Theoretical Computer Science 816 (2020) 114-143

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Robust biomolecular finite automata ™ n

Check for
updates

Titus H. Klinge **, James 1. LathropP®, Jack H. LutzP

2 Drake University, Des Moines, IA 50311 USA
b Jowa State University, Ames, IA 50011 USA

ARTICLE INFO ABSTRACT
Am’f{? history: We present a uniform method for translating an arbitrary nondeterministic finite automa-
Received 21 December 2018 ton (NFA) into a deterministic mass action inputfoutput chemical reaction network (I/O CRN)

Received in revised form 30 August 2019
Accepted 8 January 2020

Available online 16 January 2020
Communicated by N. Jonoska

that simulates it. The I/O CRN receives its input as a continuous time signal consisting of
concentrations of chemical species that vary to represent the NFA's input string in a natu-
ral way. The 1/O CRN exploits the inherent parallelism of chemical kinetics to simulate the
NFA in real time with a number of chemical species that is linear in the size of the NFA.

Keywords: We prove that the simulation is correct and that it is robust with respect to perturbations
Biomolecular automata of the input signal, the initial concentrations of species, the output (decision), and the rate
Input/output chemical reaction networks constants of the reactions of the 1/O CRN.

Concentration signals © 2020 Elsevier B.V. All rights reserved.
Molecular programming

Robustness

1. Introduction

Molecular programming combines computer science principles with the information processing capabilities of DNA and
other biomolecules in order to control the structure and behavior of matter at the nanoscale. Molecular programming has
its origin in Seeman’s development of DNA nanotechnology in the 1980s [39] (indeed, “molecular programming” and “DNA
nanotechnology” are still nearly synonymous), but the field has made progress in the present century at a rate whose in-
crease is reminiscent of Moore's law. The achievements of molecular programming are far too numerous to survey here,
but they include the self-assembly of virtually any two- or three-dimensional nanoscale structure that one wants to pre-
scribe [19,26,28,38,45], DNA strand displacement networks that simulate logic circuits and neural networks [34-36], and
molecular robots that perform various functions while either walking on nanoscale tracks or floating free in solution [13,15,
18,40,44,48,49]. All this has been achieved in real laboratory experiments, and applications to synthetic biology, medicine,
and computer electronics are envisioned. Theoretical progress includes demonstrations that various molecular program-
ming paradigms are, in principle, Turing universal [3,14,17,23,32,33,41,46,47], thereby indicating that the full generality and
creativity of algorithmic computation may be deployed in molecular and biological arenas.

Our objective in this paper is to begin mitigating the “in principle” of the preceding sentence. This is important for
two reasons. First, although such theoretical results are steps in the right direction, processes that require unrealistically
precise control of unrealistically large numbers of molecules simply cannot be implemented. Second, processes that can be
implemented, but only with inordinately precise control of parameters are inherently unreliable and hence inherently unsafe
in many envisioned applications. Our objective here is thus to identify a class of computations that can be implemented
robustly in the molecular world, i.e., implemented in such a way that they will provably perform correctly, even when crucial

* This research was supported in part by National Science Foundation Grants 1247051, 1545028, and 1900716.
* Corresponding author.
E-mail addresses: titus.klinge@drake.edu (T.H. Klinge), jil@iastate.edu (J.I. Lathrop), lutz@iastate.edu (J.H. Lutz).

https://doi.org/10.1016/j.tcs.2020.01.008
0304-3975/© 2020 Elsevier B.V. All rights reserved.

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 115

parameters are perturbed by small amounts. Future research can then strive to enhance this robustness and to extend the
class of computations that enjoy it.

In this paper we give a uniform method for translating nondeterministic finite automata to chemical reaction networks
that implement them robustly. Nondeterministic finite automata (NFAs) are over half a century old [37] and far from Turing
universal, but they have many applications and remain an active research topic [8,9,27]. Applications of NFAs that are likely
to extend to molecular programming include their uses in monitoring and parsing large data streams and in implementing
and verifying secure and/or safe communication protocols. Chemical reaction networks (CRNs) are also over half a century
old [5]. Their role in molecular programming did not become fully apparent until recently, when Soloveichik, Seelig, and
Winfree [42] showed that there is a systematic method for translating an arbitrary CRN, which is an abstract mathematical
object, into a set of DNA strands and complexes that simulates the CRN via toehold-mediated strand displacement. This
method has been refined and incorporated into various compilers [7,12], and CRNs are now the programming language
of choice for many molecular programming investigations. The two most widely used semantics (operational meanings) for
CRNs are deterministic mass action semantics and stochastic mass action semantics. In this paper we use deterministic mass
action, which implies that the state of a CRN at any time is determined by the real-valued concentrations of its molecular
species at that time.

An NFA is a real-time device that reads its input string sequentially, left to right, changing states appropriately in response
to each symbol prior to reading the next symbol. Accordingly, we translate each NFA to an input/output CRN (I/O CRN), which
is a CRN that receives the NFA's input string formatted as a continuous time concentration signal consisting of concentrations
of input species that vary to represent the input string in a natural way. (Concentration signals are likely to be useful in
other molecular programming contexts, e.g., in modularizing CRN constructions.) Using the inherent parallelism of chemical
kinetics, our I/O CRN implements the NFA in real time, processing each input symbol before the next one arrives, and it
does so with a number of molecular species that is linear in the size of the NFA that it implements. Specifically, if the NFA
has q states, s symbols, and d transitions, then our I[/O CRN consists of two modular components. The first module is a
preprocessor that transforms the input concentration signals into approximate square waves and consists of (s + 2)(n+4)
species and 2(s + 2)(n + 2) reactions, where n is logarithmic in g. The second module, which actually simulates the NFA,
has 4q + s + 2 species and 5q + d reactions. As one example, the compiler of [12] would then translate these modules into
DNA gates and strands for a strand displacement network consisting of 4(s + 2)(n + 2) gates and 7(s +2)(n + 1) strands for
the first module, and 10q + 2d gates and 24q + 5d strands for the second module. Other CRN-to-DNA compilers could be
used here with some variation of these numbers.

