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Abstract

Localized planar patterns in spatially extended bistable systems are known
to exist along intricate bifurcation diagrams, which are commonly referred to
as snaking curves. Their analysis is challenging as techniques such as spatial
dynamics that have been used to explain snaking in one space dimension no
longer work in the planar case. Here, we consider bistable systems posed on
square lattices and provide an analytical explanation of snaking near the anti-
continuum limit using Lyapunov—Schmidt reduction. We also establish stability
results for localized patterns, discuss bifurcations to asymmetric states, and
provide further numerical evidence that the shape of snaking curves changes
drastically as the coefficient that reflects the strength of the spatial coupling
crosses a finite threshold.

Keywords: lattice dynamical system, localized pattern, snaking bifurcation,
Lyapunov—Schmidt reduction, bistable system

Mathematics Subject Classification numbers: 37Dxx, 37Gxx, 39Axx, 34C37,
35B36.

(Some figures may appear in colour only in the online journal)

1. Introduction

Spatially extended bistable systems have been shown to exhibit a wide variety of stationary spa-
tial patterns. In this manuscript, we focus on localized patterns that resemble a stable patterned
state in some compact, connected spatial region and a second spatially homogeneous stable
rest-state outside of this compact region. Localized structures arise in many applications, for
instance as urban crime spots [1-3], vegetation patterns [4, 5], and soft matter quasicrystals
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Figure 1. Shown are the existence curves and sample spatial profiles of localized pat-
terns in the Swift—Hohenberg equation in one space dimension in panel (i) and the plane
(reproduced with permission from [30] © 2008 Society for Industrial and Applied Mathe-
matics. All rights reserved.) in panel (ii). Note that fold bifurcations are aligned with two
vertical asymptotics in the 1D case, while they are aligned with many different vertical
asymptotes in the planar case.

[6], and in chemical reactions [7], semiconductors [8], and ferrofluids [9]. We refer to the
review papers [10, 11] for additional references to applications.

Upon varying a system parameter, localized patterns often trace out intricate existence
curves, which are commonly referred to as snaking diagrams. To illustrate these curves, we
show the existence curves of one-dimensional localized roll structures and planar localized
hexagon patches of the Swift—Hohenberg equation in figure 1. In both cases, the existence
curves in function space are unbounded, and the spatial extent L of the patterned (spatially
non-homogeneous) part of the spatial profiles increases without bound along the curve. Fur-
thermore, solutions exist only within a bounded interval in parameter space, and branches turn
back at infinitely many fold bifurcations at which additional rolls or hexagon cells are added
to the pattern.

The mechanisms that drive localized patterns and the associated snaking diagrams are well
understood for partial differential equations (PDEs) posed on the real line or on cylindrical
domains [12—17] and much is known also about asymmetric states [13, 18], localized states
with disconnected regions of localization [19], broken symmetries [20—22], PDE stability [23],
and situations where snaking is precluded [24]. For lattices, results about pinning of one-
dimensional and planar fronts near the continuum limit were obtained in [25, 26], respectively,
using asymptotics-beyond-all-orders methods. Results about snaking diagrams of localized
patterns in one-dimensional lattices were recently established in [27].

Despite this progress in understanding localized patterns in one spatial dimension, little is
known analytically about planar patterns, whose bifurcation diagrams are more complicated
and whose spatial profiles change in a more intricate way along their existence curves [28—32].
For instance, as shown in figure 1, localized planar hexagon patches do not grow by simply
adding a complete set of hexagon cells around the entire perimeter of the current patch at
each fold bifurcation. Instead, individual hexagon cells are added at each fold bifurcation, and
the patterns sometimes even recede inwards from the outermost corners. The more complex
changes of the profiles are reflected in the bifurcation diagrams, which are less regular and
predictable compared to the one-dimensional case; see again figure 1.

To better understand the bifurcation structure of localized patterns in higher space dimen-
sions, we will investigate spatially extended systems posed on a planar square lattice of the
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Figure 2. Shown are sample profiles and snaking curves of planar localized Dy-
symmetric off-site (top) and on-site (bottom) patterns of the lattice system (1.1) with
flu, 1) = —pu + 2u® — u® where d = 0.001 in the left panels (i) and (iv), while d = 0.1
in the right panels (iii) and (vi).

form

o = d( Ay + [ty ), (n,m) € 22, (1.1)
where the five-point discrete Laplacian A defined by

(At)nm = tnt1m + Un—1n + Ungn+1 + Ungn—1 — Hthpm (1.2)

reflects the interaction across neighboring elements of the lattice Z?, the constant d > 0 mea-
sures the strength of these interactions, and the function fis a bistable nonlinearity that depends
on a one-dimensional parameter ;. We will concentrate on steady-state solutions of (1.1) that
are Dy-symmetric in the following sense. If we consider the lattice Z? as consisting of those
elements of the plane R? that have integer coordinates, then the lattice is invariant under two
representations of the group D,. The first representation of Dy is generated by the rotation by
90° around the origin and reflection across the horizontal line through the origin. The second
representation is generated by rotation by 90° around the point (%, %) and reflection across
the horizontal line through the same point (%, %) With these representations in mind, we will
focus on on-site steady states of (1.1), which, by definition, are invariant under the first repre-
sentation of Dy, and off-site steady states of (1.1), which, by definition, are invariant under the
second representation of Dy; we refer to the center panels of figure 2 for examples of off-site
and on-site patterns.

Using the cubic—quintic nonlinearity f(u, 1) = —puu + 2u® — 1, it was demonstrated in
[32] using numerical continuation that the bifurcation curves of Dj-symmetric square
patches of (1.1) bear a striking resemblance to those of localized hexagon patches in the
planar Swift—Hohenberg equation: compare figure 1(ii) showing hexagon patches of the
Swift—Hohenberg equation with figure 2(iii) showing D,-symmetric off-site patterns of (1.1).
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Similar numerical results were obtained recently in [33] for equations similar to (1.1) posed on
square, hexagonal, and triangular lattices*. An intuitive reasoning for the similarity between
the continuous and discrete case is that domain-filling hexagons are the preferred planar state
in the continuous Swift—Hohenberg PDE, and we can therefore think of hexagon patches as
developing on an underlying hidden hexagonal lattice. Posing the system directly on this lattice
might therefore reproduce a similar bifurcation diagram.

As mentioned earlier, not much is known analytically for localized planar patterns, and one
of the reasons is that the techniques used in the one-dimensional case rely primarily on formu-
lating the existence problem as a spatial dynamical system in the unbounded spatial variable, so
that localized structures can be viewed and constructed as homoclinic orbits [12, 27, 34]. This
approach is no longer available for genuinely planar patterns. For lattice dynamical systems, we
can exploit the fact that the anti-continuum limit of (1.1), which corresponds to setting d = 0,
provides a regime that is accessible to analysis as the equations on individual vertices of the
lattice decouple from each other. Applying Lyapunov—Schmidt reduction and blow-up tech-
niques in the regime 0 < d < 1, we will construct D4-symmetric localized patterns of (1.1)
and prove that their bifurcation curves resemble those of the spatially one-dimensional case as
illustrated in figure 2 for off-site and on-site patterns. In particular, we will see that, starting
from the center of each face, new cells are added on each face as the branch passes through
fold bifurcations; see figure 2 for an illustration.

