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ABSTRACT

Latent Dirichlet allocation (LDA) is a heavily used Bayesian hierarchical model used in machine learning
for modeling high-dimensional sparse count data, for example, text documents. As a Bayesian model, it
incorporates a prior on a set of latent variables. The prior is indexed by some hyperparameters, which have
a big impact on inference regarding the model. The ideal estimate of the hyperparameters is the empirical
Bayes estimatewhich is, by definition, themaximizer of themarginal likelihoodof the datawith all the latent
variables integrated out. This estimate cannot be obtained analytically. In practice, the hyperparameters are
chosen either in an ad-hoc manner, or through some variants of the EM algorithm for which the theoretical
basis isweak.Wepropose anMCMC-based fully Bayesianmethod for obtaining the empirical Bayes estimate
of the hyperparameter. We compare ourmethodwith other existing approaches both on synthetic and real
data. The comparative experiments demonstrate that the LDA model with hyperparameters specified by
our method outperforms models with the hyperparameters estimated by other methods. Supplementary
materials for this article are available online.
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1. Introduction

Latent Dirichlet allocation (LDA, Blei, Ng, and Jordan 2003)
is a general probabilistic framework for modeling high-
dimensional sparse count data represented by feature counts.
It was introduced by Blei, Ng, and Jordan (2003) to discover
topics in text documents. Since its introduction, it and its
extensions have been successfully applied to many other data
types, such as image-caption data (Blei and Jordan 2003) and
author-document data (Rosen-Zvi et al. 2004), and applications
to new problems continue to arise (the article has been cited
over 23,000 times according to Google Scholar, and the yearly
citation rate is currently increasing). In this article, we focus on
data consisting of a collection of documents. Suppose we have a
corpus of documents, which span several different topics, such
as sports, medicine, politics, etc. We imagine that for each word
in each document, there is a latent (i.e., unobserved) variable
indicating a topic from which that word is drawn. The main
objectives in using the LDA model are usually to obtain an
interpretable set of topics for the corpus, and to make inference
on the latent topic variables for each document.

To describe the LDAmodel, we first set up some terminology
and notation. There is a vocabulary of V words; typically, this is
taken to be the union of all the words in all the documents of
corpus, after removing stop (i.e., uninformative) words. There
are D documents in the corpus, and for d = 1, . . . ,D, doc-
ument d has nd words, wd1, . . . ,wdnd . In total, the corpus has

N =
∑D

d=1 nd words. The order of the words is considered
uninformative, and so is neglected. Each word is represented
as a V-dimensional index vector with a 1 at the vth element,
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where v denotes the term selected from the vocabulary. Thus,
document d is represented by the matrix wd = (wd1, . . . ,wdnd)

and the corpus is represented by the list w = (w1, . . . ,wD). A
topic is, by definition, a distribution over the vocabulary, that is,
a point in SV−1, the (V − 1)-dimensional simplex. The number
of topics,T, is finite and known. For eachwordwdi, i = 1, . . . , nd
and d = 1, . . . ,D, zdi is a T-dimensional index vector which
represents the latent variable that denotes the topic from which
wdi is drawn. Let zd = (zd1, . . . , zdnd) and z = (z1, . . . , zD). The
distribution of zd will depend on a document-specific variable
θd which indicates a distribution on the topics for document d.
We let θ = (θ1, . . . , θD). We will use DirL(a1, . . . , aL) to denote
the finite-dimensional Dirichlet distribution on the simplex
SL−1 and MultL(b1, . . . , bL) to denote the multinomial distri-
bution with number of trials equal to 1 and probability vector
(b1, . . . , bL). We will form a T × V matrix β , whose tth row is
the tth topic (howβ is formedwill be described shortly). Thus,β
will consist of vectors β1, . . . ,βT , all lying in SV−1. Formally, the
LDA model is described by the following Bayesian hierarchical
model, in which η,α1,α2, . . . ,αT > 0 are hyperparameters:

1. βt
iid
∼ DirV(η, . . . , η), t = 1, . . . ,T.

2. θd
iid
∼ DirT(α1, . . . ,αT), d = 1, . . . ,D, and the θd’s are

independent of the βt ’s.

3. Given θ1, . . . , θD, zdi
iid
∼ MultT(θd), for i = 1, . . . , nd, d =

1, . . . ,D, and the D matrices (z11, . . . , z1n1), . . . , (zD1, . . . ,
zDnD) are independent.

4. Givenβ and the zdi’s,wdi is drawn from the rowofβ indicated
by zdi, independently for i = 1, . . . , nd, d = 1, . . . ,D.
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The parameters in the model are β , θ , and z, and we let
ψ = (β , θ , z) denote the entire set of parameters. We also let
h = (α1, . . . ,αT , η) denote the hyperparameter vector and
H = (0,∞)T+1 denote the hyperparameter space. Lines 1–3 of
the LDA model description define a prior distribution on the
parameters, which we will denote by ν(h), and line 4 gives the
likelihood, which we denote by �w(ψ). We observe the words
in the documents of the corpus, and inference regarding the
parameter vectorψ is based on its posterior distribution, which

we denote by ν
(h)
ψ |w. To use the LDAmodel, one needs to specify

h. This hyperparameter has a big impact on inference drawn

from themodel. For example, consider
∫

‖βi − βj‖2 dν
(h)
ψ |w(ψ),

the posterior expectation of the L2 norm between topics i and

j, and for some small ε, ν
(h)
ψ |w(‖θi − θj‖2 ≤ ε), the posterior

probability that the topic vectors for documents i and j are
nearly the same. These are standard objects of interest, and
George and Doss (2018, pp. 16–17) have shown that on real
corpora these vary considerably with h. George (2015) showed
that in single-membership situations, h affects the model’s
classification performance and its ability to correctly cluster the
documents in the corpus. Therefore, it is important to choose
the hyperparameter carefully.

Current schemes for specifying the hyperparameter fall into
three groups. The first group consists of very simple ad-hoc rules
that do not depend on the data. These are trivial to implement
but are not based on any statistical principle; and they perform
poorly. They are reviewed briefly in Section 4.1. The second and
third group consist of methods that are based on the following
idea. Let mw(h) be the marginal likelihood of the corpus. This
is the likelihood of the corpus with all the latent variables
integrated/summed out, that is, mw(h) =

∫
�w(ψ) dν(h)(ψ).

A principled way of choosing h is to use ĥ = argmaxhmw(h)
which is, by definition, the empirical Bayes estimate of h. Unfor-

tunately, it is impossible to obtain ĥ explicitly: the function
m(h) (we drop the subscript w for simplicity) is analytically
intractable.

In approaches from the second group, for each h over a
fine grid in H, we run a Monte Carlo experiment to form an
estimate m̂(h) ofm(h); we do this separately for each h, and we
estimate argmaxhm(h) via argmaxh m̂(h). Papers that proceed
in this way include Chib (1995) and Chib and Jeliazkov (2001).
We also mention the “harmonic mean estimator” introduced
by Newton and Raftery (1994). There are several significant
problems associatedwith this approach.One is that convergence
can be slow. For example, the harmonicmean estimator typically
converges at a rate which is much slower than n1/2, where n
is the Monte Carlo sample size (Wolpert and Schmidler 2012).
Also, the fact that a separate Monte Carlo experiment needs to
be run for every h over a grid inHmakes the method very time
consuming. Although methods in this group do not work well
in the LDAmodel (in fact Newton and Raftery (1994) expressed
reservations regarding the harmonic mean estimator in general
when they introduced it), wemention them because they are the
ones that are the most frequently used in the machine learning
literature; see Wallach et al. (2009) for a discussion.

The third group consists of methods that use the EM algo-
rithm to find the maximizer of the marginal likelihood func-
tion. Here, the “complete data likelihood” ph(ψ ,w) is available

directly from lines 1–4 of the LDA model description, so w

may be viewed as “observed data,” and ψ may be viewed as
“missing data.” Unfortunately, the E-step, which is an expecta-

tion with respect to the intractable distribution ν
(h)
ψ |w, cannot

be carried out exactly, and two variants of the EM algorithm
have been used. One of these is Monte Carlo EM, in which
the expectation is approximated by MCMC. This has been car-
ried out by Wallach (2006), who faced the additional problem
that in her implementation the maximization in the M-step
cannot be done in closed form either and an approximation is
used instead. (She used the collapsed Gibbs sampler (CGS) of
Griffiths and Steyvers (2004) as her Markov chain and dubbed
her scheme “Gibbs-EM.”) George and Doss (2018) have shown
that the performance of Gibbs-EM is mixed: it sometimes gives
accurate approximations, but there are classes of cases where the
algorithm converges to a value of h which is not argmaxhm(h).
Another variant is “variational EM” (VEM), in which the E-
step is approximated through variational methods (see Jordan
et al. (1999) for an introduction to variational methods, and
Blei, Kucukelbir, and McAuliffe (2017) for a recent review).
This is the approach that was originally used by Blei, Ng, and
Jordan (2003), and it is extremely fast. However, in empirical
studies this approach has not performed well for a variety of
corpora. For Gibbs-EM, there are no useful bounds on the
approximation used in the M-step, and for VEM there are no
useful bounds on the approximation used in the E-step. Because
the approximations are used at every iteration of the algorithm,
there are no results regarding the theoretical properties of either
Gibbs-EM or VEM. A more thorough discussion of both these
variants of the EM algorithm is given in Section 4.1.

A different approach for estimating ĥ = argmaxhm(h)
was developed by George and Doss (2018). They devised an
algorithm based on a combination of MCMC and importance
sampling for forming an estimate of the entire marginal likeli-
hood surfacem(h) up to a multiplicative constant. More specif-
ically, using a single Markov chain—a so-called serial temper-
ing chain—they form an importance sampling estimate M̂(·)

with the property that M̂(h)
a.s.
−→ cm(h) simultaneously for

all h, where c is an unknown constant, and the convergence
is as the Markov chain length tends to infinity. (For the pur-
pose of estimating argmaxhm(h), the fact that c is unknown
is immaterial: argmaxh cm(h) = argmaxhm(h).) Additionally,

they show that argmaxh M̂(h)
a.s.
−→ argmaxhm(h). Although

their method works well for moderate-size corpora, for large
corpora it requires considerable tuning because for such corpora
the importance sampling weights are highly variable. A more
detailed discussion of the method and its limitations is given in
Section 4.1.

In this article, we use a “fully Bayes approach,” not for the pur-
pose of doing a fully Bayes analysis, but rather for the purpose of
selecting a single value of the hyperparameter h. The approach
is based on ideas in the recent article by Doss and Linero (2019).
Their method, which we now review, is very general, that is,
it is not developed for any particular model, and whether or
not it is successful is determined by how it is implemented.
Very briefly, in the context of the LDA model the method is
as follows. Let H denote the hyperparameter space, and for
simplicity we temporarily assume that this is a compact subset
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of RT+1, for example, we assume that H is a large hypercube.
We can then put a uniform prior on H, which we denote by
U, and we let u be its density. This induces a joint distribution
on (w,ψ , h), which we will denote by ν. Let ν(ψ ,h) |w denote the
posterior distribution of (ψ , h) given w, and let νh |w denote the
marginal posterior distribution of h given w. Regarding νh |w,
the statement “the posterior is proportional to the likelihood
times the prior” reads as νh |w(h) ∝ m(h)u(h). Since u is the
uniform distribution this may be rewritten as νh |w(h) ∝ m(h),
so themode of νh |w is argmaxhm(h). Now, suppose that we can

construct an ergodic Markov chain (ψ (1), h(1)), (ψ (2), h(2)), . . .
whose invariant distribution is ν(ψ ,h) |w. The marginal sequence

h(1), h(2), . . . then has invariant distribution equal to νh |w. Any
method for estimating the mode of νh |w from the sequence
h(1), h(2), . . . gives rise to an estimate of argmaxhm(h).

