U,u), U= (Ux)rea € £>(A) (1.3)

where d, 4 € R are as above. The following lemma, which follows directly from the implicit function theorem,

shows persistence of stationary patterns near the anti-continuum limit for 0 < p < 1.

Lemma 1.1. Choose a compact interval K C (0,1) and assume that U*(u) is a smooth function so that
FU*(u), ) = 0 for all p € K. There exist dy > 0 and a unique function U : (—do,do) x K — £=(A) so
that U(d, ) is smooth, it is a stationary solution of (1.3) for all d € (—dy,dy) and p € K, and it satisfies

U0,u) =U*(p) for each p € K.

Lemma 1.1 applies to general bounded coupling operators (including graph laplacians on networks for which
the degree of nodes is bounded), and it can be generalized easily to more general nonlinearities and to systems
of equations to show persistence of localized patterns away from bifurcations near the anti-continuum limit.
We refer to [26] for a numerical study of snaking of localized patterns in a predator-prey model on Barabési—

Albert networks, where the coupling operator L is given by the graph laplacian.

The persistence result stated in Lemma 1.1 breaks down at g = 0 and g = 1, where bifurcations take place
when d = 0. It is exactly near these values of p that solution branches are arranged in isolas or snaking
curves, and bifurcation theory can be used to analyse the fate of solutions near these points and therefore

help decipher the global bifurcation structure of solutions. For instance, as shown in Figure 2, the system

Un,m = d(Un+1,m + Unfl,m + Un,m+1 + Un,mfl - 4Un,m) - MUn,m + 2Us,m - U’S,mﬂ (na m) S ZQ (14)
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Figure 2: Shown are bifurcation curves of localized patterns and representative profiles in the Swift—Hohenberg
equation [23] [left] and the lattice system (1.4) posed on a planar square lattice with d = 0.1 [right].

posed on the square lattice Z? exhibits snaking of localized patterns for sufficiently small positive values of
the coupling parameter d that strikingly resembles the snaking curves of hexagon patches found in [23] for the
planar Swift—-Hohenberg equation. The general strategy developed in this manuscript for analysing planar
localized patterns in the anti-continuum limit via bifurcation theory is applicable to (1.4), and we refer to
[5] for details. Such an analysis may provide insight into the bifurcations of planar hexagon patterns arising
in the Swift-Hohenberg equation: we believe that the similarity of the bifurcation diagrams in Figure 2 is
not an accident but arises because hexagonal patches in the Swift—-Hohenberg equation may form through
interactions of individual localized spots that respect a hidden hexagonal lattice created by the initial hexagon

patch — this hidden lattice is explicitly enforced in the planar square lattice system.

This manuscript is organized as follows. We first carry out a general analysis of one-dimensional lattice
systems: we formulate our hypotheses for discrete maps and state our main results in §2, then introduce a
local coordinate system to describe trajectories in a neighbourhood of a fixed point in §3, and finally apply
these technical results in §4 to construct symmetric and asymmetric homoclinic orbits. In the second part
in §5, we apply our results to the anti-continuum limit of the concrete system (1.1). Section §6 contains a
discussion of our results and our preliminary numerical computations for planar localized solution patches.

2 Main Results

We consider a smooth function F : R2 x R — R? and the iterative scheme

Un+1 = F(unnu‘)7 (21)

where p is a bifurcation parameter. We further assume that F' is a diffeomorphism for each fixed p € R, and

therefore since F~1(-, ) exists, for each u we may also iterate (2.1) backwards using the iterative scheme
Up—1 = F 7 (tn, p1). (2.2)

The following hypothesis assumes that the mapping F' exhibits a reversible symmetry which relates the
functions F' and F~! for all p.



Hypothesis 1. There exists a linear map R : R? — R? with R? = 1 and dim Fix(R) = 1 so that F~!(u, u) =
RF(Ru,p) for allu € R? and p € J.

Hypothesis 1 is the discrete dynamical systems analogue of the reverser symmetry exploited in the continuous

spatial setting. Notice that (2.2) can be now be written
Up—1 = RE(Rup, ).
Upon setting v,, = Ru, for all n € Z, we arrive at the backward iteration scheme governed by F' given by
Up—1 = F(vp, p).

Therefore, we see that if {u, }nez is a solution to (2.1), so is {Ru_y }nez. A solution {uy, }nez of (2.1) is said
to be symmetric if R{un}nez = {tn}nez. Note that if uy € Fix(R) we have u, = Ru_,, for all n € Z, and
if ug = Ru_; we then have that u,, = Ru_,_1 for all n € Z. Such orbits provide examples of symmetric
solutions. This leads to the following lemma which characterizes all symmetric solutions to (2.1).

Lemma 2.1. Let u = {un}nez be a symmetric solution to (2.1). Then there exists exists an n € Z such

that Ru, = Uy, or Rup_1 = Uy,.

Proof. Assume that u = {u, }nez is a symmetric solution to (2.1). That is, Ru = u. Then, fixing a positive
integer n, it follows that there exists k € Z such that Ru, = ug. If Kk =n,n — 1 we are done, and therefore

we turn now to the case that k # n,n — 1. Hypothesis 1 implies that
upr1 = F(up) = F(Rup) = RE  (u,) = Rup_1,

where we have suppressed the dependence on p € J for convenience. This shows that Ru,_1 = ug41, and
continuing these arguments we can inductively show that for all j € Z we have Ru,,—; = ug4;. In particular,
there exists an integer j such that k = n — 25 or k = n — 25 + 1 depending on whether n and k have the
same parity or not. Therefore, either n —j = k+ j or n —j = k 4+ 7 — 1, which proves the claim. O

We now provide the following definition.

Definition 2.2. Let u = {uy, }nez be a symmetric solution to (2.1). Then, if there exists an n € Z such that

Ru, = Uy, the solution u is said to be on-site. Otherwise, the solution is said to be off-site.

We next state our assumptions on the fixed points of (2.1) belonging to Fix(R) we are interested in.

Hypothesis 2. We assume that there exists a compact interval J C R with nonempty interior such that for
each p € J, the points u = 0 and u = u* belonging to Fix(R) C R? are hyperbolic fized points of (2.1). We

further assume that the eigenvalues of the matriz F,(u*, u) are real and positive.

Recall that linearizing about a fixed point of a reversible map belonging to the subspace Fix(R) results in a
matrix with the property that if ) is a nonzero eigenvalue, then so must be A, % % [38, Proposition 16.3.4].
Hence, reversibility of the mapping (2.1) implies that both 0 and u* are saddles, and hence Hypothesis 2
implies the existence of one-dimensional stable and unstable manifolds of the fixed points 0 and uw*. Therefore
homoclinic and heteroclinic orbits connecting these fixed points can be obtained by identifying intersections
of these stable and unstable manifolds. Our interest here will be in understanding the bifurcation behaviour
of heteroclinic orbits of (2.1) that connect the fixed points u = 0 and v = u*, which we will see informs

the bifurcation behaviour of on- and off-site homoclinic orbits of the trivial fixed point. To do this, let us



consider the Banach space ¢*° := £°°(Z) defined in the introduction and the left shift operator, S : £ — £,
acting by
[Suln == unt1, Yn€Z, uele. (2.3)

This allows one to identify bounded solutions of (2.1) with roots of the function
G xJ—=L2 Glu,p):=Su— F(u,p),
where [F(u, p)], := F(up, ) for all n € Z. Notice that G is equivariant with respect to S in that SG(u, ) =

G(Su, p) for all p € J and u € €.
It is straightforward to find that G is a smooth function since F' was assumed to be smooth. The partial
Fréchet derivatives of G with respect to the first and second component, denoted G, (u, p) : £ — £°° and
Gu(u, p) : R — £°°, are given by

[gu(u7 M)U}n = Un+41 — Fu(una M)U’Vla

[gl/«(u’ /,L)V]n = _Fu(una I'L)V7

respectively, for all n € Z, v € £*°, and v € R. Elements of the kernel of G, (u, 1) are exactly the bounded

solutions to the linear variational equation

Un+1 = Fu(unvlf(')vn

associated to (2.1) about the point u € ¢>°. Furthermore, the second partial Fréchet derivative of G with
respect to the first component, denoted Gy, (u, p) : £° — £°°, is defined by the action

[Guu(u, ) [V, V]l = = Fuw(tn, i) [Vn, vn],

for all n € Z and v € £°°.

Let us now consider the subset X of £*° given by

X = {u ={uptnez €€ : lim wu, =0, lim u, = u*}
n——oo

n—o0

The set G71(0) N (X x J) is the set of all heteroclinic connections of the map (2.1) from the fixed point 0
to u* for p € J. Moreover, Hypothesis 1 implies that all heteroclinic connections of the map (2.1) from the
fixed point u* to 0, for each value of u € J, can be completely identified through the set G=1(0) N (X x J)
by simply applying the reverser R to each element. It follows from Hypothesis 2 and [4, Lemma 2.3] that for
each (@, 1) € G71(0) N (X x J) the linearization G, (i, ji) is a Fredholm operator of index 0. In particular,
the total derivative
DG, 1) 1= [Gulit, 1), Gy (i, )] £ £ x R — (%
is Fredholm with index 1. We now state the following hypothesis.

Hypothesis 3. Assume there exists a connected component T' C G=1(0) N (X x J) such that we have the

following:

1. For each (u,n) € T, the total derivative DG(u, i) : £°° X R — £°° is surjective.

2. If there exists a nonzero vector v € €>° with G, (4, i)v = 0 for some (4, i) € T, then G, (4, i)[v,v] ¢
(G (8, 1))

3. We have T N (£ x 8J) = 0, and there exists K > 0 such that ||i|lc < K for all (u,i) € T.



We note that the first item in Hypothesis 3 implies that the set I' is a smooth curve embedded in the space
X x J corresponding to a smooth family @(s) of heteroclinic orbits of (2.1) for u = pu(s) with s in some

interval. The following lemma relates I" to the dynamical properties of the heteroclinic orbits of (2.1).

Lemma 2.3. Assume Hypotheses 1-3 and let (u, i) € ', then

1. If G, (u, i) is invertible, then W™ (0, i) and W*(u*, i) intersect transversely along the heteroclinic orbit
U.

2. If G,(u, i) has nontrivial kernel, then W*(0, i) and W*(u*, i) have a quadratic tangency along the
heteroclinic orbit u.