The question of what causes the shift from the ‘regular’ snaking curves for small d to
the ‘irregular’ snaking curves for larger d visible in figure 2 was answered partially by
Taylor and Dawes [32], whose numerical computations revealed that increasing the cou-
pling parameter d causes a closed curve (a so-called isola) of square patterns to collide
with and attach itself to the snaking curve in a collision they termed a switchback. We will
build and expand on their investigation by providing numerical evidence that indicates that
switchbacks arise near the same critical value of 4. In summary, this paper contains the
following results:

e Analysis: we prove that for 0 < d < 1 the bifurcation curves of D4s-symmetric localized
patterns of (1.1) resemble the snaking curves of the spatially one-dimensional continu-
ous and discrete settings and determine spectral and nonlinear stability of these localized
patterns.

e Numerics: we discuss asymmetric patterns that bifurcate from the symmetric patterns and
provide computations that indicate that the switchbacks, which are responsible for reor-
ganizing the snaking curves as the coupling parameter d increases, occur near a critical
threshold d, of d. These computations also indicate that, at the switchbacks that occur fur-
ther up on the snaking curve, each isola and the snaking branch undergo a more complex
reorganization that involves creating new isolas in the process.

We note that the mechanisms that drive the fold bifurcations for planar lattices near the
anti-continuum limit were also found independently in [33], where the leading-order interac-
tions between neighboring sites were discussed; we will put their considerations on a rigorous
footing here.

The remainder of this paper is organized as follows. Our analytical results and numerical
findings are provided in section 2. The proofs of our analytic results in the anti-continuum
limit as well as extensions of our results to a broader class of nonlinearities can be found in
section 3, and we conclude with a discussion in section 4.

4We were not aware of this manuscript prior to submitting this work.
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2. Main results

We consider the lattice dynamical system
it = dAWgn + [, ), (n,m) € 72 2.1

posed on the Banach space £>°(Z?) of bounded functions from Z? into R equipped with the
supremum norm | - |, and the corresponding steady-state system

d(Awm + s 1) =0, (n,m) € 772, (2.2)

where A denotes the discrete Laplace operator defined in (1.2). Our results apply to the three
classes of bistable nonlinearities f : R?> — R illustrated in figure 3, where the endpoints of the
bistability regions correspond to pitchfork, fold, or transcritical bifurcations.

2.1. Analytical results

For the sake of clarity, we focus initially on the case illustrated in figure 3(i) and make the
following assumption on the nonlinearity f : R> — R in the steady-state system (2.2), which
is met by the cubic—quintic nonlinearity flu, p1) = —pu + 2u® — 1°.

Hypothesis 1. The function f : R> — R is smooth and satisfies the following:

(a) The function fis odd in u so that f{—u, ) = —f(u, ) for all (u, ).

(b) The set of roots of f{u, i) is as shown in figure 3(i). In particular, for each p € (0, 1), the
function f(u, ;) has exactly three nonnegative zeros, namely u = 0 and u = u. (1) with
0 < u(u) < uy(p), and these satisfy (0, w), f/(u. (1), 1) < 0 < f'(u— (), ).

(c) At =0, the zeros u =0 and u = +u_(u) collide in a generic subcritical pitchfork
bifurcation.

(d) At = 1, the zeros u = uy () collide in a generic saddle-node bifurcation.

We are interested in the existence of solutions to the steady-state system (2.2) in the
anti-continuum limit 0 < |d| < 1. We first set d = 0 so that (2.2) reduces to the equation
Sftms 1) = 0 with (n,m) € Z*. Hypothesis 1 implies that any nonnegative solution u,,,, of
Sty 1) = 0 with 0 < g < 1 lies in the set {0, us (1) }. For each pair (N, M) of integers with
0 <M < N, and each 0 < pr < 1, we define the patterns #™¥ (1) and 9™M (1) on the wedge
0<m<nby

ur(p) 1<m<n<N

u4 () 1<m<n<N () No1< M
u n=N,1<m<
W= dug) n=N1<m<M, o=
] u(p) n=N,m=M
0 otherwise

0 otherwise.
(2.3)
Note that N corresponds roughly to the horizontal extent of the pattern and M to the ver-

tical height in the Nth column. The patterns defined in (2.3) are pairwise distinct for 0 <
i < 1. Hypothesis 1(c) and (d), see also figure 3(i), implies that lim,~ ou_(1) = u4(0) and
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Figure 3. Panels (i)—(iii) illustrate, respectively, the zero sets of the sample functions
fu, ) = —pue 4+ 203 — 1, flu, o) = —pu + 2u? — 13, and flu, 1) = w(u — p)(1 — u) in
the upper half-plane to which our results apply. Solid and dashed curves indicate equi-
libria that are, respectively, linearly stable and unstable for it = f(u, ;). Note that the
cubic—quintic nonlinearity f(u, j1) = —pu + 2u® —  illustrated in panel (i) satisfies

hypothesis 1.

—
=:

Figure 4. Lattice points correspond to the midpoints of the squares shown here. Panel (i)
shows how the off-site square patch with (N, M) = (4,2) is generated from the pattern
™M) defined on the wedge 1 < m < n by reflecting across the dashed lines through
the point (%, %) indicated by the white disk. Similarly, panel (ii) shows how the on-
site square patch with (N, M) = (4, 2) is generated by reflecting across the dashed lines
through the point (1, 1) indicated by the white disk.

lim,, ~ju_(4) = u4 (1), and we conclude that these patterns connect to each other as follows at
w=0,1:

ﬁ(N’M)(O) _ —(N,M+1)(0) 1<MLN-1
a0y = sV 1<N
aMM (1) = ™M (1) 1<M<N.

As indicated in figure 4, we can extend the patterns defined in (2.3) to D4-symmetric off-site or

on-site patterns defined on Z? by reflecting profiles across the diagonal, horizontal, and vertical

lines through the points (3, 1) and (1, 1), respectively. Finally, for each integer N, > 1, we

202
define the set

rvo=|J U A@™ . m. @™ w.m} c @) < R

1<MENEN, 0<p<l

and note that this set forms a smooth curve with end points given by u = 0 and u = u™="-)(0).
We also define the discrete set

E={a@™0),0): 3<N}U{@" (), 1): 2<M<N-2} Cl*Z) xR
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Figure 5. Shown is the set I'(4) and the associated patterns ¥ () along the solid parts
of I'(4) and 7™ (1) along its dashed parts. The set & is indicated by black squares.
Outside a small neighborhood of the fold points, the patterns along the solid curves are
stable, whilst those along the dashed curves are unstable.

of patterns near which we are not able to prove persistence and refer to remarks 3.1 and 3.2 for
a discussion of why our proofs fail near these bifurcation points. We can now formulate our
main theorem and refer to figure 5 for an illustration of this result.

Theorem 1. Assume that f satisfies hypothesis 1. For each 6. > 0 and each integer N, > 2,
there is a constant d,, > 0 such that the following is true for each 0 < d < d.:

o Persistence: each component of the set Us (I'(N.))\Uas,(E) contains two unique,
nonempty, continuous branches of, respectively, on-site and off-site D4-symmetric solu-
tions of the steady-state system (2.2). Furthermore, these branches are smooth and C'-
close to I'(N,) for each fixed d, depend smoothly on d, and their limit as d \, 0 is contained
in T(N,).

o Nonlinear stability: for i € (8,,1 — 0,), the patterns emerging from ™™ (11) are nonlin-
early stable for the dynamical system (2.1) posed on {>(Z?), whilst those emerging from
oM () are linearly unstable with eight unstable eigenvalues for M # N — 1 and four
unstable eigenvalues for M = N — 1.

e Transverse crossing: the linearization of the dynamical system (2.1) about the Dy-
symmetric patterns posed on {>°(Z?) has precisely four (M = N — 1) or eight (M # N — 1)
eigenvalues that cross transversely through the origin near each fold bifurcation, and there
are no other eigenvalues on the imaginary axis.