Now, generally speaking, estimation of the mode of a density
is a hard problem. If f is a density onRp, the rate of convergence
of typical nonparametric estimators of the mode based on
an iid sample of size n is n1/(4+p) (Tsybakov 1990; Donoho
and Liu 1991) so even in the simplest case where p = 1,
this is the very slow rate of n1/5. Doss and Linero (2019)
suggested that, in theMarkov chainMonte Carlo setting, if Rao-
Blackwellization is possible, that is, if the conditional density
of h given ψ and w is available, then νh |w may be estimated
by ν̂h |w(h) = (1/n)

∑n
i=1 νh | ψ=ψ (i),w(h). This is simply an

average, so under suitable conditions on the Markov chain
and the joint posterior distribution ν(ψ ,h) |w, for any fixed h,
ν̂h |w(h) converges to νh |w(h) at the rate of n1/2, and this is true
regardless of the dimension of h. In our LDA setup, we are able
to construct an augmentation random vector A such that when
we consider the vector (w,ψ , h,A), the marginal conditional
distribution of (ψ , h) given w is equal to ν(ψ ,h) |w, and we are
able to construct a uniformly geometrically ergodic Markov
chain (ψ (1), h(1),A(1)), (ψ (2), h(2),A(2)), . . . with invariant
distribution ν(ψ ,h,A) |w. Moreover, Rao-Blackwellization is
possible, that is, the conditional density of h given (ψ ,A)

and w is available in closed form, so νh |w may be estimated
by ν̂h |w(h) = (1/n)

∑n
i=1 νh | (ψ=ψ (i),A=A(i),w)

(h). For this

average, we have a central limit theorem that says that for any
fixed h, n1/2

(
ν̂h |w(h) − νh |w(h)

)
converges in distribution

to a mean-zero normal random vector. We view ν̂h |w(·)

and νh |w(·) as functions, and using tools from empirical
process theory, we establish uniformity in the convergence,
that is, n1/2

(
ν̂h |w(·) − νh |w(·)

)
converges in distribution to

a mean-zero Gaussian process indexed by h, and this entails
that n1/2

(
argmaxh ν̂h |w(h) − argmaxh νh |w(h)

)
converges

in distribution to a mean-zero normal random vector; in
particular, argmaxh ν̂h |w(h) converges to argmaxh νh |w(h)
at the rate of n1/2. This gives a successful implementation of
the approach in Doss and Linero (2019). To recapitulate, the
approach involves two distinct steps: (1) construct a Markov
chain whose invariant distribution is the posterior distribution
of (ψ , h) given w, and (2) develop a procedure for using the
output of the chain to efficiently estimate the marginal posterior
density of h. We develop two ways of carrying out Step 1. The
first is based on a combination of Hamiltonian Monte Carlo
and the CGS of Griffiths and Steyvers (2004), and the second
is based on an implementation of data augmentation. We also

develop two ways of carrying out Step 2. Then we compare and
contrast the various combinations andmake a recommendation
for which overall procedure to use.

The article is organized as follows. In Section 2, we develop
twoMarkov chains on (z, h)with invariant distribution equal to
the marginal posterior distribution of (z, h) given w (we argue
that it is possible to deal with (z, h) instead of with (ψ , h) and
that doing so is more convenient). In Section 3, we present two
methods for estimation of the marginal posterior density of h
givenw from the output of theMarkov chains. Also in Section 3,
we give results on consistency and asymptotic normality of
the resulting estimates of argmaxhm(h), and explain how to
construct confidence sets for argmaxhm(h). In Section 4, we
give the results of experiments on synthetic and real datasets,
compare and contrast the various methods we propose, also
compare them with other methods in the current literature, and
make our recommendations.

2. TwoMarkov ChainsWhose Invariant Distribution Is

the Posterior Distribution of (z, h)

This section consists of two parts. In Section 2.1, we show how
we can use Hamiltonian Monte Carlo (HMC) in conjunction
with the CGS of Griffiths and Steyvers (2004) to develop a
Markov chain with invariant distribution equal to ν(z,h) |w. In
Section 2.2, we introduce an augmentation vectorA and develop
a chain that runs on the triple (z, h,A), and for which the
marginal sequence (z(1), h(1)), (z(2), h(2)), . . . also has invariant
distribution equal to ν(z,h) |w; we also provide a theorem that
states that this chain is uniformly ergodic. We compare these
two chains in Section 4, where we shall see that which chain
is preferable depends on certain features of the corpus, such as
its size. Note that we are dealing with the pair (z, h), whereas
the development in Doss and Linero (2019) deals with the pair
(ψ , h), whereψ = (β , θ , z) is the full parameter. However, there
is no problem in working with (z, h) as long as we can effi-
ciently estimate themarginal posterior density of h givenw from
the pairs (z(1), h(1)), (z(2), h(2)), . . . by Rao-Blackwellization or
some other method which, as we shall see, is the case.

Before proceeding, we need to establish our notation for
distributions, since there are many distributions involved in our
development. When h is not random, we use ν(h) for the prior
distribution of ψ and add subscripts as necessary to denote
conditional and marginal distributions. Thus, for example,

ν
(h)
ψ |w denotes the posterior distribution of ψ in the LDAmodel

indexed by h. When h is random, we use ν for the joint prior
distribution of (h,ψ) and again use subscripts as necessary. So,
for example, νh denotes the prior distribution of h, and νh |w

denotes the marginal posterior distribution of h. Also, note that
ν(h), ν, νh |w, etc. are probability measures; however, we will on
occasion slightly abuse notation and use the same symbol to
denote both the probability measure and its density, if this does
not cause confusion. Thus, when we write νh |w(h) ∝ m(h)u(h),
this will be understood to be a statement regarding densities.

In Section 1, we took the prior on h, νh, to be the uni-
form distribution on H, which we temporarily assumed was a
compact set. In fact, we prefer to take H = (0,∞)T+1, and
it turns out that the posterior corresponding to the uniform
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prior on (0,∞)T+1 is improper. This is shown in Xia and
Doss (2020, sec. 1). Therefore, we will take νh to be a proper
prior. When νh is a proper prior, we need to take the statement
νh |w(h) ∝ m(h)νh(h) and rewrite it as νh |w(h)/νh(h) ∝ m(h),
so we will need to estimate the maximizer of νh |w/νh, rather
than the mode of νh |w, but this does not create any difficulties
either with the theory or in practice. We will use gamma priors
because of their conjugacy properties; specifically, we will take

νh(h) = ga,b(η)
∏T

t=1 ga,b(αt), where ga,b(u) ∝ ua−1 exp(−bu).
For small b, g1,b is nearly uniform (in the sense that as b →

0, g1,b restricted to a bounded set converges to the uniform
distribution on that set). So in our experiments in Section 4, we
will use g1,b with a small b; however, because we are adjusting
via division by νh, any gamma distribution would work.

We digress briefly and consider the following natural ques-
tion: Since we are dealing with a fully Bayes approach, why not
stop there, that is, why do we need to go on and maximize
the marginal likelihood of h to implement an empirical Bayes
approach? The fully Bayes approach, which goes under the
general name of “Bayesianmodel averaging,” can be very useful.
On the other hand, there are several good reasons why one
may want to avoid it. First, to use a fully Bayes approach, we
must specify the prior on h, and as mentioned in Section 1,
this choice can have a great influence on the analysis. Thus,
two different analysts can reach different conclusions. In con-
trast, the empirical Bayes approach consists of maximizing the
marginal likelihood, which does not involve any prior on h. Our
implementation of the empirical Bayes approach does involve
putting a prior on h, but this is just a mechanism for obtaining
the maximizer. To clarify, any prior on h would yield the same
estimate of h, so we are free to use any prior we want, and
our choice is based on convenience. Second, one may wish to
do Bayesian model selection, as opposed to Bayesian model
averaging, because the subsequent inference is then more par-
simonious and interpretable. The issues surrounding the choice
of empirical Bayes and fully Bayes inference are discussed more
fully in George and Foster (2000) and Robert (2001, chap. 7).

Before developing our Markov chain algorithms, we will
express the joint distribution of (z, h) up to a normalizing con-
stant, and to do that we need to review some notation which
is standard when using the LDA model. Let ndt =

∑nd
i=1 zdit

denote the number of words in document d assigned to topic
t; let mdtv =

∑nd
i=1 zditwdiv denote the number of words in

document d for which the latent topic is t and the index of the
word in the vocabulary is v; let m·tv =

∑D
d=1mdtv denote the

number of words in the corpus for which the latent topic is t and
the vocabulary element is v; and letm·t· =

∑V
v=1m·tv denote the

number of words in the corpus for which the latent topic is t.
For the model in which h is not random, the prior distribu-

tion of ψ is given by lines 1–3 of the LDA model description,
and is

ν(h)(ψ) =

[ D∏

d=1

(
	

(∑T
t=1 αt

)
∏T

t=1 	(αt)

T∏

t=1

θ
ndt+αt−1
dt

)]

×

[ T∏

t=1

(
	(Vη)

	(η)V

V∏

v=1

β
η−1
tv

)]
. (2.1)

When h is random, the joint prior distribution of (ψ , h) is
obtained bymultiplying the expression for ν(h)(ψ) given in (2.1)

by
[∏T

t=1 αa−1
t exp(−bαt)

]
[ηa−1 exp(−bη)]. The joint poste-

rior distribution of (ψ , h) is obtained (up to a normalizing
constant) by further multiplying by the likelihood (given by
line 4 of the LDA model description) and, finally, the joint
posterior distribution of (z, h) is obtained by integrating out θ

and β . This gives

ν(z,h) |w(z, h) ∝

[ D∏

d=1

(
	

(∑T
t=1 αt

)
∏T

t=1 	(αt)

∏T
t=1 	(ndt + αt)

	
(
nd +

∑T
t=1 αt

)
)]

×

[ T∏

t=1

αa−1
t exp(−bαt)

]

×

[ T∏

t=1

(
	(Vη)

	(η)V

∏V
v=1 	(m·tv + η)

	(m·t· + Vη)

)]

× ηa−1 exp(−bη). (2.2)

We will construct two MCMC algorithms for sampling
from this distribution, and our general approach is as follows.
Write (z, h) = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD , h). The CGS
of Griffiths and Steyvers (2004) runs on the N-dimensional
vector (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD), updating one variable
at a time, with β and θ integrated out. Let Qh(z, z

′) denote the
Markov transition function for the CGS for the LDA model
indexed by h. The Markov transition function Qh leaves the

posterior distribution ν
(h)
z |w invariant; equivalently, Qh leaves

νz | (h,w) invariant. Now, suppose that Pz(h, h
′) is a Markov

transition function that leaves νh | (z,w) invariant. It then follows
that the composition of Qh and Pz leaves ν(z,h) |w invariant. In
other words, if we update z using Qh (in N steps) and then
update h using Pz , then the result is one cycle of a Markov chain
whose invariant distribution is ν(z,h) |w. We will construct two
Markov transition functions which leave νh | (z,w) invariant, one
based on Hamiltonian Monte Carlo (Section 2.1), and the other
based on data augmentation (Section 2.2). Either of these can be
used, in conjunction with the CGS, to produce a Markov chain
on (z, h) with the desired invariant distribution.

Letw(−di) denote the collection of all the words in the corpus
except for wdi, and let z(−di) denote the vector consisting of all
the zkl’s except for zdi. Let ndt(−di),m·tv(−di), andm·t·(−di) be the
variables ndt , m·tv, and m·t·, respectively, except that they are
based on w(−di) and z(−di), instead of w and z. The conditional
distributions needed to run the CGS are given by

νzdi | (z−(di),h,w)(et) ∝

(
ndt(−di) + αt

nd − 1 +
∑T

t′=1 αt′

)(
m·tv(−di) + η

m·t·(−di) + Vη

)
,

(2.3)
where et denotes the tth unit vector, that is, the vector with a
1 at the tth position and 0’s elsewhere. Formula (2.3) is given
without proof in Griffiths and Steyvers (2004). Its derivation
is not trivial and is given, for example, in Chen (2015). In the
next two subsections we turn to our methods for sampling from
νh | (z,w).

We now pause to consider the big picture.We have chosen to
use the CGS to sample z. Another possibility is to approximate

ν
(h)
z |w (equivalently νz | (h,w)) via variational methods; see the
Appendix to Blei, Ng, and Jordan (2003) for a description.
Variational inference has the advantage that it is very fast,
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and so can handle very large corpora. Unfortunately, there
are no useful theoretical bounds on the approximation error.
If we were to use variational inference to estimate νz | (h,w)

then, because an approximation would be used in every sweep
through (z, h), we would have no guarantee that the resulting
sequence (z(1), h(1)), (z(2), h(2)), . . . has ν(z,h) |w as its limiting
distribution, and in fact we would have no guarantee that the
sequence even has a limiting distribution. For this reason, we
did not use the variational approximation. A viable alternative
to using the CGS is to use the “grouped Gibbs sampler,” which
is a two-cycle Gibbs sampler that runs on the pair (z, (β , θ)).
This sampler, discussed in Section 5, can handle very large
corpora because it is amenable to distributed computing: given
z and w, the θd’s and βt ’s are all independent, so can be updated
simultaneously by different processors; and given β , θ , and w,
the components of z are independent, so can also be updated
simultaneously by different processors. Althoughwe did not use
it in the present article, this alternative method of sampling is
potentially a good choice, especially when dealing with large
corpora.

2.1. AMarkov Chain Based on HamiltonianMonte Carlo

It is not really possible to explain how HMC can be used to
sample h without first explaining what it is. HMC is a highly
developedmethodology, and because the tutorials on it that cur-
rently exist in the literature are quite lengthy and detailed in Xia
and Doss (2020, sec. 2), we review HMC, and our description is
the simplest that enables the reader to understand howwe apply
it. The reader who is interested in a more detailed description of
HMC is referred to Neal (2011), on which most of our review
is based. Below, we explain how we use HMC to construct
a Markov transition function whose invariant distribution is
νh | (z,w).