Proof. The first statement follows from [4, Theorem 3.1]. The second statement follows via a Lyapunov-
Schmidt reduction in a neighbourhood of the intersection of W*(0, i) and W*(u*, i): the details are similar

to the continuum setting proven in [28, Theorem 2]. O

Next consider the orbit space £>°/(S), which is the set of equivalence classes in > with respect to the
shift S: for u,v € £* we have v ~ v if, and only if, there exists k& € Z such that S*u = v and write
[u] ={vet>: u~wv} Let

w2 x J = A2/(8) x J, (u,pu) = ([u], 1)

be the quotient map onto this orbit space and define

I:=x()
to be the image of I' under the quotient map. Our interest lies in the case that I' is a closed loop, leading

to the following hypothesis.

Hypothesis 4. T is a closed loop, that is, we can parametrize T' by a smooth map v : [0,1] — T by
s = ([ul(s), u(s)) with v(0) =~(1).

Remark 1. We note for the reader that Hypothesis 4 is indeed necessary. For example, one could imagine
a scenario where as p approaches some value p* € J the heteroclinic orbit could approach an intersection
with another fixed point, say v**. Thus, at © = p* we have two heteroclinic orbits, one connecting 0 to u**
and one connecting u** to u*, and therefore I' would not form a closed loop in this case. Scenarios of this

kind were analyzed in the continuous spatial setting in [16].

From Hypothesis 4, for each s € [0, 1] the elements of the curve v(s) lifts to infinitely many points in T, all of
which are merely shifts of each other. Taking one such point (u(0), £(0)) € I so that m(u(0), £(0)) = v(0) € T,
we may produce a smooth connected curve (u(s), u(s)) € I' so that w(u(s),u(s)) = ~(s) for all s € [0,1].
Similar to [1], if (i) u(1) = u(0) we refer to the curve (u(s), 1(s)) as a 0-loop, otherwise (ii) we must have
Sku(1) = u(0) for some integer k # 0, and we refer to this case as a 1-loop. If the latter case occurs, without
loss of generality we can always consider k& = 1 by replacing the right-hand side of (2.1) with F*(u,, p).

Our interest lies in constructing homoclinic orbits of the trivial fixed point to (2.1) that remain close to the
fixed point u* for n € {0,..., N} for appropriate large values of N > 1 and p € J. More precisely, we
denote the d-neighbourhood of the fixed point u* by Us as well as W*(0, ) and W*(0, 1) as the parameter-
dependent stable and unstable manifolds, respectively, of the trivial fixed point. Then, we seek homoclinic
orbits u = {uy, }nez which satisfy

u€ W0, ) NW*0,pn), wu,€Us, forne{0,...,N},
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Figure 3: Different bifurcation scenarios for the heteroclinic orbits between 0 and u™ that lead to different
bifurcation diagrams for the symmetric homoclinic orbits of (2.1). On the left the intersecting stable and
unstable manifolds move through each other as p increases, leading to snaking. On the right the intersecting

stable and unstable manifolds do not move through each other as p increases, leading to isolas.

for some N > 1. In §4 we will show that there exists a smooth one-dimensional manifold T'j;sy C R X J,
related to I', which is symmetric under discrete shifts in the first component. Furthermore, 1-loops in I' are
lifted to a single connected curve in I'jj;, whereas 0-loops are lifted to infinitely many distinct closed curves.

We now provide the following theorem which is our main result pertaining to symmetric homoclinic orbits.

Theorem 2.4. Assume Hypotheses 1-4 are met. There exist a number n € (0,1) and submanifolds T'y o2 C
R x J such that the following is true:

1. There exists an off-site (on-site) homoclinic orbit of length 2N (2N + 1) if, and only if, there exists
s €[0,27) so that (2nN + s, ) € T'y (resp. T).

2. For j = 1,2, the manifolds I'ige and I'; are, for each fived k > 2, (9(772N+(j*1))—close to each other in
the C*-sense near each point in (2w N + s, ) € I'j, where s € [0,1).

From Theorem 2.4 we see that the bifurcation curves of symmetric homoclinic orbits are dictated by the form
of I'jig, which is in turn dictated by the form of I'. Hence, we see that symmetric homoclinic orbits snake if "
is a 1-loop, while the bifurcation diagram consists of isolas if I' contains only 0-loops. Therefore, our results
show that all of the bifurcation structure of symmetric homoclinic orbits of (2.1) can be inferred through
an understanding of the bifurcations of a heteroclinic tangle connecting 0 and u*. Geometrically, snaking is
caused by the intersecting stable and unstable manifolds move through each other as p increases, whereas
isolas are caused by these manifolds not moving through each other as p increases. This is demonstrated in
Figure 3.

We now state the corresponding result for the asymmetric homoclinic orbits. We state this result in full
generality, but we refer the reader to §4.2 for more precise statements and results. We further refer the
reader to Figure 1 for visual confirmation of the results of the following theorem.

Theorem 2.5. Assume Hypotheses 1-4. The following is true:

1. Assume that at pg € J the manifolds W*(u*, up) and W*(0, uo) intersect along a quadratic tangency.
Then there existn € (0,1) and N, > 1 such that for each N > N, precisely two branches of asymmetric
homoclinic orbits (mapped into each other by R) emanate in a pitchfork bifurcation from a symmetric
homoclinic orbit at a value of p that is O(n™)-close to .

2. Generically, these curves of asymmetric homoclinic orbits described in (1) are smooth with bound-
aries given by these pitchfork bifurcations. These pitchfork bifurcations take place near saddle-node
bifurcations of symmetric homoclinic orbits of opposite curvature.

3. Generically, all other curves of asymmetric homoclinic orbits must be smooth closed curves (isolas).

The proofs of Theorems 2.4 and 2.5 are broken down over Sections 3 and 4. In §3 we use the stable manifold
theorem to construct local coordinates in the neighbourhood Us of the fixed point u*. Using these local

coordinates we are able to capture the bifurcation behaviour of the stable manifold of the trivial equilibrium



in this neighbourhood, which leads to the matching conditions in §4. In §4.1 we then prove the existence and
detail the full bifurcation structure of symmetric homoclinic orbits of (2.1), proving Theorem 2.4. Then in
84.2 we extend these results to prove the existence and full bifurcation structure of asymmetric homoclinic
orbits of (2.1), in turn proving Theorem 2.5.

3 Local Coordinates About u*

Our goal in this section is to characterize and estimate solutions that pass very close to the equilibrium w*.
The estimates we obtain will be used in the following section to construct homoclinic orbits to 0 that transition
near u*. To obtain the desired estimates, we introduce new coordinates that bring the dynamical system
near fixed point u* into a form that we can analyze more easily. We begin by noting that Hypotheses 1-2
implies that the eigenvalues of F,(u*,u) are of the form 0 < A7!(u) < 1 < A(p) for some function A(p),
which is then necessarily smooth in p. The next lemma describes the dynamics near the fixed point u*.

Lemma 3.1. Assume Hypotheses 1 and 2 are met. Then, there exist a § > 0, a smooth change of coordinates
mapping u to v = (v°,v") near the fized point u = u*, and smooth functions f7, f* :IxIxJ =R, i=1,2,
so that (2.1) is of the form

nr = M)+ £ (g v o, + 3 (g o ooy,

(3.1)
U::Jrl = [)‘(/”L) + f{t(vim 'UZa ,U/)'UZ + fg(vfw ’UZa N)UZ]'UZ,
for all € J, where v, v € T :=[—0,0], and the reverser R acts by
R(v*, o) = (0%, 0°). (3.2)

Proof of Lemma 8.1. Let 0 # £(u) € R? be the eigenvector associated to the eigenvalue A(u)~! for each
u € J. For convenience we will suppress the dependence on p throughout. Reversibility of the map F
implies that RE(u) is the eigenvector associated to the eigenvalue A(u) for all u € J. The Stable Manifold
Theorem for maps and the action of the reverser R imply the existence of a 4 > 0 and a smooth function
w: [—§,0] = R with w(0) = w'(0) = 0 so that
Wike(u®) = {u” + 0°¢ + w(v*)RE : v° € [-6, 4]},

RS (u") = Wik (u*) = {u* + v"RE + w(™)é : v € [~5, ]}

locally describe the stable and unstable manifold of the fixed point u*, respectively.

Define the map
D [—4,6] x [-6,0] = Us(u™)
(v*,v") > u=u"+ (V6 +w*)RE) + (V'RE+ w(v*)E),
and note that ®(0) = v* and that @ is a local diffeomorphism since w’(0) = 0. Applying R gives
Ru = u* + v°RE + w(v")E + v*€ + w(v®)RE,

and comparing with (3.3) and using that ® is a local diffeomorphism gives the desired action of R given in
(3.2).

The expansions (3.1) for the map ®~! o F' o ® follow from local invariance of the sets W} _(u*) = {v" = 0}
and W (u*) = {v® = 0}. This completes the proof. O
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Figure 4: An illustration of the results of Lemma 3.2. The red points represent the solution, which starts
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exponentially close to the stable manifold (parametrized by v* = 0) and after N > 1 iterates end at a point

exponentially close to the unstable manifold (parametrized by v° = 0).

Lemma 3.2. There exist constants n € (0,1) and M > 0 such that the following is true: for each N > 0,
a®,a* € I, and p € J there exists a unique solution near the origin to (3.1), written v, = (v, v}) € T XTI

withn € {0,..., N}, such that

vg=a’, vy =a"
Furthermore, this solution satisfies
o] < My, [op| < MpNT", (3.4)

foralln €{0,...,N}, v, = v,(a®,a", u) depends smoothly on (a®,a, u), and the bounds (3.4) also hold for

the derivatives of v with respect to (a®,a™, ). Moreover,

R(v7,vp) = (U8 -y Vi), (3.5)

or alln € {0,...,N}. In particular, the solution v is symmetric if, and only if, a® = a®.
) ) p J y J y )

Proof. This result is the discrete time analogue of [33, Theorem 2.2], and follows via an application of the
contraction mapping theorem. The action of R in (3.5) follows in the same way as in Lemma 2.1, and the
claims about symmetric solutions follow from (3.2), (3.5), and uniqueness of solutions. The results of this

proof are visualized in Figure 4. O

4 Matching

In this section, we are interested in constructing homoclinic orbits to the fixed point u = 0 that spend a long
time near the fixed point u = u*. Furthermore, our work in this section will not only give the existence of such
homoclinic orbits, but also their bifurcation structure with respect to varying pu. We begin by noting that
Hypothesis 2 implies that the stable and unstable manifolds of the fixed point u* are orientation preserving.