In section 2.2, we will discuss the existence of asymmetric branches that emerge from the
four or eight eigenvalues that cross the origin near each fold bifurcation.
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Figure 6. Indicated are the eigenfunctions belonging to the critical eight (left) and
four (right) eigenvalues of D4-symmetric patterns that cross the origin near each fold
bifurcations for M # N — 1 and M = N — 1, respectively. The critical eigenspace is
parametrized by (wy, ..., wg) € R® and (wy, ..., wy) € R4, respectively, and the Dy-
symmetry acts by rotations by 90° and reflections across the diagonal, horizontal, and
diagonal lines.

Note that hypothesis 1 requires a pitchfork bifurcation at © = 0 and a fold bifurcation at
1 = 1. The conclusions of theorem 1 hold more generally when the system exhibits a generic
transcritical bifurcation at 4 = 0 or at © = 1, and we provide the proof of theorem 1 for these
cases in section 3.5.

2.2. Numerical results

We illustrate our analytical results with numerical computations of the system

Aty — il + 203, — 10y, =0, (n,m) € 72 (2.4)

Note that the cubic—quintic nonlinearity f(u, ;1) = —pu + 2u® — u’ appearing in (2.4) satis-

fies hypothesis 1: in particular, it is odd in u and has roots given by u =0 and u,(u) =
1£1—p.

We comment briefly on the numerical algorithms we implemented to solve (2.4) numeri-
cally. To compute Ds-symmetric profiles, we use the computational domain {(n,m): 1 < m <
n < N4} shown in dark in figure 4 with Ny = 50 with Neumann boundary conditions at the right
boundary n = Ny and the D4-symmetry conditions explained in figure 4 at the bottom boundary
m = 1 and the diagonal n = m. We started with initial profiles at d = 0 and then continued in d
or p using a secant continuation code. Stability of profiles along each branch was assessed by
computing the spectrum of the linearization of (2.4) evaluated at the full profile extended to a
square of size 2Ny x 2Ny with Neumann boundary conditions using the routine EIG in MATLAB.
Similarly, asymmetric solutions were computed on a square of size 2Ny x 2Ny with Neumann
boundary conditions at the boundary. The initial asymmetric profiles were constructed based
on the expected symmetries derived and discussed below.

Asymmetric branches. First, we focus on the anti-continuum limit 0 < d < 1 of (2.4) and
investigate bifurcations to asymmetric patterns near each of the fold bifurcations described
in theorem 1. Near each fold bifurcation, precisely four (M = N — 1) or eight (M # N — 1)
eigenvalues of the linearization about the D4-symmetric patterns described in theorem 1 cross
the origin transversely. Equivariant bifurcation theory [35, 36] implies that the symmetry group
D, leaves the eigenspaces associated with these eigenvalues invariant, and we illustrate the
corresponding eigenfunctions and the action of D4 on these spaces in figure 6.
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Figure 7. Panel (i)—(vii) show seven branches of asymmetric square patterns that bifur-
cate from the primary snaking branch (shown in light solid) taken from figure 2 near the
off-site pattern #>" for ;1 ~ 1. The branches in panels (i)—(iii) bifurcate in three distinct
one-dimensional irreducible representations of D4 and are guaranteed by the equivari-
ant branching lemma. The branches in panels (iv), (v) and (vi), (vii) bifurcate in two
orthogonal planes on which Dy acts via its two-dimensional irreducible representation.
Numerical computation of spectra of the linearization about these patterns allowed us to
identify stable (solid) and unstable (dashed) branches; the numbers in parentheses give
the number of unstable eigenvalues of the linearization.

We focus first on the case M # N — 1. Using the form of the Dj-action, it is not difficult
to see that the eight-dimensional eigenspace is the orthogonal sum of four one-dimensional
subspaces on which Dy acts with its four unique distinct one-dimensional irreducible represen-
tations and a four-dimensional subspace on which Dy acts with its unique two-dimensional irre-
ducible representation. The equivariant branching lemma (see, for instance, [35, theorem 3.3
in section XIII.3] or [36, theorem 4.4 in section 4.2]) guarantees the existence of four dis-
tinct branches in each of the one-dimensional subspaces: one of these branches is the primary
branch that undergoes a fold, and we show numerical computations of the remaining three
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(iv)

/13

Figure 8. Panel (i) shows anisola (solid) for d = 0.12 thatis about to collide with the pri-
mary solution branch (dashed) at the rightmost fold of the pattern . Panel (ii) shows
the rearranged branch (solid) after collision for d = 0.2. Similarly, panel (iii) shows an
isola (solid) for d = 0.05 that is about to collide with the primary branch (dashed) at the
rightmost fold of the pattern x>, Panel (iv) shows the rearranged branch (solid) and a
new isola (dashed) that emerges after the collision for d = 0.1.

branches that emerge near the right fold for (N, M) = (3, 1) in figure 7. Within the remaining
four-dimensional eigenspace with the two-dimensional irreducible representation of D4, we
expect that there should generically be two distinct pairs of eigenvalues that cross indepen-
dently (see, for instance, [35, 36]): each of these two bifurcations will lead generically to two
asymmetric branches, giving a total of four branches, which are shown again in figure 7 for
(N,M) = (3, 1). Note that each bifurcating branch returns to the primary branch near a differ-
ent fold. We also point out that, though each branch is initially unstable, some of the branches
stabilize later (see panels (ii) and (iv) in figure 7).

Next, consider the case M = N — 1: it is again not difficult to see that the isotypical decom-
position of the four-dimensional critical eigenspace consists of two distinct one-dimensional
representations and the two-dimensional representation of D,. We therefore expect four distinct
branches to emerge. We did not compute these branches.

Switchbacks. We revisit figure 2 and observe that the bifurcation diagram described in
theorem 1 agrees very well with the numerical diagram shown in figure 2(i) for d = 0.001.
In particular, even though our analysis is not able to verify the continuation through all folds
along the branch, the numerical computations indicate that for sufficiently small d > O patterns

3509



Nonlinearity 33 (2020) 3500 J J Bramburger and B Sandstede

7 [T

Figure 9. The top and bottom panels show the solution profiles along the isolas from
figures 8(i) and (iii), respectively.

grow in a very regular fashion by first adding new cells at the middle of each face and then
adding additional cells to either side at each pair of folds.

Next, we focus on when and how the regular bifurcation diagram that appears for0 < d < 1
changes to the more complicated diagram shown in figure 2(iii) for larger d. Taylor and Dawes
[32] observed that the bifurcation branch begins to turn back on itself when isolas collide with
the primary solution branch upon increasing d. More precisely, the collision is a codimension-
two cusp bifurcation where a fold along the isola and a fold along the primary solution branch
collide with each other. Taylor and Dawes also showed that several such switchbacks occur
for nearby values of the coupling strength d. The collision process is illustrated in figures 8(i)
and (ii) where we see that an isola and the primary solution branch collide at the rightmost
fold of the pattern z*!): the collision is followed by a rearrangement of the two branches into
a single more complex branch structure. Figures 8(iii) and (iv) shows that a similar collision
of an isola and the primary branch arises near the rightmost fold of the pattern #>": in this
case, the collision takes place simultaneously at two folds, leading to a rearrangement of the
solution branch and the appearance of a new isola. In figure 9, we show the profiles of the
patterns along the isolas that collide with ™" for N = 4, 5 just prior to their collisions.