2.1.1. Application of HMC to Sampling the Hyperparameters

in the LDAModel

We now show how HMC can be used to make a draw from
νh | (z,w), and for this we need an expression for νh | (z,w), at least
up to a normalizing constant. Note that νh | (z,w) has the same
form as ν(z,h) |w, for which an expression is given in (2.2), except
that nd, ndt , m·tv, and m·t·, which are functions of z, are now
viewed as constants (these quantities are defined in the para-
graph above (2.1)). The leapfrog algorithm implicitly assumes
that the support of νh | (z,w) isR

T+1, and in the values for h that it
returns, some components may be negative. In fact, the support
of νh | (z,w) is (0,∞)T+1. One way of handling this problem is
to simply allow the Metropolis acceptance probability to deal
with it: values of h with negative components are automatically
rejected. Unfortunately, when dim(h) is large, this can lead to
an excessively high rejection rate. An alternative solution, which
we have taken instead, is to simply apply a component-wise

log transformation. Let h̃ = (A1, . . . ,AT ,B), where At =

log(αt), t = 1, . . . ,T, and B = log(η). We work with the

induced distribution on h̃, which is given by

νh̃ | (z,w)
(h̃)

∝

[ D∏

d=1

(
	

(∑T
t=1 exp(At)

)
∏T

t=1 	(exp(At))

∏T
t=1 	(ndt + exp(At))

	
(
nd +

∑T
t=1 exp(At)

)
)]

×

[ T∏

t=1

exp{(a − 1)At} exp{−b exp(At)}

]
exp

(∑T
t=1At

)

×

[ T∏

t=1

(
	(V exp(B))

	(exp(B))V

∏V
v=1 	(m·tv + exp(B))

	(m·t· + V exp(B))

)]

× exp{(a − 1)B} exp{−b exp(B)} exp(B). (2.4)

Let U(h̃) = − log
(
νh̃ | (z,w)

(h̃)
)
, which is the function whose

gradient we need in order to run the leapfrog algorithm.With C
denoting the normalizing constant in (2.4), we have

U(h̃) = −

D∑

d=1

[
log

(
	

( T∑

t=1

exp(At)

))
−

T∑

t=1

log
(
	(exp(At))

)

+

T∑

t=1

log
(
	(ndt + exp(At))

)

− log
{
	

(
nd +

T∑

t=1

exp(At)
)}]

− a

T∑

t=1

At + b

T∑

t=1

exp(At)

−

T∑

t=1

[
log

(
	(V exp(B))

)
− V log

(
	(exp(B))

)

+

V∑

v=1

log
(
	(m·tv + exp(B))

)

− log
(
	(m·t· + V exp(B))

)]

− aB + b exp(B) + log(C). (2.5)

We can now get a closed-form expression for the gradient
of U (the constant C has no effect on the gradient of U),
which involves the digamma function 
 , defined by 
(x) =

∂ log(	(x))/∂x. From (2.5), we get

∂U

∂At
= − exp(At)

{
D

[



( T∑

t′=1

exp(At′)
)
− 
(exp(At))

]

+

D∑

d=1

[

(ndt + exp(At)) − 


(
nd +

T∑

t′=1

exp(At′)
)]

− b

}
− a,

(2.6)
∂U

∂B
= − exp(B)

{
TV

[

(V exp(B)) − 
(exp(B))

]

+

T∑

t=1

V∑

v=1


(m·tv + exp(B))

− V

T∑

t=1


(m·t· + V exp(B)) − b

}
− a.

With formulas (2.5) and (2.6) in place, we can now combine
Algorithm S-1 in Xia and Doss (2020, sec. 2) and the CGS to
obtain Algorithm 1, which describes a complete scheme for
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generating a Markov chain with invariant distribution equal to
ν(z,h) |w. (Note that although HMC is used to generate from

νh̃ | (z,w)
, because we transform h̃ back to the original scale, the

final output of the algorithm is a sequence whose invariant
distribution is νh | (z,w).)

Algorithm 1: Sampling (z, h)

Data: Observed words w
Result: A Markov chain (z(1), h(1)), (z(2), h(2)), . . . with

invariant distribution equal to ν(z,h) |w

1 Initialize z(0), h(0), ε, L, n. Let h̃(0) = log(h(0)), U(h̃) be

defined by (2.5), and ∇h̃U(h̃) be defined by (2.6);

2 for i = 1, . . . , n do

// Update z given h by the CGS

3 for each zdi in z do

4 update zdi using the multinomial distribution
νzdi | (z−(di),h,w) given by (2.3);

// Update h given z by HMC

5 generate y(0) ∼ N (0,M);

6 set h̃(i) ← h̃(i−1), h∗ ← h̃(i−1), y∗ ← y(0);
7 for j = 1, . . . , L do

8 set y∗ ← y∗ − ε∇hU(h∗)/2;
9 set h∗ ← h∗ + εM−1y∗;

10 set y∗ ← y∗ − ε∇hU(h∗)/2;

11 set r = exp
{
−U(h∗) − (y∗)�M−1y∗/2 + U(h̃(i−1)) +

(y(0))�M−1y(0)/2
}
;

12 with probability min{1, r} set h̃(i) ← h∗;

13 set h(i) = exp(h̃(i));

2.2. AMarkov Chain Based onData Augmentation

HMC requires the selection of two tuning parameters. In con-
trast, data augmentation does not involve any tuning param-
eters. The method is described as follows. Suppose that fX is
an intractable density on a space X, and suppose that f is a
density on the space X × Y with the following two properties:
(i)

∫
Y f (x, y) dy = fX(x) for all x ∈ X, and (ii) simulation

from the associated conditional pdf ’s fX |Y and fY |X is feasible.
The data augmentation algorithm works by successively gener-
ating from fX |Y and fY |X , obtaining (X1,Y1), (X2,Y2), . . .. This
sequence of pairs is a Markov chain with invariant density f ,
and the marginal sequence X1,X2, . . . is a Markov chain with
invariant density fX . Transparently, the procedure described
above is nothing more than a two-cycle Gibbs sampler. Given
an intractable density fX(0) , it is sometimes possible to devise an
augmentation scheme involving k variables X(1), . . . ,X(k), and
data augmentation is then simply a (k + 1)-cycle Gibbs sam-
pler on the vector (X(0),X(1), . . . ,X(k)). The marginal sequence

X
(0)
1 ,X

(0)
2 , . . . is then not necessarily a Markov chain, but if the

Markov chain (X
(0)
1 ,X

(1)
1 , . . . ,X

(k)
1 ), (X

(0)
2 ,X

(1)
2 , . . . ,X

(k)
2 ), . . . is

ergodic, then the marginal sequence X
(0)
1 ,X

(0)
2 , . . . has limit-

ing density equal to fX(0) . In the above, fX and f are densities
with respect to Lebesgue measure, but the description can be

extended to more general settings. A nice exposition to data
augmentation is Hobert (2011), which also discusses conditions
under which one can establish the needed ergodicity. In our
situation, the variable h will play the role of X(0), and νh | (z,w)

will correspond to fX(0) . It is worth emphasizing that data aug-
mentation plays a role only in the local generation of h in the
(z, h) pair.

Our data augmentation scheme is based on a strategy origi-
nally used in Escobar andWest (1995) to estimate the posterior
distribution of the precision parameter in a mixture of Dirichlet
processes problem in which there is a prior on this parameter.
A related strategy was used in Teh et al. (2006) in the context
of hierarchical Dirichlet processes, and the strategy was also
used by Newman et al. (2009) in a version of the hierarchical
Dirichlet processes model suitable for distributed computing.
Our scheme is based on the two facts below. Recall that the
Beta function is defined by B(a, b) = 	(a)	(b)/	(a + b), for
any a, b > 0, and gives the normalizing constant for the un-
normalized density qa−1(1 − q)b−1 on (0, 1).

Fact 1. For any u > 0 and positive integer n,

	(u)

	(u + n)
=

B(u, n)

	(n)
=

1

	(n)

∫ 1

0
qu−1(1 − q)n−1 dq.

For n a positive integer, consider the product u(u + 1) · · · (u +

n − 1), which is a polynomial (in u) of degree n, call it pn(u).
The coefficients of this polynomial are called “unsigned Stirling
numbers of the first kind,” and are denoted S(n, i), i = 0, . . . , n,
that is,

pn(u) =

n∑

i=0

S(n, i)ui. (2.7)

Fact 2. For any u > 0 and positive integer n,

	(u + n)

	(u)
= u(u + 1) · · · (u + n − 1) =

n∑

i=0

S(n, i)ui.

Note that Fact 2 is a tautology.
Let u > 0 and consider the discrete random variable with

values in {0, 1, . . . , n} and probability mass function πu(i) ∝

S(n, i)ui/c, where c is a normalizing constant. Fact 2 states that
	(u + n)/	(u) is the normalizing constant, that is,

πu(i) =
	(u)

	(u + n)
S(n, i)ui. (2.8)

The probability mass function πu appears in consideration of
samples associated with the Dirichlet process, as follows. Con-
sider the Dirichlet process D(G, u), where G is the base proba-
bility measure, assumed continuous, and u > 0 is the concen-

tration parameter. Suppose F ∼ D(G, u) and ξ1, . . . , ξn
iid
∼ F. As

we will soon see, πu arises as the distribution of the number of
distinct values among ξ1, . . . , ξn. For l = 1, . . . , n, let Yl be the
indicator that ξl is not equal to any of its predecessors. As is well
known, Yl ∼ Bernoulli

(
p = u/(u+ l−1)

)
. Therefore, denoting

Y = (Y1, . . . ,Yn) and y = (y1, . . . , yn), we have

P(Y = y) =
	(u)

	(u + n)
u

∑n
l=1 yl

n∏

l=1

(l − 1)1−yl .
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It follows that for I :=
∑n

l=1 Yl, for i = 0, 1, . . . , n, we have

P(I = i) =
∑

∑n
l=1 yl=i

P(Y = y)

=
	(u)

	(u + n)

∑

y:
∑n

l=1 yl=i

u
∑n

l=1 yl

n∏

l=1

(l − 1)1−yl

=
	(u)

	(u + n)
ui

∑

y:
∑n

l=1 yl=i

n∏

l=1

(l − 1)1−yl

=
	(u)

	(u + n)
uiS(n, i), (2.9)

where the last equality in (2.9) comes from the fact that∑
y:

∑n
l=1 yl=i

∏n
l=1(l − 1)1−yl is precisely the coefficient of ui

for the polynomial pn defined in (2.7). From (2.9), we see
that the distribution of the random variable I is equal to the
distribution πu defined in (2.8). The significance of this is that
if we wish to generate a random variable from the distribution
πu, for some u, then we can do this by simply generating n
independent Bernoulli’s and taking their sum, instead of dealing
with the Stirling numbers, which are computationally expensive
to obtain.

We now return to the conditional distribution νh | (z,w) which,
as mentioned in the beginning of Section 2.1.1, is the same
as ν(z,h) |w, except that nd, ndt , m·tv, and m·t· are viewed as
fixed constants. For convenience, we write it explicitly here, so
we can notice that for this distribution, α and η are mutually
independent given z and w. We have

νh | (z,w)(h) ∝

[ D∏

d=1

(
	

(∑T
t=1 αt

)
∏T

t=1 	(αt)

∏T
t=1 	(ndt + αt)

	
(
nd +

∑T
t=1 αt

)
)]

×

[ T∏

t=1

αa−1
t exp(−bαt)

]

×

[ T∏

t=1

(
	(Vη)

	(η)V

∏V
v=1 	(m·tv + η)

	(m·t· + Vη)

)]

× ηa−1 exp(−bη)

∝ να | (z,w)(α) × νη | (z,w)(η), (2.10)

in self-explanatory notation. This conditional independence
makes joint sampling of α and η simple: we sample α and η

separately from να | (z,w)(α) and νη | (z,w)(η), respectively. We
may write

να | (z,w)(α) ∝

[ D∏

d=1

(
	

(∑T
t=1 αt

)
∏T

t=1 	(αt)

∏T
t=1 	(ndt + αt)

	
(
nd +

∑T
t=1 αt

)
)]

×

[ T∏

t=1

αa−1
t exp(−bαt)

]

=

[ D∏

d=1

	
(∑T

t=1 αt

)

	
(
nd +

∑T
t=1 αt

)
][ D∏

d=1

T∏

t=1

	(ndt + αt)

	(αt)

]

×

[ T∏

t=1

αa−1
t exp(−bαt)

]
. (2.11)

Applying Fact 1 to the first term in brackets after the equals sign
in (2.11), we get

D∏

d=1

	
(∑T

t=1 αt

)

	
(
nd +

∑T
t=1 αt

)

=

D∏

d=1

[
1

	(nd)

∫ 1

0
q
∑T

t=1 αt−1

d (1 − qd)
nd−1 dqd

]
, (2.12)

and applying Fact 2 to the second term in brackets, we get

D∏

d=1

T∏

t=1

	(ndt + αt)

	(αt)
=

D∏

d=1

T∏

t=1

ndt∑

i=0

S(ndt , i)α
i
t . (2.13)

In view of Equations (2.12) and (2.13), we see that if we intro-
duce the augmentation variables I = (I11, . . . , I1T , . . . , ID1, . . . ,
IDT) and Q = (Q1, . . . ,QD), then να | (z,w)(α) may be re-
expressed in an augmented form up to a normalized constant
as

ν(α,I,Q) | (z,w)(α, i, q)

∝

[ D∏

d=1

q
∑T

t=1 αt−1

d (1 − qd)
nd−1

][ D∏

d=1

T∏

t=1

S(ndt , idt)α
idt
t

]

×

[ T∏

t=1

αa−1
t exp(−bαt)

]
. (2.14)

We will now show that (2.14) enables us to obtain closed-form
expressions for να | (I,Q,z,w), νI | (α,Q,z,w), and νQ | (α,I,z,w), which
will allow us to successively sample α, I, and Q.

