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ABSTRACT Emerging large-scale biobanks pairing genotype data with phenotype data present new opportunities to prioritize shared
genetic associations across multiple phenotypes for molecular validation. Past research, by our group and others, has shown gene-level
tests of association produce biologically interpretable characterization of the genetic architecture of a given phenotype. Here, we
present a new method, Ward clustering to identify Internal Node branch length outliers using Gene Scores (WINGS), for identifying
shared genetic architecture among multiple phenotypes. The objective of WINGS is to identify groups of phenotypes, or “clusters,”
sharing a core set of genes enriched for mutations in cases. We validate WINGS using extensive simulation studies and then combine
gene-level association tests with WINGS to identify shared genetic architecture among 81 case-control and seven quantitative phe-
notypes in 349,468 European-ancestry individuals from the UK Biobank. We identify eight prioritized phenotype clusters and recover
multiple published gene-level associations within prioritized clusters.
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SINCE the 2007 publication of the Wellcome Trust Case
Control Consortium’s landmark genome-wide association

(GWA) study of seven common diseases using 14,000 cases
and 3000 common controls, GWA studies have grown dra-
matically in scope. Much attention has been given to the in-
creasing number of individuals sampled in GWA studies
(198 studies to date have analyzed over 100,000 individu-
als, data accessed at https://www.ebi.ac.uk/gwas/docs/file-
downloads on 5 January 2019), as well as to the challenges of
interpreting and validating the statistically associated vari-
ants identified in large-scale studies (for recent examples,
see Hormozdiari et al. 2015; Shi et al. 2016; Boyle et al.
2017; Evangelou et al. 2018; Feldman and Ramachandran
2018; Huffman 2018; Zhang et al. 2018). However, as “mega-

biobank” datasets [used here as by Huffman (2018) to mean
“a study with phenotype and genotype data on .100,000
individuals rather than to the physical sample repository”]
such as the UK Biobank (Bycroft et al. 2017 preprint) and
BioVU at Vanderbilt University (Roden et al. 2008; Denny
et al. 2010) are interrogated by medical and population
geneticists, there are new opportunities to develop ap-
proaches for analyzing multiple phenotypes in a single ge-
nomic study.

In particular, a fundamental question mega-biobanks can
answer is whether shared genetic architecture among multi-
ple phenotypes is detectable using summaries of germline
genetic variation. Pickrell et al. (2016) explicitly tested for
pleiotropy among 42 complex traits, focusing on identifying
colocalized variants in GWA studies for pairs of traits [see
also Hormozdiari et al. (2016), who tested for colocalization
between eQTLs and associated variants for the same pheno-
type]. While phenome-wide association studies (PheWAS;
Denny et al. 2013, 2016) and multivariate GWA studies have
tested for statistical association between variants and multi-
ple phenotypes (Jiang and Zeng 1995; Marchini et al. 2007;
Ferreira and Purcell 2008; Stephens 2013; Turley et al.
2018), these studies (including Hormozdiari et al. 2016;
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Pickrell et al. 2016) share the central challenge of single-
phenotype GWA studies: they gain power by focusing on
variant-level associations but are difficult to interpret biolog-
ically. Variant-level association tests further ignore potential
genetic heterogeneity across cases, which can manifest on
multiple levels: for a given phenotype, cases may harbor dif-
ferent variants in the same causal gene, or the same pathway
may be mutated in multiple ways to produce the same phe-
notype (Leiserson et al. 2013).

As large-scale GWA studies find statistically associated
variants spread uniformly throughout the genome (Visscher
et al. 2006; Shi et al. 2016; Boyle et al. 2017) and that effect
sizes have reached diminishing returns (Zhang et al. 2018),
gene-level association tests (Liu et al. 2010; Wu et al. 2011;
Lamparter et al. 2016) can offer insight into gene sets and
pathways that are enriched for mutations in cases of a phe-
notype of interest. Gene-level association tests not only allow
for different mutations to be associatedwith the phenotype of
interest in different cases but also generate biologically in-
terpretable hypotheses regarding genetic interactions that
the GWA framework ignores (Zuk et al. 2012). Despite this,
gene-level association tests have rarely been brought to bear
on multivariate GWA datasets. One approach was developed
by Chang and Keinan (disPCA; Chang and Keinan 2014),
who applied principal components analysis (PCA) to a matrix
of gene-level association scores to detect clusters of pheno-
types in two dimensions. However, their dimensionality re-
duction of the gene score matrix ignored minor axes of
variation across gene scores for ease of visualization, and
distances between phenotypes in principal components
(PC) space were difficult to interpret. Thus, identifying phe-
notypes significantly enriched for shared mutations in
mega-biobanks remains an open challenge.

In this study, we present Ward clustering to identify
Internal Node branch length outliers using Gene Scores
(WINGS), a flexible method for (i) computationally detecting
phenotype clusters based on gene-level association scores,
and (ii) ranking phenotype clusters based on their levels
of significance. Given gene-level association test statistics
for multiple phenotypes as input, WINGS enables the de-
tection of a “core set” of genes—that is, genes enriched for
mutations in cases—across multiple phenotypes. WINGS
allows for the identification of potentially pleiotropic
genes (genes that play a role in the development of multi-
ple phenotypes). We hypothesize that genes with a shared
significance across phenotypes will drive the formation of
biologically distinct clusters. For a given cluster of pheno-
types, those genes that are significant should be considered
primary candidates for drug design. In this study, we are
particularly interested in the ability to detect shared sig-
nificant genetic architectures among phenotypes using
only common variants.

To identify genetic architectures shared across a set of
phenotypes, we aggregate SNP-level association statistics
using PEGASUS (Nakka et al. 2016, 2017). PEGASUS can
calculate a region-level association P-value for any set of

the user-defined genomic region or compute gene-level asso-
ciation statistics. Here, we choose the latter since our ultimate
goal is to identify core genes enriched for mutations in cases
across multiple phenotypes. To each phenotype, PEGASUS
assigns a feature vector (see section Overview of WINGS pipe-
line for more details) whose elements are gene-level associa-
tion P-values scores, or “gene scores.” Each feature vector of
gene scores is an element of a high-dimensional vector space
whose dimension is given by the number of genes included in
the GWA study data. Given a list of N phenotypes, this ap-
proach therefore yieldsN feature vectors. Themore significant
genes two phenotypes share, the closer their features vectors
will be. Choosing a norm on the vector space in which the
feature vectors lie allows us to compute pairwise distances
between any two feature vectors, resulting in an N3Nmatrix
of pairwise distances—we note that different norms will result
in different distancematrices, andwe use this fact in this study
to emphasize different parts of a feature vector when identify-
ing prioritized clusters (herein, “prioritized clusters” refers to
groups of phenotypes with very strong affinity). Once a dis-
tance matrix has been computed, we can use clustering algo-
rithms (in our case,Ward hierarchical clustering) to divide the
set of phenotypes into disjoint groups that separate feature
vectors based on their pairwise distances.

While hierarchical clustering algorithms have proven ef-
fective across a range of applications (Aceto et al. 2014;
Brown et al. 2014; Pagnuco et al. 2017), the typical output
of these clustering methods is a dendrogram illustrating the
sequential formation of clusters starting with each cluster
containing only a single data point and ending with a single
cluster containing all of the data points. Consequently, it is
unclear how to distinguish prioritized clusters from ordinary
clusters, and often this is done by choosing a single cutoff
height in the dendrogram or predetermining the number of
desired clusters (Langfelder et al. 2008; Hastie et al. 2009;
Zambelli 2016). WINGS, by contrast, implements a multi-
step algorithm to systematically identify and rank prioritized
clusters, described in detail in Materials and Methods. We
evaluate the performance of WINGS in simulations under
a variety of genetic architectures within phenotypes and
shared among phenotypes. Lastly, we apply WINGS to iden-
tify prioritized phenotype clusters across 81 case-control
phenotypes and seven quantitative phenotypes assayed in
349,468 unrelated European-ancestry individuals in the UK
Biobank.