Our goal here is to compute the locations of the cusp bifurcations more systematically. To
do so, we set up an extended system for the variables (i, 1, d) that consists of finding roots
u of (2.4) for parameter values (u, d) at which the linearization of (2.4) in u evaluated at u
has a two-dimensional null space: each solution to this extended problem corresponds to a
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Figure 10. Shown are the locations of the codimension-two cusp bifurcations caused by
collisions of isolas with the solution branch at the rightmost fold bifurcations of the pat-
terns #™! in (N, p1)-space (left) and (N, d)-space (right). Note that the sequence (1, dy)
appears to converge exponentially to the point (to, ds) = (0.887,0.068) as N increases.

cusp bifurcation point. We use Newton’s method with initial conditions given by the profiles
#™1 and parameter values p at fold points along the primary branch. Using this algorithm, we
identified a series of cusp bifurcations near the rightmost folds of the profiles #™'" for N =
4,...,16. Figure 10 illustrates our findings and shows, in particular, that the corresponding
parameter values (1, dy) appear to converge exponentially to a point (1, d) as N increases.
This indicates that the transition from the regular bifurcation structure observed in figure 2(i) to
the more complex diagram shown in figure 2(iii) appears quite suddenly as a critical threshold
d+ of the coupling strength d is crossed.

3. Proof of theorem 1

In this section, we prove theorem 1. Recall that we consider the lattice dynamical system (2.1)
gy = A(D)gn + f(tnns 1), (0,m) € Z2.

Defining the function

F 07 x R xR = 02(Z%),  (u, p,d) — F(u, 1, d),
F(u, oy Y = (A + f (s 1),

we see that the steady-state system (2.2)
d(Au)nm + f(un,ma /~L) = 0’ (n, m) S Zz

corresponding to the dynamical system (2.1) is given by F(u, i, d) = 0. Note that F is smooth
in its arguments.

In section 3.1, we will show that each pattern that satisfies the steady-state system (2.2) with
d = 0 for some 0 < p < 1 can be continued uniquely into the region 0 < |d| < 1 and deter-
mine its stability properties with respect to the lattice dynamical system (2.1): this result shows
that it suffices to understand how branches continue through ;o = 0 and ¢ = 1. In section 3.2,
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we will characterize D4-symmetric patterns to simplify the subsequent analysis. We then con-
sider continuation through p = 0 in §3.3, continuation through = 1 in section 3.4, and
extensions to transcritical bifurcations at ;« = 0, 1 in section 3.5.

3.1. Continuationfor 0 < p < 1

Our first result shows that any solution u of the steady-state system (2.2) with d = 0 and 0 <
i < 1 can be continued uniquely and smoothly into the region 0 < |d| < 1.

Lemma 3.1. Assume that hypothesis 1 is met. Let K C (0, 1) be a compact interval and
choose a continuous function v* : K — (*(Z?) so that vy (1) € {0, us(p)} forall i € K, then
there are positive constants d,, § > 0 and a smooth function u* : K x (—d., d,) — (>(Z?) with
u*(u, 0) = v*(w) for each p € K so that the following is true:

e Persistence: F(u*(u,d), i, d) = 0 for all (u,d) € K x (—d.,d,).

e Uniqueness: if (u,,d) € (*(Z?) x K x (—d.,d.) satisfies F(u,u,d)=0 and |u—
v*(w)| < 9, then u = u*(u, d).

e Stability: if N_:=#{(n,m) € Z*: v}, (w) = u_(p)} is finite, then the linearization
Fuw(p, d), i, d) posed on (¥(Z*) has precisely N_ eigenvalues in the open right
half-plane and none on the imaginary axis.

Proof. Set d =0, then F(v*(1), 1,0) = 0 for all u € K. Furthermore, F,(v*(u), i, 0) is
given by

(FM(U*(M), M O)U)n,m = fu(vz,m(,u)a U)Un,m,

where f,(v;,,(11), 1) # 0 due to vy, (1) € {0, u+(11)} and hypothesis 1. The persistence and
uniqueness statements now follow from the implicit function theorem. The statement about
the spectrum follows since f,(u— (1), ) > 0 whilst f,,(u, ;) < 0 for u = 0, uy (p1). U

In particular, we can apply this lemma to prove that the set I'(NV..) N (EOO(ZZ) X (64, 1 — 5*))
can be continued uniquely and smoothly into 0 < |d| < d. for an appropriate d, that depends
on J, and N,. The lemma also proves the assertion about nonlinear stability made in theorem
1. It therefore suffices to show how the resulting branches can be continued through ¢+ = 0 and
1 = 1 and to discuss the transverse crossing of eigenvalues near these parameter values.

3.2. D4-symmetric patterns

We are interested in D4-symmetric off-site and on-site patterns. Off-site patterns are gener-
ated by the reflections across the horizontal, vertical, and diagonal lines on the lattice 72 that
pass through the point (1/2, 1/2) or, in other words, by the reflections (n, m) — (1 — n, m) and
(n,m) — (m,n) on the lattice Z>. Similarly, on-site patterns are generated by the reflections
across the horizontal, vertical, and diagonal lines on 72 that pass through (1, 1), that is by the
reflections (1, m) — (2 — n,m) and (n,m) — (m,n) on Z?. In particular, there is a 1:1 corre-
spondence between D4-symmetric patterns and functions u,, ,, defined for indices (n, m) in the
index set

I={(n,mcZ*: 1 <m<n} (3.1

by extending the latter to indices in Z? using the appropriate D4-action defined above. In the
remainder of the proof of theorem 1, we will make extensive use of this correspondence.

3512



Nonlinearity 33 (2020) 3500 J J Bramburger and B Sandstede

3.3. Continuation through bifurcations near ;. = 0

We consider the behavior of Ds-symmetric patterns near ;1 = 0. Lemma 3.2 provides results
for ™M) with 1 < M < N — 1, while lemma 3.3 covers the case of #™™ with N = 1,2. We
recall that we cannot prove continuation through 1 = 0 for #™") when N > 3. Using a change
of coordinates, we can bring the Taylor expansion of f{u, i) about (0, 0) into the form

[l ) = —pu+ w6 + O(Pu + pue’ + u’) (3.2)

and may also assume that 4 (0) = 1.

Lemma 3.2. Fix N>2and 1 < M < N — 1, then the following is true separately for on-
site and off-site Dy-symmetric solutions of the steady-state system (2.2). There are constants
di, 1 > 0 and a smooth function p; : [0,d] — [0, p1] such that the following is true for each
de (0,4d]:

o Fold bifurcations: there is a pair of symmetric solutions u;(j, d) and v,(1s, d) of the steady-
state system (2.2) that bifurcate at a fold bifurcation at | = p(d) and exist for all i €
[wi(d), p1]. These solutions are smooth in (u, d), and for each fixed |1 we have u(u, d) —
uNM () and vi(p, d) — PNMED () as d \, 0.

e Expansion: the function p,(d) satisfies p,(d) = 3d 3 + O(@).

e Stability: the linearization of the lattice dynamical system (2.1) about these solutions posed
on (>(Z*) has precisely eight eigenvalues when M # N — 1 and four eigenvalues when
M = N — 1 that cross the origin as the branch is traversed near each fold bifurcation, and
these eigenvalues cross transversely.