Our translation would thus appear to make small NFAs implementable in laboratories now and NFAs of modest size im-
plementable in the near future. However, a significant caveat here concerns an imperfection in current strand displacement
implementations of CRNs. A catalyst of a chemical reaction is a molecule that enables, but does not actually participate in,
the reaction. That is, the amount of the catalyst in solution is not affected by the reaction. Our model here requires an 1/O
CRN to only use its inputs as catalysts, i.e., to read its input concentration signal nondestructively. We also use catalysis in
this manner to modularize our construction and its analysis. In contrast, current strand displacement implementations of
catalysis may sequester significant amounts of a catalyst pending subsequent arrival of reactants and fuel molecules, thereby
suppressing the amount of the catalyst for an indeterminate amount of time. It is to be hoped that strand displacement im-
plementations of CRNs will soon handle catalysis more faithfully. In the meantime, however, we emphasize that our results
here are entirely about the relationship between NFAs and CRNs.

Most importantly, our I/O CRN’s correct implementation of the NFA is robust with respect to small perturbations of four
things, namely, its input signal, the initial concentrations of its species, its output signal (acceptance or rejection of its input
string), and the rate constants of its reactions. One key to achieving this robustness is a signal restoration technique akin to
the approximate majority algorithm of [2,10,11].

The rest of this paper is organized as follows. Section 2 defines the I/O CRN model, an extension of the CRN model.
Section 3 introduces a specific notion of a requirement and then uses such requirements to specify robustness properties
of I/O CRNs. Section 4 gives a construction and theorem for a CRN module that enhances input signals by removing noise.
Section 5 presents the main result of the paper, a construction for the robust simulation of an NFA using 1/0 CRNs and the
proof that the construction is correct. Some concluding remarks are given in Section 6. Finally, detailed technical proofs of
certain lemmas are provided in the appendices.

2. Input/output reaction networks

The chemical reaction network model used here must, like the sequential automata that it simulates, have a provision
for reading its input over a period of time, processing early parts of the input before later parts become available. This
section describes a chemical reaction network model with such a provision. Inputs are read as concentration signals, which
consist of concentrations of designated input species that vary over time under external control. This model takes its name
from the fact that its deterministic mass action semantics, developed below, is a special case of the “input/output systems”
of control theory.

Formally, we fix a countably infinite set S = {Xo, X1, ...}, whose elements we call species. Informally, we regard each
species as an abstract name of a type of molecule, and we avoid excessive subscripts by writing elements of S in other
ways, e.g., X, Y, Z, ?,)N(, etc.

116 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

A reaction over a finite set S C S is formally a triple

p=(rpk eN°x N5 x(0,00),

where NS is the set of functions from S into N ={0,1,2,...}, and r # p. Since § is finite, it is natural to also regard
elements of NS as vectors. Given such a reaction p, we write r(p) =r, p(p) =p, and k(p) =k, and we call these three
things the reactant vector, the product vector, and the rate constant, respectively, of the reaction p. The species in the support
set supp(r) = {X € S | r(X) > 0} are the reactants of p, and the species in supp(p) are the products of p.

We usually write reactions in a more intuitive, chemistry-like notation. For example, if S ={X, Y, Z}, then we write

X+Y-5 x42z2

for the reaction (r,p, k), wherer, p: S — N are defined by r(X) =r(Y)=1,r(Z) =0, p(X) =1, p(Y) =0, and p(Z) = 2.

The net effect of a reaction p is the (nonzero) vector Ap =p(p) —r(p) € Z°. A species X satisfying r(p)(X) = p(p)(X) >
0, as in the example above, is called a catalyst of the reaction p.

An inputfoutput chemical reaction network (I/O CRN) is an ordered triple N = (U, R, S), where U, S C S are finite; UNS =@;
R is a finite set of reactions over U U S; and species in U only appear as catalysts in R. Elements of S are called state species,
or operating species, of N. Elements of U are called input species of N.

Given a finite set W C S of species, we define the W-signal space to be the set C[W] = C?([0, o), [0, o0)W), where
C®(X,Y) is the set of real analytic functions from X to). A function w € C[W] is a concentration signal that specifies the
concentration w(t)(Y) € [0, oo) of each species Y € W at each time t € [0, o).

For sets W, W’ CS, we also use the set C[W, W] = C([0, c0)¥, [0, cc)W').

Intuitively, an IfO CRN N = (U, R, S) is a system that transforms an input signal u € C[U] to an output signal v. We now
make this intuition precise.

A context of an [JO CRN N = (U, R, S) is an ordered triple ¢ = (u, V, h), where u € C[U] is an input signal, V € S is a set
of output species, and h € C[S U U, V] is an output function. We write Cy for the set of contexts of N.

The deterministic mass action semantics (or deterministic mass action kinetics) of an I/O CRN N specifies how N behaves in
a context (u, V,h).