Materials and Methods

Following initial quality control (QCsteps) (seeSupplemental
Material, Section S1), 349,468 individualswho self-identified
as British and 410,172 variants remained for analysis. In
order to control for population structurewithin the remaining
cohort, PCA was performed using flashpca (version 2.0;
Abraham et al. 2017) on SNPs passing QC that were also in
linkage equilibrium (SNPs with r2 . 0.1 removed, resulting
in 104,834 SNPs for PCA).
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We analyzed phenotypes in two stages. We selected an
initial set of 26 case-control phenotypes based on phenotypes
(see Supplemental Material, Table S1) that had been pre-
viously analyzed in Shi et al. (2016) and Pickrell et al. (2016)
that also had at least 100 cases in our cohort. Those pheno-
types that did not have at least 100 cases in our cohort after
QC were not included in the analysis. A GWA study was
performed for each of these 26 case-control phenotypes using
plink2 (Chang et al. 2015) including age, sex, and the first
10 principal components as covariates to control for popula-
tion structure.

We then expanded our analysis to include 55 additional
case-control phenotypes and seven quantitative phenotypes
from the UK Biobank (see Table S1). These phenotypes were
selected only if they had.1000 cases in the analyzed cohort
and had positive heritability estimates calculated using link-
age disequilibrium (LD) score regression (Bulik-Sullivan et al.
2015b).

Overview of WINGS pipeline

For each of the phenotypes being jointly studied (either in
simulations, as detailed in the next subsection, or in the UK
Biobank), we used PEGASUS (Nakka et al. 2016) to calculate
gene-level association P-values for all autosomal genes in the
human genomewith at least one SNPwithin a650 kbwindow
(17,651 genes). PEGASUS, developed by our group (Nakka
et al. 2016, 2017), models correlation among genotypes in a
region using LD, the same model as VEGAS (Liu et al. 2010)
and SKAT without weighting rare variants (Wu et al. 2011).
PEGASUS, by contrast, achieves up to machine precision in
gene-level association statistic computations via numerical in-
tegration. In this study, we refer to the 2log10 transformed
PEGASUS gene-level association statistics as “gene-scores.”

We then concatenated together each phenotype’s feature
vector to generate a phenotype by gene matrix, the ultimate
input for the WINGS software. Next, Ward hierarchical clus-
tering (Ward 1963; Ward and Hook 1963) was applied to the
phenotypes using the PEGASUS gene scores (2log10 trans-
formed PEGASUS P-values) as feature vectors.

The primary motivation for using the 2log10 transforma-
tion is that, for a given dimension (i.e., a gene), it emphasizes
the phenotypes for which P-values are significant (see Figure
1). Biologically, this transformation can be interpreted as a
rescaling of P-values that emphasizes, for a given gene, mu-
tations enriched in multiple phenotypes. Moreover, by using
the 2log10 transformation together with a distance metric,
we can measure the similarity between gene scores for each
phenotype and perform our clustering analysis.While genetic
correlations could also be used as inputs for some clustering
analyses, correlations do not satisfy the triangle inequality,
making resulting clusters difficult to interpret. For example,
using genetic correlations, phenotype A and phenotype B, as
well as phenotype B and phenotype C could be highly corre-
lated, even though phenotype A and phenotype C are highly
uncorrelated: it is unclear how phenotypes A, B, and C would
and should cluster together in this framework.

Inour analyses of theUKBiobank, a set of seven continuous
phenotypes were clustered separately due to their compara-
tively much larger sample sizes (Figure S1 shows how the
continuous and binary phenotypes cluster when treated as a
single data set). Prioritized clusters were identified and
ranked using the WINGS branch length thresholding algo-
rithm (described in the next section).

WINGS, a new method for automatic phenotype cluster
detection and ranking

WINGS is a thresholded hierarchical clustering algorithm that
takes amatrix of gene-level association test results as its input
and outputs identified phenotype clusters ranked by their
significance. First, WINGS applies Ward hierarchical cluster-
ing to the matrix of gene-level association test results, which
we compute using PEGASUS. Specifically, consider a data set
with N data points. Ward hierarchical clustering is an ag-
glomerative clustering algorithm: initially, there are N clus-
ters, each containing exactly one data point, and clusters are
merged recursively in a hierarchical manner until there is a
single cluster containing all N data points (Ward 1963; Ward
and Hook 1963; Hastie et al. 2009).

Using an objective function approach, at each stage in an
agglomerative clustering algorithm, the pair of clusters
that minimizes the merging cost are combined to form a single
cluster. For Ward hierarchical clustering, the merging cost for
combining clusters R and S of size NR and NS, respectively, is
defined as

dðR; SÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NR � NS

NR þ NS

r
kCR2CSk2;

where CR and CS are the centroids of clusters R and S, re-
spectively, and k�k2 denotes the Euclidean norm. Note, this
merging cost is equivalent tominimizing the increased sum of
squared errors (Ward 1963; Ward and Hook 1963; Hastie
et al. 2009).

The choice to use Ward as the linkage criteria for WINGS
was not arbitrary. Ward hierarchical clustering focuses
on minimizing differences within the clusters, rather than
maximizing pairwise distances between clusters. Previous
work on comparing different agglomerative hierarchical clus-
tering algorithms suggests that Ward clustering performs
best when clustering high dimensional, noisy data as long
as cluster sizes are assumed to be approximately equal
(Ferreira and Hitchcock 2009; Hossen et al. 2015). We also
note that we applied other linkage criteria to the data for
comparison (see Supplementary material Section S3 and Fig-
ures S2–S7 for more details).

Hierarchical clustering results are often represented in a
dendrogram, where each branch corresponds to a cluster, but
it is not clear how to extract the prioritized clusters, or clusters
with the strongest affinity (Langfelder et al. 2008; Hastie et al.
2009; Zambelli 2016). Intuitively, prioritized clusters are
those that form early on in the hierarchical clustering algo-
rithm, and do not merge with other clusters until there are
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very few clusters left. This corresponds to clusters that form
near the bottom of the representative dendrogram tree and
have long branch lengths.

To quantitatively define the notion of sufficiently long
branch length, we look at the consecutive differences between
branch lengths and search for large gaps in the branch length
distributions. That is, in the second step of WINGS, we imple-
ment the following branch length thresholding algorithm to
identify prioritized phenotype clusters within a dendrogram:

1. Sort all the branch lengths corresponding to small clusters
(small clusters are those containing T phenotypes or
fewer, where T is the user-defined cluster size threshold);

2. Calculate the consecutive differences between branch
lengths to get the branch length gaps;

3. Identify branch length gaps that are more than three
scaled median absolute deviations away from the median,
and classify these as branch length gap outliers;

4. Set the branch length threshold to be theminimumbranch
length such that the branch length is greater than the
median of all branch lengths and its branch length gap
is a branch length gap outlier. If this threshold does not
exist, we conclude that there are no prioritized clusters.

Finally, prioritized clusters are identified as the clusters
whose corresponding dendrogram branch length is greater
than, or equal to, the branch length threshold defined above.
Pseudocode forWINGS can be found inAlgorithm3, alongwith
pseudocode for theWard hierarchical clustering algorithm and
branch length thresholding algorithm in Algorithms 1–2.

The branch length thresholding algorithm in WINGS is a
multi-step process for identifying prioritized clusters in a den-
drogram that does not require prior knowledge of the number
of desirable clusters and is more flexible than the traditional
fixed branch cut methods (Zambelli 2016). Previous work in
Langfelder et al. (2008) similarly introduces a dynamicmethod
for identifying clusters from a dendrogram tree. In contrast to

the iterative tree-cut algorithms presented in Langfelder et al.
(2008), however, WINGS relies solely on the dendrogram
branch lengths and does not rely on making any tree cuts.