Proof. We will fix (N, M) and construct D4-symmetric solutions of the steady-state system
(2.2) near the pattern

n
™M) =™y =<1 n=N,1<

0 otherwise

for (u, d) near zero. We use D4-symmetry to reduce patterns to the index set / defined in (3.1):
our proof will apply to both on-site and off-site solutions, and we therefore do not distinguish
these cases in what follows. As illustrated in figures 5 and 11, we expect that, as the branch
passes near ;1 = 0, the cell uy 4 changes from O to u_(p), while the remaining cells will stay
near O or u4 (). To capture this behavior, we define the pairwise disjoint index sets

Ly ={mmel:u)M =1}, L ={(N.M+1D}, Iy={nmel\l :u)) =0}

mo

(3.3)

To solve F(u, i, d) = 0, we note that F(@"*(0),0,0) = 0 and that the linearization of F is
given by

(Fu(u(N,M)(O)’ 0, O)U)mm _ {fu(l’ O)vl‘l,m (n’ m) € I+

(n,m) € I\L+.

Writing u™ := ul;, and u® = u|p,, , and using that £,(1,0) # 0, we can apply the implicit func-
tion theorem to conclude that F(u, 1, d) = O restricted to the index set /+ has a unique solution
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ut (¢, pu,dy € £°(I) for each u® € £>°(I\I ;) and (1, d) near zero, and this solution depends
smoothly on its arguments. In particular, we have

ut s, pd) =1+ O (|p| + |d]||uf]|) - (3.4)
To solve the steady-state system (2.2) on the index set I\/, we introduce the scaling

p=1> d=1d, tm=V""lym pam= _inf (n— 7|+ |m—m|)
(n,m)61+

(3.5)

for (n,m) € I\I; with |v| < 1, where p,,, is the ¢! distance of (n, m) from 1. Substituting
these expressions into the steady-state system (2.2), we see that (2.2) at index (n, m) = (N, M +
1) becomes

37 37 57 37 ~ 2
0=v dux—l,M+1 +vdu 4 v du;?H’MH — 4 duy 1 + fWun 1, V)

Vidiyy, M<N-—1

Vdiyysr M=N-1,
where ut = uT (V" ) nmyens, - V7 13d). Using (3.2) and (3.4), we find that the steady-
state system (2.2) at index (n,m) = (N, M + 1) is given by

0=17Q2d — linyr1 + ity py) + OWH  or 0=2d — iiypr1 + ity 4 + OW).

Proceeding in the same fashion for each (n,m) € I\I, we see that the steady-state system
(2.2) restricted to the index set /\/ becomes

n=N,m=M+1: 0= 1°Q2d — i1 + ity ps) + OWH
n=N,m=N: 0 = v (=it + @i, ) + OW")
n=NM+1<m<N: 0=0d— ity +1i,)+ O
n=N+1L1<m<M: 0= 0)d— by, +i,)+Ow"
n=N+1,m=M: 0=1(d — it + it ,,) + OW*)
n=N+1lm=>=M+1:  0=0*"diy_m— itnm) + OW°)
n>N+1,1<m<N:  0=v"""(dity_ym— itpm) + O
n>N+1m=N+1:  0=v"""dity_ym+ ditgm_y — itpm) + O 1),

Upon dividing by the leading factors in v, we arrive at the system

(@ n=N,m=M+1: 0 =2d — iinps1 + iy gy + OW)
by n=N,m=N: 0= —itym + @i, ,, + OV)
©@©n=NM+1<m<N: 0=d—ityy+ii, +OW)
n=N+1L1<m<M: 0=d—ityn+ii, +OW)

() n=N+1,m=M: 0=d — ity + i}, + O)

O n=N+1m>=M+1: 0=diy_1m— ipm + OW)
(@n>N+1,1<m<N:  0=diy_1m— itpm + OW)

MW n>N+1m=2N+1:  0=diy_1m+ ditymi — iipm + OW).

(3.6)

Recall that we are interested in a solution branch that connects uy 41 = 0 to uypy+1 = u—_(1)
for0 < d < 1, while all other cells u, ,, with (n, m) € I, remain clo§e to zero. In the scaling we
introduced above, it suffices to find a branch that connects (ity pr+1, d) = (0,0) to (tty pr+1,d) =
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(1,0), while the remaining cells #,,, with (n,m) € Iy are zero when d vanishes. To find this
branch, we first set ¥ = 0. In this case, (3.6(a)) has the solution

(i D)= (s Sa- #), 0<s<1, 3.7)

which connects, as desired, (0, 0) to (1,0) as s varies from O to 1. Note that the branch (3.7)
exhibits a generic fold bifurcation at s = % where Eisn = ﬁ When d = 0, the remaining
equations in (3.6) admit the solution i, , = O for indices in Iy, and it remains to continue
this solution for d € [0, Zisn]. Clearly, i,,, = 0 is a solution of (3.6(b)) for all d. Next, we see
that there is a regular smooth solution branch i, ,,(s) of (3.6(c))—((e)) with d= Zi(s) given
by (3.7) that starts at i,, = 0 at s = 0: the end point of the solution branch at s = 1 is again
ii, m = 0:1indeed, this branch never encounters the fold point present in (3.6(a)), since the graph
of the function g(u, a) = a — u + u® increases strictly in a, and d has an additional factor two
in (3.6(a)). The remaining equation (3.6(f))—((h)) are of the form

(—1+dB)i = dh (3.8)

where i consists of the elements i, , with indices (n,m) listed in the middle columns of
(3.6(f))—((h)), B is linear with ||B|| < 2, and h is a given vector that satisfies |h|s < 2, may
depend on s, and comprises contributions from the remaining elements i, ,. It is now easy to
see that the operator on the left-hand side of (3.8) is invertible for all de [0, Zisn] since 2215,1 <1,
and we conclude that (3.6(f))—((h)) has a unique solution for all s € [0, 1] that vanishesats = 0.

To prove persistence and uniqueness of this branch and the generic fold bifurcation for
0 < v < 1, we write (3.6) as G(it“, d, v/) with i € £*°(1\I) and note that the branch (i, d)(s)
constructed above satisfies G(°(s), El(s), 0) = O and that the derivative G 5 (“(s), El(s), 0) has
full rank for all s € [0, 1]. We can therefore apply the implicit function theorem and use per-
sistence results for fold bifurcations to conclude that the branch persists for each 0 < v < v
and that it exhibits a unique generic fold bifurcation at d = dg,(v) for some smooth function
dg(v) with dg,(0) = ﬁ

The preceding arguments establish the first two statements of the lemma, and it remains
to prove the assertion about the eigenvalues of the linearization. We denote the solutions we
constructed above by u*(s, v) = (uy, ,,(s, V))nm and extend these solutions and the index sets /1 o
we defined in (3.3) using the underlying D4-symmetry to indices (12, m) in Z? rather than just
in the wedge /. Using the scaling introduced in (3.5), the linearization of the lattice dynamical
system (2.1) about u*(s, v) is given by

(L(S, V) = 12 d(5, VYAV + F W (5,0), Vs ¥ € L(ZP).
Setting v = 0, we see that

fl(,00<0  (nm)el;

L(s,0) = f'(u},,,(5.0),0) = f'(@),0) = {
' ' 0 (n,m) e lhyUI_.

We see that L(s,0) has spectrum at f'(1,0) < 0 and at 0 and that the spectral eigenspace
associated with the spectrum at the origin is given by

EC:={vel(Z*): upw=0 for(n,m)el;}.