Regarding α, from (2.14) we see that

να | (I,Q,z,w)(α)

∝

[ D∏

d=1

qd

]∑T
t=1 αt[ D∏

d=1

T∏

t=1

α
idt
t

]

×

[ T∏

t=1

αa−1
t exp(−bαt)

]

=

T∏

t=1

[[ D∏

d=1

qd

]αt

α

∑D
d=1 idt+a−1

t exp(−bαt)

]

=

T∏

t=1

[
α

∑D
d=1 idt+a−1

t

exp
{
−

(
b −

D∑

d=1

log(qd)
)
αt

}]
, (2.15)

which we recognize as a product of T gamma densities. Thus,
to sample α, we generate αt from the gamma distribution

with shape parameter a +
∑D

d=1 idt and rate parameter b −∑D
d=1 log(qd), independently for t = 1, . . . ,T.
Regarding I, from (2.14) we see that

νI | (α,Q,z,w)(i) ∝

D∏

d=1

T∏

t=1

S(ndt , idt)α
idt
t , (2.16)

from which we note that the Idt ’s are independent given
(α,Q, z,w). It is easy to see that if ndt = 0, then Idt is
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deterministically equal to 0. If ndt > 0 then, as we discussed

earlier, Idt may be represented as Idt =
∑ndt

l=1 I
(l)
dt where

I
(l)
dt

indep
∼ Bernoulli

(
αt

αt + l − 1

)
, l = 1, . . . , ndt ,

and this enables us to easily generate I
(l)
dt .

Regarding Q, from (2.14) we see that

νQ | (α,I,z,w)(q) ∝

D∏

d=1

[
q
∑T

t αt−1

d (1 − qd)
nd−1

]
, (2.17)

which we recognize as a product of D beta densities. Thus, to

sample Q, we generate Qd ∼ Beta
(∑T

t=1 αt , nd
)
independently

for d = 1, . . . ,D.
We now step back and review the big picture. Let us

temporarily act as if η is an unknown constant, that is,
in our fully Bayes model we need to estimate the pos-

terior distribution of (z,α). Recall that N =
∑D

d=1 nd.
What we have described is a Gibbs sampler that runs on
the (N + T + DT + D)-dimensional vector (z,α, I,Q),
where z is updated according to the CGS of Griffiths and
Steyvers (2004), and α, I, and Q are updated as described
in the three preceding paragraphs. From the Markov chain
(z(1),α(1), I(1),Q(1)), (z(2),α(2), I(2),Q(2)), . . ., we may estimate
the posterior distribution of (z,α) given w by considering
the marginal sequence (z(1),α(1)), (z(2),α(2)), . . .. To estimate
the posterior density of α, we may use Rao-Blackwellization,
which uses the sequence (z(1), I(1),Q(1)), (z(2), I(2),Q(2)), . . .
through (2.15). The inclusion of η, discussed next, does not
make any conceptual changes to the big picture.

We now turn to sampling from νη | (z,w). For this purpose, we
introduce the augmentation variables J = (J11, . . . , J1V , . . . , JT1,
. . . , JTV) and R = (R1, . . . ,RT), to re-express νη | (z,w) in aug-
mented form as

ν(η,J,R) | (z,w)(η, j, r) ∝

[ T∏

t=1

r
Vη−1
t (1 − rt)

m·t·−1

]

×

[ T∏

t=1

V∏

v=1

S(m·tv, jtv)η
jtv

]
ηa−1 exp(−bη),

(2.18)

which is analogous to (2.14).
For sampling η, from (2.18) we see that

νη | (R,J,z,w)(η) ∝ ηa+
∑T

t=1

∑V
v=1 jtv−1 exp

{
−

(
b−V

T∑

t=1

log(rt)
)
η
}
,

(2.19)
which we recognize as a gamma distribution with shape param-

eter a+
∑T

t=1

∑V
v=1 jtv and rate parameter b−V

∑T
t=1 log(rt).

For sampling J, from (2.18) we see that

νJ | (η,R,z,w)(j) ∝

[ T∏

t=1

V∏

v=1

S(m·tv, jtv)η
jtv

]
.

This distribution is analogous to νI | (α,Q,z,w), which is given
by (2.16). The Jtv’s are independent, and can be generated as

follows. If m·tv = 0, then Jtv is deterministically equal to 0. If

m·tv > 0, then Jtv may be represented as Jtv =
∑m·tv

l=1 J
(l)
tv , where

J
(l)
tv

indep
∼ Bernoulli

(
η

η + l − 1

)
, l = 1, . . . ,m·tv.

For sampling R, from (2.18) we see that

νR | (η,J,z,w)(r) ∝

[ T∏

t=1

r
Vη−1
t (1 − rt)

m·t·−1

]
,

which we recognize as a product of T beta densities. Conse-

quently, to sample R we generate Rt
indep
∼ Beta(Vη, m·t·), t =

1, . . . ,T.
The data augmentation algorithm runs on the parameter

λ = (z, I,Q, J,R, h). Let P denote the Markov transition func-
tion for the algorithm, that is, P(λ0, ·) is the distribution of λ1
given λ0, and let Pk(λ0, ·) denote the k-step Markov transition
function. Also, let � denote the set of all possible values of λ,
and B� be the associated Borel sigma-field. Theorem 1 estab-
lishes uniform ergodicity, which is the very strong condition
that there exist constants M > 0 and c > 0 such that
‖Pk(λ0, ·) − νλ |w(·)‖TV ≤ M(1 − c)k for all initial λ0 ∈ �,
where the total variation distance ‖·‖TV denotes the supremum
over B� (the geometric rate of convergence does not depend on
the initial starting point λ0).

Theorem 1. LetH0 be a bounded hyper-rectangle, and assume
that the support of the prior on h is contained in H0. Then the
data augmentation chain is uniformly ergodic.

The proof of the theorem is in Xia and Doss (2020, sec. 3).
We believe that theHMCchain is geometrically ergodic, but this
chain is very difficult to analyze, and we have not been able to
establish the result.

3. Efficient Estimation of the Empirical Bayes Choice

of the Hyperparameter

This section is structured as follows. In Section 3.1, we develop
two methods for estimation of the marginal posterior den-
sity νh |w(h); one is based on Rao-Blackwellization, and the
other is based on an extension of Rao-Blackwellization, intro-
duced by Chen (1994), and which is applicable when Rao-
Blackwellization is not feasible. Each of these gives rise to an
estimator of argmaxhm(h). In Section 3.2, we show how to use
these methods to obtain confidence sets for argmaxhm(h), and
our general approach is as follows. Recall from Section 2 that
νh |w(h)/νh(h) ∝ m(h). To avoid distracting minor complica-
tions, in this preamble we will assume that νh is the uniform
prior, so that the preceding relation becomes simply νh |w(h) ∝

m(h). Suppose that for each fixed h, ν̂h |w(h), our estimate of
νh |w(h), takes the form of an average, so that by the strong law
of large numbers in the form of the ergodic theorem and by a
central limit theorem for Markov chains we have

ν̂h |w(h)
a.s.
−→ νh |w(h) and

(3.1)

n1/2
(
ν̂h |w(h) − νh |w(h)

) d
→ N (0, σ 2(h)).
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Now, generally speaking, consistency and asymptotic normal-
ity of ν̂h |w(h) for each fixed h is not sufficient to entail that
argmaxh ν̂h |w(h) converges to argmaxh νh |w(h) in any sense at
all. In fact, even for deterministic real-valued functions fn and
f defined on H, the pointwise convergence condition fn(h) →

f (h) for each h ∈ H does not imply that argmaxh fn(h) →

argmaxh f (h), and a simple counterexample to show this is given
in George and Doss (2018, Appendix). To obtain consistency
and asymptotic normality of argmaxh ν̂h |w(h) as an estimator of
argmaxh νh |w(h), one needs very strong regularity conditions.
These are discussed in detail in Section 3.2, but here wemention
that the main ones are geometric ergodicity of the Markov
chain being used, and a significant strengthening of (3.1) to the
uniform versions

sup
h

|ν̂h |w(h) − νh |w(h)|
a.s.
−→ 0 (3.2)

and

n1/2
(
ν̂h |w(·) − νh |w(·)

) d
→ G(·), (3.3)

where G(·) is a mean 0 Gaussian process indexed by h ∈ H.
In Xia and Doss (2020, sec. 4), we establish (3.2) and (3.3)
for the estimate based on Rao-Blackwellization, using methods
fromempirical process theory. Combining thiswith the uniform
ergodicity of the data augmentation chain asserted by Theo-
rem 1, we obtain consistency and asymptotic normality of the
estimate of argmaxh νh |w(h) based on the data augmentation
chain and Rao-Blackwellization. This is stated formally as The-
orem 2. A corresponding result for the case of the estimate based
on Chen’s (1994) method is given by Theorem 3.

3.1. TwoMethods for Estimation of theMarginal Posterior

Density of the Hyperparameter

3.1.1. Estimation of νh |w via Rao-Blackwellization

Rao-Blackwellization is immediate from the data augmentation
scheme described in Section 2.2. Recall that we use ga,b to
denote the gamma density with shape parameter a and rate
parameter b. The data augmentation scheme gives the sequence
(z(k),α(k), I(k),Q(k), η(k), J(k),R(k)), k = 1, . . . , n, from which
we may form

ν̂h |w(h) =
1

n

n∑

k=1

νh | (w,z(k),I(k),Q(k),J(k),R(k))(α, η)

=
1

n

n∑

k=1

{[ T∏

t=1

g
a+

∑D
d=1 I

(k)
dt , b−

∑D
d=1 log(Q

(k)
d )

(αt)

]

× g
a+

∑T
t=1

∑V
v=1 J

(k)
tv , b−V

∑T
t=1 log(R

(k)
t )

(η)

}
(3.4)

(see (2.15) and (2.19)), which uses only the I, Q, J, and R

components of the sequence. Note that if we use the data aug-
mentation chain, then the I,Q, J,R variables are already avail-
able. If we use the HMC chain, it is still possible to do Rao-
Blackwellization: from the sequence {(z(k), h(k)), k = 1, . . . , n}
produced by HMC, we can generate the augmentation variables
{(I(k),Q(k), J(k),R(k)), k = 1, . . . , n}, as explained in Section 2.2,
and use these to compute the estimator in (3.4).

3.1.2. Estimation of νh |w Through the ImportanceWeighted

Marginal Density Method of Chen

Suppose that (X1,Y1), (X2,Y2), . . . is a Markov chain with
invariant density fX,Y on a space X × Y where Y is Euclidean.
For the purpose of estimating the marginal density fY ,
Chen (1994) introduced a generic procedure, the so-called
importance weighted marginal density estimation method,
which is described as follows for our context, in which z

corresponds to X, h corresponds to Y , and our Markov chain
is (z(1), h(1)), (z(2), h(2)), . . .. Let Z be the set of possible values
of z and let {ωz(·), z ∈ Z} be a family of densities on H. To
estimate νh |w we use the estimator ν̂h |w whose value at h∗ is
given by

ν̂h |w(h∗) =
1

n

n∑

i=1

ωz(i)(h(i))
ν(z,h) |w(z(i), h∗)

ν(z,h) |w(z(i), h(i))
. (3.5)

Note that to calculate (3.5), we need only to know ν(z,h) |w up
to a normalizing constant, and this is given by the expression
on the right side of (2.2). A proof that for every h∗, ν̂h |w(h∗)

converges almost surely to νh |w(h∗) is given in Xia and Doss
(2020, sec. 5). In principle, any family {ωz , z ∈ Z} of den-
sities can be used in (3.5), but Chen (1994) showed that the
choice ωz = νh | (z,w) is optimal in the sense of minimizing
the asymptotic variance and, moreover, for this choice the esti-
mator reduces to the Rao-Blackwellized estimate ν̂RBh |w(h∗) =

(1/n)
∑n

i=1 νh | (z(i),w)(h
∗). Thus, the general estimate (3.5) is to

be used only in caseswhere νh | (z,w) is unknown, so that ordinary
Rao-Blackwellization is not possible. (In our situation, νh | (z,w) is
analytically intractable—see (2.10)—and we are able to do Rao-
Blackwellization only because we have available a scheme for
data augmentation.)

For the case where νh | (z,w) is not known or is analytically
intractable, Chen (1994) suggested that we consider a paramet-
ric family {f φ , φ ∈ �} of distributions on Z × H, run a pilot
Markov chain with invariant distribution ν(h,z) |w, and use it
to estimate the mean and covariance matrix of ν(h,z) |w. The
parameter φ is then chosen so that the mean and covariance
matrix of f φ match those of the estimate of ν(h,z) |w. We then

take ωz to be f
φ

h | z for each z. In our situation, the very high
dimension of z precludes estimating the covariance matrix of
(z, h). So instead we consider a family of distributions on h (and
not on (z, h)) and further restrict each f φ to be a product of

univariate densities: f φ(α, η) =
[∏T

t=1 f
φt (αt)

]
f φT+1(η). From

our pilot chain on (z, h), we form an estimate of the mean and
variance of each component of h, and select φt , t = 1, . . . ,T+1
to match these estimates. We took f φt to be gamma densities.
Perhaps surprisingly, this quite simple procedure seems to work
very well.