Therefore, without loss of generality we can assume that
W0, 1) O {(v",0) s v° € (0,0)} # 0 = W™(0, 1) N W*(u", ) # 0

for each p € J. Then, consider dr,0r € (0,6) given so that for all ;1 € J the following is true:

10



Vi=0— | T

F-l

Figure 5: A wvisual representation of the criteria for forming the interval Zo = [01,0r]|. The set {v* = 0} is
invariant under the mapping F, and we take Iy to be a large enough interval in this invariant set so that
its right (left) endpoint is mapped into the interior of the interval by F (F~'). Furthermore, the rightmost
endpoint must be mapped outside of the region of validity for the results of Lemma 3.1 by F~1.

Figure 6: The set Yin (shaded) in T x .

1. The inverse of mapping (2.1), F~!, maps the point (v, v*) = (0, 0) into the interval (61,,dg) x {v* =

0}.
2. The mapping (2.1), F, maps the point (v®,v") = (dg,0) into the interval (§1,dr) x {v* = 0}.

3. The inverse of mapping (2.1), F~!, maps the point (v¥,v%) = (dg,0) out of the set Z x .

For simplicity, the choices of 7,z are illustrated for the reader in Figure 5. Note that such an interval can
always be found since A(p) > 0 can be both bounded above and below, and hence the right-hand side of
(3.1) can be bounded uniformly above and away from zero for all u € J and sufficiently small § > 0. Let
us now denote Zy := [01,,0g| so that by definition Zy C (0,0), and consider an open interval Z; such that
Zo C Z; € (0,6). This allows for the definition of the segment

Yin =1y xT.
The action of R given in (3.2) implies that we can further define
You := REin =7 x 1.
The set Y4, along with the intervals Zy and Z;, are represented in Figure 6.

Lemma 4.1. For a fized p € J we have

w0, ) N {(v*,0) :v° € (0,0))} #0
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if, and only if,
W0, x) N {(v°,0) :v° € Iy} # 0.

Proof. The ‘if’ direction is trivial since {(v®,0) : v® € Zp} C {(v®,0) : v° € (0,9))} by definition of Zy. The
‘only if’ direction follows from the definition of Zy since dr,dg > 0 were chosen to be far enough apart that F'
cannot iterate an element of {(v*,0) : v® € (dg,0))} to an element of {(v*,0) : v* € (0,6y)} forallp e J. O

Using Lemma 4.1 we now define the set
Tioe = [J (W™(0, 1) N {(v*,0) : v* € To}) x {p} C Ty x {v" =0} x J,
peJ
which is closed and nonempty since I' is assumed to be nonempty and does not intersect the boundaries
of J. Here I'}o¢ is a local component of the heteroclinic orbits connecting 0 to u* belonging to the smooth

bifurcation curve I'. This leads to the following lemma.

Lemma 4.2. For each (v:,0, pi) € Tioc there exists an open neighbourhood U, C Iy x T X J of (v2,0, 1)
and a smooth function g, : Ux — R such that g.(v®, v, u) = 0 if, and only if,

(v, 0", 1) € (W (0, ) x {u}) N U..
Furthermore, we have
V(we 1) 9« (v%,0, 1) # 0
for all (v%,0, 1) € Tpe NU.

Proof. From Hypothesis 3 we have that (v2,0, p,) € T lies either at a transverse intersection of W (u*, p14)
and W*(0, u.) or a quadratic tangency of these two manifolds. In the former case of a transverse intersection,
we can locally parametrize a neighbourhood of (vg,0, ps) in Z; x Z x J by the function v* = g(v", u) so that

v? = g(0, s). Then, we can use the function g to define

9«0, 0", 1) = v° — g(v", ),
so that g, satisfies the claims of the lemma. Similarly, in the latter case of (vZ, 0, u,) lying along a quadratic
tangency of W#(u*, p.) and W*(0, p), we can locally parametrize a neighbourhood of (v$,0, ) in Zy x T x J
by the function pu = g(v®,v*) so that u. = g(v,0). In this case we would define

g*(vsa Uua ,u) =M= g(vs, Uu)a
which again satisfies the claims of the lemma. This completes the proof. O
Remark 2. Lemma 4.2 details that in a neighbourhood of any point in I'j,. we may obtain a function whose
zeros correspond to the unstable manifold of the trivial equilibrium. Since I'i,. is a compact manifold, it

follows that we may cover it with finitely many of these open neighbourhoods, which implies the existence
of an € > 0 such that the open neighbourhood of I'io¢ in Z; X Z x J given by

Us={(0°v",p) €Ty xI x J:|v*| <e}

lies within these finitely many open neighbourhoods overing I'j,.. Uniqueness of the solutions of each g,
allows one to simply consider a global function G : U, — R which selects the appropriate local function g,
and therefore satisfies G(v®,v*, 1) = 0 if, and only if,

(0%, 0%, p) € (W0, ) x {u}) N U..
and
Vv, G(v*,0, 1) # 0 (4.1)
for all (v*,0, 1) € Toc.

12



Figure 7: An illustration of the quotient map q mapping Zo to a circle used to construct Tyt .

4.1 On- and Off-Site Homoclinic Orbits

We will now construct symmetric homoclinic orbits to the fixed point u = 0 that spend N > 1 iterations

near the fixed point u*. Here, by definition, a symmetric homoclinic orbit v = {v,, }52 _ _ satisfies
v = (v ,vn) €I XTI for nef0,...,N} (4.2a)
v € Lin N WH(0, p) (4.2b)
Rv=v (4.2¢)

for sufficiently large N > 1. Note that reversibility of F implies that vy € Zou N WE(0, p).

For each p € J, let us identify points on the same trajectory inside Z;. Then, the resulting quotient space can
be identified as the circle S' and we denote g : Z; x J — S' x J as the associated quotient map which acts as
the identity between the J components, illustrated in Figure 7. Then, q(T'oc) C S* x J is the image of I'joc
under the quotient map ¢, which we recall from Hypothesis 4 is a closed loop in S! x J. Take Mgy CR % J
to be the preimage of ¢(T'joc) under the natural covering projection from R x J to S' x J. For clarity, we

have the following correspondences between spaces:

Ty xJ —3 gty geratual oo

covering

We now restate and prove Theorem 2.4, which provides the existence and bifurcation structure of symmetric

homoclinic orbits to (2.1).

Theorem 4.3. Assume Hypotheses 1-4 are met. There exist a number n € (0,1) and submanifolds T'y o C
R x J such that the following is true:

1. There exists an off-site (on-site) homoclinic orbit of length 2N (2N + 1) if, and only if, there exists
s €1[0,1) so that (2N + s, ) € I'y (resp. T'a).

2. For j = 1,2, the manifolds I'ig and I'; are, for each fized k > 2, Om*N*+G=D)_close to each other in
the C*-sense near each point in (2N + s, ) € I';, where s € [0,1).

Proof. We will prove only the existence of off-site homoclinic orbits, as the case of on-site orbits can be
treated completely analogously by replacing all instances of 2N in this proof with 2N 4+ 1. We now use the
definition of reversible off-site homoclinic orbits given in (4.2) to prove the result.

Using Lemma 3.2 we see that for an arbitrary a® € Z, all u € J, and every integer N > 1, we have the

existence of a reversible solution to (2.1) given by {v:,v%}2Y, C T x T satisfying

n’vn

s __,u
Up = UaN—n>

S __ u _ S
Vg =VUany = a,
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where v = vl (a®, ) depend smoothly on a® € Z and p € J for j = s,u. From Lemma 3.2 we have that
there exist M > 0 and 7 € (0,1) such that
|vg (a®, )| < MY, (4.3)

for all (a®, ) € Z x J, and furthermore, the bound (4.3) holds for all partial derivatives of v (a®, u) with
respect to (a®, ). Therefore, the solution of (2.1) generated by {vS,v%}2N satisfies both (4.2a) and (4.2c).
We now find that the solution {vg,v%}2N satisfies (4.2) if, and only if,

vo = (v§, v5) € Tin N WH(0, 1),
since the only remaining condition is (4.2b).

Take € > 0 to be the constant in Remark 2 following Lemma 4.2 and Ny > 1 sufficiently large so that for all
N > Ny we can use (4.3) to guarantee
vg (a®, p)| <,

for all (a®,u) € Z x J. Therefore, using Lemma 4.2 and Remark 2 we find that satisfying the condition
(4.2a) is equivalent to solving

G(US (asa M)v Ug(as7 M)v /’L) = G(as7 O(nQN)a M) =0, (44)

since v¥(a®, u) = O(n?N) from (4.3). Now, from our definition of the quotient mapping g, it follows from
Hypothesis 4 that ¢(T'jo¢) is a closed loop belonging to S* x J. Parametrize this loop as

4(Toc) = {(0(), v(1)) : ¢ € [0, 1]}
so that (6(1),»(1)) = (6(0),v(0)). Let 6(t) € Zy be such that for all ¢ € [0, 1] we have

q(0(t),v(s)) = (6(2), (1))
and F((A(t),0),v(t)) ¢ Ty for all t € [0,1]. That is, A(t) is the rightmost preimage of 8(t) in Zy for each
u=v(t). Next, let
_ 1
Ve GO, 0, 1(0))
which is well-defined from (4.1). We now set

n(t) = (nm(t), na(t)) : Ve G(0(2),0,1(1)),

(a®, 1) = (B() + na (£)b, v (t) + na(t)b),

and let
H(t,b) := G(a®,0(m*N), ) = G(O(t) + na ()b, O(° ™), (t) + na(t)b).

We therefore have
H(t,b) = O(|bl +n*Y),  Hy(t,b) =1+ O(n*M).