Let N= (U,R,S) be an I/O CRN. A state of N is a vector X € [0, o0)5; an input state of N is a vector u € [0, oc)V; and
a global state of N is a vector (x,u) € [0, cc)>“Y, where x is a state of N and u is an input state of N. (Our double usage
of the notation u for a single input state and also for a function specifying a time-varying input state u(t) is deliberate
and minimizes obfuscation. The same holds for x and x(t) below.) For each reaction p € R and each (x, u) € [0, c0)SYY, the
(deterministic mass action) rate of p in the global state (X, u) is

ratey 4 (0) = k() (x, w)*®, (2.1)

where (x, u)*® is the product, for all Y € SU U, of ¢ (x,u)(Y)"®) For example, if p is the reaction X +Y X, X422,
where X e U and Y, Z € S, then ratex y(p) = ku(X)x(Y). Intuitively, the frequency with which an X and a Y react with
one another is proportional to u(X)x(Y), and the constant of proportionality k summarizes other factors, not depending on
(x, u) (e.g. temperature, salinity of solution, properties of X and Y), that also govern the rate at which p occurs.

For each state species Y € S, we define the deterministic mass action function Fy : [0, 00)*“Y — R by

Fy(x,u) =) rateyu(p)Ap(Y) (2.2)
PER

for all x € [0, o0)° and u € [0, c0)V. Then Fy(x, u) is the total rate at which the concentration of Y is changing in the global
state (X, u). Now let (u, V, h) be a context of the /O CRN N. Then u(t)(X) is the concentration of each input species X € U
at each time t € [0, co). Hence, if the state of N is x(t) € [0, 00)® at time t, then the concentration of each state species Y
must obey the ordinary differential equation (ODE)

y'(t) = Fy (x(t), u()). (2.3)

If we let £y be the ODE (2.3) for each Y € S, then the deterministic mass action system of the [fO CRN N is the coupled
system

Ey|YeS) (2.4)
of ODEs. If we define the vector-valued function F : [0, 00)S“Y — RS by

Fx,u)=(Fyx,u)| Y €5) (2.5)
for all x € [0, 00)° and u € [0, 00)U, then the mass action system (2.4) can also be written in the vector form

X () = F(x(D), u(t)). (2.6)

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 117

The 1/O CRN N is initialized to a state X € [0, oc)S at time 0 in the context (u, V, h), and this state then evolves according
to the mass action system (2.6). The deterministic mass action initial value problem (IVP) of N in the context (u, V, h) with the
initial state xg is thus the initial value problem consisting of the mass action system (2.6) together with the initial value
condition

¥(0) =xo(Y) foreach Y € S. (2.7)

By the standard existence-uniqueness theory for ODEs [4,43], this mass action IVP has a solution x(t) that is defined for all
t €[0,b) for some b € (0, 0], and this solution is unique. It is not difficult to show, then, that x(t) € [0, o0)° holds for all
t € [0, b), i.e., that concentrations remain nonnegative. The /0 CRNs defined in this paper are all very well behaved, so that
b=, i.e., x(t) is well defined for all t € [0, c0) and all input signals and initial values considered here.

In the context (u, V,h) of N, the observed output of N is given by the output function h : [0, o0)*“U — [0, c0)V. In
most cases, this function h is some approximation, due to experimental error, of the zero-error projection function hg :
[0, 00)5YY — [0, 00)¥ defined by

ho(x, w)(Y) =x(Y) (2.8)

for all Y e V. If x(t) is defined as in the preceding paragraph, then the output signal of the /O CRN N in the context
¢ = (u, h) with the initial state Xo is the (continuous) function N¢yx, : [0, 0c) — [0, 00)" defined by Ncx,(t) = h(x(t), u(t))
for all t € [0, 00).

In the language of control theory [6,16], an input/output system is a system of the form (2.6), where x(¢t) and u(t) range
over more general state spaces X and U, together with a function h: X x U4 — V for some space V of values. The input
signal u is often called a control signal, and the output function h is often called a measurement function.

In most papers, a chemical reaction network (CRN) is an ordered pair N = (S, R) such that (@, R, S) is an [/O CRN as
defined here. Such CRNs are aqutonomous in the two equivalent senses that (i) the system (2.6) has the simpler form

X'(t) = F(x(t)), (2.9)

the right-hand side of which only depends on the time t indirectly, via the state X(t); and (ii) once the initial state
x(0) is determined, the CRN's state evolves according to (2.9), without further outside influence. It is clear by inspec-
tion of (2.1)-(2.6) that the deterministic mass action system (2.9) of an autonomous CRN is polynomial, meaning that the
components of the vector F(X(t)) are polynomial in the components y(t) of x(t). In contrast, the I/O CRNs considered in
the present paper have mass action systems (2.6) that are neither autonomous nor polynomial.

Further discussions of chemical reaction networks with deterministic mass action semantics appear in [21,22,25,31].

We conclude this section by noting that I[/O CRNs offer a natural means for modularizing constructions. It is often
convenient to write the components of an I/O CRN N = (U, R, S) as U[N]=U, R[N] =R, and S[N]=S. The join of a finite
family A/ of /O CRNs is the I/O CRN

||~ =@*\s*R* 59,

where U* = |y UIN], R* = [Uyen RINL, and S* = Jypr SINL. If S[IN] N S[N'] =@ for distinct N, N’ e N, then the
reactions of N and N’ do not interfere with each other, and |_| A is the modular composition of the I[/O CRNs in A.

3. Requirements and robustness

This section specifies what a requirement for an input/output chemical reaction network is and what it means for a
reaction network to satisfy a requirement robustly.