Xia (2018) presented a third method for estimating the
marginal posterior density of h, based on averaging Markov
transition densities. In its current implementation, this
approach is very computationally intensive and is not com-
petitive with the other methods.
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3.2. Consistency and Asymptotic Normality of the

Estimate of the Empirical Bayes Choice of the

Hyperparameter

The main result in this section is Theorem 2, which estab-
lishes consistency and asymptotic normality of the estimate of
argmaxhm(h) that is based on the data augmentation chain and
Rao-Blackwellization (3.4). The theorem also states that the esti-
mate of the covariance matrix of the estimate of argmaxhm(h)
constructed through the method of batching is consistent, and
this implies that we can construct asymptotically valid 95%
confidence sets for argmaxhm(h). (The method of batching for
the present setup is reviewed right after the statement of the
theorem.) In the theorems, p is the dimension of h: p = 2 if
we take the distribution of the θd’s to be a symmetric Dirichlet,
and p = T + 1 if we allow this distribution to be an arbitrary
Dirichlet. Theorem 2 refers to the regularity conditions below.

A1 The hyperparameter spaceH is compact.
A2 Themaximizer ofm(·) is unique (thus it makes sense to talk

about argmaxhm(h)).
A3 The maximizer ofm(·) is inH.
A4 The function m(·) is twice continuously differentiable in

H, and the p × p Hessian matrix ∇2
hm(argmaxhm(h)) is

nonsingular.

Theorem 2. Suppose that λ1, λ2, . . . are generated according to
the data augmentation algorithm, let ν̂h |w(h) be given by (3.4),
let m̂n(h) be given by m̂n(h) = ν̂h |w(h)/νh(h), and suppose that
for each n, the maximizer of m̂n(·) is unique. Further, assume
that Conditions A1–A4 hold. Then:

1. argmaxh m̂n(h)
a.s.
−→ argmaxhm(h).

2. n1/2
(
argmaxh m̂n(h) − argmaxhm(h)

) d
→ Np(0,�) for

some positive definite matrix �.
3. Let �̂n be the estimate of � obtained by the method of

batching. Then �̂n
a.s.
−→ �, and in particular �̂n is invertible

for large n. Consequently, the ellipse E given by

E =
{
h : (argmax

h

m̂n(h) − h)��̂−1
n

× (argmax
h

m̂n(h) − h) ≤ χ2
p,.95/n

}

is an asymptotic 95% confidence set for argmaxhm(h). Here,
χ2
p,.95 denotes the 0.95 quantile of the chi-square distribution

with p degrees of freedom.

The proof of the theorem is in Xia and Doss (2020, sec. 4). The-
orem 2 (and Theorem 3) may be used to determine the minimal
Markov chain length that is needed to obtain an acceptably nar-
row confidence region for argmaxhm(h). Themethod of batch-
ing for estimation of � is as follows. The data augmentation
scheme gives the sequence λ(1), . . . , λ(n). The sequence is bro-
ken up into J consecutive pieces of equal lengths called batches.
For j = 1, . . . , J, let A[j] be the estimate of argmaxhm(h) pro-
duced from batch j, and letA[ ] be the estimate of argmaxhm(h)
produced from the entire sequence. The batch-based estimate is

simply �̂n = (n/J)
{
[1/(J−1)]

∑J
j=1

(
A[j] −A[ ]

)(
A[j] −A[ ]

)�}
.

(The quantity inside the braces is essentially the sample covari-
ance matrix of A[1], . . . ,A[J], except that we use A[ ] instead of

the average of A[1], . . . ,A[J] as the centering value; and the term
n/J is a correction to account for the fact that the A[j]’s are
each formed from a sample of size n/J, not n.) Estimates of the
covariance matrix based on batching are consistent under very
general conditions which include that J → ∞ as n → ∞. The
literature recommends taking J = n1/2; see Flegal, Haran, and
Jones (2008) and also Jones et al. (2006).

Theorem 3. The conclusions of Theorem 2 remain true if ν̂h |w

is given by (3.5).

The proof of the theorem is in Xia and Doss (2020, sec. 6).

4. Evaluation of the Fully Bayes Empirical Bayes

Method

This section consists of three parts. In Section 4.1, we review
current methods for approximating argmaxhm(h). Because of
the need to understand the strengths and deficiencies of these
methods, it is essential to have a clear understanding of how
these methods work, so our review is necessarily fairly detailed.
In Section 4.2, we compare our approach with these methods,
and evaluate it on synthetic and real datasets. In Section 4.3,
we compare the empirical Bayes and fully Bayes methods. This
is a comparison of two statistical procedures, as opposed to
a comparison of two numerical methods. The reader who is
interested in understanding and using our methodology but is
not interested in a review and evaluation of other approaches
can read only Section 4.2.1 without loss.

4.1. ExistingMethods for Approximating theMaximum

Marginal Likelihood Estimator of theHyperparameter

As mentioned in Section 1, the maximizer of the marginal like-
lihood of the hyperparameter can be expected to have good sta-
tistical properties, and here we review the literature on approx-
imations of this estimator. But before we do this, we mention
various ad-hoc rules for choosing h that have been presented in
the literature; these deal with the case where the distribution of
the θd’s is a symmetric Dirichlet, indexed by a single parameter
α, so that h = (α, η), that is, dim(h) = 2. The rules are
as follows: hDG = (0.1, 50/T), used in Griffiths and Steyvers
(2004); hDA = (0.1, 0.1), used in Asuncion et al. (2009); and
hDR = (1/T, 1/T), used in theGensim topicmodeling package
(Řehůřek and Sojka 2010), a well-known package used in the
topic modeling community.

4.1.1. Gibbs-EM

In Gibbs-EM, the E-step of the EM algorithm is approximated
by the CGS of Griffiths and Steyvers (2004). There are several
problems with Gibbs-EM (at least for the version implemented
by Wallach (2006)): (1) the approximation is used in the E-step
at every iteration of the algorithm; (2) as with all EM-based
methods, the algorithm can converge to a local maximum; and
(3) an approximation is used in the M-step. Of these, the third
appears to be the most serious, and we now discuss it in more
detail and explain the problem. At the kth iteration, we must
maximize with respect to h the expectation Eh(k)

(
log(ph(z,w))

)
,
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where ph(z,w) is the joint distribution of (z,w) under the LDA
model indexed by h, and the subscript to the expectation indi-

cates that the expectation is taken with respect to νh
(k)

z |w. A
Markov chain z1, . . . , zmk

with invariant distribution equal to
the posterior distribution of z givenw is generated, and we want
to maximize the function G(h) = (1/mk)

∑mk
i=1 log(ph(zi,w)),

which is a proxy for the expectation above. The maximization
is done by solving the equation ∇G(h) = 0 using fixed-point
iteration, and because ∇G(h) is computationally intractable,
Minka’s (2003) approximation is used (in effect, a lower bound
to G(h) is found, and the lower bound is what is maximized).
George and Doss (2018) have shown that when both compo-
nents of argmaxhm(h) are bigger than 1, the Minka (2003)
approximation is very poor, and in Section 4.2 we show that in
this case, even when a huge sample size is used for the CGS,
Gibbs-EM converges to a valuewhich is far from argmaxhm(h).

4.1.2. VEM

Conceptually, the estimate of argmaxhm(h) given by VEM is
obtained as follows. If h(k) is the current value of h, the E-
step of the EM algorithm is to calculate Eh(k)

(
log(ph(ψ ,w))

)
,

where ph(ψ ,w) is the joint distribution of (ψ ,w) under the
LDA model indexed by h, and the subscript to the expectation

indicates that the expectation is taken with respect to νh
(k)

ψ |w.

This step is infeasible because νh
(k)

ψ |w is analytically intractable.

We consider {qφ , φ ∈ �}, a (finite-dimensional) parametric
family of analytically tractable distributions on ψ , and within
this family, we find the distribution, say qφ∗ , which is “closest”

to νh
(k)

ψ |w. Let Q(h) be the expected value of log(ph(ψ ,w)) with

respect to qφ∗ .We viewQ(h) as a proxy for Eh(k)

(
log(ph(ψ ,w))

)
,

and the M-step is then to maximize Q(h) with respect to h, to
produce h(k+1). The maximization is done analytically. While
VEM can handle very large corpora with many topics, there is
no theoretical reason to expect the sequence h(k) to converge
to argmaxhm(h). And if the likelihood surface is multimodal,
then it can fail to find the global maximum (as is the case for all
EM-type algorithms and also gradient-based approaches).

4.1.3. Importance Sampling and Serial Tempering

This approach was developed by George and Doss (2018), who
showed that it greatly outperforms both Gibbs-EM and VEM.
It is based on the observation that if c is a constant, then
the information regarding h given by the two functions m(h)
and cm(h) is the same: the same value of h maximizes both
functions, and the second derivative matrices of the logarithm
of these two functions are identical. In particular, the Hessians
of the logarithm of these two functions at the maximum (i.e.,
the observed Fisher information) are the same and, therefore,
the standard point estimates and confidence regions based on
m(h) and cm(h) are identical. The relevance of this observation
is as follows. Let h1 ∈ H be fixed but arbitrary, and suppose
that ψ1, . . . ,ψn are the initial segment an ergodic Markov

chain with invariant distribution ν
(h1)
ψ |w. Recall that �w(ψ) is

the likelihood function. Note that m(h), which is given by
m(h) =

∫
�w(ψ)ν(h)(ψ) dψ , is the normalizing constant in

the statement “the posterior is proportional to likelihood times

the prior,” that is, ν
(h)
ψ |w(ψ) = �w(ψ) ν(h)(ψ)/m(h). For any

h ∈ H, consider the quantity (1/n)
∑n

i=1 ν(h)(ψ i)/ν
(h1)(ψ i).

As n → ∞, we have

1

n

n∑

i=1

ν(h)(ψ i)

ν(h1)(ψ i)
(4.1a)

a.s.
−→

∫
ν(h)(ψ)

ν(h1)(ψ)
ν

(h1)
ψ |w(ψ) dψ

=
m(h)

m(h1)

∫
�w(ψ)ν(h)(ψ)/m(h)

�w(ψ)ν(h1)(ψ)/m(h1)
ν

(h1)
ψ |w(ψ) dψ (4.1b)

=
m(h)

m(h1)

∫
ν

(h)
ψ |w(ψ)

ν
(h1)
ψ |w(ψ)

ν
(h1)
ψ |w(ψ) dψ =

m(h)

m(h1)
. (4.1c)

The significance of (4.1) is that it shows that we can estimate
the entire family {m(h)/m(h1), h ∈ H} with a single Markov
chain run. Since m(h1) is a fixed constant, as noted above,
the two functions m(h) and m(h)/m(h1) give exactly the same
information about h. The usefulness of (4.1) stems from the fact
that the average on the left side involves only the priors, so we
effectively bypass having to deal with the posterior distributions.

Actually, the statement that (4.1) shows that we can estimate
all of {m(h)/m(h1), h ∈ H} with a single Markov chain run
is too good to be true, and in reality the estimate in (4.1a)
has a serious defect: unless h is close to h1, ν

(h) can be nearly
singular with respect to ν(h1) over the region where the ψ i’s
are likely to be, resulting in a very unstable estimate. From a
practical point of view, this means that there is effectively a
“radius” around h1 within which one can safely move, and there
may not exist a single value of h1 that gives rise to estimates
that are stable for all h ∈ H. One way of dealing with this
problem is to select J fixed points h1, . . . , hJ ∈ H that “cover”
H in the sense that for every h ∈ H, ν(h) is “close to” at least
one of ν(h1), . . . , ν(hJ). We then replace ν(h1) in the denominator

by
∑J

j=1 bjν
(hj), for some suitable choice of positive constants

b1, . . . , bJ . Operating intuitively, we say that for any h ∈ H,
because there exists at least one j for which ν(h) is close to ν(hj),

the variance of ν(h)(ψ)
/[∑J

j=1 bjν
(hj)(ψ)

]
is small; hence the

variance of ν(h)(ψ)
/[∑J

j=1 bjν
(hj)(ψ)

]
is small simultaneously

for all h ∈ H. Whereas for the estimates (4.1a) we need a

Markov chain with invariant distribution is ν
(h1)
ψ |w, in the present

situation we need a Markov chain whose invariant distribution
is a mixture of ν

(h1)
ψ |w, . . . , ν

(hJ)
ψ |w. This approach may be imple-

mented by a methodology called serial tempering (Marinari
and Parisi 1992; Geyer and Thompson (1995)). Serial tempering
produces an estimator M̂n(h) with the property that for each

h, as n → ∞, M̂n(h)
a.s.
−→ cm(h) for some constant c.