Notably, there are only two parameter choices in WINGS:
the cluster size threshold and the outlier criterion. The cluster
size threshold is a user-defined parameter that controls the
scale of the prioritized clusters. As the cluster size threshold
decreases, WINGS will prioritize smaller clusters of pheno-
types that share a higher percentage of genes enriched for
mutations, in comparison to supersets of phenotypes contain-
ing the prioritized clusters. In our experiments, we use a
cluster size threshold of eight, and the default cluster size

threshold in the WINGS software is conservatively set to ⌈N3⌉.
The second WINGS parameter—the outlier criterion for

branch length gaps—is set to three scaled median absolute
deviations away from the median. This median absolute de-
viation method for identifying outliers is easy to compute,
robust, and not dependent on sample size (in our application,
number of phenotypes) (Rousseeuw and Croux 1993; Huber
2011; Leys et al. 2013; MATLAB Data Import and Analysis
2018); moreover, the choice of using an outlier threshold of

Figure 1 Synthetic clusters of phe-
notypes with (A) shared nonsignifi-
cant genetic architecture and (B)
shared significant genetic architec-
ture from the raw and –log10 scales,
respectively. Schematic example
showing (A) simulated 2-dimensional
gene-level P-values and (B) their
corresponding 2log10 transformed
gene-level P-values. The boxed
groups of points represent clus-
ters of shared nonsignificant ge-
netic architecture (A) and clusters
of shared significant genetic ar-
chitecture (B).
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three scaled median absolute deviations away from the me-
dian is appropriately conservative as our data are high-
dimensional (Leys et al. 2013).

In the section Parameter sensitivity analysis, we test the
sensitivity of WINGS with respect to both the cluster size
threshold and the outlier criterion. These results provide in-
tuition for how to choose the user-defined parameter values,
as well as demonstrate the robustness ofWINGS to the choice
of these parameters. WINGS was implemented in MATLAB
(R2017b) and applied to both simulated gene score matrices
and empirical PEGASUS gene scores for phenotypes in the UK
Biobank. These results are presented in Results.

Simulations of phenotypes with shared
genetic architecture

To test the sensitivity ofWINGSwhen identifying both ground
truth sharedgenetic architecture andvarying levels of random

noise in gene-level association P-values, we first applied
WINGS to simulated gene score matrices. To accomplish this
task, we generated “shared significant genetic architectures,”
where shared genes have a PEGASUS gene-level P-value ,
2.83 3 1026.

Gene scores obtained as 2log10 transformed PEGASUS
gene-level P-values range from (0, N), where highly signifi-
cant genes have high transformed gene scores.We expect that
clusters in this space are driven by shared significant genetic
architecture—that is, phenotypes that have a high percentage
of shared significant genes—since these features contribute
the most to the pairwise distances between phenotypes. If,
instead, we studied the raw (untransformed) PEGASUS
gene-level P-values, we expect to see clusters of shared non-
significant genetic architecture, referring to phenotypes that
have a high percentage of shared nonsignificant genes.

This distinction is illustrated in the synthetic example
shown in Figure 1. As shown in Figure 1A, groups of shared
nonsignificant genetic architecture (in red) form clusters on
the raw scale, whereas phenotypes with shared significant
genetic architecture (in orange) reside as a large, and there-
fore nonprioritized, group in the bottom left-hand corner of
the plot. In contrast, in Figure 1B, groups of shared significant
genetic architecture form clusters on the 2log10 scale since
this transformation maps the small region of significant
P-values (gene-level P-value , 2:833 1026) to the much
larger region of (3, N).

The WINGS thresholding algorithm prioritizes phenotype
clusters based on shared significant gene-level associations.
As detailed in our simulation protocol below, our simulation
design preserves shared significant genetic architecture, and
we allow the rest of the gene score matrix to result from a
random draw to simulate both shared genetic architecture
and surrounding noise among phenotypes. While genes in
physical proximity and genes that interact will likely have
correlated gene scores, we did not specifically simulate such
local correlation among gene scores (but see Figures S10 and
S20).

Each simulated matrix was generated by randomly select-
ing PEGASUS P-values from the empirical distribution of
PEGASUS P-values for Crohn’s disease (ICD10 code K50;
1453 cases, 348,015 controls among the cohort passing
our QC steps detailed in Supplementary Section S1). PEGA-
SUS P-values were then partitioned into significant (P-value
, 2:833 1026) and nonsignificant (P-value $ 2:833 1026)
groups (Wojcik et al. 2015). In the protocol described below,
scores were taken randomly from the empirical gene scores in
each of these groups. All simulated matrices maintain the
same number of features (17,651 PEGASUS gene-level P-values,
one for each autosomal gene) as our empirical analyses. For
each phenotype in the matrix, 1% (175) of genes were
assigned a significant value (P-value , 2:833 1026).

We designed simulations that varied along two major
parameters. We first set the number of phenotypes analyzed
to either 25, 50, 75, or 100. Second, we set the percentage of
the 175 significant genes that are shared between all cluster
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phenotypes to either 1% (2 genes), 10% (18 genes), 25%
(44 genes), 50% (88 genes), or 75% (131 genes) as shared
genetic architecture. For every pair of the parameters above,
we performed 1000 simulations as detailed below.

In every simulation, the number and size of the clusters
were determined using the following protocol:

1. Choose M from a uniform distribution between 3% and
15% of the total number of phenotypes; M will be the
number of ground truth clusters simulated (e.g., for sim-
ulations with 100 phenotypes they all contain between
three and 15 clusters).

2. For j ¼ 1; 2; . . . ;M :

a. Generate ground truth cluster j of randomly selected
phenotypes whose size is drawn at random from a
uniform distribution between two and eight;

b. Select the corresponding percentage of significant
genes to be shared for all phenotypes in the ground
truth cluster;

c. Remove phenotypes in ground truth cluster j and cor-
responding shared significant genes from their respec-
tive pools (a phenotype may only be in one ground
truth cluster, and a gene can only be shared and sig-
nificant in one ground truth cluster); and

d. Assign nonshared significant genes and nonsignificant
genes to each phenotype in the ground truth cluster

3. For all phenotypes not assigned to a ground truth cluster
in Step 2, randomly draw 175 genes that remain in the
pool to be significant, and assign remaining genes as
nonsignificant.

Architecture of shuffled gene score matrix
for 81 phenotypes

Some of the phenotypes being studied here are highly poly-
genic, and, consequently, overlapping genetic architecture
might occur due to inherent randomness in the data
(Jordan et al. 2019 preprint). We performed a permutation
test to assess whether the prioritized clusters identified by
WINGS are connected based on significant overlapping ge-
netic architectures rather than random correlations. Specifi-
cally, we shuffled each phenotype’s gene scores. We then
applied WINGS to the shuffled matrix to understand if prior-
itized clusters formed by chance. We found that across
1000 random shuffles WINGS identified, on average (with
small SD), five prioritized clusters of size two and one prior-
itized cluster of size three, and these clusters do not overlap
with the prioritized clusters from the empirical data. WINGS
did not identify any prioritized clusters of size four or more,
and the average number of prioritized clusters approaches
zero (with small SD) as cluster size increases for the ran-
domly shuffled data (Figure S10).

When applying WINGS to the 2log10 empirical gene-
score matrix, there are seven prioritized clusters consisting
of four or more phenotypes, four clusters of three pheno-
types, and seven clusters of size two; moreover, three of the

seven two-phenotype clusters and three of the four three-
phenotype are subclusters of larger prioritized clusters (Table
3). The size of the prioritized clusters from the empirical data
are consistently greater than the average number across the
randomly shuffled data, providing evidence that the empiri-
cal prioritized clusters are not linked by chance. Lastly, we
note that the dendrograms from these randomly shuffled
simulations (not shown) are flat in comparison to the empir-
ical dendrogram, Figure 3. A flat hierarchical clustering struc-
ture indicates homogeneous data as expected from random
data, providing further evidence that the empirical priori-
tized clusters are formed from having a significantly higher
degree of overlapping genetic architecture and not due to
random correlations.

Comparison of WINGS to cross-trait LD score regression,
disPCA, and other regional trees

To illustrate the power of WINGS to prioritize clusters of
phenotypes with shared genetic architecture, we compared
output fromWINGSwith that of cross-trait LD score regression
analysis (Bulik-Sullivan et al. 2015b). For each pair of 81 phe-
notypes we analyzed, we calculated the cross-trait coheritabil-
ity using variant level GWA summary statistics as described in
Bulik-Sullivan et al. (2015b). For each prioritized cluster
identified by WINGS, we then determined what proportion
of phenotype pairs had a significant correlation according
to cross-trait LD score regression (Table 4). Cross-trait LD
score regression uses variant level summary statistics to
estimate the genetic coheritability of two traits (Bulik-
Sullivan et al. 2015a). After correcting for inflation between
variant summary statistics induced by LD, traits with coordi-
nated statistical signals across loci are labeled as having sig-
nificant cross-trait heritability estimates.