Intuitively, a requirement for an I/O CRN N with an initial state Xg says that, in any context ¢ = (u, V, h) satisfying a
context assumption c(c), a desired relationship ¢ (u, N¢,x,) should hold between the input signal u and the output signal
Ne,x,- More formally, a requirement for N is an ordered pair ® = (&, ¢), where the predicates « : Cy — {false, true} and ¢ :
C[U] x C[V] — {[false, true} are called the context assumption and the input/output requirement (I/O requirement), respectively,
of ®. The I/O CRN N exactly satisfies a requirement ® = («, ¢) with the initial state xg € [0, 00)%, and we write N, xg = &,
if the implication

() = ¢, Nex,) (3.1)

holds for every context ¢ = (u, V, h) € Cy. The 1/0 CRN N exactly satisfies ®, and we write N |= ®, if there exists Xg € [0, o)’
such that N, xg = ®.

Two things should be noted about the above definition. First, a requirement only concerns input and outputs. Two
different 1/0 CRNs with different sets of state species may satisfy the same requirement. Second, in order for N = ® to
hold, a single initial state xo must cause (3.1) to hold for every context c.

It is often sufficient to satisfy a requirement approximately, rather than exactly. To quantify the approximation here, we
use the supremum norm defined by || f || = supepo,) | f ()| for all f e C([0, c0), RY), where

118 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

1/2
x| = (Z x(Y)Z)

YeW

is the Euclidean norm on RY. It is well known that ||f — g|| is then a well behaved distance between functions f, g €
C([0, o0), RY), hence also between functions f,g e C[W]. For f € C[W] and € € [0, 00) we thus define the closed ball of
radius € about f in C[W] to be the set

Be(f)={geClW]|lg— fll <€}

For € € [0, 0o) we say that the 1/0 CRN N e-satisfies a requirement & = («, ¢) with the initial state xg € [0, 00)®, and we
write N, Xg =¢ @, if the implication

a(c) = (Ave Bc(Nex)o@, v) (3.2)

holds for every context ¢ = (u, V, h) € Cy. The 1/O0 CRN N e-satisfies @, and we write N =¢ ®, if there exists Xg € [0, o0)°
such that N, Xg = ©

It is clear by inspection of (3.1) and (3.2) that |= is equivalent to .

We now come to robustness. Intuitively, an I/O CRN N with an initial state Xg robustly ¢-satisfies a requirement o=
(c, ¢) if, for every context c satisfying «(c), the followmg holds: For every “¢ close to ¢,” every “Xp close to Xg,” and every
“N close to N,” the right-hand side of (3.2) holds with Né %, in place of N¢ x,. To make this intuition precise, we define the
three phrases in quotation marks.

We have already used the supremum norm to define the distance || f — g|| between two signals f, g € C[W]. We use the
same idea and notation to define the distance between two functions f, g € C[W, W’] and the closed ball of radius € about
f in C[W, W’]. Given contexts ¢ = (u, V,h) and &€ = (@1, V', h), and given &1, 8; € [0, 00), we say that € is (51, 82)-close to ¢
if V=V and (i, h) € Bs, (u) x By, (h).

Given x, X € [0, 00)% and § € [0, co), we say that X is 8-close to X if ® € Bs(x), where the closed ball Bs(x) in [0, 00)S is
defined in the obvious way using the Euclidean norm.

The definition of “N close to N takes a bit more work, because it allows for the fact that N may be an implementation
of N in which the “rate constants” are only approximately constant. Nevertheless, the intuition is simple: A §-perturbation
of N is a variant N of an 1/0 CRN in which an adversary is allowed to vary each rate constant k, subject to the constraint
that [k(t) — k| < 8 for all t € [0, 00).

Formally, a time-dependent reaction over a finite set S C 8§ is a triple

p=(r,p,k) € NS x N5 x ([0, 00), (0, 00)).

As before, we write r(0) =r, p(p) =p, and fc(p) =f<, and we use more intuitive notions like

X+252v 42,

remembering that k is now a function of time, rather than a constant. An inputfoutput time-dependent CRN (I/O tdCRN) is
then an ordered triple N = (U, R, S), where U and § are as in the I/O CRN definition and R is a finite set of time-dependent
reactions over S. The deterministic mass action semantics of an 1/0 tdCRN N = (U, R, S) is defined in the obvious way,
rewriting (2.1)-(2.6) as

ratex,u(0)(t) = k(p) (0) (x, W), (3.3)

Fy(x,u,t) =) ratexu(0)()Ap(Y), (3.4)
PER

y'(t) = Fy(x(t), u(t), t), (3.5)

&y | Y es), (3.6)

Fx,u,t)=(Fy(x,u,t) | Y €85), (3.7)

X () = F(X(t), u(t), t). (3.8)

The output signal Ne xo of an I/O tdCRN N in the context ¢ with initial state Xg is defined in the now- -obvious manner.
Let N= (U, R, S) be an I/O CRN, and let § € [0, 00). A §-perturbation of N is an 1/O tdCRN N = (U, R,S) in which R is
exactly like R, except that each reaction (r, p, k) is replaced by a time-dependent reaction (r, p, k) satisfying

lk(t) — k| <& (3.9)

for all t € [0, co).

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 119

X xr
l+5 e e i] 1
T T SO S
L—gl v LT ¥ ‘ /
P S s A ! [
0 | : € [Li,,:l ,,,,,,
7 2

Fig. 1. The two graphs demonstrate the relationship the I/O requirement ¢ imposes on the input and output signals. The output signal x*(t) is essentially
an “enhanced” version of the input signal x(t).

Putting this all together, let N = (U, R, S) be an 1/O CRN, let Xg € [0, 50)5 be an initial state of N, let ® = (o, ¢) be a
requirement for N, let € € [0, 00), and let 8 = (3, 8. 8a, 8) € (0, 00)* be a vector of strictly positive real numbers. We say
that N and xq 8-robustly e-satisfy ®, and we write N, Xg |:ﬁ @, if, for every c= (u, V, h) € Cy satisfying «(c), every ¢ that
is (8y, 8p)-close to ¢, every Xg that is 8y-close to Xg, and every N that is 8¢-close to N, there exists v € B¢ (NE’;‘U) such that
¢(u,v) holds. Finally, we say that N d-robustly e-satisfies ®, and we write N #2 &, if there exists xg € [0, 00)5 such that
N.xo = @.