So to estimate argmaxhm(h), we use argmaxh M̂n(h). A key
issue with the methodology involves the choice of the “skele-
ton points” h1, . . . , hJ : in order that argmaxh M̂n(h) accurately
estimate argmaxhm(h), it is necessary that h1, . . . , hJ be close
to argmaxhm(h), but argmaxhm(h) is unknown, leading to a
circular problem. George and Doss (2018) proposed an iterative
scheme for selecting the skeleton points. While the scheme
works well formoderate-size corpora, whether it works for large
corpora is not clear, and how well it works for corpora with a
large number of topics is also not clear.
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Table 1. Two corpora created from the 20Newsgroups dataset.

Corpus Categories T D V N

C-A comp.sys.ibm.pc.hardware (189), misc.forsale (167), 6 1114 6394 74,607
soc.religion.christian (192), talk.politics.guns (196),
rec.sport.baseball (184), sci.space (186)

C-B comp.graphics (167), comp.os.ms-windows.misc (188), 5 928 3567 45,571
comp.sys.ibm.pc.hardware (192), comp.windows.x (194),
comp.sys.mac.hardware (187)

NOTE: The columns labeled T , D, V , and N give the number of topics, number of documents, vocabulary size, and total number of words, respectively, for each corpus, and
the numbers shown in parentheses next to the category names are the number of documents associated with the corresponding categories.
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Figure 1. Estimate of the marginal likelihood surface (up to a constant) for two corpora. The surface on the left is for a corpus for which the topics are very distinct, and
the surface on the right is for a corpus for which the topics are closer to each other. The α-values suggested by the plots correctly reflect the fact that for the first corpus
one expects each document to have a single topic, whereas for the second corpus one expects the documents to have several topics.

4.2. Evaluation and ComparisonWith ExistingMethods

This section consists of four parts. In Section 4.2.1, we compare
Markov chains on (z, h) in terms of mixing rates and execution
time. The chains we discuss are the two developed in this
article (based on HMC and data augmentation), and also a
chain based on slice sampling, which we include for the sake
of completeness. Very briefly, the HMC chain turns out to be
the overall winner. Therefore, in our subsequent sections it is
the one on which we focus when we compare the fully Bayes
empirical Bayes method (for which we use the acronym FBEB)
with other methods. In Sections 4.2.2 and 4.2.3, we compare
our FBEB method with existing methods, and before doing so,
we first discuss the criteria we use for the comparison. Our
first criterion is simply estimation accuracy: our FBEB approach
gives one way to estimate argmaxhm(h), and we compare it
with the methods described in Section 4.1, namely Gibbs-EM,
VEM, and the method based on importance sampling via serial
tempering. For unity of notation,wewill denote these estimators

by ˆ̂hFBEB,
ˆ̂hGEM, ˆ̂hVEM, and ˆ̂hISST, respectively, and we will use

the acronyms in the subscripts to denote the corresponding
methods. (As a remark on notation, we note that argmaxhm(h)
is an estimate of the true value of h, that is, the h used to generate
the corpus, so this empirical Bayes estimate should be called

ĥ; and ˆ̂hFBEB,
ˆ̂hGEM, ˆ̂hVEM, and ˆ̂hISST are all estimates of ĥ,

hence the need for the “double hat”: it reminds us that we are
estimating an estimator.) Our first goal is to compare these as

estimators of ĥ = argmaxhm(h). This requires us to know the
true value of argmaxhm(h), or at least have a tight confidence
region for it with theoretically guaranteed coverage probability.
Our second criterion is model fit (or predictive accuracy): we

wish to select the value of h, say hopt, for which the LDA model
indexed by hopt outperforms LDAmodels indexed by any other
value of h. These two criteria are not the same. (This is analogous
to a variable selection situation in linear regression. One goal is
to identify those regression coefficients which are exactly zero,
and a distinct goal is to select a set of variables for which the cor-
respondingmodel has the best predictive ability. SeeYang (2005)
for a discussion of these points.) In Sections 4.2.2 and 4.2.3, we
compare our FBEB method with existing methods under our
first and second criteria, respectively. Finally, in Section 4.2.4,
we discuss scalability and the advantages of FBEB over ISST for
large corpora.With the exception of the last part of Section 4.2.2,
in our evaluations we will always take the prior distribution of
the θd’s to be a symmetric Dirichlet. In Section 5, we return to
the issue of feasibility of FBEB for large corpora.

Before we start on these four subsections, we illustrate the
role of the hyperparameter in inference, by considering two
corpora with different characters. These corpora are taken from
the 20Newsgroups dataset, which is often used for benchmark-
ing in topic modeling. Corpus C-A consists of articles from
six of the 20 topics, while Corpus C-B consists of articles from
five subcategories of the single topic Computers (and when
fitting the LDA model, we took the number of topics to be
T = 6 for corpus C-A, and T = 5 for Corpus C-B). Thus,
corpus C-A consists of documents which are easy to distinguish
from each other, while C-B consists of documents which are
difficult to distinguish from each other. Table 1 gives relevant
information on these two corpora.We applied themethodology
developed in this article to produce plots of estimates of the
marginal likelihood surface (up to a constant) for each corpus,
and Figure 1 gives the results. Recall that ifU ∼ DirT(ε, . . . , ε),
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then in the limiting case where ε → 0, U tends to be a vector
with one of its components being equal to 1, and the rest 0, and
the location of the 1 is uniform over {1, . . . ,T}. The surface
for corpus C-A suggests a value of α equal to 0.06, correctly
reflecting the fact that documents inC-Awill have a single topic.
On the other hand, for corpus C-B the topics are close to each
other, which makes the topic for a given word more uncertain;
as a consequence, a given document may have several topics.
The larger value for α suggested by the plot for corpus C-B
(α = 0.093) reflects that fact. To produce Figure 1, we used
HMC chains of lengths 10,000, number of leapfrog steps L = 2,
and stepsizes ε = 0.0035 and 0.005 for corpora C-A and C-B,
respectively. Here and in the rest of the article, we arrived at the
values for L and ε by following the recommendations in Neal
(2011, sec. 5.4.2). Specifically, in preliminary runs involving
short chains, we set L = 2 and adjusted ε so that the acceptance
rate was about 0.65; increasing L did not help much, and only
slowed down the algorithm.

4.2.1. Statistical and Computational Efficiency of Three

Markov Chains on (z, h)

Recall that the Markov chain developed in Section 2.1 updates
(z, h) by updating z via the CGS and updating h via HMC. An
alternative for the h-update is slice sampling (Neal 2003), and
because slice sampling has been used for the LDAmodel before
(Wallach 2008)—although for a purpose different than ours—
it is natural to ask how it would perform in the present setting,
so we include it in our comparison. In this section, we compare
the HMC-based chain, the augmented collapsed Gibbs sampler
developed in Section 2.2, and the chain based on slice sampling
(we will use the acronyms HMC, ACGS, and SS, respectively)
based on two criteria: mixing rate and execution time. To this
end, we generated artificial corpora from LDA models with
configuration parameters set as follows. All of them had V =

200 and nd = 80, and the corpora were in three groups:

• T = 5; D = 100, 300, 500; nine hyperparameters given by
Table 2;

• T = 10; D = 100; nine hyperparameters given by Table 2;
• T = 15; D = 100; nine hyperparameters given by Table 2.

So there were 45 corpora. Each chain was run for 10,000 cycles
for each corpus.

To compare mixing rates of several Markov chains, quan-
tities such as asymptotic variances and autocorrelation func-
tions (ACFs) are often used. Unfortunately, the very high
dimension of (z, h) precludes computing these for each
component of this parameter. An attractive alternative is
to consider, for a chain of length n, the posterior densities
ν(z,h) |w(z(1), h(1)), . . . , ν(z,h) |w(z(n), h(n)), and compute these
quantities for this sequence (on the log scale). Thus, letting
π1, . . . ,πn be the logarithms of these posterior densities, we

Table 2. Names and values for nine hyperparameters.

HP name (α, η) HP name (α, η) HP name (α, η)

h1 (0.5, 0.5) h4 (1.0, 0.5) h7 (2.0, 0.5)
h2 (0.5, 1.0) h5 (1.0, 1.0) h8 (2.0, 1.0)
h3 (0.5, 2.0) h6 (1.0, 2.0) h9 (2.0, 2.0)

can compare the ACFs of π1, . . . ,πn for the chains. Also,
letting π̄(n) = (1/n)

∑n
i=1 πi, we can compare the asymptotic

variance of π̄(n) across the chains. Actually, we will consider
the so-called “efficiency factor,” defined as follows. Suppose that

n1/2(π̄(n) − E(π1))
d

→ N (0, σ 2), and let τ 2 be the variance that
we would get if the chain was an iid sequence. The ratio τ 2/σ 2

is called the efficiency factor. It may be estimated by standard
spectral methods, and this is implemented, for example, by
the R package mcmcse (Flegal, Hughes, and Vats 2016). The
posterior density is a single univariate quantity, and is known
except for a normalizing constant. The fact that we do not know
this constant is immaterial, since on the log scale the constant
becomes an additive constant, which affects neither the ACFs
nor the variances.

Figure 2 gives plots of the efficiency factor for each of the
threeMarkov chains, and for the 45 corpora. The plots show that
the HMC chain is the clear winner: it has the largest efficiency
factor in all cases, often by a large margin. A general pattern is
that the superiority of the HMC chain greatly increases as the
number of documents in the corpus increases (see plots a, b, and
c), while its superiority decreases slightly as the number of topics
increases (see plots c, d, and e). The superiority of the HMC
chain is understated by the plots, as these are on the log scale.
The SS chain is nearly uniformly the worst, sometimes by a large
margin. Figure 3 gives plots of the ACF for the three chains and
two of the corpora. Themessage heremirrors themessage given
by the plots of the efficiency factors for these two corpora and for
the other corpora also (plots not shown). The HMC chain wins
overall, sometimes by a very large margin; and the SS chain is
the worst, its ACF sometimes dying down very slowly.

Figure 4 gives results on execution time for the three algo-
rithms and the five (T,D) combinations (it turned out that the
hyperparameter has essentially no effect on execution time), on
a 3.70GHz quad core Intel Xeon Processor E5-1630V3. A sum-
mary of the results is as follows. Execution times are smallest
for SS uniformly. However, the times for the other two are not
much bigger, and the ratio of largest to smallest is always less
than 2; therefore, the effect of execution time is rather small
when compared to the effect of mixing rate. When we take
both mixing rate and execution time into account, the HMC
chain turns out to be the overall winner, and the SS chain is
worst overall. In some experiments involving a large number
of documents and a large number of topics, the ACGS chain
matched or slightly outperformed the HMC chain in terms of
both efficiency factor andACF. TheHMCchain requires tuning,
whereas theDA chain does not. The amount of time required for
tuning is document specific, so our recommendation for large
corpora is to try the HMC chain first, and in the event that
tuning is time consuming, use the DA chain.

4.2.2. Comparison of All Methods for Estimating

argmaxhm(h) Based on Estimation Accuracy

To compare ˆ̂hFBEB,
ˆ̂hISST,

ˆ̂hGEM, and ˆ̂hVEM, we created a syn-
thetic corpus generated according to the LDA model with D =

100, T = 4, V = 20, nd = 80 for all d, and htrue =

(αtrue, ηtrue) = (0.2, 0.8). This is a very small corpus, and we
chose a corpus of this size to be able to include the ISSTmethod,
whose implementation is very time consuming. (The relative
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Figure 2. Efficiency factors for the HMC, ACGS, and SS chains on the log scale, for 45 corpora. The HMC chain has the largest efficiency factor almost uniformly, sometimes
by large margins.

merits of the four estimators do not change much as we change

the size of the corpus.) The estimates ˆ̂hFBEB,
ˆ̂hISST,

ˆ̂hGEM, and
ˆ̂hVEM were computed using the following specifications.

ˆ̂hFBEB We used an ACGS chain of length 105, 10 times,
using 10 different seeds, obtaining 10 estimates, which we

call ˆ̂h
[1]
FBEB, . . . ,

ˆ̂h
[10]
FBEB. These were obtained from the Rao-

Blackwellized estimates (3.4), as described in the statement
of Theorem 2. According to Theorem 2, the independent

variables ˆ̂h
[1]
FBEB, . . . ,

ˆ̂h
[10]
FBEB are approximately bivariate

normally distributed with mean vector argmaxhm(h).
Therefore, they can be used to form a 95% confidence ellipse
for argmaxhm(h), based on Hotelling’s T2 distribution
(this ellipse is simply the two-dimensional analogue of the
standard t-interval, which is based on the t-distribution).

We repeated this, but using the HMC chain, with num-
ber of leapfrog steps L = 2 and step size ε = 0.025,
and (3.5) instead of (3.4), obtaining a second confidence
ellipse. Strictly speaking, the theoretical validity of this con-
fidence ellipse requires that we have a version of Theo-
rem 2 that applies to the case where we use the HMC chain,
and (3.5) instead of (3.4), and we have not established such a
theorem.Nevertheless, it is useful to consider this confidence
ellipse.