Next, for additional performance comparison, we applied
WINGS to the first two PCs of amatrix of gene-scores that was
created using the minSNP approach (Fehringer et al. 2012),
which assigns the minimum variant P-value within a gene
as the gene-level P-value (see disPCA methods; Chang and
Keinan 2014). The results of this analysis are presented in
section Previous methods, and comparative dendrogram anal-
ysis and Figure 4 and Figure S13.

To better understand potential pitfalls in using genes and a
650 kb boundary as our feature set in our primary analysis,
we conducted four additional analyses. First, we included all
intergenic regions as features and calculated a PEGASUS
regional score for each intergenic region. Second, we per-
formed an analysis that included imputed variants with an
imputation score .0.8, while additionally filtering out vari-
ants that were in high LD with one another r2 .0:9 (using
plink’s-indep-pairwise 100 10 0.9 flag) in order to reduce the
runtime of our analysis. Third, to determine the effect of
mapping noncoding variants to nearby genes using the
650 kb buffer region, we performed an analysis of 17,651
genes with the buffer region set to zero. By setting the buffer
region to zero, we omitted any SNPs that were not in the
exons or introns of a gene. Finally, to understand if the
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correlation in gene scores between physically colocated
genes was inducing spurious clusters, we parsed the genome
into 33,685 independent haplotype blocks using plink’s -blocks
command. The details of these four additional feature sets are
presented in Table 1, and the results of these analyses are
presented in the section Previous methods and comparative
dendrogram analysis.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Shared significant gene lists and results
from gene-set enrichment analysis for each of the prioritized
clusters in Figure 3, as well as scripts that were used to
generate the simulated matrices and implement WINGS,
are available at https://github.com/ramachandran-lab/Pegasus-
WINGS/. Supplemental material available at figshare: https://
doi.org/10.25386/genetics.11781954

Results

Performance on simulated data

In Table 2, we report power as the percentage of ground truth
simulated clusters that WINGS correctly labels as prioritized
across the 1000 simulations, for a fixed number of pheno-
types in analysis and percent shared significantly mutated
genes (“shared genetic architecture”). We define shared ge-
netic architecture for a cluster to be the percentage of genes
that are significant (P-value ,2:833 1026) across all mem-
ber phenotypes of the cluster. We also measure the precision
of WINGS in identifying simulated clusters. We define pre-
cision for a given simulation as the number of ground truth

clusters that were correctly identified as prioritized, and that
further fell within the top x prioritized clusters in that simu-
lation. For example, if a simulation has five ground truth
clusters, the power of WINGS for that simulation would be
the percentage of those five clusters that are identified as
prioritized. The precision ofWINGS is the percentage of those
five ground truth clusters that have been both correctly iden-
tified as prioritized and are within the five most prioritized
clusters identified in that simulations.

Table 2 reports the precision of WINGS on the simulations
across varying parameter values for both the number of phe-
notypes analyzed and shared genetic architecture using
PEGASUS P-values. We additionally generated simulations
using the same protocol but substituting the PASCAL (“max”
model) (Lamparter et al. 2016) gene-level association test
results for PEGASUS gene-level association P-values to illus-
trate that WINGS can be used with any gene-level associa-
tion metric. The results for the simulations using PASCAL
(“max” model) are shown in Table S3. We note the “sum”

model of PASCAL is identical to the model of PEGASUS, and
so we do not compare WINGS results using these two mod-
els for gene scores.

One sample output of WINGS applied to a standard sim-
ulation is presented in Figure 2, and the corresponding
dendrogram is shown in Figure S12. The thresholded hi-
erarchical clustering algorithm within WINGS identifies
the ground truth clusters as the top five most prioritized
clusters. These results suggest that WINGS applied to
2log10-transformed gene-level association statistics ac-
curately captures groups of phenotypes that have a high
percentage of shared significant genes.

Analysis of 81 case-control phenotypes

We first applied WINGS to the 26 case-control phenotypes
analyzed in Pickrell et al. (2016) and Shi et al. (2016). We
provide the results of our analysis of these 26 phenotypes in
Figures S8 and S9 (Section S4) and discuss our findings in
Discussion. The focus of this paper is on the application of
WINGS to 81 case-control phenotypes from the UK Biobank.
We use the 26 phenotypes from our initial analysis and add
55 case-control phenotypes that had at least 1000 cases in
our cohort from the UK Biobank (see Supplementary Mate-
rial, Section S1 for QC details). The additional 55 phenotypes
and their corresponding case numbers are provided in Table
S1. We then applied WINGS to the resulting 81 phenotypes
by 17,651 genes matrix. In this expanded set of phenotypes,
WINGS identifies eight prioritized clusters, some of which
contain smaller subclusters of phenotypes that are also iden-
tified as prioritized clusters. For instance, in Figure 3, the
Metabolic contains eight phenotypes, but many of the indi-
vidual phenotype clades within it are additionally priori-
tized, including Angina pectoris (I20) and Chronic ischemic
heart disease (I25). For an exhaustive list of prioritized sub-
clusters, see Table 3. The eight prioritized clusters, as well as
their phenotypes, are shown in the WINGS dendrogram in
Figure 3 with the corresponding sorted branch length plots

Table 1 Feature sets for comparative dendrogram analysis of
WINGS

Feature set
No. of
genes

Intergenic regions
included Results

Intergenic regionsa 20,611 Yes Figures
S14–S15

Imputed genotype datab 17,678 No Figures
S16–S17

Genes with no buffer
regionc

13,031 No Figures
S18–S19

Gene scores per haplotype
blockd

33,685 No Figures
S20–S21

Summary of features sets used in our comparative dendrogram analysis of WINGS
(see sections Comparison of WINGS to cross-trait LD score regression, disPCA, and
other regional trees and Previous methods and comparative dendrogram analysis).
We present the number of genes in each data set and whether or not the data
contain intergenic regions, along with references to corresponding figures that
show the results of applying WINGS to each feature set.
a For the intergenic regions set, we included all intergenic regions as features and
calculated a PEGASUS regional score for each intergenic region.

b For the imputed data, imputed variants with an imputation score .0.8 were in-
cluded, and variants that were in high LD with one another ðr2 . 0:9Þ were
filtered out (using plink’s -indep-pairwise 100 10 0.9 flag) to reduce runtime.

c The feature set with the buffer region set to zero omits any SNPs that were not in
the exons or introns of a gene.

d The gene scores per haplotype block set were generated by parsing the genome
into 33,685 independent haplotype blocks using plink’s -blocks command.
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presented Figure S11. Note that we set the cluster size thresh-
old to eight in our empirical analyses.

We find that the case number of a phenotype is not
significantly correlated with that phenotype being in a prior-
itized cluster (Kendall’s t, P-value = 0.2625). We addition-
ally compared the vector of gene-level association statistics
calculated using only genotyped variants to the vector of
gene-level association statistics calculated using the geno-
typed and imputed variants for each phenotype. The correla-
tion coefficient (r) for each of these comparisons was.0.75,
and all were statistically significant (P= 0). Finally, we asked
howmany genes that had previously contained no significant
(P-value , 5:73 1028) variant level associations contained
at least one such variant after the addition of the imputed
data. We discovered that 46 of the phenotypes contained no
such genes, illustrating that the addition of more variants did
not introduce additional significant architecture.

Genes and gene sets enriched for mutations in
prioritized clusters

To test whether the shared significant genes in prioritized
clusters fall into biologically relevant pathways, we per-
formed gene-set enrichment analysis on each prioritized
phenotype cluster reported by WINGS in our analysis of
81 UK Biobank phenotypes. We used the list of shared sig-
nificant genes (P-value , 2:833 1026, Bonferroni-corrected
for 17,651 autosomal genes) for each prioritized cluster as
input into Enrichr (Chen et al. 2013), and tested for enrich-
ment of mutations in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) 2016 Pathway Database (Kanehisa et al.
2016). The full list of significantly enriched pathways is freely
available in the PEGASUS-WINGS GitHub repository (see
section Data Availability).