In particular, we can apply the contraction mapping theorem to solve H(t,b) = 0 uniformly in ¢ € [0, 1] for
all sufficiently large N > 1. This gives the existence of a solution to (4.4), written (af, f.)(¢, N), which
satisfies

In conclusion, the manifold I'; is given by
Ty :={2aN +q(ai(t,N), u(t,N)) : t€]0,1]},

and the closeness result now follows from the smoothness of the quotient map ¢. This concludes the proof. [
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4.2 Asymmetric Homoclinic Orbits

We now focus on asymmetric (Rv # v) homoclinic orbits, which, by definition satisfy

vp = (vy,vy) €L XTI for ned{0,...,N} (4.5a)
o € Sin N W0, 1) (4.5b)
UN € Bout N W?3(0, 1) (4.5¢)

for sufficiently large N > 1. First, Lemma 3.2 implies that for NV > 1 sufficiently large, arbitrary a®,a" € Z,
and every u € J we may construct a solution v = {v,(a®,a% p)})_, C Z x T smoothly depending on
(a®,a™, u) satisfying (4.5a) such that

Us(a’87a’u7/’6) :as7 U}Q(QS?au’/’l/) :au7
and there exists some n € (0, 1) such that
o (a®,a®, p)] < M, op(a®, ", w)| < My ", (4.6)
for all n € {0,...,N}. We note that Lemma 3.2 dictates that the bounds (4.6) also hold for all partial
derivatives with respect to (a®, a%, ).
Taking N > 1 sufficiently large so that Mn" < e, where ¢ > 0 is the constant required for Remark 2, we
conclude as in the proof of Theorem 4.3 that v = {v, }N_, satisfies (4.5b) for some p € J if, and only if,

G(as, vg(as7 au”u),/j,) = 0.

Furthermore, applying the reverser R we have that v = {v,(a*, a%, u)}_, satisfies (4.5¢) for some p € J if,
and only if,
G(a", v (a® a", ), 1) = 0.

Therefore, we see that satisfying (4.5) is now equivalent to solving

G(a®,v5(a®,a" ) p) | _
G(au)v}gv(as7au)u)7u)

H(a®, a", p) = (
Denoting by x the map given by x(a1,as) = (az,a1), the action of the reverser R in (3.5) gives

G(a",vg(a", a, ), i)

H(K(as7au)7ﬂ) :H(auaasau) = <G(as v (au a’ /1') M)
'y YN ) 9 9

> = K:H(asﬁ au’ ILL)7

and hence H is k-equivariant for each p € J. In particular, we have that roots of H with a® = a" which are
fixed by the action of k are exactly the symmetric homoclinic orbits constructed in the previous subsection,
and solutions which have a® # a* come in pairs and are mapped into each other by x. This action of mapping

roots of H into each other using x is equivalent to mapping homoclinic orbits of (2.1) into each other by R.

Using (4.6) we have that

s u _ G(GS,O(UN%H) _ G(a®,0, )
H(a®,a ,,u)—( >_<G(a“,0,,u)>+o(nN)'

Therefore, upon solving G(a®,0, ) = G(a*,0, ) = 0 for some (a®,a", ) an application of the contraction

mapping theorem as in Theorem 4.3 can be used to extend this solution to one which satisfies H(a®, a%, u) =0
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for all sufficiently large NV > 1. Hence, for the remainder of this section we will introduce the slight abuse of

notation by simply considering

s u ~_ [G(a®0,p)
H(a®, a",p) = <G(a“,0,u)> 7

and solving H(a®,a*, u) = 0. Finally, solving H(a®,a*, n) = 0 can be done equivalently by obtaining roots

of
Fi(a®, 0", ) = Gila®a® p) ) _ (Ga,0,p) + Gla®,0,p) ) (@7)
GQ(asaaunu’) G(QS,O,M) - G(auvonu)

and note that (4.7) is Zg-symmetric under the action (a®,a™) — (a“,a®) and (G1,G2) — (G1,—G2). We
now present the following result which shows that asymmetric homoclinic orbits bifurcate from symmetric
homoclinic orbits.

Lemma 4.4. Assume Hypotheses 1-4 are met. Assume that at pg € J the manifolds W*(u*, o) and
W(0, po) intersect along a quadratic tangency. Then for each N > 1 sufficiently large, precisely two branches
of asymmetric homoclinic orbits (mapped into each other by R ) bifurcate from the symmetric homoclinic orbit

of length N corresponding to p.

Proof. Let (ag, po) € Tioe, where pg € J is as stated in the lemma. Then, from the constructions in the

proof of Lemma 4.2 we have
G(ap,0, o) = 0ysG(ag, 0, up) =0, 8356’(@0,0,#0) - 0u,G (a0, 0, p1o) # 0.
Since 9,G(ao,0, 1) # 0 we have that
0uG1(ao, ao, ) = 20,G(ao, 0, u) # 0,

and therefore the implicit function theorem provides that we can solve Gy(a®,a*, 1) = 0 near (aop, ag, to)

uniquely for g = p,(a®,a*) as a function of (a®,a).

Now, introduce the invertible transformation

b1\ a® —a"
by \a®+a® — 2ag

and note that the Zs-symmetry guarantees that G5 is odd in b;. Hence, we introduce the smooth function
GQ (bl, bg) so that

1 1 N ~
Go (ao + §(b1 +b2), a0 + 5(62 — b1), fis (b1, b2)> = b1G2(b1, b2),

where for the ease of notation
- 1 1
fu (b1, b2) 1= pu (ao + §(b1 +b2), a0 + §(b2 - bl))-
Note that ég(bl,bg) is even in b1, and hence expanding éQ(bl, ba) near (by1,b2) = (0,0) ones finds that
ég(bl, b2) = 2635 G(ao, 0, /J,Q)bg + O(b% + b%),

where 02.G(ag, 0, j19) # 0. Therefore, the implicit function theorem guarantees that we can solve Ga(by, by) =

0 near (b1,b2) = (0,0) uniquely for by as a function of by. This proves the claim. O
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Remark 3. By definition it is possible to have multiple points of the same heteroclinic orbit belonging to Z
for any p € J. Suppose that (a1, ), (az, ) € I'ioe are such that F maps (a1,0) to (az,0) at the parameter

value u. Local uniqueness of solutions to H = 0 gives that the solutions of (3.1) from Lemma 3.2 of the form

U1 = {Un(alaagﬂu)}izv:& - Ix Z7

(4.8)
Vo = {vn(a27ag7u)}nN:0 - I X I7

for some a* € Z, correspond to exactly the same homoclinic orbit of (2.1). This redundancy which arises due

to the definition of Z; is eradicated by moving to the quotient space S* x J since we have q(a1, u) = q(az, ).

Remark 3 allows one to define the following sets

A :={(a’,a", n) € Ip x Ty x J : q(a®, p) = q(a*, p), G(a®,0,u) =0}
Agif = {(as7au7/~1') € Z-0 X Z-0 xJ Q(GS,H) = Q(aunu)7 G(a5707u) = 07 6USG(G’Sa07:U’) = O}
Ao ={(a% a" p) € o x Io x J : q(a®, ) # q(a*, n), G(a’,0,p) = G(a",0,p) = 0}

to be the sets of symmetric homoclinic orbits, symmetric homoclinic orbits at pitchfork bifurcations, and

asymmetric homoclinic orbits. To characterize the set A, we require the following non-degeneracy hypothesis.

Hypothesis 5. If (a,p) € Tioe is such that 0,-G(a,0,p) = 0, then 0,:G(a,0,u) # 0 for all (a,u) € Toc
with q(a, p) # q(a, p).

Lemma 4.5. Assume Hypotheses 1-5 are met. The bifurcation curves of each asymmetric homoclinic orbit in
> x J of (2.1) is either a smooth isola or a smooth curve with boundaries given by the pitchfork bifurcations

described in Lemma 4.4.

Proof. Lemma 4.4 has already shown that precisely two branches of asymmetric homoclinic orbits bifurcate
from each point in the set AP, Then, taking any (a®,a%, ) € A, we have H(a®,a*, 1) = 0 and

0y G(a®,0, p) 0 0,G(a®,0, 1)

DH(a®,a", p) = .
(a,a%, ) 0 0p=G(a",0,p) 0,G(a",0,pn)

(4.9)
Now, when 9,:G(a?®, 0, u) - 0ps G(a*, 0, 1) # 0 the matrix DH(a®, a*, u) has full rank. Should 9,:G(a®,0, ) =
0, Hypothesis 3 gives that 0,G(a®,0, 1) # 0. Furthermore, Hypothesis 5 guarantees that if 9,sG(a",0, 1) =0
as well, then we must be at a pitchfork bifurcation. Since we have assumed that (a®, a*, 1) € A,, we have that
DH(a®,a*, p) has full rank. A similar argument shows that when 9,s G(a*, 0, ) = 0 the matrix DH(a®, a", u)
again has full rank, and therefore DH(a®,a*, 1) has full rank for all (a®, a*, u) € A,. This gives that the

solutions of H(a®,a", 1) = 0 is given locally by smooth curves.

From the fact that Zy x Zy x J is compact, we have that
Ay =HH0,0) \ Ag

is composed of finitely many smooth curves. Following along a single curve in A, U AP we must have that
it either i) forms a closed loop in the interior of Zy x Zy X J, or ii) meets the boundary of Zg x Zy x J. If
all curves fall into the former case then we are finished. We now focus on the latter case and note that
Hypothesis 3 implies that curves in A, U AP may only intersect the boundary in the first two components
since o C Zp x {0} X J.