We extend the notations |=, etc., to the satisfaction of finite sets ® of requirements ® in the obvious way.

4. Input enhancement

An essential part of our NFA construction is a device that reduces noise in the input signal. This part of our I/O CRN is
a separate module that does not depend on any aspect of the NFA being simulated other than its number of states. In fact,
this preprocessing module consists of several identical submodules, one for each input species of the NFA logic module. The
goal of the preprocessor is to transform the concentration x(t) of each input species X € U into a concentration x*(t) that
approximates a square-wave. In particular, when the concentration x(t) is high, then x*(t) is close to 1, and when x(t) is
low, then x*(t) is close to 0.

We now formally state the requirement of the input enhancer. Let T > 0, and let X €S be a species. Define &%) =
X (1) = (a, ¢) to be the requirement where the context assumption « : C[{X}] — {false, true} is defined by

o, V,h) = [v ={x*,¥*}andh=hg], (41)

where hg is the zero-error projection function from equation (2.8). Notice that o requires that the /O CRN has one input
species X and two output species X* and X'. The two output species are a “dual rail” encoding of the input species. Thus,
X" represents the Boolean complement of X* and should be close to 0 if x(t) is high and close to 1 if x(t) is low.

The I/O requirement ¢ of ®X) requires more work to specify, so we begin by defining some helpful terminology and
notation. If I = [a, b] C [0, co) is a closed interval, we write len(I) =b — a to denote the length of the interval. If I = [a, b]
and len(I) > 7, we define the t-left truncation of I to be the subinterval I; =[a + T, b].

Let u € C[{X}] be an input signal, and let v e C[{X*,Y*}] be an output signal. An input event is an ordered pair (b,)
where b €{0, 1} is a bit, I € [0, c0) is a closed interval with len(I) > 7, and u(t)(X) =b for all t € I. The set of all input
events over u is denoted IEV. Intuitively, an input event is a segment of the input signal which has length at least T in
which the input is held at b. An output event is an ordered pair (b, I) where b € {0, 1}, I C [0, c0) is a closed interval, and
the following two conditions hold for all t € I:

1. If b=1, then v(t)(X*) > 1 and v(t)(X") = 0.
2. If b=0, then v(t)(X*) =0 and v(t)(X") > 1
The set of all output events over v is denoted OEV.

We now define the 1/O requirement ¢ of ®® to be

¢u,v)=[(b,]) eIEV = (b, I;) € OEV]. (4.2)

Intuitively, ® requires that whenever the input signal has exactly concentration b € {0, 1}, the output signal converges to b
and 1 —b in t time. Therefore the output species encode both the original bit b and its compliment 1 — b. As an example,
suppose an input signal x(t) contains input events which only get within § € (0, %) of the bits it is encoding. Then, what we
desire is an I/O CRN which is capable of improving this signal so that it gets within € < § of the bits it is encoding and only
introducing a delay of at most 7. Fig. 1 depicts this relationship in more detail.

We now specify the I/O CRN that is capable of robustly satisfying the requirement ®X). We first state the construction
formally and then give an intuitive overview of its operation.

Construction 4.1. Given strictly positive real numbers t, €, and § = (8, 8n, 8o, 8x) where 8, € (0, %), 8y €10, €), and &g € (0, %), let

b= 132 and n = [2log, (E5-)1. Define the /O CRN N = NX)(z, €, 8) = (U, R, S) where

120 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

U={X}, S={X;|0<i<nju{x*X},
and where R consists of the reactions
X+ X 2% X+ Xip1 (VO<i<n)
Xi H5 Xo VO<i<n)
Xp+ X225 X, 4 X*

*

)

x**2, %

and the rate constants k1 and k3 are defined by

2nlog(2n) 2 8 \2/ 2 \"\ &(@2+6)
k=28 + —27 4 Zlog| 10
! k+r(15u)+rog((efah) Ta))" &

2 3

We also define the initial state x[()X) of N by

x5 (X*) =0,
x50 (X*) =1+,

10 2 n
(X)
Xo) = 8
X5 (Xo) E*Sh(lfﬁu) + 8o,

xPX)=0 (vo<i<n).

The species of N(X) are naturally separated into two parts. The first part is the cascade of species Xp,..., Xp. This
cascade is designed so that every species X; “falls down” to Xp at a constant rate, and each species X; “climbs up” to the
next species X;.q at a rate proportional to the input X. As a result, whenever the concentration of X is low, the top of the
cascade X, is extremely low. Similarly, whenever the concentration of X is relatively high, the concentration of X,, becomes
relatively high.

The second part of the construction consists of the species X* and X* which are the output species. The sum of the
concentrations of these species is always constant, and the presence of the species X, causes X* to dominate, and the
absence of X, causes X to dominate. The cascade and the two species X* and X' collaborate to enhance the input
signal.

The length of the cascade, the rate constants, and the initial concentrations are carefully set and depend on the parame-
ters of NX). For example, the length of the cascade increases as € decreases since the output must be enhanced by a larger
amount. The constants kq, ka, xl()x) (Xp) are chosen to make the bounding arguments especially easy in the proof of the
following theorem. However, the theorem shows that the construction is robust to perturbations to all of these parameters,
so they need not be precise.