For each prioritized cluster in Figure 3 and Figure S11, we
determined whether shared significant genes had at least one
prior variant level association in the GWAS catalog (https://
www.ebi.ac.uk/gwas/) (Table S2). Of the eight prioritized
clusters identified in our analysis, seven contain shared sig-
nificant genes that had been previously associated with at
least one cluster phenotype. Phenotypes in the Metabolic

cluster share two significant genes, and NCR3 has been pre-
viously associated with both diabetes mellitus (Tomer et al.
2015) and IgG glycolysation (Lauc et al. 2013). Immunolog-
ical cluster 1 contains three phenotypes that share 181 signif-
icant genes, 6 of which have been previously associated with
one of the member phenotypes. Four of these have been pre-
viously associated with psoriasis: C6orf10 (Lee et al. 2018),
HCP5 (Liu et al. 2008; Lee et al. 2018; Aterido et al. 2019),
MICA (Lee et al. 2018), and POUSF1 (Zhang et al. 2009).
HCP5 encodes a lncRNA in the MHC region whose hypome-
thylation has been associated with a CpG site with conse-
quences for development of ankylosing spondylitits, another
immunological disease (Coit et al. 2019). Two of the shared
significant genes have been previously associated with celiac
disease: HLA-DQA1 (van Heel et al. 2007; Dubois et al. 2010)
and NOTCH4 (Östensson et al. 2013).

Immunological cluster 2 is made up of six phenotypes that
share96 significant genes, and18of thesehavebeenpreviously
associated with at least one member phenotype. Three genes
have been previously associated with more than one of the
member phenotypes. HLA-DQA1 has been previously associ-
ated with asthma (Dahlin et al. 2019), rheumatoid arthritis
(RA; Jiang et al. 2015), and type 1 diabetes (Cooper et al.
2008). HLA-DQB1 and HLA-DRA have both been previously
been associated with asthma (Demenais et al. 2018; Shrine
et al. 2019), but each has also been associated to another phe-
notype;HLA-DQB1 to hypothyroidism (Pickrell et al. 2016) and
HLA-DQB1 to RA (Jiang et al. 2015). Moreover, 15 other genes
have been associated with one member phenotype, and 10 of
these (BRD2, BTNL2, CDSN, CFB, HCP5, HLA-DOA, MICB,
NOTCH4, PBX2, PSORS1C1) have been associated with asthma
across four studies (Hirota et al. 2011; Tomer et al. 2015;
Almoguera et al. 2017; Demenais et al. 2018). Of the remaining
five genes, three [MICA (Aterido et al. 2019), NCR3, and TAP2
(Tomer et al. 2015)] have been previously associated with type
1 diabetes, while APOM (Hu et al. 2011) and HLA-DRB5 (Jiang
et al. 2014) have been associated with RA.

Using the KEGG pathway database and a list of the shared
significant genes in Immunological cluster 2, an interest-
ing pattern appears. For example, HLA-DRA, HLA-DOA, and

Table 2 Power, precision, F1 scores of WINGS across a range of phenotypes included as well as shared genetic architecture

Shared genetic architecture

Power Precision F1 score

Na 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

25 97.43 100 100 100 65.77 69.36 71.33 75.39 0.920 0.938 0.936 0.935
50 96.63 100 100 100 52.52 58.76 62.05 63.80 0.818 0.837 0.826 0.821
75 96.81 100 100 100 43.56 52.28 55.04 55.04 0.727 0.767 0.747 0.748
100 96.45 100 100 100 36.39 46.76 50.92 50.92 0.668 0.694 0.690 0.683

Shared genetic architecture denotes the percentage of the 175 significant genes in each phenotype that are shared across all phenotypes in a cluster. Every entry in the table
represents 1000 simulations under the corresponding parameters. The power of WINGS for identifying ground truth clusters in simulations is defined as the percentage of
ground truth clusters across these 1000 simulations that were identified as prioritized by WINGS. The precision of WINGS is defined as follows: in a simulation with x ground
truth clusters and a given number of phenotypes and proportion of shared genetic architecture, precision is the percentage of ground truth clusters that were identified as
prioritized and within the x most prioritized clusters ranked by the branch length thresholding step in WINGS. F1 score is twice the product of precision and recall divided by
the sum of precision and recall; in this context, recall is the percentage of ground truth clusters prioritized by WINGS.
a N is the number of phenotypes in the simulation.
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HLA-DQA1 are all components of pathways that play a role in
hypothyroidism, RA, asthma, and antigen processing and pre-
sentation (Kanehisa et al. 2016). These three genes, thus, rep-
resent a shared core set of genes between phenotypes, and offer
confirmation that WINGS has the power to detect a set of pre-
viously validated network interactions in a group of phenotypes.
Asthma, in particular, has interesting genetic and environmental
mechanisms in each of these three genes. In severe cases of
asthma, epithelial gene expression ofHLA-DOA has been shown
to be significantly reduced in the central airways (Singhania
et al. 2017).HLA-DQA1, in a study of individuals from both high
and low socioeconomic status, was shown to be deferentially
transcribed pointing to a gene by environment effect on the
MHC region in disease development (Chen et al. 2009). Finally,
HLA-DRA contains a nonsynonymous SNP in a coding region
previously associated with asthma development in an indepen-
dent dataset (Song and Lee 2013).

The Polyp cluster, whosemember phenotypes are “polyp of
colon” and “rectal polyp,” share 43 significant genes; how-
ever, none of them have been associated with either of those
exact phenotypes. Interestingly, seven of the shared signifi-
cant genes have been associated to colorectal cancers, includ-
ing UTP23 (Al-Tassan et al. 2015), GREM1 (Whiffin et al.
2014), SCG5 (COGENT Study et al. 2008), SMAD7 (Hofer
et al. 2017), CABLES2 (Schmit et al. 2018), LAMA5 (Houlston
et al. 2010), and PREX1 (Lu et al. 2019). It is important to
note the five phenotypes in the Assorted cluster share no
shared significant genes.

The Alzheimer’s/Dementia cluster contains Alzheimer’s
disease and vascular dementia, which share eight significant
genes, all of which have been previously associated with one
phenotype. PALM2 was shown by Pottier et al. (2018) to be
associated with frontotemporal dementia. The remaining
seven genes, including APOC1, APOC2, APOC4 (Marioni
et al. 2018), APOE (Ramanan et al. 2014), CLPTM1 (Jansen
et al. 2019), PVRL2 (Jun et al. 2017), and TOMM40
(Cruchaga et al. 2011) have all been associated with Alz-
heimer’s disease. The mechanistic role of APOE in the patho-
genesis of Alzheimer’s remains unclear, but is widely thought
to interact in themetabolism and aggregation of amyloid-b in
the brain (Kanekiyo et al. 2014).

The two phenotypes in the Kidney cluster share nine
significant genes, and only OVOL1 has been previously asso-
ciated with a related phenotype (urate levels) by Köttgen
et al. (2013). Lastly, member phenotypes of the liver cluster
shared 25 significant genes, and three have been previously
associated with nonalcoholic fatty liver disease. They include
GATAD2A (Kawaguchi et al. 2018), PNPLA3 (Kitamoto et al.
2013), and SAMM50 (Chung et al. 2018).