Suppose we have a curve A, UAPf which intersects the boundary of Ty x Zo x .J. Let this point of intersection
be given by (ag, a, to) € Zo X Lo x J so that

G(GS7O,M0) = G((lg7 07,“/0) =0
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Figure 8: A cartoon of the projection of 0 level set of H restricted to Zo X o x J and projected onto the first
two components. The dashed diagonal lines represent As, which correspond to symmetric homoclinic orbits.
Brown squares represents elements of the discrete set AP, and the solid curves are the set Aq. Dots of the
same colour represent the same asymmetric homoclinic orbit, as argued in the proof of Lemma 4.5. This
figure has a (a®,a") — (a*,a®) symmetry coming from the equivariance of H with respect to this action for

each p € J.

and either af € {d1,0r} or ay € {d1,dr}. Let us assume that a§ =€ {dr,dr} since the other cases follow by
exactly the same arguments. By definition of Zy = [d1, dr] we have that there exists aj € (d,dr) such that
q(af, po) = q(a§, po), and as in Remark 3 we have that the homoclinic orbits (4.8) generated by solutions
of (3.1) from Lemma 3.2 using parameters (aj, af, o) and (af, af, o) are exactly the same. Therefore, the
curve of asymmetric homoclinic orbits which intersected the boundary Zy x Zy x J at (af,af, o) can be
continued in /> x J by following the curve containing (a$, a¥, i) € A, U APY. We may follow this new curve
in exactly the same way by tracking where it maps to if/when it intersects with the boundary of Zg x Zy x J
by jumping to another curve in A, U AP, Since A, U AP contains only finitely many curves, we must have
that this process eventually comes back to the point (a§, af, 10) (see Figure 8 for a visual depiction). This

concludes the proof. O

Our final result in this section shows that branches of asymmetric homoclinic orbits which originate and
terminate at pitchfork bifurcations begin and end at points in I'j,. of opposite curvature in u. Let us
take some point (af, 0, o) € T'oe such that G(a,0, po) = 0pG(af,0,1p) = 0. Then, from Hypothesis 3
we necessarily have that 0,G(a®,0,u) # 0, and therefore we can uniquely parametrize I'io locally near
(ag, 0, p0) as u = p(a®) so that G(a®,0, ux(a®)) = 0 for all a® sufficiently close to af. Taking derivatives, we
find that

signg!/ (ag) = —sign(9,G(ag, 0, 10)95: G(ag, 0, o)),

where we recall that Hypothesis 3 implies that 92.G(a$, 0, 119) # 0. This leads to the following lemma.

Lemma 4.6. Assume Hypotheses 1-5 are met. The branches of asymmetric homoclinic orbits described in

Lemma 4.5 begin and end at points in AP at which 8,G(a®,0, 1)02.G(a*,0, 1) has opposite sign.
Proof. Let (a*(t),a"(t), u(t)) be a curve parametrized by ¢ € [0, 1] such that (a®,a%, u)(t) € AP for t =0, 1,

(a®,a%, p)(t) € A, for all t € (0,1), q(a®(t), u(t)) and q(a“(t), u(t)) are continuous curves in S* x J, and p(t)
is a smooth in t. We note that from the proof of Lemma 4.5 that a°(¢) and a*(t) need not be continuous since
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they could jump at the boundary, but the continuity of g(a®(t), u(t)) and g(a*(t), u(t)) guarantee that we have
parametrized a single curve of asymmetric homoclinic orbits which originates and terminates at pitchfork
bifurcations. Moreover, for each fixed to € [0, 1] we can locally parametrize a smooth curve (b%, b%, 1) (t) € AP
such that q(b*(t), u(t)) = q(a®(t), u(t)) and q(b“(t), u(t)) = q(a®(t), u(t)) for all ¢ sufficiently close to to.
Hence, these local parameterizations allow us to slightly abuse terminology and simply say that (a®, a, u)(t)
is smooth in ¢, along with the added stipulation that a®(0) = a*(0) and a*(1) = a*(1) since at ¢t = 0,1 we
are at pitchfork bifurcations. We wish to show that p/(0) - p/(1) < 0.

Now, since we have pitchforks at ¢ = 0,1 we necessarily have (a®)’(¢) - (a*)'(¢t) < 0 at ¢ = 0,1 and p/(0) =
1'(1) = 0. Let us now assume that p”(0) - ¢”/(1) > 0, and derive a contradiction. First, we note that
there must exist tg € (0,1) such that p/(t9) = 0 and " (0) - p”"(t9) < 0 (or equivalently p'(to)u”(1) < 0).
Since 1/ (tp) = 0, we must have that 9,:G(a®(to),0u(to)) = 0 or dy:G(a®(to),0u(to)) = 0, and Hypothesis 5
dictates that both cannot be simultaneously true for ¢y € (0,1). Noting that the vector (a®, a™, u)'(¢) belongs
to the null space of the Jacobian (4.9), the action of R allows one to assume without loss of generality that
(a®) (to) # 0, and hence Hypothesis 5 dictates that (a*)'(tg) = 0. In the case that ¢, € (0,1) is the only
such value for which p/(t) = 0 for ¢ € (0,1), then we have that (a®)(t) never changes sign for all ¢ € [0, 1]
and that (a®)'(0) - (a™)'(1) < 0 since (a™)'(t) changes sign at t = to. But, this contradicts the assumption
that (a®)'(t) - (a™)'(t) < 0 at ¢ = 0,1, showing that if ¢ty € (0, 1) is the only such value for which p'(t) = 0 for
t € (0,1) we must have p/(0) - /(1) < 0. This argument easily extends to the case when p/(¢) has multiple
roots in the interval (0,1) since a simple argument shows that there must be a finite and odd number of
such roots, causing one of (a®)’(¢) and (a)’(t) to change sign an odd number of times and again leading to

a contradiction. This completes the proof. O

The results of Lemmas 4.4-4.6 therefore prove the claims of Theorem 2.5. This concludes our theoretical

analysis.

5 Application to Lattice Dynamical Systems

We now return to the lattice dynamical system introduced in §1 given by
Up = d(Uni1 + Up_y —2U,) — pU, +2U3 — U? (5.1)

posed on the one-dimensional integer lattice Z, where d > 0 represents the strength of coupling between
nearest neighbours. We take p to be a bifurcation parameter and restrict our attention to u € [0, 1], since

in this parameter region we have exactly five spatially independent steady-state solutions of (5.1) given by

U, =0 and U, = £U(u), where
Us(p) = \/1£/1—p

for all n € Z. The equilibria £U_(p) collide with the trivial equilibrium in a pitchfork bifurcation at p = 0,
and at ;1 = 1 the states Uy (p) and U_(p) (and also —U4 (p) and —U_ (1)) meet in a saddle-node bifurcation.
We illustrate the bifurcation diagram of these spatially independent steady-states in Figure 9. Much of this
work will focus on the nonnegative equilibria 0 and Uy (p).

The lattice equation (5.1) was studied in [36], and we now briefly comment on some of their findings. First,

system (5.1) is invariant under the ‘staggering’ symmetry given by the transformation

Up = (=1)"Up, d— —d, p— p—4d. (5.2)
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Figure 9: A bifurcation diagram of the spatially independent steady-state solutions of (5.1). Stable states are
given by solid curves, whereas unstable states are given by dashed curves. The diagram has a U, — —U,

symmetry.

Secondly, equation (5.1) is a gradient flow on the space £2, given by

2= {:c ={Tnlnez: Y lonl® < oo}.

ne”Z

That is, we can write U, = —0€/0U,,, where the potential £ : £2 — R is given by

£0) =3 (§Wnss =07+ oz - 02+ 202,
Note that £ < 0, so that every solution of (5.1) with initial condition belonging to ¢? evolves towards an
equilibrium solution as ¢t — oco. Finally, the per-cell potential for the homogeneous equilibria U,, = U, for
each n € Z is given by E(U,) = %MUE — %U:} + %Uf. Clearly the zero state, U, = 0, has zero potential,
and the potential of the upper state U = U, (u) depends on p. The point at which the upper state has zero
potential is referred to as the Mazwell Point, and it takes place at u = pumx = 0.75.

Obtaining steady-state solutions of (5.1) requires satisfying
0=d(Uny1 +Un_1 —2U,) — pU, +2U3 — U3, (5.3)
for all n € Z. As detailed in the introduction, letting u,, = U,—; and v, = U, in (5.3) we obtain the map

Up+1 = Un,
(5.4)

1
Un+1 = 20, — up + g(ﬂ'vn - 2”2 + U2)7

of the form (2.1) studied in this paper, whose bounded solutions correspond to solutions of (5.3). It is easy
to see that the right-hand side of (5.4) is indeed a diffeomorphism and satisfies Hypothesis 1 when we define
R via

Rlu,v]" = [v,u]".
Moreover, the fixed points (u,v) = (0,0), (Ux (1), Ux (1)) belong to Fix(R), are hyperbolic for all u € (0,1),

and therefore satisfy Hypothesis 2 for any closed interval J C (0,1). Our interest now lies in understanding

20



heteroclinic connections between the fixed points (0,0) and (Uy(p), Ur(p)) as this will then allow us to

apply the results of the previous sections to accurately describe bifurcating localized solutions of (5.1).

Over the coming subsections we will see that (5.1) is ideal for analytically confirming the hypotheses required
to applying the results of our theoretical analysis. In §5.1 we will show that the snaking bifurcation structure
shown in Figure 1 is a consequence of a 1-loop of heteroclinic orbits connecting the fixed points (0,0) and
(Up(u),Uys(p)) of (5.4). In §5.2 we exploit the staggering symmetry (5.2) to show that heteroclinic orbits
connecting (0, 0) to a periodic orbit of (5.4) leads to a 0-loop, for which our theory predicts that the bifurcation
diagram consists of isolas and therefore does not snake. In §5.3 we provide numerical investigations which
confirm our theoretical work. Finally, in §5.4 we comment on a number of ways by which the results of this

manuscript can be extended to a more diverse range of lattice dynamical systems.

5.1 Flat Plateaus

Our main result states that for sufficiently small 0 < d < 1 equation (5.4) has a 1-loop of heteroclinic
connections between (0,0) and (U (u), Uy (1)).

Proposition 5.1. There exists d. > 0 such that for all 0 < d < d, equation (5.4) has a 1-loop of heteroclinic
connections.

Proposition 5.1 demonstrates the existence of a 1-loop of heteroclinic connections, and hence I'j; is a single
connected curve. Prior to proving Proposition 5.1 we state the following corollary which connects the results
of Proposition 5.1 to Theorem 4.3 and in turn predicts snaking of the on- and off-site localized steady-states
to (5.1).

Corollary 5.2. The bifurcation curves of on- and off-site symmetric heteroclinic orbits of (5.4) are single

connected curves, and therefore the corresponding steady-state solutions of (5.1) will snake.