Theorem 4.2 (Input enhancement theorem). If T > 0, € € (0, 3), 8 = (8u, 8n, 8o, &) With 8, € (0, 1), 85 € (0, €), 89 € (0, 1), 8 > 0,
and N = N®) (1, €, 8) and x{*) are constructed according to Construction 4.1, then

NX, x50 =8 o™ (7). (4.3)
A detailed proof of Theorem 4.2 is provided in Appendix A.
5. Robust I/O CRN simulation of NFAs

In this section we give the main result of this paper: a uniform translation of an NFA to an I/O CRN that simulates it
robustly. Finite automata are ubiquitous in computer science, but details and notation vary, so we briefly review the specific
model used in this paper. (See, e.g., [30].)

A nondeterministic finite automaton (NFA) is an ordered 5-tuple M =(Q, X, A, I, F), where Q is a finite set of states; T
is a finite input alphabet; I C Q is the set of initial states; F C Q is the set of accepting states; and A: Q x £ — P(Q) is
the transition function. Here we are using the notation P(Q) for the power set of Q, ie., the set of all subsets of Q. When
convenient we identify the transition function A with the set of all transitions of M, which are triples (g,a,1 € Q x T x Q
satisfying r € A(g, a). Informally, the size of M is determined by the three cardinalities |Q |, ||, and |A].

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 121

LN
T

LN N
[

Fig. 2. Example input signal for 0110.

g

The extended transition function of the above NFA M is the function A : P(Q) x £* — P(Q) defined by the recursion

A(A, %) = A, and

AAwn= | A@o
qu(A,w)

forall ACQ, we x* and a € X, where A is the empty string. The NFA M accepts an input string w € £* if A(I, w) N F 6,
i.e,, if there is a chain of transitions leading from some state in I to some state in F. Otherwise, M rejects w.

Given an NFA M = (Q, I, A, I, F), our first objective is to specify a requirement ® = (&, ¢) for an I/0 CRN N = (U, R, S)
to simulate M. The details of R and S can be specified later, but U is an implicit parameter of ®, so we at this juncture
define the set of input species of N to be

U={XglaeZ}U{X;, Xc}, (5.1)

where r (“reset”) and ¢ (“copy”) are special symbols not occurring in .

We now explain how an input w € Z* for M is provided to N as a concentration signal. The intuition is that the input
w is presented as a sequence of pulses in the concentrations of |Z| + 2 species, namely X;, X, and X, for each a € X.
Each character a in the string w is represented by a sequence of three pulses starting with a pulse in the concentration of
X:, followed by a pulse in the concentration of Xg, and finally ending with a pulse in the concentration of X.. An example
sequence of pulses for the binary string 0110 is shown in Fig. 2. To formally specify this intuition as a context assumption,
a bit more terminology is needed. If I = [a,b] and | = [c,d] are closed intervals in R, then I lies to the left of], and we
write [< J,if b<c.

Given an input signal u € C[U] for N, we define the following.

1. For X € U, an X-pulse in u is an interval [b, b + 4], where b € [0, o0), with the following four properties.
(a) Forall X e U\ {X} and t € [b, b + 4], X(t) =0.
(b) For all t e {b} U [b+ 3, b+ 4], x(t) =0.
(c) Forall te[b,b+1]U[b+2,b+ 3], x(t) € [0, 1].
(d) Forallte[b+1,b+2], x(t) =1.

2. For a € X, an a-event in u is an interval [b, b + 12] such that [b, b+ 4] is an X;-pulse in u, [b+4, b + 8] is an X,-pulse
inu, and [b+8,b+ 12] is an Xc-pulse in u.

3. A symbol event in u is an interval I C [0, oo) that is an a-event in u for some a € .

4. The input signal u is proper if there is a sequence (I; | 0 <i < k) of symbol events inu suchthat 0 <k <00, 1 < [; < [;j11
holds for all 0 <i <k —1, and u(t)(X) =0 holds for all X € U and t € [0, c0) \| U’i:(} Ij.

5. If u is proper, the sequence (I; | 0 < i < k) testifies to this fact, I; is an g;-event for each 0 <i <k, and t € [0, o0), then
the string presented by u at time t is the string

ww(t) =aoay -+ aj_q,

where j is the greatest integer such that 0 < j <k and I <t.

6. The input signal u is terminal if it is proper and the sequence (I; | 0 <i < k) testifying to this fact is finite, i.e, ke N. In
this case, the terminus of u is the time t(w) = if k =0 then 1 else the right endpoint of the interval I;_;, and the string
presented by u is the string

wu) = w(u)(z (u)).

122 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

We now have enough terminology to formally state what it means for an I/O CRN to simulate an NFA. Given an NFA
M =(Q, X, A, I, F), we define the requirement ® = ®(M) = (&, ¢) as follows. The context assumption & of ® is defined

by
o(u, V,h) = [uis terminal and V = {Y, | g € F} and h = hg], (5.2)

where hg is the zero-error projection function (2.8).
The I/O requirement ¢ of @ is defined by

¢(u,v) = and 9y, (5.3)

where ¥y and v, are the formulas

Y1 = [M accepts w(u) = (Vt > T(w)(3Y € V)v(H)(Y) =1], (5.4)
Y2 = [M rejects w(u) = (Vt > T(w))(VY € V)v(t)(Y) =0]. (5.5)

The two parts ¥ and > of the 1/O requirement correspond to how the I/O CRN should output “accept” and “reject,”
respectively. If the input string presents a string that should be accepted, v requires that the output signal have at least
one species Y € V that is held at a value of 1 indefinitely. Similarly, if the input string should be rejected, v» requires that
the output signal hold all species in V at a value of 0 indefinitely.