ˆ̂hISST We used the serial tempering chain, as described in
George and Doss (2018). We used 20 iterations of their
scheme for choosing the set of skeleton points, and this set
turned out to be a 7 × 9 grid of 63 values over the region
(η,α) ∈ [0.6, 0.9]×[0.1, 0.3].We used aMarkov chain length
of 100,000, and as for FBEB, we repeated this a total of 10

times, obtaining 10 estimates, which we call ˆ̂h
[1]
ISST, . . . ,

ˆ̂h
[10]
ISST,
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Figure 3. ACFs for the three Markov chains and two corpora configurations. Configuration 1: T = 5, D = 500, α = 2, η = .5; configuration 2: T = 5, D = 300, α = 1,
η = 2. The ACFs die down fastest for the HMC chain and slowest for the SS chain.

Figure 4. Execution time in seconds for 10,000 iterations for HMC, ACGS, and SS chains, for five corpus configurations.

andwe used these to construct a 95% confidence ellipse. (The
theoretical validity of this confidence ellipse is supported by
Theorem 1 and Remark 3 of that article.)

ˆ̂hGEM We used 50 iterations of the EM algorithm, and within
each iteration,we ran aCGSof length 120,000 (discarding the
first 2000 as burn-in) to approximate the E-step.We repeated
this a total of 10 times, using 10 different starting values and
10 different seeds.

ˆ̂hVEM We used 100 iterations of the EM algorithm, and within
each iteration, the E-step was approximated via 100 vari-
ational inference iterations. We repeated this a total of 10
times, using 10 different starting values.

Figure 5 gives the results, but before looking at them we
clarify what is the target of estimation. The following facts are
obvious, but it is perhaps worthwhile to state them explicitly.
Here, htrue = (αtrue, ηtrue) = (0.2, 0.8) is the value used
to generate the synthetic corpus. The maximum marginal

likelihood estimate ĥ := argmaxhm(h) depends on the corpus,
and in general is not equal to htrue (although it is likely to be

close to it). The quality of the estimates ˆ̂hFBEB,
ˆ̂hISST,

ˆ̂hGEM,

and ˆ̂hVEM is determined by how close these are to ĥ, not by how

close they are to htrue. The left panel of Figure 5 shows the

estimates produced by the four methods: FBEB (through both

HMC and ACGS), ISST, GEM, and VEM, 10 points for each, for

a total of 50 points, and we see that the 30 points produced by

FBEB and ISST are so close to each other that they are visually

indistinguishable. The right panel gives a zoomed version of the

plot, magnifying the region which contains the FBEB and ISST

points, and gives the three confidence ellipses. The two panels

together show the following. GEM greatly outperforms VEM.

Nevertheless, the GEM estimates are not close to being within

any of the 95% confidence ellipses. It appears that the problem is

with the maximization step which, as explained in Section 4.1,

is done through an approximation. VEM does poorly, and the

estimates strongly depend on the starting value. The estimates

are so poor that they do not even appear in the zoomed version

of the plot. The HMC ellipse is more narrow than the ACGS

ellipse (which is consistent with the results of Section 4.2.1 that

show that the HMC chain has better mixing), and the ISST

ellipse is more narrow than both of these. However, the ellipses

are comparable in size, so that the decision of which method

is preferable depends on computational efficiency. This issue is

discussed in detail in Section 4.2.4.
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Figure 5. Estimates and confidence ellipses for argmaxh m(h) produced by the FBEB, ISST, GEM, and VEM methods. Left panel shows the point estimates. The FBEB and
ISST points are so close that they seem to merge into a single point. Right panel is a zoomed version of a small region of the left panel that contains these 30 points, and
gives the confidence ellipses. The GEM points are not close to being in any of the ellipses, and the VEM points are not even in the plot.

4.2.2.1. Estimation of argmaxhm(h) When the Prior on the

θd’s Is anAsymmetricDirichlet. Our initialmotivation for this
work was our desire to handle the case where α = (α1, . . . ,αT)

and the αt ’s are not assumed to be equal, so that dim(h) = T+1.
When dim(h) is large and the corpus is large, the EM algorithm
is expected to have poor performance: the rate of convergence
is determined by the amount of missing information (Meng
and Van Dyk 1997), and in our situation this is ψ , which has
high dimension. And for serial tempering to work, we need that
every h value in the relevant part of the hyperparameter space be
close to at least one point in the skeleton set {h1, . . . , hJ}, which
forces the size of this set to be astronomical (this is the curse
of dimensionality). On the other hand, for the FBEB method to
work well, the main requirement is that we can devise a Markov
chain on (z, h) (or on (ψ , h)) for which the h component mixes
well. There is now a highly developed literature, spanning over
more than two decades, on the construction of Markov chains
on high-dimensional state spaces with good mixing properties,
and we can take advantage of this literature.

Care must be exercised, however, when dealing with the
case where the αt ’s are not assumed to be equal. Suppose
that the prior on (α1, . . . ,αT) is a symmetric function of
(α1, . . . ,αT), that is, it is invariant under permutations of
α1, . . . ,αT (this is the situation for the prior we use in this
article, which is a product of gammas, all of them equal).
In this case, since the likelihood function is symmetric in
(α1, . . . ,αT), so is the marginal likelihood, and therefore so
is the posterior. Thus any reasonable estimator of (α1, . . . ,αT)

obtained from the posterior will be symmetric in (α1, . . . ,αT);
so if the corpus is generated according to an LDA model for
which the components of αtrue are not all equal, then αtrue

cannot be “retrieved” from the posterior, even if the number of
documents in the corpus is arbitrarily large. Therefore, without
a mechanism for ensuring identifiability, it is not appropriate to
use an asymmetric Dirichlet as the prior on the θd’s. In practical
terms, suppose that there are only two topics, call them βS and
βM , where βS gives most of its mass to sports-like words, and
βM gives most of its mass to medical words. It is not the case
that we can claim that βS = β1 and βM = β2 any more than
we can claim βS = β2 and βM = β1. One way of handling
this situation when dealing with the β-part of a Markov chain

with the posterior as its invariant distribution is to “align” the
β ’s. (This general situation, referred to as the “label-switching
problem,” is a well-known issue in Bayesian mixture modeling,
and there is a literature on this topic; see Celeux et al. (2000),
and also Jasra, Holmes, and Stephens (2005) for a review.) The
alignment can be done as follows. Let β(b) denote the first β-
value after the burn-in period.We take the ordering of the β ’s in
β(b) as our “baseline.” If β(i) is any subsequent β-value, we form

the discrepancy matrix D, whose (r, s) entry is ‖β
(i)
r − β

(b)
s ‖1,

where ‖ · ‖1 is the �1 norm in R
V . Let Dr1s1 be the smallest

element of this matrix.We set s1 to be the topic label for β
(i)
r1 . We

eliminate the r1 row and s1 column of thismatrix, and repeat the
procedure above on the reducedmatrix. This process continues,
andwe sequentially determine the labels for all the topics inβ(i).

We now evaluate the performance of the FBEB method
for the case of a multidimensional α. To this end, we formed
three synthetic corpora, generated according to LDAmodels for
which the components of α are not all equal. The dimensions of
α were 4, 8, and 12. Table 3 gives the configuration parameters
for the corpora, including the true values of the hyperparameter
used to generate the corpora. We implemented the FBEB
method, using ACGS chains of length 11,000, from which we
discarded 1000 as burn-in, and thinned the remaining 10,000
by a factor of 5, so effectively having a sample of size 2000. The
argmax of the estimate of the marginal likelihood function was
obtained using the R package optimx (Nash and Varadhan
2011), and Table 3 also gives these estimates. In the table, htrue
denotes the value of h used to generate the synthetic corpus, and
ˆ̂hFBEB is the estimator of ĥ = argmaxhm(h). From the table,

we see that ˆ̂hFBEB is plausibly performing remarkably well. (We

wrote “plausibly” because, as remarked earlier, ˆ̂hFBEB is really

an estimate of ĥ, which is unknown, and not of htrue. Of course,
because the three corpora are large, we expect ĥ to be very
close to htrue.) The experiments needed to produce the data for
corpora 1–3 took 15.1, 24.0, and 55.6 min, respectively.

We did not do experiments with largeT, as it is inappropriate
to use asymmetric Dirichlets with a large T. When T is large,
to estimate argmaxhm(h) accurately would require very large
Markov chain lengths, but this is not the main issue, which is
that even if wewere to be able to calculate argmaxhm(h) exactly,
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argmaxhm(h) itself would not be an accurate estimate of htrue
unless the number of documents was huge. (To be clear, we are
not saying that it is inappropriate to use an LDA model with a
large T; we are saying that it is inappropriate to use asymmetric
Dirichlets with a very large T.) Xia (2018) discussed this issue
in more detail.

4.2.3. Comparison of all Methods for Selecting the

Hyperparameter Based on Posterior Predictive

Likelihood

The criterion for model fit (or predictive accuracy) that we will
use is the “posterior predictive likelihood” (PPL) score. It is
inversely related to the so-called perplexity score which is some-
times used in the machine learning literature. When applied
in the LDA context, the PPL score is obtained as follows. For
d = 1, . . . ,D, let w(−d) denote the corpus consisting of all the
documents except for document d. To evaluate a given model
(in our case the LDA model indexed by a given h), in essence
we see how well the model based on w(−d) predicts document
d, the held-out document. We do this for d = 1, . . . ,D, and
take the geometric mean (Wallach et al. 2009). We formalize
this as follows. The predictive likelihood of h for the held-out
document is

Ld(h) =

∫
�wd

(ψ) dν
(h)
ψ |w(−d)

(ψ), (4.2)

where �wd
(ψ) is the likelihood of ψ for the held-out document

d, and ν
(h)
ψ |w(−d)

is the posterior distribution of ψ given

w(−d). We form the score S(h) =
[∏D

d=1 Ld(h)
]1/D

(the
reason for taking the geometric mean is that this keeps the
score stable as document length changes). Two different
values of hyperparameter h are compared via their scores.
Of course, Ld(h) is analytically intractable, but it may be
estimated by MCMC if we can generate an ergodic Markov

chain ψ1,ψ2, . . . with invariant distribution ν
(h)
ψ |w(−d)

. The

CGS gives only a Markov chain z1, z2, . . . with invariant

distribution ν
(h)
z |w(−d)

. However, the sequence z1, z2, . . . may

be easily augmented to a sequence (z1,β1, θ1), (z2,β2, θ2), . . .

with invariant distribution ν
(h)
ψ |w(−d)

, because the conditional

distribution of (β , θ) given z and w(−d) is available in closed
form as a product of Dirichlets. Explicit expressions are given
in George and Doss (2018). We then approximate the integral
by (1/n)

∑n
i=1 �wd

(ψ i), where ψ i = (zi,β i, θ i). Care needs to
be exercised, because in (4.2) the variable ψ in the term �wd

(ψ)

has a dimension that is different than that of the variable ψ in
the rest of the integral. Chen (2015) gives a careful description
of an MCMC scheme for estimating the integral in (4.2), and
his scheme is the one that we use.

For our comparisons, we consider three real corpora. Two of
these are from Wikipedia, and one is a subset of the 20News-
groups dataset, which is often used for benchmarking in topic
modeling.

Corpus C-1 This is a subset of the articles under theWikipedia
category Birds of Prey, and consists of all articles under the
seven subcategories Eagles, Falco (genus), Falconry,Harriers,
Hawks, Kites, and Owls. When fitting the LDA model, we
took the number of topics T to be seven.

Table 5. Ratios S(h)
/
S(

ˆ̂
hFBEB) for six choices of h, for three corpora.

Corpus ˆ̂hISST
ˆ̂hGEM

ˆ̂hVEM hGS hA-etal hRS

C-1 2.35 e−01 2.78 e−01 1.70 e−01 1.23 e−13 5.23 e−06 6.81 e−03
C-2 4.43 e−01 1.18 e−01 8.37 e−02 2.34 e−13 2.26 e−05 3.72 e−03
C-3 1.44 e+01 1.18 e−01 5.04 e−01 6.64 e−03 2.41 e−02 8.09 e−01

NOTE: A small number indicates a lack of fit, thus a poor choice of h. On the whole,
the MCMC methods do best, the EM-based methods are worse, and all ad-hoc
choices are abysmal. Notation: 6.59 e−01 = 6.59 × 10−01 .

Corpus C-2 This is a subset of the articles under theWikipedia
categoryWhales, and consists of all articles under the six sub-
categories Baleen Whale, Dolphins, Killer Whale, Oceanic
Dolphins, Whaling, and Whale Products. When fitting the
LDA model, we set T = 6.

Corpus C-3 This is a subset of the articles under the 20News-
groups super-category Computers and consists of all
articles from the five categories comp.graphics, comp.os.ms-
windows.misc, comp.windows.x, comp.sys.ibm.pc.hardware,
and comp.sys.mac.hardware. When fitting the LDA model,
we set T = 5.

Table 4 gives some information on these three corpora.