Since the bounded operator L(s, ) depends smoothly on (s, ~), we can use the (s, »)-dependent
spectral projections to represent the operator L(s, /) on the (s, /)-dependent spectral space cor-
responding to the spectrum near the origin by a reduced operator posed on E°. Denoting this
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operator by L(s, /), we find that it is of the form
L(s,v) = V’L°(s,v), (L5, )0y = (=1 + 3(} (5, 1))%) U + O)v, v € E°.
The bounded operator L(s,v) on E¢ depends smoothly on (s, /), and we have
(LE(5,0)0)nm = (=1 + 3ty (5. 0))°) Vi

o (=1+ 3SZ)'Un,m (n,m)yel_
(=1 3G 0)%) Ve = Bun DO (r,m) €

for 0 < s < 1. Our existence proof implies that there is a constant C > 0 so that g, ,,(s) <
—2C < Ofor all (n,m) € Iy and s € [0, 1]. In particular, Zc(s, v) has precisely |I_| eigenvalues
that cross the imaginary axis transversely at the origin as s passes through 1/+/3, while the
remaining spectrum lies on or to the left of the line ReA = —2C. Thus, there is a v, > 0 so
that L°(s, v) has, for each v € (0, v.), precisely |I_| eigenvalues that cross the imaginary axis
transversely at the origin near s = 1//3 (we remark that the representation of D4 on the |I_|-
dimensional eigenspace enforces that eigenvalues cross at the origin and not just near it), while
the remaining spectrum of L°(s, ~) on E° lies to the left of the line Re\ = —Cv? fors € [0,1]
and v € (0, v,). Finally, figure 6 shows that |I_| is equal to eight when M # N — 1 and equal
to four when M = N — 1. This completes the proof of the lemma. (]

When M = N, the cell at index (N + 1, 1) will change from O to u_(u) as we pass near
1 = 0. In this case, we can proceed as above up until (3.6): this equation remains the same
except that the equation at index (n,m) = (N + 1, 1) becomes

0= El - aN—‘,—l,l + a?\/—‘rl,l + O(V)a

since uy41,; only has one neighbor belonging to 7;. Thus, the equation for the critical cell at
(n,m) = (N + 1, 1) is exactly the same as those for the noncritical cells, and without going to
higher-order expansions it is not clear what the solution structure is. We will now show that
the results of lemma 3.2 can be extended to the case N = M for N = 1, 2.

Lemma 3.3. Fix N = 1,2, then the following is true separately for on-site and off-site D-
symmetric solutions of the steady-state system (2.2). There are constants dy, p; > 0 and a
smooth function y; : [0, d;] — [0, ] such that the following is true for each fixed d € (0,d,]:

e [Fold bifurcations: there is a pair of symmetric solutions w;(i, d) and v,(1, d) of the steady-
state system (2.2) that bifurcate at a fold bifurcation at . = p(d) and exist for all . €
[wi(d), p1]. These solutions are smooth in (u, d), and for each fixed |1 we have u(u, d) —
aNN () and vi(p, d) — PNV () as d \, 0.

e Expansion: the function p(d) satisfies p,(d) = %ﬁd 3 + O(d).

e Stability: the linearization of the lattice dynamical system (2.1) about these solutions posed
on {>(Z?) has precisely eight eigenvalues that cross the origin as the branch is traversed
near each fold bifurcation, and these eigenvalues cross transversely.

Proof. First, we consider off-site solutions with N = 1. Proceeding as in lemma 3.2 we arrive

at
(@ n=2,m=1: 0=d—ins+i, +OW)
b)yn=2,m=2: 0= gdﬁl,z — iy + O@) (3.9)
c)n>2,1<m<2: 0= Eiﬁ,,_l,m — Uy + O) ’
(d) n > 2,m = 3: 0= dﬁn—l,m + dﬁn,m—l - an,m + O(l/),
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where we seek a solution branch that connects @i, ; = 0 to ii»,; = 1, while the other cells 7,
withn > 2 or (n,m) = (2, 2) remain close to zero. The key is that there is only a single leading-
order equation, namely (3.9(a)) for the critical index (2, 1), and we can therefore proceed as in
the proof of lemma 3.2; we omit the details.

Next, we consider off-site solutions with N = 2 and seek a solution branch that connects
uz; =0 to uz; = uy (). We proceed as before but now encounter the situation that the
equations for two cells, including the critical cell u3;, coincide to leading order. We there-
fore include the next-order terms in v in these equation and, as we will explain below, arrive
at the system

(@) n=3m=1: 0=d — itz + iy, + vd(iisy — 3itz1) + Ow?)

(b) n=3,m=2: 0=d —iisy + i}, + vd(itsy — 4ii32) + Ow?)

() n=3,m=23: 0 = dits, — i35 + OW) (3.10)
A n>3,1<m<2: 0=diy_1m— itpm + OW)

(€) n>3,m>3: 0 = dity—_1m + ditym—1 — ltym + OW).

Note that equations (a) and (b) in (3.10) agree to lowest order in v but differ at the next order.
The differences arise from the discrete Laplace operator: the equation for i3 ; contains the term
—3i;, at order v since the off-site symmetry enforces us o = u3, thus eliminating one of the
connections at the index (n, m) = (3, 1). In contrast, we have exactly four self-interactions in
(3.10(b)) at order v since the element at index (n,m) = (3,2) has no neighbors that have a
symmetric restriction imposed them. We set

N 2 1 1
dzm—Fl/do, 123,12%4-1/%’01, £¢3,2:%+v2v2
so that (3.10(a)) and ((b)) become

4 1
— _— . —_— 2—* 2
@n=3m=1 0=d+V30 27+(9(V2)

2
(b) n=3,m=2: 0=d0+\/§v§—§+0(y%)

after dividing out the leading-order factor in v, while (c)—(e) remain unchanged to leading
order. Setting v = 0, we see that (3.10(a)) has the solution

(v1,dp)(s) = (s, 24—7 — \/§s2>

9
tion ats = 0 where dy = %. Note that the solution of (3.10(b)) stays on the left solution branch
as the fold bifurcation for this equation occurs for a larger value of dy. We can now proceed as
in the proof of lemma 3.2 to complete the existence proof for off-site solutions. The stability
proof is also very similar to proof of lemma 3.2 except that we need to carry out two reduction
steps using spectral projections: as before, the first step separates the O(v?) spectrum from the
spectrum at f'(1,0). The second step separates spectrum to the left of the line ReA < —C1?
from the eigenvalues \ ~ v3 that arise from (3.10(a)) and ((b)). Scaling eigenvalues with 3
on the 2|/_|-dimensional eigenspace obtained in the second step then shows that only |/_| of
them cross transversely, while the others stay to the left of the imaginary axis.

that connects (vy, dp) = (— 2:%3, O) to (v1,dy) = (&3 , 0) and exhibits a generic fold bifurca-
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It remains to consider on-site solutions. The proof for the N = 1 on-site solution is identical
to the proof above, while the only difference for the N = 2 case is that the reduced equations
that agree to leading order are now given by

@n=3m=1: 0=d—iz, +i, +vQdusy — 4duz ;) + O (u%)
byn=3m=2  0=d—i,+id, + v(dus, — 4dus2) + O (u%) ,

where we used that on-site symmetry implies that u39 = u3,. The remainder of the proof is
similar to the off-site case studied above. (]

Remark 3.1. Our proof of lemma 3.3 indicates that the equations for the critical cell with
index (n,m) = (N + 1, 1) and the neighboring cell with index (n,m) = (N + 1,2) for N > 3
agree up to terms of any order less than 27:1 2—11 in v. We were not able to find a consistent
pattern that allowed us to write down the resulting equations and solve them simultaneously in

N > 3.