We now specify our translation of an arbitrary NFA into an I/O CRN that simulates it. The I/O CRN consists of two
separate modules: the input enhancement module from Section 4, and a module responsible for the NFA logic. We begin
by defining the I/O CRN that computes the logic of the NFA, and later we join this I/O CRN with the input enhancement
module.

Construction 5.1. Given an NFA M = (Q, X, A, I, F) and strictly positive real numbers € and & = (8, 8y, do, 6) satisfying € >
dn + 8o, we define the /O CRN N* = N*(M, €, 8§) = (U*, R*, §%) as follows.
The set U* is the preprocessed equivalent to the species (5.1) specified earlier, i.e.,

U*={X; |ae SYU{X], X7}

The set S* contains the following three types of species.

1. State species. For each state q € Q there is a species Y. Intuitively, the concentration of Y is close to 1in N when M could (as
permitted by its nondeterminism) be in state q.

2. Portal species. For each state q € Q there is a species Z, that is used as a buffer to facilitate transitions into the state q.

3. Dual species. For each state species Y, and portal species Z,, there are species ?q and 7q. We refer to the species Y,, Z, as basic
species in order to further distinguish them from their duals Y ¢, Z4. Intuitively, a dual of a basic species is one that has exactly the
opposite operational meaning, i.e., when Y4 has high concentration, 74 has low concentration and vice versa.

We define S* to be the collection of species of these three types, noting that |S*| =4|Q |.
The reactions of N* are of four types, designated as follows.

1. Reset reactions. For each state ¢ € Q we have the reaction

X 4 Zg s X* + 2, (5.6)
2. Transition reactions. For each transition (g, a,) € A of M we have the reaction

X5+ Yo+ Zr <5 X4 Y + Zr. (5.7)
3. Copy back reactions. For each state g € Q we have the reactions

X5+ Zg+ Vg 25 XF + 24+ Yq, (5.8)

x’:+7q+yqi°3+x;"+7q+?q. (5.9)
4, State restoration reactions. For each state ¢ € Q we have the reactions

2Yq+ Y, N 3Y, (5.10)

2V, + Yy -2 37, (511)

Note these reactions are an implementation of the termolecular signal restoration algorithm in [29].

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 123

The rate constants kq, and k; are defined by

~30Ql
k1= P (5.12)
B 0/Q|
k2_1810g(€78h780). (5.13)

We define R* to be the collections of reactions of these four types, noting that |R*| = |A| 4 5|Q |. We also note that U* N S* = @ and
species in U* only appear as catalysts in R*, so N* is indeed an /O CRN.

Intuitively, N* simulates the NFA M in the following way. The state species Y; and ?i for g € Q are used to store
the states that M could be in at any time. More specifically, these species encode the set A(I, w) where w is the string
processed so far. Whenever the input signal provides another symbol event to N*, it processes the event in three stages,
each corresponding to the three pulses of the symbol event. The first pulse of a symbol event is the “reset” pulse via the
species X;j. When N* receives this pulse, it forces all of the concentration of the portal species Z; into the species Zg
using the reactions of equation (5.6). After the X; pulse is completed, every Z; species has concentration close to 0 and
every ZI species has concentration close to 1. This reset process prepares these portal species to compute the transition
function.

The second pulse of the symbol event is an X} pulse for some symbol a € X. When this pulse arrives, N* computes the
transition function of the NFA M using the reactions from equation (5.7). Therefore, after this pulse is processed, the portal
species Zg will be close to 1 if and only if g € Ad, wa)

The last pulse of the symbol event is the “copy” pulse via the species XZ. During this pulse, N* copies the values of
the portal species Zg, Zq back into the state species Y, Yq using reactions (5. 8) and (5.9). Therefore, after the X pulse has
been processed, the set A(I wa) is encoded into the state species Yy, Yq which completes the computation.

Finally, the reactions from equations (5.10) and (5.11) ensure that the state will remain valid in the absence of a symbol
event indefinitely.

Two observations concerning Theorem 5.1 are useful. First, N* is designed to simulate the nondeterminism of M in real
time by computing all transitions in parallel. Second, this parallelism causes leak from one state to the next proportional
to the number of states |Q|. This leak causes the simulation to fail if the input signal is too noisy. To mitigate this, the
input enhancer from Section 4 preprocesses the noisy input signal in order to present a signal to N* that guarantees correct
simulation. We also note that although |Q | is encoded into the rate constants kq and k3, these constants need not be precise
since we prove that our construction is robust with respect to adversarial manipulation of the rate constants.

We now specify the complete [/O CRN that simulates the NFA which includes the input enhancement module. Recall that
our set of input species U consists of |X|+ 2 elements, one for each symbol in the input alphabet £ and two for the special
symbols r and c. Our preprocessing module consists of one input enhancing I/O CRN for each input species.

Construction 5.2. Given NFA M = (Q, X, A, I, F) and strictly positive real numbers € and & = (8, 8y, 8o, 8x), we define the family
of /O CRNs N =N (M, €, 8) by

N ={N}U{N*) |aeBU{rc}}, (5.14)

where N* = N*(M, €, §) is constructed according to Construction 5.1 and N*) = N*Xa) (1 'y §*) foreacha € TU{r, c} is constructed
according to Construction 4.1 where

€—8p—4
_ h 40 (5.15)
(341QD
and §* = (8, 0, 8g, 8).
We also define the /O CRN N = N(M, €, 8) = (U, R, S) to be the join of this family of [/O CRNs
N=|_|N~. (5.16)

Note that N from Construction 5.2 is indeed an /O CRN because N is modular, and the set of input species U matches
that of equation (5.1) defined earlier.
We now state the main theorem of this paper.