We computed an estimate Ŝ(h) of S(h), where h ranges over
the seven cases

ˆ̂hFBEB,
ˆ̂hISST,

ˆ̂hGEM, ˆ̂hVEM, hGS, hA-etal, and hRS, (4.3)

where the last three refer to the values used in Griffiths and
Steyvers (2004), Asuncion et al. (2009), and Řehůřek and Sojka

(2010), respectively, and ˆ̂hFBEB refers to the value computed
when we use HMC in our FBEB scheme. The specifications
used to compute the first four estimates in (4.3) are similar to
those described in Section 4.2.2, except for the following: for
ˆ̂hFBEB and ˆ̂hISST we used 10,000 iterations after discarding 1000

as burn-in; for ˆ̂hGEM we used 100 EM iterations, and within
each we used 2000 iterations of the CGS to approximate the

E-step; and for ˆ̂hVEM we used 100 EM iterations, and within
each we used 20 variational inference iterations to approximate
the E-step. (The specifications used in Section 4.2.2 were a bit
extravagant, and because we now need to make comparisons of
execution time, we are using more realistic numbers.) Table 5
gives S(h) as h ranges over the last six values in (4.3), for the three

corpora. The ratios are standardized by S
( ˆ̂hFBEB

)
, that is, the

table actually gives the ratios S(h)/S
( ˆ̂hFBEB

)
. The main message

from the table is as follows. Generally, ˆ̂hFBEB and ˆ̂hISST do best
and are comparable, so that the choice of which to use should

be based on computational considerations; ˆ̂hGEM and ˆ̂hVEM do
worse; and all ad-hoc choices have very poor performances.

4.2.4. Comparison in Terms of Scalability

As we saw in Sections 4.2.2 and 4.2.3, by both our criteria,
the ad-hoc choices perform very poorly, so they should not be
used; the EM-based methods do not perform well (and this is
especially true of VEM); and the two MCMC-based methods
perform well and are comparable, so which one to use boils
down to computational considerations, and this is what we
discuss next.
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Table 3. Estimates of ĥ = argmaxh m(h) for three synthetic corpora generated according to LDA models with components of α not all equal.

Corpus 1 D = 2000, V = 1000, nd = 80 for all d, T = 4

h α1 α2 α3 α4 η

htrue 0.2 0.4 0.6 0.8 0.5
ˆ̂hFBEB 0.185 0.386 0.590 0.787 0.513

Corpus 2 D = 4000, V = 1000, nd = 80 for all d, T = 8

h α1 α2 α3 α4 α5 α6 α7 α8 η

htrue 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.5
ˆ̂hFBEB 0.102 0.202 0.299 0.424 0.491 0.605 0.690 0.833 0.499

Corpus 3 D = 8000, V = 1000, nd = 80 for all d, T = 12

h α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 η

htrue 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.5
ˆ̂hFBEB 0.117 0.230 0.273 0.386 0.484 0.620 0.686 0.817 0.939 0.965 1.135 1.223 0.491

Table 4. Corpora created fromWikipedia pages and the 20Newsgroups dataset.

Corpus Categories T D V N

C-1 Eagles (62), Falco (genus) (45), Falconry (52), 7 294 1369 114,056
Harriers (21), Hawks (16), Kites (22), Owls (76)

C-2 Baleen Whale (40), Dolphins (10), Killer Whale (11), 6 153 712 52,107
Oceanic Dolphins (50), Whaling (32),
Whale Products (10)

C-3 comp.graphics (50), comp.os.ms-windows.misc (49), 5 244 1114 8829
comp.sys.ibm.pc.hardware (49), comp.windows.x (47),
comp.sys.mac.hardware (49)

NOTE: The columns labeled T , D, V , and N give the number of topics, number of documents, vocabulary size, and total number of words, respectively, for each corpus, and
the numbers shown in parentheses next to the category names are the number of documents associated with the corresponding categories.

There are two problems that cause ISST to be slow. First, for
the method to work well, argmaxhm(h) should be close to at
least one point in the skeleton set; second, at the same time, the
points in the skeleton set cannot be far from each other, or else
the chain does not mix well (George and Doss 2018). A look at
Figure 1 enables us to appreciate the problem. If for corpus C-
A (for which the marginal likelihood surface is on the left) we
position the skeleton set in, say, the region (α, η) ∈ (0.1, 0.17)×
(0.17, 0.18) (the Southeast part of the displayed (α, η) region),
the near singularity of ν(h) for h in the vicinity of argmaxhm(h)

and all the ν(hj)’s will cause the estimator of the marginal like-
lihood surface for h in the vicinity of argmaxhm(h) to have an
extremely large variance; and this problemwould be far worse if
the skeleton grid was in a small region surrounding the “distant”
point (α, η) = (1, 1). The iterative scheme of George and Doss
(2018) initializes a wide skeleton set, and using this skeleton
set computes an estimate of the marginal likelihood surface
m(h) over the convex hull of the skeleton set. For the next
iteration, we form a new skeleton set, centered at the current
value of the estimate of argmaxhm(h), and the skeleton set is
made more narrow. This process continues until the estimate
of argmaxhm(h) stabilizes. In contrast, for the FBEB method,
assuming that our Markov chain mixes well, in essence we get
a sample h(1), . . . , h(n) approximately distributed according to

ν
(h)
h |w(·) ∝ m(·), so the general location of argmaxhm(h) can be
obtained by inspection (visual inspection, in fact, if dim(h) =

2), and there is no need for an iterative scheme. The second
reason why ISST can be slow is that after the Markov chain

ψ1, . . . ,ψn has been obtained, the method requires the calcu-

lation of the ratios ν(h)(ψ i)
/[∑J

j=1 bjν
(hj)(ψ i)

]
, i = 1, . . . , n

(see Section 4.1), and here the constants b1, . . . , bJ are tuning
parameters, which must be obtained via a time-consuming iter-
ative procedure.

Table 6 gives the times needed for the FBEB and ISST meth-
ods, and also for the GEM and VEM methods, for corpora C-
1–C-3. The left part of the table gives the actual times, and
the right part gives the times standardized by the FBEB time,
for ease of comparison. The variable niter is the number of
iterations needed for ISST; this is typically about 20. As can
be seen from the table, the time needed to implement FBEB is
very substantially less than the time needed for ISST, and is only
about a single order of magnitude larger than the time needed
for VEM. As is discussed in Section 5, when suitably adjusted,
FBEB can handle large corpora.

4.3. Comparison of the Empirical Bayes and Fully Bayes

Methods

It is natural to ask how our FBEB approach compares with a fully
Bayesian approach in which we put a prior on h. Such a compar-
ison is quite different from those in Sections 4.2.2–4.2.4: in those
sections, all the contenders were numerical implementations of
the empirical Bayes method. On the other hand, a comparison
of the FBEB and fully Bayes methods is really a comparison of
two different statistical procedures. Furthermore, “fully Bayes”
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Table 6. Execution times, in minutes, for four estimators of argmaxh m(h).

Corpus ˆ̂hFBEB
ˆ̂hISST

ˆ̂hGEM
ˆ̂hVEM

C-1 14.33 1016.11 × niter 56.95 1.21
C-2 5.65 185.83 × niter 24.38 0.89
C-3 3.81 70.33 × niter 6.78 0.34

Corpus ˆ̂hFBEB
ˆ̂hISST

ˆ̂hGEM
ˆ̂hVEM

C-1 1 71 × niter 4.0 0.084
C-2 1 33 × niter 4.3 0.158
C-3 1 18 × niter 1.8 0.089

NOTE: The table on left gives the actual times, and the table on right gives the times standardized by the time for
ˆ̂
hFBEB . The time for

ˆ̂
hISST depends on niter , the number of

iterations needed to set the skeleton grid.

a

0.5

1.0

1.5

2.0
b

0.1

0.2

0.3

0.4

0.5

S
(h

−
E

B
) / S

(a
,b

)

0.95

1.00

1.05

1.10

1.15

a
0.5

1.0

1.5

2.0

b

0.1

0.2

0.3

0.4

0.5

S
(h

−
E

B
) / S

(a
,b

)

0.95

1.00

1.05

1.10

1.15

Figure 6. Smoothed estimates of the ratio of the PPL for the model based on the empirical Bayes choice of h to that of the fully Bayes model using ga,b priors for α and η,
from two different views. The plots show that the empirical Bayes model does better or not much worse over the entire (a, b) range.

does not refer to a single procedure, but rather to a family of
procedures, one for each prior on h. In this section, we consider
the case where h is two-dimensional, h = (α, η), and we

consider the family of gamma priors: α, η
iid
∼ ga,b. Our criterion

for comparison is the PPL score discussed in Section 4.2.3.
Recall that for a given value of h, the PPL score for the model

indexed by h is S(h) =
[∏D

d=1 Ld(h)
]1/D

, where Ld(h) is given
by (4.2). To carry out our comparison, we need to define the

score for the fully Bayesian case. For any a and b, let ν
(a,b)
(ψ ,h) |w(−d)

denote the posterior distribution of (ψ , h) givenw(−d) when the
prior on h is ga,b. The analogue of (4.2) for the fully Bayes case
is

Ld(a, b) =

∫
�wd

(ψ) dν
(a,b)
(ψ ,h) |w(−d)

(ψ),

and the analogue of S(h) is Sd(a, b) =
[∏D

d=1 Ld(a, b)
]1/D

.
As for the fixed-h case, Ld(a, b) is analytically intractable.
We estimate it by MCMC in a way that is very similar
to the way we estimated Ld(h). In a little more detail, let
(ψ (1), h(1)), (ψ (2), h(2)), . . . be a Markov chain whose invariant

distribution is ν
(a,b)
(ψ ,h) |w(−d)

. We estimate Ld(a, b) by L̂d(a, b) =

(1/n)
∑n

i=1 �wd
(ψ (i)), and estimate the score Sd(a, b) by[∏D

d=1 L̂d(a, b)
]1/D

. We compare the empirical Bayes and fully

Bayes methods through the ratio S(ĥ)/Sd(a, b), where ĥ is
the empirical Bayes estimate of h or, to be more precise, the
estimate of this ratio. The plots in Figure 6 give graphs, from
two different angles, of this ratio, as a ranges from 0.1 to 2.0 by
increments of 0.1 and b ranges from 0.01 to 0.5 by increments
of 0.01, for a total of 1000 values. (Significantly, this range
for (a, b) “nearly includes” the value (a, b) = (0, 0), which
corresponds to a standard non-informative prior p(u) ∝ (1/u),
an improper prior that is a common choice.) The plot shows

that the empirical Bayes method outperforms the fully Bayes
method for most of the cases and when it does not, it is not by
much.

We now briefly remark on how the plots were constructed.
We ran 1000 experiments, one for each (a, b) pair and, because
the experiments are independent, the resulting figure was very
ragged: even when two (a, b) pairs are close, the estimates of the
ratios of the scores for these pairs do not need to be close.We can
deal with this difficulty using standard regression methods, in
which we use the following model: calculated ratio of scores =

f (a, b)+ε, where f is unknown. The function f can be estimated
nonparametrically by bivariate splines, or by using generalized
additive models. The plots in Figure 6 actually result from
applying the R function gam to the 1000 experimental points.

5. Discussion

Our methodology handles corpora for which either D or
T or both are large, whereas as we have shown, competing
methods do not. In Xia and Doss (2020, sec. 7), we give the
results of an experiment that shows that it gives accurate
estimates of the posterior distribution for corpora of a hun-
dred thousand documents. Whether we can handle a given
corpus depends on whether MCMC methods can handle
that corpus, and we now elaborate on what we mean by
this. We have used the CGS, which runs through the vector
z = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD), updating each variable
sequentially, with β and θ integrated out. So there is a node for
each word in the corpus, and this makes the CGS very slow.
George (2015) (see also Doss and George (2019)) considered
another Markov chain for estimating the posterior distribution
of ψ = (β , θ , z): we look at the pair (z, (β , θ)), and the
chain is a two-cycle Gibbs sampler that alternates between
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updating z and updating (β , θ). The conditional distributions

ν
(h)
z | (β ,θ ,w)

and ν
(h)
(β ,θ) | (z,w)

are available in closed form; they

may be found in Doss and George (2019), for example. This
“grouped Gibbs sampler” has the very attractive feature that
it can be parallelized: given (β , θ) (and w), the components
of z are all independent, so can be updated simultaneously
by different processors; and given z (and w), the θd’s and βt ’s
are all independent, so also can be updated simultaneously by
different processors. Moreover, contrary to a widely held view,
the mixing rate for this sampler is comparable to that of the
CGS (Doss and George 2019). When we use this Gibbs sampler,
FBEB can handle corpora with up to hundreds of thousands of
documents, depending on how many processors are available.

We believe that the FBEBmethod can be developed for other
topic models, where the dimension of the hyperparameter is
high enough to preclude the use of competing approaches. Hier-
archical Dirichlet processes (Teh et al. 2006) and the correlated
topics model (Blei and Lafferty 2007) are prominent examples
of such topic models.

Supplementary Materials

R code and data The supplemental files for this article include files con-
taining R code and data for reproducing all the empirical studies in the
article. The Readme file contained in the zip file gives a description of
all the other files in the archive. (shs-lda-code.zip, zip archive)

Appendix The supplemental files include a document which gives the fol-
lowing: (i) a review of Hamiltonian Monte Carlo, (ii) a section showing
feasibility of our method on large corpora, (iii) proofs of Theorems 1–3,
and (iv) some minor theoretical details. (shs-lda-supp.pdf)
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