3.4. Continuation through bifurcations near 11 = 1

We continue branches through £ = 1: lemma 3.5 provides results for #™!" with N > 3, while
lemma 3.4 deals with the cases of #™—D and a®™™ with N > 2. Note that we cannot establish
continuation through p = 1 for #™") when 1 < M < N — 2. Changing coordinates, we can
bring the Taylor expansion of f(u, ;) about (1, 1) into the form

FA+u 1+ p) = —p—u?+ b+ bou’ + O(* + pui® + u).

‘We now state our first result.

Lemma 3.4. Fix N > 2 and M € {N — 1,N}, then the following is true separately for on-
site and off-site Dy-symmetric solutions of the steady-state system (2.2). There exist constants
da, pip > 0 and a smooth function p, : [0, d>] — [ua2, 1] such that the following is true for each
fixedd € (0,d>]:

e Fold bifurcation: there is a pair of symmetric solutions u,(u, d) and v,(u, d) of the steady-
state system (2.2) that bifurcate at a fold bifurcation at | = p,(d) and exist for all . €
[2, p(d)]. These solutions are smooth in (i, d), and for each fixed p we have u,(u, d) —
aNM () and v, (p, d) — PN () as d N\, 0.

e Expansion: the function y,(d) is given by p,.(d) =1 —2d + O ).

e Stability: the linearization of the lattice dynamical system (2.1) about these solutions
posed on £=(Z?) has precisely eight eigenvalues when M = N — 1 and four eigenvalues
when M = N that cross the origin as the branch is traversed, and these eigenvalues cross
transversely.

Proof. Our proof will apply to both on-site and off-site solutions, and we therefore do not
distinguish these case in what follows. We again use D4-symmetry to reduce patterns to the
index set / defined in (3.1). Figures 5 and 11 indicate that, as the branch passes near p = 1,
the cell uy s changes from u_ () to u4 (1), while the remaining cells stay near 0 or uy (11). We
therefore define the index sets

L={(N.M)}, IL={mmelN_:ua\y =1}, Iy={nm el:u) =0}

mo
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Figure 11. Panel (i) contains an illustration of the proof of lemma 3.2. Panel (ii) shows a
cartoon of the fold bifurcation near 1 = 1 that connects 2™ (1) and 7™M+ () for the
case M = N — 1: the discussion surrounding (3.13) shows that the element at (n, m) =
(N —1,N — 1) is the obstacle to extending the results in lemma 3.4to 1 <M < N —2.
Panel (iii) illustrates the proof of lemma 3.5.

We have that F(@™¥*(1), 1, 0) = 0 and that the linearization of F about this solution is given
by

(Fu(u(N,M)(l)’ I,O)U)n,m _ {fu(o’ l)vl‘l,m (n7 m) S IO

(n,m) € I\Iy.

Writing u® := u|;, and u¢ := u| 1\ly» and using that £,,(0, 1) # 0, we can apply the implicit func-
tion theorem to find that F(u, u,d) = 0O restricted to the index set Iy has a unique solu-
tion u®(u¢, u, d) € £°(Iy) for each u¢ € £>°(I\Iy) and (i, d) near (1,0). This solution depends
smoothly on its arguments, and in particular, has the expansion

W0, i, d) = O (| — 1] + |d]||u]| ) - (3.11)
To solve the steady-state system (2.2) on the index set I\ [y, we introduce the scaling
_ 2 27 _ ~
pw=1—v", d=vd, um=1+vi,n,

where (n,m) € I\Iy and |v| < 1. Expanding F(u, u, d) = O restricted to the index set /\/y in
powers of v and dividing by the leading factor in v, we arrive at the finite system

(@ n=N,m=M: 0=—g3+1—aNM+0(u)
b n=N1<m<M: 0=—d+1—ig,+O0®W) (3.12)
() n<N: 0=1-i, +O0w),

where we used (3.11) to simplify the equations with n = N. We seek a solution branch that
connects uyy = u_(p) to uyy = uy(p) for 0 < d < 1, while all other cells u,, ,, with (n,m) €
I remain close to u (11). Using our scaling, this means finding solutions of (3.12) that connect
(uNM,d) = (—1,0) to (ym,d) = (1,0), while the remaining cells i,,, are 1 for d = 0. For
v = 0, (3.12(a)) has the solution

ity 1, d)(5) = (s, %(1 - s2)> for —1<s<1,
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which connects (—1,0) at s = —1 to (1,0) at s = 1 and exhibits a generic fold bifurcation at
s = 0. We can now follow the proof of lemma 3.2 to complete the proof. (]

Note that this lemma does not cover the case of indices (N, M) with 1 <M < N — 1 for
N > 3. For off-site solutions (the case of on-site patterns is similar), the reason is again that
the rescaled equations the indices (N, M) and (N — 1, N — 1) are identical. Indeed, following
the same process as above, we obtain the system

(@) n=N,m=M: 0=—2d+1— i}, +OW)

by n=m=N—1: 0=-2d+1—iy_y  +OW)
(©)n=N,1<m<M: 0=—d+1— i, +OW) 3.13)
n=N-1M<m<N-1: 0=—-d+1—i3_,+0Ww) '
@ n=N-1,1<m<M 0=1—ity_,, +OW)

) n<N-2 0=1-1i, +O®),

n,m

and we would again need to identify the higher-order corrections. The following lemma
addresses this issue for M = 1.

Lemma 3.5. Fix N > 3 and M = 1, then the following is true separately for on-site and off-
site Dy-symmetric solutions of the steady-state system (2.2). There are constants d,, 11, > 0 and
a smooth function i, : [0, d>] — [p2, 1] such that the following is true for each fixed d € (0, d,]:

e Fold bifurcations: there is a pair of symmetric solutions u,(u, d) and v,(u, d) of the steady-
state system (2.2) that bifurcate at a saddle-node bifurcation at . = u,(d) and exist for
all v € [pa, p(d)]. These solutions are smooth in (i, d), and for each fixed p we have
u (i, dy — u™V () and v, (i, d) — 0NV () as d \, 0.

e Expansion: the function y,(d) is given by p,.(d) =1 —2d + O ).

e Stability: the linearization of the lattice dynamical system (2.1) about these solutions posed
on {>°(Z?) has precisely eight eigenvalues that cross the origin as the branch is traversed,
and these eigenvalues cross transversely.

Proof. For off-site solutions, we proceed as in lemma 3.4 until we arrive at (3.13). Since M =
1 implies that (3.13(c)) is not present, we can solve (3.13(d)—(f)) using the implicit function
theorem to arrive at the solution

=N—1Ll<m<N—1 iiyy=V1—d+0®w)
=N—-1m=1 iy_11 =1+ 0®w) (3.14)
n<N-2 Uy = 1+ O(v),

which depends smoothly on (iin,,dn-1n-1), d € [0,3], and |v| < 1. The remaining
equations (3.13(a) and (b)) for the indices (n, m) = (N, 1) and (N — 1, N — 1) coincide to lead-
ing order, and we therefore expand them to the next highest order in . We find that (3.13(a))
becomes

0= —2d+1—i, +v (Ez(zzN_l,1 +iiyg) — Adiiy + bity, + bzﬁf\,yl) + 00

LD 204 1y v (8 iy + by + bait ) + O),
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where we used that the D4-symmetry implies uyo = uy,1, while equation (3.13(b)) becomes
0=—2d+1- iy no +V (a(’]Nlefl + ity n-2) — Adity 1y
+ biuy-_1n-1 + bzﬁ?v_l,N_l) + 00
O _2d 41—y +v (221@ — Adity 1y

+ biiiy-1n-1 + baity_y 1) + OW),

where uy_»n—1 = uy—1N—2 by Ds-symmetry. Next, we change variables according to
~ 1 ~ - 1 - 1
d=§+1/do, Uy, = v2vy, Un—in—1 = V21

so that (3.13(a) and (b)) become

@ @1 OZ%—ziio—vHO@%)

BN —LN—1): 0=+2—2dy— 03+ O@?)

after dividing by the leading factor in v. We can now continue as in the proof of lemma 3.3 to
complete the proof of the lemma.