We now prove Proposition 5.1. We begin by noting that it is easier to study the singular regime for the

original map (5.3). Setting d = 0 in (5.3) gives the polynomial equation
0= —pU, +2U2 - UZ, (5.5)

which has roots U,, = 0, Uy () for all u € [0, 1]. To construct heteroclinic connections of (5.4) between the
fixed points (0,0) and (Ut (p), Us(p)) for 0 < d < 1, we define three singular heteroclinic connections for

(5.5) via U (i) = {tn (1) }nez with

_ 0, n<0
Un(p) = { Us(y), n>0 (5.6)
and VE(u) = {0, (1) }nez with
0, n <0
Talw) =q £U-(w), n=0 . (57)
U+(,LL>7 n >0

We record for later use that |[U (1) — VE(i)|leo — 0 as u — 0% and |U(u) — S™VH(1)|leo — 0 as u — 17,
where S is again the left shift operator (2.3) on sequences indexed by Z. We note that V*(u) and V= (u)
bifurcate from U (1) in a pitchfork bifurcation at p = 0. This pitchfork bifurcation arises due to the symmetry

U, 0
kU], = n# ,
—Uo, n=2>0

action K : £°° — £°° given by
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Figure 10: An illustration of the unfolding of the pitchfork bifurcation for d # 0.

present when d = 0. For d # 0 the system is no longer equivariant under x and therefore this bifurcation
should become an imperfect pitchfork for 0 < d < 1. As a result, one branch disconnects and continues
through the bifurcation point, while the other two branches connect at a saddle-node, as is show in Figure 10.
One of the goals of this section is now to describe exactly how the pitchfork bifurcation at d = 0 breaks for
d > 0 and small.

From Lemma 1.1 we have that the solutions (5.6) and (5.7) continue regularly in 0 < d < 1 for p taken in
any compact subinterval of the interval (0,1). Therefore, we need only understand how the solutions (5.6)
and (5.7) continue in 0 < d < 1 near the bifurcation points at g = 0, 1. Our first result focuses on the region

near g = 0.

Lemma 5.3. There exist dy, 1 > 0 and a function p(d) : [0,d1] — [0, u1) such that for each fixred d € [0, dy],
at w = w(d) a pair of steady-state solutions to (5.1), Uj(u,d) and V;*(u,d), emanate in a saddle-node
bifurcation and exist for all p € [ (d), u1]. These solutions are continuous in p and d and are such that
Ui(p,d) = U(p) and V" (u,d) — V() as d — 0F, for each fived yu. The function p(d) is given by

ju(d) = %d% + 0.

Proof. Here we will prove that the pitchfork bifurcation at d = = 0 unfolds into a saddle-node bifurcation
for d > 0 and sufficiently small. We will be concerned with solutions to the steady state equation:

d(Upy1 + Un1 —2U,) — pU, +2U2 — U =0, (5.8)

for which both U(u) and V(1) are solutions for all u € [0,1] when d = 0. We focus our analysis about y = 0.
Linearizing (5.8) about the steady-state U(0) = V(0) and taking d = 0 leads to a bounded linear operator,

Lo : 12 — (% acting on sequences = = {Z, }nez € /2 by

0, n <0
[Lox]n =
—8x,, n>0.

This allows us to apply the implicit function theorem to conclude that (5.8) restricted to n > 0 has a unique
solution {U,, (11, d, Up)}n>o for each p,d, and Uy near zero and that this solution satisfies

Un(p, d, Up) = V2 + O(u + dUp). (5.9)

It remains to solve (5.8) for the indices n < 0.

For each n < 0, we introduce the variables




along with the re-parametrization d = p2d. Then, for each n < 0 the steady-state equation (5.8) becomes

55n~

U5

R 5-n s~ d-n s 3-n ~ 3-8n ~q
O=p 2 dUpy1+p 2 dUp1+2p72 dU, —p 2 Up+2p 2 U, — 2
Similarly, at the index n = 0 we obtain
0= u% U, (s, %J 2[70) + ,ugciff_l + QM%CZUO — M%UO + 2u%0§’ — ,u%ﬁ(‘;’.
Hence, separating out orders in p we obtain

n=0: 0=p2(d—U+203)+0W?) = 0=d—Uy+203+0O(u?),
0: 0=p" 2 (AUnp1 —Up) + O =) = 0=dUny1 — U, + O(u?),

(5.10)

A

n

where we have applied (5.9) to expand U, (u, u% %U ) about u = 0.

Let us consider the Banach space ;% containing sequences indexed by n < 0, analogous to the Banach
space £°. Then, we consider the function h: R x £3% x [0,00) = £;%, by

B d—Uy+203 +0O(uz), n=0
[h(dv Ua U)]n =

dUpiq — Uy 4+ O(pz), n<O0.

so that the roots of h are exactly the solutions of (5.10). We note that A is smooth in d,U, and u%, and the
derivative with respect to U, denoted Dgh: R X €325 % [0,00) — l3% is the linear operator acting on the

sequences & = {xy, fn<o by

(=1 +602)z0 + O(uz), n=0
[Df]h(da U, M)x]n = R
drpy1 — xn + O(u%), n < 0.

for all (ci, U, ).

At p = 0 there is a saddle-node bifurcation taking place for (5.10) at Uo = %. In turn, the vector ey € £3%
given by
1, n=0
leo)n =
0, n<0.

belongs to the kernel of Dﬁh(d ,0) for all d € R. Solving [Dﬁh(cz % 0)x], = 0 for n < 0 requires solving

1
V6’
a?xnﬂ —z, =0,

for every n < 0, which can be solved inductively to yield

J—n

T, =d "xg.

The vector {d~"},<o belongs to £ if, and only if, |d| < 1. Therefore, the kernel of Df]h(d~7 U,0) is spanned
by e for all |d| < 1. A similar argument shows that ey spans the cokernel of DUh(J, U,0) when |d| < 1, and
hence DUh(cZ, U,0) is a Fredholm operator with index 0 for all |d| < 1.

We may therefore apply a Lyapunov-Schmidt reduction to h in a neighbourhood of (Uo,,u) = (%,O)7

uniformly in \J\ < 1 to result in the reduced real-valued bifurcation function, h;, given by

h(d, Ug, 1) = d — Uy + 203 + O(u?).
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We may employ the implicit function theorem to obtain the function
d(Uo, 1) = Up — 205 + O(p?)
so that hy(d(Uy, ), Uy, 1) = 0 for all Uy and g > 0 sufficiently small.

Finally, the location of the saddle-node bifurcation in h; as a function of y can be determined by solving
0 = 0, hu(d(Uyo, 1), Uo, ) = =1 + 605 + O(u?)

for (Uy, 1) in a neighbourhood of (%, 0). Such a curve Uy = Up(p) is guaranteed to exist by the implicit
function theorem and satisfies )
0f — + O(pz
) = 7=+ Ot

which in turn gives the location of the saddle-node bifurcations

— d(To(), 1) = §+0<

valid p sufficiently small. Recalling that d = ,u%d gives that the saddle-node bifurcations take place at

dyn = 1 <3\2@ +0(u é))

Using the inverse function theorem allows one to write p as a function of dg, to obtain the function p;(d)

I\J‘H

);

given in the lemma. We again have that p;(d) gives the location of a saddle-node bifurcations unfolded in
since

3

d=p3d(Uo,p) = d5 = pud(Up,0) + O(u3),

which upon applying the inverse function theorem in a neighbourhood of Up = % gives

!
QU
wio

u(d, ) = +0(d).

d(Uy, 0)
Expanding about the point Uy = % gives
3d3 2 [~ 1\’ 5 1)?
d, U 1——(Uy— — +0O(d+ds —
a0 =5 (1575 (50~ 7)) v 7l)

which shows that varying U in a neighbourhood of % unfolds a saddle-node bifurcation in g for fixed small
d > 0. This completes the proof. O

Uo —

Lemma 5.4. There exist da, g2 > 0 and a function p.(d) : [0,d2] — (2, 1] such that for each fized d € [0, ds],
at p = p.(d) a pair of steady-state solutions to (5.1), U.(u,d) and V,"(u,d), emanate in a saddle-node
bifurcation and exist for all p € [ua, ur(d)]. These solutions are continuous in p and d and are such that
Up(p,d) — U(p) and V¥ (u,d) — S™VF(u) as d — 0T, for each fived p. The function p,(d) is given by

).

3
2

p(d)=1—d+0(d

Proof. The proof is similar to the proof of Lemma 5.3 except that we can now apply the implicit function

theorem to solve for n < 0 for each given U, and 1 near 1 and d small. These solutions satisfy
U (11, d, Uo) = Ot — 1|+ d + [Us — 1)) (5.11)

for each n < 0.
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Now, let © =1 — i, and introduce
Uy =1+ paz0,,

for each n > 1, and d = jid. In a similar manner to the proof of Lemma 5.3, we may expand in powers of fi

to arrive at the system of equations

n=1: 0=—d+1—402+O(i?),

- . (5.12)
n>1: 0=1—-4U2+O(ji?),

where the equation at index n = 1 is simplified using U, (1 — fi, id, 1 + Q%UO) = (’)(ﬂ%) from (5.11).
A saddle-node bifurcation takes place in (5.12) at g = 0, d=1, Uy =0, and U, = % for all n > 1.

Following the methods of Lemma 5.3 we may apply a Lyapunov-Schmidt reduction in a neighbourhood of

this saddle-node bifurcation at i = 0 to reduce to the real-valued bifurcation function, hr(d, 007 ), given by
hr(gv 00»/14) = _Li+ 1-— 4012 + O(ﬁ%)

Then, persistence of the saddle-node bifurcation in h,. at (d, Uy, ) = (1,0,0) can again be obtained by an
application of the implicit function theorem, thus allowing one to obtain the expression p..(d) given in the

statement of the lemma.

Finally, to see that our branches continue from U(u) and S~V ¥ (u), we simply expand Uy (1) about p = 1

to find that
1
Ur(w) = Y1+ V1-p=1+5y/1-p+O(]1 - pul).