Previous methods and comparative
dendrogram analysis

In this section, we present the results of multiple comparative
dendrogram analyses to assess the performance of WINGS
applied to genes with a 650 kb boundary relative to other
methods and gene score inputs. Table 4 shows the proportion

Figure 2 WINGS sorted branch lengths from a simulation identifies prioritized clusters on the 2log10 scale. We show the sorted branch lengths
corresponding to the dendrogram branches generated by WINGS when applied to the 2log10 transformed PEGASUS gene scores from a simulation
with 75 phenotypes, 75% (131) shared genes. For this simulation the ground truth clusters are [CN, CP], [AJ, CH, CL, DF], [AL, CK, CG, CQ, BW, AP,
AU], [AC, CS, AS, BF, CT], and [AQ, BE, BG, BS, CW]. The dashed red horizontal line corresponds to the branch length threshold, where the identified
prioritized clusters are those lying above the dashed line. The ground truth clusters are correctly identified as the prioritized clusters (boxed). This figure
has been truncated on the right (removing some clusters that are not identified as prioritized) for better visualization purposes. The corresponding
dendrogram is shown in Figure S12.
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Figure 3 WINGS dendrogram from 81 case-control phenotypes in the UK Biobank reveals clusters of phenotypes with shared significant genetic
architecture. We show the dendrogram output from the WINGS analysis of 2log10 transformed PEGASUS scores of 81 case–control phenotypes in the
UK Biobank. Listed are the ICD10 codes and common names of each phenotype that belongs to a prioritized cluster, grouped by cluster. Table insert:
Each prioritized cluster’s color, assigned label, and number of shared significant genes (the number of PEGASUS gene scores with P-value
, 2:8331026, Bonferroni corrected for 17,651 autosomal genes). Figure S11 demonstrates how the WINGS algorithm identifies prioritized and
nonprioritized clusters using branch lengths from this dendrogram. We suggest viewing this figure alongside Figure S11, as the prioritized clusters
may appear arbitrary or nonintuitive to the human eye. We additionally note that a similar analysis using imputed data from the UK Biobank shows
similar results (Figure S16) suggesting that shared genetic architectures can be detected using only common genotyped variants.
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of phenotype pairs with a significant cross-trait heritability es-
timate for each WINGS prioritized cluster shown in Figure 3.
Significant cross-trait heritability estimates are indicative of
two phenotypes having highly correlated variant level associ-
ation statistics after correcting for inflation explained by LD, as
defined in Bulik-Sullivan et al. (2015a). Multiple pairs of phe-
notypes are identified in both analyses; however, we note that
the advantage of WINGS is its ability to identify clusters of
phenotypes beyond pairs while simultaneously taking into ac-
count the pairwise distance among all phenotypes. We did not
perform this analysis for the Alzheimer’s/Dementia cluster as
Alzheimer’s returned no cross-trait heritability estimates with
any other phenotype. Overall, we find that cross-trait LD score
regression is not sufficient to identify clusters of phenotypes
that are identified using the WINGS algorithm.

To apply WINGS to the disPCA method developed by
Chang and colleagues (Chang and Keinan 2014), we gener-
ated a tree for the 81 phenotypes analyzed in this study using
their methodology. Figure 4 is the result of applying WINGS
to phenotypes using pairwise distances among phenotypes
defined by the first two PCs of a minSNP gene score matrix
(see section Comparison of WINGS to cross-trait LD score re-
gression, disPCA, and other regional trees). The resulting tree
lacks an internal branch length structure that would differ-
entiate clusters from one another. Moreover, all of the phe-
notypes lie within a prioritized cluster in this framework so
that now no single collection of phenotypes seems to bear any
significant shared genetic architecture. We hypothesize that
this behavior is due to the fact that disPCA reduces the gene
score matrix to two dimensions so that all of the phenotypes
lie on the same plane, and phenotype-to-phenotype distances
are condensed. The positions of each point within the space

are displayed in Figure S13, which further demonstrates how
the disPCA analysis does not result in clearly defined clusters
and that the phenotype clusters identified by WINGS are not
easily differentiable in the PC space.

In addition to only including genes and their 650 kb re-
gions as features, we also computed PEGASUS scores for
intergenic regions, and observe that the topology of the tree
is similar [dissimilarity index from Morlini and Zani (2012)
between Figure 3 and Figure S14 is Z = 0.1091]. Second, we
performed an analysis using imputed genotype data provided
by the UK Biobank. We included all of the genotype variants
that were in the original analysis as well as imputed variants
passing thresholds described in Comparison of WINGS to
cross-trait LD score regression, disPCA, and other regional trees.
The resulting dendrogram and branch length distribution are
shown in Figures S16 and S17, respectively. While slightly
more dissimilar than the intergenic tree (Z = 0.1379), the
topology of the resulting dendrogram shows the preservation
of prioritized clusters or subsets of prioritized clusters. By
comparison, when the buffer region around genes is set to
zero, the dissimilarity index, Z = 0.1240, is marginally lower.
The resulting dendrogram and branch length distribution are
illustrated in Figures S18 and S19. Finally, when analyzing
the genome where regional association statistics (i.e., gene
scores) are calculated for each of the 33,686 independent
haplotype block, the topology of the tree is highly conserved
when compared with our primary result (Z = 0.1276). The
resulting dendrogram and branch length distributions are
shown in Figure S20 and Figure S21. In each of these anal-
yses, we find that there is no substantial change in the den-
drogram and therefore the genotyped common variants can
adequately detect shared significant genetic architectures.

Parameter sensitivity analysis

As noted in the section WINGS, a new method for automatic
phenotype cluster detection and ranking, there are two param-
eter choices in WINGS: the cluster size threshold and the
outlier criterion. In the software for WINGS, these parame-
ters are optionally user-defined, where the default cluster
size threshold is conservatively set to N

3 (meaning the size of
any prioritized cluster will not be more than approximately
one-third of the total number of phenotypes in the input
data), and the default outlier criterion is based on median
absolute deviations method. Here, we test the robustness of
WINGSwith respect to these two parameters and analyze the

Table 4 Percentage of significant pairwise cross-trait heritability
estimates within each WINGS prioritized cluster

Cluster Cluster size Phenotype pairs recovered(%)

Kidney cluster 2 100
Liver cluster 2 0
Polyp cluster 2 100
Metabolic cluster 8 46
Immunological 2 cluster 6 27
Assorted cluster 5 40
Immunological 1 cluster 3 33

Table 3 Complete list of the2log10 prioritized clusters of phenotypes
in the analysis of 81 case-control phenotypes

Cluster classification Phenotypes in cluster

Kidney cluster I12, N18
Liver cluster K74, K76
Polyp cluster K621, K635
Metabolic cluster I20, I25

I20, I21, I25
E78, I20, I21, I25
I83, K573
E11, I83, K573
E11, E83, I83, K573
E11, E78, E83, I20, I21, I25, I83, K573

Immunological 2 cluster G35, M05, M06
E10, G35, M05, M06
E10, G35, K51, M05, M06
E10, G35, J45, K51, M05, M06

Assorted cluster D64, E16, K21, N39, N40
Immunological 1 cluster K900, L40

E03, K900, L40
Alzheimer’s/dementia cluster F01, G30

Phenotypes are denoted here using ICD10 codes; see Table S1 for detailed
phenotype names. Clusters that have prioritized subclusters are listed in the
hierarchical order in which they merge to form new, larger prioritized clusters
(vertically, from top to bottom). See Figure 3 and Figure S11 for the corresponding
dendrogram and branch lengths plot.
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results to gain insight into how different parameter choices
will impact how WINGS identifies the prioritized clusters.

For this analysis, we apply WINGS to a single simulated
gene score matrix that contains 100 phenotypes and has 75%
sharedgenetic architecture. That is, 75%of the175 significant

genes in each phenotype are shared across all phenotypes
within a cluster. There are 13 clusters in this simulation,
ranging in size from two to seven phenotypes per cluster.
We apply WINGS to this gene score matrix while varying the
cluster size threshold from 2 to 19 in single increments. For

Figure 4 disPCA from 81 case–control phenotypes
in the UK Biobank. We show the dendrogram
resulting from applying Ward clustering to 81
case–control phenotypes based on their Euclidean
distances in the space defined by the first two prin-
cipal components of a minSNP gene score matrix.
disPCA does not offer an intuition as to which clus-
ters should be examined, and differentiation be-
tween internal branch lengths is less pronounced
than when using the WINGS algorithm. The colored
branches represent prioritized clusters identified by
the WINGS algorithm. Note that all of the pheno-
types are now within a prioritized cluster; we hy-
pothesize that this is because disPCA reduces the
gene score matrix to two dimensions so that all of
the phenotypes lie within the same plane and
phenotype-to-phenotype distances are condensed
(see Figure S13).
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each cluster size threshold, we run WINGS using the median
absolute deviations outlier criterion (herein referred to as the
median outlier criterion), mean outlier criterion, quartile
outlier criterion, and Grubbs’ outlier criterion.