The situation for on-site patterns is actually simpler as the rescaled equation at index (N, 1)
is given by

0=—3d+ 1 — iy, + OW)

while the remaining equations are as in (3.13). In this case, no further rescaling is necessary,
and we can continue as in lemma 3.4 focusing only on (3.13). (]

Remark 3.2. For 1 <M < N — 1, we expect that (3.13(a) and (b)) differ only at order
M1 T . . . . . .
@) (I/T), thus requiring increasingly higher-order expansions in v as M increases. This

makes it significantly more complicated to generalize lemma 3.5.

3.5. Extension to transcritical bifurcations

We consider extensions from pitchfork and fold bifurcations to transcritical bifurcations at
1 =0, 1. We first comment on the case where the nonlinearity f(u, ;) in the lattice dynamical
system (2.1) admits the Taylor expansion

flu,p) = —pu+ i + O(* + pu® + u?). (3.15)

at (u, ;) = (0, 0), reflecting the existence of a transcritical bifurcation at ;x = 0 instead of the
pitchfork bifurcation we assumed in hypothesis 1. As in section 3.3 we further assume for
simplicity that . (0) = 1. The following result extends lemmas 3.2 and 3.3 to this situation.

Lemma 3.6. Assume that  : R?> — R has the Taylor expansion (3.15) at (u, 1) = (0, 0).

(i) For each fixed N > 2 and 1 < M < N — 1 the conclusions of lemma 3.2 hold except that
the expansion for the location of the fold bifurcations is now given by p(d) = 2+/2d P4
O(d).

(i) For N = 1,2 the conclusions of lemma 3.3 hold except that the expansion for the location
of the fold bifurcations is now given by j(d) = 2d? + Od).
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Proof. To prove (i), we proceed as in the proof of lemma 3.2 except that we use the variables
Upm = Nﬂn’mﬁn,m’ d= NZEZ
and arrive at the reduced scaled system

n=Nm=M+1:
n=N,M+1<m<N:

0 =2d — itxpr41 + fiy ey + O)

0
n=N+11<m<M: O

0

0

2

é - ’jln,m + aﬁ,m + O(,u)
4 - ljln,m + ai,m + O(,u)
d

n=N+1,m=M: — Gty + iy, + O(2)
n=N,m=N: — Uy + ﬁim +O@?)
n=N+1m>=M+1: 0=diy_1m— itnm + O(1)
n>N+1,1<m<N:  0=dity_1m — itnm + O(1)
n>N+1m=N+1:  0=diy 1+ dityy 1 — g+ OQ1)

for indices (n, m) € I\I. The remainder of the proof is now identical to that of lemma 3.2. We
omit the proof of (ii) as it is similar to the proof of lemma 3.3. ([

Next, we comment on the case where the nonlinearity f{u, ;1) admits the Taylor expansion
FA4+u, 1+ p) = pu — i + O@? + p® + ) (3.16)

at (u, u) = (1, 1), reflecting the existence of a transcritical bifurcation at ;x = 1 instead of the
saddle-node bifurcation we assumed in hypothesis 1. The following result extends lemmas 3.4
and 3.5 to this situation. We omit the proof as it is analogous to the proofs given above.

Lemma3.7. Assumethat f : R x R — R has the Taylor expansion (3.16) at (u, 1) = (1, 1).

(i) Fix N> 2 and M € {N — 1,N}, then the conclusions of lemma 3.4 hold except that the
fold curve has the expansion p,(d) =1 — 2\/50’% + O(d).

(i) For each N > 3, the conclusions of lemma 3.5 hold except that the fold curve has the
expansion p,(d) = 1 — \/Ed% + O(d).

4. Discussion

Motivated in part by the intention to understand the complex bifurcation diagram of hexagon
patches in the planar Swift—Hohenberg equation, we studied Dj-symmetric patches of
ODEs posed on a square lattice. For large coupling strengths, numerical computations (see
figures 1(ii) and 2(iii)) show that the bifurcation diagrams as well as the spatial profile changes
that occur along these branches are very similar.

Since the case of larger coupling strengths is difficult to tackle analytically, we focused
on the anti-continuum limit where the coupling strength is small. In this case, the bifurca-
tion is more regular and indeed resembles the case of spatially one-dimensional patterns (see
figures 1(i) and 2(i)). We used Lyapunov—Schmidt reduction to rigorously establish parts of
the bifurcation diagram of localized patterns in this regime. We were not able to continue local-
ized patterns through some of the fold bifurcations as this would have necessitated higher-order
expansions that we did not carry out in this work.

Taylor and Dawes [32] had explained the transition from the regular diagrams for small
coupling strengths to the more complex diagrams that occur for larger coupling strengths by the
occurrence of switchbacks, where isolas collide with the primary branch in cusp bifurcations
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that lead to a rearrangement of the solution branch. We provided a more systematic computation
of the cusp bifurcations at the patches #™"": our main finding is that the cusp bifurcation points
we found appear to converge to a specific parameter combination of system parameter and
coupling strength as the diameter of the localized patches increases. This indicates that the
transition from regular to complex diagrams occurs relatively suddenly as a critical threshold
of the coupling strength is crossed. We also showed in figure 8(ii) that the switchbacks for
patches with larger spatial extent can become quite complex.

For spatially extended systems posed on cylindrical domains, the location of all branches of
asymmetric patterns, including their stability properties, is determined solely by the location of
the branches corresponding to symmetric patterns [12, 23, 34]. In contrast, it seems impossible
to predict the location of asymmetric branches in the planar lattice case based on the location
of on-site or off-site Ds-symmetric patterns.

There are several open problems that emerge from this and earlier work. As mentioned
above, we were not able to continue the square patches through all folds. We are also not certain
whether we captured all possible cusp bifurcations at which the primary branch undergoes
transitions: we attempted to find cusps at other patterns besides the #™) patches, and while
our algorithm failed at these folds, this is not sufficient evidence for the non-existence of cusps
elsewhere on the branch. One possible avenue is to continue each fold in (u, d)-space whilst
testing for cusps during continuation.

In this work, we coupled neighboring cells in the lattice using the five-point Laplacian,
and our analysis utilized the resulting coupling structure extensively. It would be interesting
to explore other coupling operators with finite and possibly infinite support. Since our analy-
sis in the anti-continuum limit relied on Lyapunov—Schmidt reduction, these cases should be
amenable to analysis as well, and it would be interesting to see whether the bifurcation dia-
grams are similar. Finally, other lattices could be explored: we refer to [27, 33] for numerical
computations of localized patterns on hexagonal lattices, to [33] for triangular lattices, and
to [37] for a numerical study of snaking of localized patterns in a predator—prey model on
Barabdsi—Albert networks, where the coupling operator is given by the graph Laplacian.

Finally, our work was motivated partially by the behavior of hexagon patches in the
Swift—Hohenberg equation, which were studied originally in [30]. Analysing this case remains
out of reach. It would be interesting to compare the intuition from the existence regions of
hexagon fronts with different orientations studied in [30, 38] with the case of lattices, where
they might be easier to analyse. It would also be interesting to explore the connections with
localized quasi-crystals studied more recently in [6].
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