Recalling that ji = 1 — p, our obtained solutions U,.(u,d) and V" (u, d) satisfy

0, n <0
U (s )] = [V (11, )] = 1, n=0 o+O0(1—pl+ 1= puly+d1—p|~?)

1+3yT—p, n<o.

where varying Uy in a neighbourhood of 0 unfolds the saddle-node bifurcation and gives the distinct branches
U, (p1,d) and V,*(p1,d). Local uniqueness guarantees that for each fixed u sufficiently close to 1 we have that
Ur(p,d) — U(p) and V. (u,d) — S~V F(u) as d — 0T, completing the proof. O

5.2 Oscillatory Plateaus

The results of this manuscript can also be applied to understanding the bifurcation structure of homoclinic
orbits which spend long time near a periodic orbit of (2.1). Indeed, as opposed to inspecting the iteration
scheme w41 = F(un, 1), we may apply the above results to the iteration scheme u, 1 = F*(uy, i), for any
k > 1, provided we have verified the necessary hypotheses for this to work. Let us now illustrate this concept

with the concrete example of (5.1).

The mapping (5.4) has a 2-cycle given by

(U (= 4d), ~Us (1 — 4d)), (~Us (s — 4d), U (1 — 4d))} (5.13)

for each (d, u) satisfying pu — 4d < 1. Since the elements of this 2-cycle become a pair of fixed points in the
second iterate mapping of (5.4), we wish to explore the bifurcation curves of heteroclinic connections between
the fixed point (0,0) and either of these fixed points in the second iterate mapping to apply the results of
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this manuscript. To achieve this we may work to understand how the bifurcation curves of heteroclinic
connections between (0,0) and (Ut (u), Uy (1)) behave for d < 0, and then exploit the staggering symmetry
(5.2) to extend these results to heteroclinic connections between (0, 0) and the 2-cycle (5.13) for d > 0. The
reason for this is that if we assume {U,},cz is a steady-state solution of (5.1) for fixed (d,p) satisfying
U, > 0asn — —oco and U, — Uy(u) as n — +oo, then the staggering symmetry (5.2) implies that
{(=1)"Up }nez is a steady-state solution of (5.1) for (—d, u — 4d). The steady-state solution {(—1)"U, }nez
now represents a heteroclinic connection of (5.4) between the fixed point (0,0) and the 2-cycle (5.13). This
leads to the following proposition.

Proposition 5.5. There exists d.. > 0 such that for all —d.. < d < 0 equation (5.4) has a 0-loop of
heteroclinic connections.

Note that it follows from Theorem 4.3 and Proposition 5.5 that for sufficiently small d < 0 the map (5.4)
exhibits on- and off-site homoclinic orbits whose bifurcation structures are isolas. The staggering symmetry
(5.2) implies that for sufficiently small d > 0 there exists steady-state solutions to (5.1) with oscillatory
plateaus that decay to 0 at 00 whose bifurcation structure are isolas as well. We summarize these findings

with the following corollary.

Corollary 5.6. The bifurcation curves of steady-state solutions of (5.1) with oscillatory plateaus are isolas

and therefore snaking is precluded in this situation.

We now proceed with the proof of Proposition 5.5. It is again easier to study the singular regime for the
original lattice differential equation (5.3), and therefore to prove Proposition 5.5 we follow in a similar manner
to the previous subsection. We again consider U(u) and V* () defined in (5.6) and (5.7), respectively, along
with the following singular heteroclinic orbit W (1) = {wy () }nez with

0, n <0

_ ) =U-(p), n=0
wn(.u) = U (M), n=1 (514)

U+(/’[’)a n>1

From Lemma 1.1 we again have that the solutions (5.6), (5.7), and (5.14) continue regularly in —1 < d < 0
for p taken in any compact subinterval of the interval (0,1). Therefore, we need only understand how these
singular heteroclinic orbits continue in —1 <« d < 0 near the bifurcation points at © = 0,1. The proof of
Proposition 5.5 is broken down over the four lemmas, and the results are summarized visually in Figure 11.
Our first result extends Lemma 5.3 into the region d < 0.

Lemma 5.7. There exist ds,p3 > 0 and a function py1(d) : [—ds,0] — [0, p3) such that for each fized
d € [~d3,0], at p = pu,1(d) a pair of steady-state solutions to (5.1), Up1(p,d) and V| (u,d), emanate in a
saddle-node bifurcation and exist for all p € [p1(d), ps]. These solutions are continuous in u and d and are
such that Up1(p,d) — U(p) and Vii(u,d) — V=(n) as d — 07, for each fived u. The function p;1(d) is
given by
3 2
d) = ——=d3 + O(d).
pu.1(d) 7 (d)
Proof. This proof is nearly identical to the proof of Lemma 5.3, but we now focus on the saddle-node

bifurcation at Uy = —%. O]

Lemma 5.8. There exist da,pua > 0 and a function p,1(d) : [—dg,0] = (pa,1] such that for each fized
d € [—dy,0], at pu = pp1(d) a pair of steady-state solutions to (5.1), Uy1(p,d) and V., (u,d), emanate in a
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Figure 11: A wisual description of the results of Lemmas 5.7-5.10. Black dots indicate the saddle-node
bifurcations and labels for each curve indicates which singular heteroclinic orbit they are continued from

using Lemma 1.1.

saddle-node bifurcation and exist for all p € [pa, pr1(d)]. These solutions are continuous in p and d and are
such that Uy, 1(u,d) — U(p) and VrJr1 (u,d) = STV (1) as d — 0F, for each fized p. The function i, o(d)
is given by

pra(d) =1+ d+ O(d?).

Proof. This proof is nearly identical to the proof of Lemma 5.4, with the minor adjustment that we introduce
U, :=1-j20,,
for eachn > 1, and d = fﬂci. From here everything follows as in the proof of Lemma 5.4. O

Lemma 5.9. There exist ds,pi5 > 0 and a function p2(d) : [—ds,0] — [0, us) such that for each fized
d € [~d5,0], at p = w2(d) a pair of steady-state solutions to (5.1), Uia(p,d) and V,(u, d), emanate in a
saddle-node bifurcation and exist for all p € [p2(d), ps]. These solutions are continuous in p and d and are
such that Upo(p,d) — S7V+ (1) and Vi, d) — W(u) as d — 0=, for each fized . The function p 2(d)
is given by

fuo(d) = — (729) %d% +0(d).

Proof. The proof is similar to the proofs of Lemma 5.3 and Lemma 5.7 in that we apply the implicit function
theorem to find that (5.8) restricted to n > 1 has a unique solution {U,,(u,d,U;)},>1 for each p,d, and Uy
near zero and that this solution satisfies

U, d, Uy) = 1+ O+ dUy). (5.15)

It remains to solve (5.8) for the indices n < 1.
For each n < 0, we introduce the variables

2—n

Up = (=1)"p7

U’fL ?

along with the re-parametrization d = — u%(i. In a similar manner to the previous proofs, we may expand in
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powers of p to arrive at the system of equations

n=1: 0=—d+ U +O(u),
n=0: 0=dl, — U+ 203+ O(ut), (5.16)
n<0: O:Jﬁnﬂ—ffn—i—(’)(u%),

where the equation at index n = 1 is simplified using Us(u, d,Uy) = Us(p, pid, pily) = 1 + O(p) from
(5.15).
The equation at index n = 1 can be solved using the implicit function theorem Uy (cz, Iy [70) as a function

over all d, Uy and sufficiently small . Furthermore, this function has the expansion
Uy(d, p, Up) = —d + O(u7).
Upon putting this into the remaining equations for (5.16), we arrive at the infinite system of equations
n=0: 0=—d®>—Uy+203+0(ui),
n<0: 0=dU, s —U,+O(ui).
From here we may follow as in the proofs of Lemmas 5.3 and 5.7 to obtain the desired result. O

Lemma 5.10. There exist dg, e > 0 and a function p,2(d) : [—de, 0] — (us, 1] such that for each fized
d € [—dg, 0], at pu = pr2(d) a pair of steady-state solutions to (5.1), Uy, 2(p,d) and V:Q(u,d), emanate in a
saddle-node bifurcation and exist for all p € [ue, pr,2(d)]. These solutions are continuous in p and d and are
such that Uy 1(p,d) — V= (n) and V,,Jr1 (u,d) — WH(u) as d — 0%, for each fizred p. The function p,.2(d) is
given by

fir2(d) = 1+ d + O(d?).

Proof. This proof is identical to those of Lemmas 5.4 and 5.8. O

5.3 Numerical Validation

Patterns with flat plateaus snake. We first present numerical computations that indicate that patterns
with flat plateaus snake for all values of d > 0, though the width of the snaking curve shrinks to zero in the

continuum limit d — oo.

We saw in Figure 1 numerical verification of Corollary 5.2 for d = 0.5. This figure shows that symmetric
steady-state solutions of (5.1) with flat plateaus snake when plotting p against the square of the £2-norm
of the bifurcating solution. Furthermore, near the left and right saddle-node bifurcations of the symmetric
steady-states one can see that a pair of asymmetric steady-states bifurcate in a pitchfork bifurcation, as
predicted by Lemma 4.4. These asymmetric bifurcation curves continue across the bifurcation diagram
connecting the on- and off-site bifurcation curves, which gives the bifurcation diagram the familiar snakes

and ladders appearance.

In Figure 12 we show the effect on the snaking bifurcation curves as the coupling parameter d is increased.
We can see that as d increases, the snaking region narrows and appears to collapse onto the Maxwell point
1= pmx = 0.75. Moreover, in the continuum limit d — oo of (5.1) given by the partial differential equation

U = 02U — pU +2U° —U®, U =U(x,t), x€R, (5.17)

it is known that the analogous steady-state solutions with flat plateaus do not snake and only exist at the
Maxwell point p = 0.75. Therefore, the results of Fiedler and Scheurle [17] indicate that for all sufficiently
large d > 1 in (5.1) the snaking region of localized steady-states is exponentially small in d and centred

about the Maxwell point in p.
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Figure 12: Shown are the bifurcation diagrams of on-site solutions of (5.1) for d = 0.001,0.1, and 1. As
d increases, the snaking region narrows and appears to collapse onto the Mazwell point = pmx = 0.75,

represented by the vertical line. We note that off-site branches (not shown) have identical behaviour.