With the median outlier criterion, branch length gaps that
are more than three scaled median absolute deviations away
from the median are considered an outlier (Rousseeuw and
Croux 1993; Huber 2011; Leys et al. 2013; MATLAB Data
Import and Analysis 2018). In contrast, branch length gaps
that are more than three SD from the mean are considered
outliers under the mean outlier criterion (Leys et al. 2013;
MATLAB Data Import and Analysis 2018). Under the quartile
outlier criterion, branch length gaps that are.1.5 interquartile
ranges above the upper quartile, or below the lower quartile,
are marked as outliers (Rousseeuw and Croux 1993; Huber
2011; Leys et al. 2013; MATLAB Data Import and Analysis
2018). Finally, the Grubbs’ outlier criterion uses Grubbs’ test
to remove outliers one-by-one based on statistically testing the
hypothesis that the data contain no outliers (Grubbs 1950;
MATLAB Data Import and Analysis 2018). The appropriate
choice of outlier criterion depends on the input data and ob-
jectives. For example, the mean outlier criterion is faster but
less robust than the median outlier criterion (Rousseeuw and
Croux 1993; Leys et al. 2013; MATLAB Data Import and
Analysis 2018). The mean and Grubbs’ methods assume the
input data are normally distributed, whereas the quartile and
median methods are useful when the input data are assumed
not to be normally distributed (Grubbs 1950; Rousseeuw and
Croux 1993; Huber 2011; Leys et al. 2013; MATLAB Data
Import and Analysis 2018).

The precision, recall, and F1 scores of this parameter test
are presented in Figure 5. Precision is the percentage of

prioritized clusters (identified via WINGS) that are ground
truth clusters; recall is defined as the percentage of ground
truth clusters that are also prioritized byWINGS; the F1 score
is twice the product of precision and recall divided by the sum
of precision and recall.

As shown in Figure 5B, the recall rate of WINGS is 100%
when the cluster size threshold is greater than six, regardless
of the choice of outlier criterion. This means that all of the
ground truth clusters are correctly prioritized by WINGS for
each choice of outlier criterion, as long as the cluster size
threshold is seven or higher. As noted above, the simulated
data in this experiment has ground truth clusters containing
anywhere from two to seven phenotypes, and therefore the
cluster size threshold must be at least seven in order for
WINGS to consider all of the ground truth clusters as candi-
dates for the prioritized clusters.

In Figure 5, A and C, we observe that the mean and quar-
tile outlier methods perform better than the median and
Grubbs’ outlier methods in terms of precision rate and F1
score. In particular, the precision rate of WINGS is 100%
when using the mean outlier method, for all cluster size
thresholds; said another way, when using the mean outlier
method with any choice of cluster size threshold, all of the
prioritized clusters identified by WINGS are indeed ground
truth clusters. Similarly, the precision rate of WINGS is 100%
when using the quartile outlier method, as long as the cluster
size threshold is greater than five. By combining these results
with the recall rates, WINGS yields an F1 score of 100% using
either the mean or quartile outlier method, as long as the
cluster size threshold is at least seven (Figure 5C). In con-
trast, the precision rate of WINGS is 65% when using either
the median or Grubbs’ outlier method with a cluster size

Figure 5 Performance of WINGS on a simulated gene score matrix with shared genetic architecture across parameter regimes. We apply WINGS to a
single simulated gene score matrix containing 100 phenotypes with 75% shared genetic architecture (meaning, 75% of the 175 significant genes in
each phenotype are shared across all phenotypes within a cluster). There are 13 clusters in this simulation, ranging in size from two to seven phenotypes
per cluster. We show the performance of WINGS in terms of precision (A), recall (B), and F1 score (C) for an increasing sequence from cluster size
thresholds (2–19) and for each outlier criterion method (median, mean, quartile, Grubbs’). Precision is the percentage of prioritized clusters (identified
via WINGS) that are ground truth clusters. Recall is defined as the percentage of ground truth clusters that are also prioritized by WINGS. F1 score is
twice the product of precision and recall divided by the sum of precision and recall.
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threshold greater than six (Figure 5A). We note that WINGS
prioritizes seven false positive clusters, along with the
13 ground truth clusters, when using either the median or
Grubbs’ outlier method with a cluster size threshold greater
than six. Consequently, the resulting the F1 scores of WINGS
in these parameter regimes is 78.79% (Figure 5C).

Overall, these results demonstrate the robustness of
WINGS with respect to the cluster size threshold parameter
across all performance metrics, and the robustness of WINGS
with respect to the outlier criterion in terms of its recall rates.
This experiment further reveals that WINGS may be more
likely to identify false positive prioritized clusters when using
the median or Grubbs’ outlier criterion. Nevertheless, we use
the median absolute deviation method in our experiments
since it has been observed as one of the more robust outlier
detection methods and does not assume the input data are
normal (Rousseeuw and Croux 1993; Huber 2011; Leys et al.
2013; MATLAB Data Import and Analysis 2018). Because our
objective is to identify new groups of phenotypes with shared
genetic architecture, we prefer to identify false positive clus-
ters rather than to risk false negative clusters. Moreover, by
further testing to see which prioritized clusters contain
shared significant genes that fall into biologically relevant
pathways, we could filter out any possible false negative clus-
ters in the empirical data. Finally, we highlight that WINGS
ranks the resulting phenotype clusters based on their level of
significance so we have an additional measure of confidence
associated to each of our prioritized clusters across all param-
eter choices.

Discussion

Although biobank-scale datasets—in which multiple pheno-
types are assayed and/or surveyed in tens of thousands to
hundreds of thousands individuals—are becoming increas-
ingly available to medical genomics researchers, approaches
for leveraging these datasets to identify shared architecture
among phenotypes are still in their infancy. Existing ap-
proaches for analyzing the shared genomic underpinnings
of multiple phenotypes focus on colocalizing variant-level
signals (Denny et al. 2016; Pickrell et al. 2016). However, recent
approaches that aggregate SNP-level genotype-phenotype
association statistics within genes into a gene-level associa-
tion score have gained power to detect biologically relevant
and interpretable genes and pathways enriched for muta-
tions in complex diseases (Carbonetto and Stephens 2013;
Lamparter et al. 2016; Nakka et al. 2016; Wang et al. 2017;
Zhu and Stephens 2018), and offer insight into the roles of
genetic heterogeneity and interactions among variants in
generating complex diseases.

Here, we present a new method, Ward clustering to iden-
tify Internal Node branch length outliers using Gene Scores
(WINGS), for identifying phenotypes that share significant
genetic architecture based on germline genetic data matched
with binary or quantitative phenotypes from mega-biobanks.
WINGS leverages Ward hierarchical clustering applied to

gene-level association scores for the phenotypes of interest,
and goes beyond past clustering applications to GWA studies
of multiple phenotypes [e.g., disPCA (Chang and Keinan
2014) and cross-train LD score regression (Bulik-Sullivan
et al. 2015b)] by (i) its ability to simultaneously analyze
and cluster all phenotypes rather than study pairwise corre-
lations (see section Previous methods and comparative dendro-
gram analysis, Table 4) and (ii) providing a thresholding
algorithm for identifying and ranking prioritized clusters of
phenotypes. WINGS offers an innovative way to detect sig-
nals of statistical pleiotropy by identifying genes that are
associated with complex phenotypes and presenting them
in an easily interpretable way. We note that the thresholding
step in WINGS offers a useful visualization for interpreting
results: while dendrograms depict the hierarchical architec-
ture of clusters (Figures 3 and Figure S8), the sorted branch
lengths WINGS provides as output are intuitive to read, dem-
onstrate a clear ranking of clusters, and identify prioritized
clusters (Figures S9 and S11).