Patterns with oscillatory plateaus lie on isolas. We present numerical computations that indicate
that patterns with oscillatory plateaus reside on isolas. These isolas appear to shrink as d increases and
disappear at a finite value of d. In particular, these patterns do not exist near the continuum limit d — oo.

Figure 13 provides numerical confirmation of the results of Corollary 5.6 by plotting the resulting bifurcation
diagram of a localized steady-state solution to (5.1) with an oscillatory plateau. In particular, we have that
the components of the plateau are very close to alternating between +U,, (u — 4d) and that the bifurcation
diagram is composed of stacked isolas. Our numerical computations indicate that the width of these isolas
shrinks very rapidly as d increases: the isolas seem to disappear at around d = 0.11 when they collapse onto
themselves. The reason for this collapse is unknown and remains the subject of future work, but it should be
noted that such states have no anologue in the continuum setting (5.17) and therefore we would not expect
that these bifurcation curves persist for all d > 0.

As pointed out at the beginning of §5.2, the results of this manuscript can be applied to understand the
bifurcation structure of homoclinic orbits which spend a long time near a periodic orbit of any period.
Although we have only focussed on periodic orbits with periods 1 and 2, numerical evidence leads one to
believe that for small d and appropriate p the map (5.4) exhibits periodic orbits of all periods. Unfortunately
a staggering-type symmetry is not immediately apparent to be used to understand the bifurcation behaviour
of heteroclinic orbits between the trivial fixed point and a periodic orbit of period k > 3, which therefore
requires one to examine the kth iterate map of (5.4) to understand the bifurcating homoclinic orbits which
spend a long time near such a periodic orbit. Importantly thought, we do not expect any of these bifurcation
diagrams to persist for all d > 0 since none of these states have an analogue in the continuum setting of
(5.17).

Figure 14 provides an example of a subset of the bifurcation diagram for localized steady-state solutions of
(5.1) for which their plateaus are approximately 4-cycles. Here we see that as with the 2-cycle case analyzed
in §5.2, these 4-cycle localized states again lead to isolas. Interestingly, the bifurcation diagram appears to be
populated by two different types of isolas, which are highlighted in Figure 14 for reference. The approximate

4-cycle along the plateau alternates from two positive states to two negative states. Numerical evidence
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Figure 13: Steady-states with oscillatory plateaus lead to isolas. The left panel contains a number of isolas
from the bifurcation diagram at the parameter value d = 0.05 with one highlighted in blue for reference. The
right panel contains the highlighted isola (stretched and rotated for visualization) along with a characteristic
solution lying on the bifurcation curve. The bottom right inset provides a solution with a smaller oscillatory

plateau, from an isola lower down in the bifurcation diagram.
indicates that these isolas only persist up to approximately d = 0.21.

Asymmetric patterns. We present numerical computations of asymmetric patterns with flat and oscilla-
tory plateaus. In §4.2 we extended the results of Theorem 4.3 to demonstrate the existence and bifurcation
structure of asymmetric homoclinic orbits. In particular, we proved in Lemma 4.4 that near the saddle-node
bifurcations on the curves of symmetric homoclinic orbits, a pitchfork bifurcation takes place which births a
pair of asymmetric homoclinic orbits mapped into each other by the reverser. These bifurcating asymmetric
solutions are show in Figure 1 as green dotted curves which form the so-called ladder states. In Figure 15
we demonstrate the existence of these branches of asymmetric solutions with oscillatory plateaus. We see
that associated to each isola we have two distinct curves of asymmetric solutions whose curves originate and

terminate near the saddle-node bifurcations on the curves of symmetric solutions with oscillatory plateaus.

5.4 Extension to Higher-Dimensional Maps

The analysis we presented in this manuscript was undertaken partially with the specific system (5.1) in
mind, but we note that it can be extended in a number of different ways to apply to more general lattice
differential equations. This in turn could result in higher-dimensional mappings to analyze. For example,
consider a fixed N > 1 and the equation of the form

N
Un = Z l:dl(Un_H +Up_i — 2Un) + f(Un,/J,), n €z, (518)

i=1
with U,, € R¥ for each n € Z and some integer k > 1, d; € R foralli € {1,...,N}, and f : R¥ x R — R* is
a smooth nonlinearity. Upon setting U, = 0 for all n € Z and following the above procedure to obtain the
analogous spatial mapping to (5.4), we are left to consider a smooth diffeomorphism of the form F : R2N* —
R2N* - Furthermore, the symmetry of exchanging U,,,; and U,_; in (5.18) coming from the coupling terms

Up+i + Up—; — 2U, will again endow the necessary reversible symmetry to formulate Hypothesis 1.
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Figure 14: 4-cycle localized steady-state solutions of (5.1). The left panel contains a number of isolas from
the bifurcation diagram at the parameter value d = 0.05 with one highlighted in blue and another highlighted
in red to demonstrate the two different types of isolas. These isolas are shown blown up and rotated on
the right, where the figure eight structure is more apparent. At the bottom we provide sample profiles from
each of the bifurcation curves, where we can see that the plateaus alternate from two positive to two negative

values in an almost periodic manner.

It should be noted that in the context of system (5.18) and its associated spatial mapping F : R2NV*F — R2VE
the results of Lemmas 3.1 and 3.2 can be extended in a straightforward way. That is, we assume that u*
is a fixed point of our mapping such that the linearization about u* is positive definite and has eigenvalues
A1), AM()~1} with () > 1 for all u € J and there exists p > 0 such that all other eigenvalues are
either greater that A(u) + p or less than 1/(A(u) + p) uniformly in 4 € J. We can then choose local
coordinates (v®,v®¢ v v**) near u* that reflect the uniform spectral decomposition assumed above. In
particular, W#(u*, u) is given by (v®,v**, 0, 0) in these coordinates and the reverser acts by (v®, v°%, v%, V%) —
(v*, 0" v® v*%). Then we can find that the results of Lemma 3.2 remain true in this situation with (3.4)
replaced by
ual < M, st < My, o] < MpNm,jop] < My

for some M > 0 and n € (0,1). We may then construct appropriate matching functions as in Lemma 4.2 and
follow the results of this manuscript to satisfy the appropriate matching equations to obtain symmetric and
asymmetric homoclinic orbits that correspond to localized steady-state solutions to system (5.18). Therefore,

RZNk

the results of this manuscript remain valid for diffeomorphisms on as well.
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Figure 15: Show are two copies of the same isola featured in Figure 13 (stretched and rotated for visualiza-
tion). In red and blue are two distinct curves of asymmetric solutions. Both asymmetric curves originate
and terminate at pitchfork bifurcations with the symmetric solutions, exponentially close to the saddle-node

bifurcations on the isolas.

6 Discussion

In this paper, we analyzed symmetric and asymmetric localized patterns of lattice dynamical systems posed
on the lattice Z — our results extend previous analyses done on isolas and snaking diagrams for PDEs [1, 3]
to the spatially discrete setting. The main vehicle to obtain our results was an analysis of homoclinic orbits
of two-dimensional reversible maps; we also discussed extensions to higher-dimensional maps. As in the
continuous case, the key to understanding the global bifurcation structure of localized profiles on lattices
lies in understanding the bifurcation structure of front solutions which manifest themselves as heteroclinic
orbits to the associated spatial mapping. Finally, we applied our theoretical analysis to the discrete real
Ginzburg-Landau equation posed on a one-dimensional lattice: our analysis focused on the regime near the
anti-continuum limit where we rigorously predicted the full bifurcation structure of localized profiles with

both flat and oscillatory plateaus.

As in the continuous case, our analysis relied on an underlying reversible structure that reflects a symmetric
coupling between neighboring edges. More generally, we could consider steady-state solutions to a lattice

dynamical system of the form
Uy = di(Uns1 — Up) + do(Up—i — Up) + f(Un,p), n€Z. (6.1)

When d; # ds, the coupling is asymmetric, and it is easy to see that the resulting map that describes
stationary states is not reversible in this case. In particular, the results of this manuscript do not apply
directly to (6.1). We note, however, that Lemma 1.1, which describes persistence near the anti-continuum
limit, can still be applied, and we therefore expect localized profiles of (6.1) with associated snaking and

isola structures to exist for nonzero |dy|, |d2| < 1.

Finally, we briefly discuss the bifurcation structure of localized patterns on planar lattices. We saw in

Figure 2 that the lattice system
Un,m = d(Un—i-l,m + Un—l,m + Un,7rz+1 + Un,m—l - 4Un,m) - NUn,m + 2U2,m - Ug,m

on the square (n,m) € Z? exhibits localized solutions that organize themselves in an intricate snaking
structure. In particular, we find that some of the patterns resemble complete squares, while others take on
more complicated shapes: see Figure 16 for an additional illustration of this observation. The numerical
computations summarized in Figure 17 show the discrete Swift—-Hohenberg equation posed on a hexagonal
lattice exhibits localized patterns that resemble large hexagonal patches which exist along snaking curves.
As in the continuum case [23], the alignment of saddle nodes with multiple asymptotes that are visible in

Figures 2 and 17 combined with the complicated shape of profiles along the bifurcation curve could reflect
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Figure 16: Shown is part of the bifurcation diagram of Figure 2[right] with saddle-node bifurcations labelled
and sample profiles given. Moving from saddle node (1) to saddle node (7) shows how an additional ring

emerges around the square pattern.

the selection of different fronts that become relevant as the patterns size grows, reflecting the importance
of the interfacial energy between the bistable states that make up the patterns. Additional computations
we carried out (which are not shown here) demonstrate that all saddle nodes approach p = 0,1 in the anti-
continuum limit as d — 0: this makes sense as there is no coupling, and therefore no interfacial energy, in
this limit. We emphasize that Lemma 1.1 still applies in this context: we therefore know that any localized
stationary state at d = 0 persists for 0 < d < 1 for each fixed 0 < p < 1. Thus, the key to understanding
the complete bifurcation structure near this limit is to understand what happens near the bifurcations at
1 =0,1: as shown in [5], we can extend the techniques employed in §5 to determine the bifurcation structure
of planar profiles of at least some of the saddle-node and pitchfork bifurcations near pu = 0,1 close to the
anti-continuum limit.
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