In this study,weapplyWINGS to simulations anddata from
the UK Biobank and show that it is sensitive to identifying
phenotype clusters characterized by enrichment of mutations
in a “core set” of genes across cases; future applications of
WINGS could also incorporate regulatory and intergenic as-
sociation signals into analysis (see also Figures S14 and S15),
or focus solely on enrichment of association signals in un-
translated genomic regions. Given concerns over whether
GWA data contain signals of genetic architecture, we note
that our simulations indicate that WINGS is sensitive to
shared significant genes (that is, genes enriched for pheno-
type-associated mutations, identified by applying WINGS to
–log10 transformed gene-level association P-values).

Figure 3 and Figure S8 and S9 suggest that WINGS can
offer insight into shared genetic architecture underlying
comorbid phenotypes, as well as phenotypes that may often
be misdiagnosed for one another, such as vascular dementia
and Alzheimer’s disease (Bozeat et al. 2000; Perrin et al.
2009). As validation of the phenotype clusters identified in
our analyses of the UK Biobank, Table S2 shows that genes
significantly associated with phenotypes in our analyses
have been previously associated via variant-level GWA stud-
ies with some, but not all, phenotypes in clusters in Figure 3
and Figure S11.

Clustering high-dimensional features will always be rela-
tive to the input data. We ran several comparative dendro-
gram analyses to assess the performance ofWINGS applied to
other types of gene score inputs, including PCs from the
disPCA method (Chang and Keinan 2014), PEGASUS scores
with intergenic regions, imputed genotype data, genes with
no buffer region, and independent haplotype blocks. Overall,
we found that disPCA features do not result in clearly defined
clusters, while the other variations of the gene score matrix
do not vary substantially from the original feature inputs
(gene scores with650 kb regions) (see section Previous meth-
ods and comparative dendrogram analysis; Figure 4 and Fig-
ure S13–S21). Moreover, we underscore that our analysis of
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26 phenotypes in the UK Biobank [chosen based on having
been studied by both Pickrell et al. (2016) and Shi et al.
(2016), as well as having over 100 cases in the UK Biobank]
also recovers multiple prioritized clusters of phenotypes iden-
tified in our full set of 81 phenotypes: Alzheimer’s/Dementia,
Metabolic, and Immunological 2 (Figure S8).

While our objective and approach differ significantly from
the studies of Pickrell et al. (2016) and Shi et al. (2016) [we
focus on case-control studies and they analyzed many quan-
titative phenotypes; Pickrell et al. (2016) test for variant-level
pleiotropy among 42 complex traits, whereas Shi et al.
(2016) study the contribution of genomic regions to narrow-
sense heritability of 30 complex traits], we observe simi-
larities across our results and their published studies. In
comparing the prioritized clusters from WINGS applied to the
26 binary chronic illness phenotypes from the UK Biobank
and the results presented in Shi et al. (2016), we observe
that both studies find strong connections between RA and
ulcerative colitis (UC). Shi et al. 2016 show in their Figure
8 that RA and UC, in particular, have a high fraction of total
SNP heritability, among other immunologically relevant phe-
notypes, along the HLA region (see Figures S8 and S9 to
observe that RA and UC reside in the same prioritized cluster
when WINGS is applied to the 26 binary chronic illness phe-
notypes from the UK Biobank on the2log10 scale). In Pickrell
et al. (2016), overlapping SNP-level association signals iden-
tify clusters of related traits and these clusters have nontrivial
overlap with the prioritized clusters identified by WINGS.
Notably, type 2 diabetes and lipid traits cluster together in
both the analysis of overlapping association signals in Pickrell
et al. (2016) and in the prioritized clusters when WINGS is
applied to the 26 phenotype dataset on the –log10 scale (see
Figures S8 and S9). Moreover, RA and UC show patterns of
high overlap in Figure 2 of Pickrell et al. (2016), and these
phenotypes similarly reside in the same prioritized clusters
when WINGS is applied to the 26 binary chronic illness phe-
notypes from the UK Biobank on the2log10 scale (see Figures
S8 and S9).

Next, we offer some caveats for future applications of
WINGS and potential future directions for the development
of methods to identify shared genetic architecture among
multiple phenotypes in mega-biobanks. First, our goal here
was to validate WINGS with simulations and to generate
hypotheses regarding shared genetic architecture among
complex phenotypes in the UK Biobank. We did not seek to
replicate our results from applying WINGS to data, an in-
creasingly common challenge for mega-biobank analyses
(Huffman 2018). However, our validation with simulations
and annotation of previously identified genes reinforces that
we are reliably detecting shared genetic architecture (see File
S1 for an extensive list of replication citations). Second,
based on Figure S1, clustering does not work well when ap-
plied to a group of phenotypes that have different genetic
architectures, in particular quantitative phenotypes and bi-
nary phenotypes, as the differences in gene score distribu-
tion will cluster binary and continuous in a noninformative

manner. One approach that could help overcome this chal-
lenge is the development of a gene score that incorporates
both effect sizes and their SE into calculation (Stephens
2016), but this is outside the focus of this study.

Third, althoughWINGS is robust to the cluster size thresh-
old and outlier criterion (see section Parameter sensitivity
analysis; Figure 5), WINGS is more sensitive to the clustering
criterion and the gene scores used as input. We focused on
Ward hierarchical clustering here, due partly to its perfor-
mance on simulated phenotype clusters (Table 2), and to
its assumption that clusters are round; because clusters are
hard to find in a high-dimensional space, this may be a con-
servative choice. In Section S3, we applied our method using
other clustering criteria (single linkage, average linkage, and
complete linkage clustering) to the 81 phenotypes we ana-
lyzed from the UK Biobank, and compared the resulting pri-
oritized clusters. We chose PEGASUS gene-level P-values as
input to WINGS due to (i) our previous exploration of the
power of PEGASUS (Nakka et al. 2016); which demonstrated
that PEGASUS is not biased by gene length, and computes
more precise P-values than VEGAS (Liu et al. 2010) and SKAT
(Wu et al. 2011); and (ii) because the model of correlated
SNP-level P-values underlying PEGASUS is the same as that
of another gene-level association method PASCAL (Table
S3).

Future applications and extensions of WINGS may focus
on a number of questions regarding shared genetic archi-
tecture among phenotypes. For example, Pickrell et al.
(2016) tested variants for true pleiotropy, while our current
implementation of WINGS cannot differentiate between
phenotypic relationships defined by clinical comorbidity
vs. causal dependence (see also Denny et al. 2016). We also
assume that ICD10 codes are reliable indicators of disease
status, which may not be the case (Shivade et al. 2014;
Hripcsak et al. 2018); for example, ICD10 codes may reflect
billing codes for tests but not validated diagnoses. One po-
tential follow-up analysis is to experimentally test the pleio-
tropic effect of shared significant genes in prioritized clusters,
as these would be ideal candidates for drug design. WINGS
provides a new hypothesis generating framework that can be
used to identify primary candidate genes for pleiotropic effects
contributing to multiple human diseases. As new biobank data
includes whole genome or exome data, reanalysis could pro-
vide further insight into how rare variants affect potentially
pleiotropic genes. As natural language processing is brought to
bear on electronic medical records, and biobanks merge quan-
titative test results with germline genetic data [a few example
studies from the UK Biobank are Jani et al. (2019) and
Havdahl et al. (2019)], algorithms such as WINGS could
be used to identify genetic associations for multiple bio-
markers and/or comorbidities. WINGS is sensitive to iden-
tifying shared mutated genes from 2log10-transformed
gene scores, and we interpret the genes underlying prior-
itized clusters in the output of WINGS as core genes un-
derlying the clustered phenotypes (Boyle et al. 2017).
Integrating results fromWINGSwith tissue-specific expression
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data would further test this hypothesis; similarly, WINGS
could further be applied to study protein interaction networks
using, for example, the topological scores of Sardiu et al.
(2019) as inputs for the identification of prioritized subnet-
works. Lastly, WINGS could also be extended to test for dif-
ferential genetic architecture among ancestries (Martin et al.
2017)—a fundamental question to whichmega-biobanks can
offer unique insights in the coming years.
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