Theorem 5.3.[fM = (Q, X, A, I, F) isan NFA and €, 8 = (8,, 8y, 8o, &) are strictly positive real numbers satisfying

1
6”75h:6015k< ﬁv (517)
8p + 60 <€, (5.18)

124 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

(a)
1 T T L T I
[L T i
1 Iy 1 11
11 [[T 11
1! 1y 1 11
0.5 1! 1y 1 1l n
1! : [[(.
r : L (] 11
1 : 1y 1 P
0 R i 'y : iy L1 ! | |
0 10 20 30 40 50 60 70 80 90 100
1 T T T T T T T
0.5+ N
0 El E ! EN L s ! | I
0 10 20 30 40 50 60 70 80 90 100
1 1 T f T T T T
0.5 |
0 | 1 ! i ! ! ! | !
0 10 20 30 40 50 60 70 80 90 100
! T T : T
05 H .
0] ! ! L | ! L 1
0 10 20 30 40 50 60 70 80 90 100
(b)

Fig. 3. (a) An NFA that recognizes the language of all strings whose second-to-last bit is 1; (b) A MATLAB simulation of the I/O CRN from Construction 5.2
of this NFA on input 1011. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

and N = N(M, €, d) is constructed according to Construction 5.2, then

NS oM). (519)

As an example, Fig. 3 uses MATLAB to show the I/O simulation of the indicated NFA. This NFA being simulated accepts a
binary string if and only if its second-to-last bit is a 1.

The rest of this section is devoted to proving Theorem 5.3. We begin by assuming the hypothesis and construct an initial
state for N that we use to simulate the NFA. Since N contains many input enhancement [/O CRNs, we initialize N so that
each of them are initialized properly according to Construction 4.1. Therefore, let NX) = (UX), R(X) §(X)) be the input
enhancement module of N for X € U, and let xgx) be the initial state of N constructed according to Construction 4.1.
Now let Xy be a state of N defined by

(Vgel) Xo(Yg) =1=1-xp(Yy),

(Vge Q\I) Xo(Yg) =0=1—x0(Yy),

(Mge Q) X0(Zy) =0=1—x0(Zy),
and

(VX eU)(VX € 5P x(X) =x5(X).

The initial state Xy ensures that every input enhancement module N is initialized properly. The initial state Xp is also
defined so that the state species encode the set of start states I and the portal species encode the empty set. We also note
that Xo(Yg) +Xo(Yq) =1 and Xo(Zg) +Xo(Zg) =1 for allge Q.

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 125

Each input enhancement module N*¥) =N (X)(%, y,8*%) is constructed with delay 7 = % and robustness parameters §* =

(84,0, 80, 8;). A measurement perturbation of 8, = 0 is used since the enhanced signals are internally used by N* and never
. . *

measured. The number y throttles the leak introduced by the state species of Q. Furthermore, we know that N, Xp |:‘;, o)

for each X € U where ®® = ®® (1) is the input enhancement requirement from Section 4. This follows from Theorem 4.2

which says that N, x((]x))=ff &@) along with the fact that N is a modular composition 1/0 CRNs which includes N for
each X e U.

Since each input enhancer satisfies its requirement, each input event will be enhanced to have at most y error. This is
an important step for N* to simulate the NFA because of the leak introduced by the state species.

We now enumerate the ODEs generated by N. Using the mass action function (3.5), for each q € Q, the ODEs of the
species Yy, Zg, Yq, Zq of N are

dy _ _ _ _

o = keXiza¥q —kaXiZayq +kayg g — k2yqVe. (5.20)
dzg -

E = 7k1x:2q + Zkﬂ;y;zq, (5.21)

(s,a,)eA

dy, dyq

— =" 522
dt dt’ (5:22)
dz, dz,

| _ T 5.23
dt dt’ (5:23)

respectively.

Notice that % + ddi;’ =0 and ddif + dﬂ.if = 0. This implies that the sum of the concentrations of Y, and Y, is constant

and the sum of the concentrations of Z; and Z4 is constant. Unfortunately, we cannot assume these sums are 1 because of
the initial state perturbation. Therefore, for each g € Q we define the constants

p(Yg) =Xo(Yg) +Xo(Yy) (5.24)
p(Zg) =X0(Zg) +%0(Zy), (5.25)

noting that 1 — &g < p(Yy), p(Z4) <1+ 8o, since the initial state Xo can be perturbed by at most &p.

We prove that N, xg |=§ @ by showing that N and Xg robustly satisfy a family of weaker requirements. To formally state
these requirements, more notation and terminology is needed.

For ACQ weuse Ya={Y;|qe A} and Z4 ={Z; | q € A} to denote the set of all state species of A and portal species
of A, respectively. For B C Q and vector X € [0, 00)Y2, we say that Yo encodes B in x if (¥q € B) X(Yq) = p(Yy) and
(Vge Q \ B) x(Yq) =0.

We also have terminology for approximately encoding a set. For n = 0, we say that Yo 7n-encodes B in X if (¥q € B)
Ip(Yq) —xX(Yg)l <n and (¥q € Q \ B) X(Yy) < n. We extend this terminology to the set of portal species Zg in the obvious
way. Furthermore, because an I/O CRN produces a solution of states x(t) that are indexed by time, we occasionally refer to
encoding sets at time t when the state x(t) is clear from context.

We now specify the family of requirements. For w € £*, let &, = (0w, ¢w) be a requirement where «,, is defined by

aw(a, V,h)=[a@, Yr,h)andwu)=wand V =Yq], (5.26)
and where ¢, is defined by
dw(u,v) = (¥t > T(u))[Yq encodes A, w)in v(D)]. (5.27)

Therefore the requirement &, requires that if the /O CRN receives an input that presents the string w € X*, then after
processing w it must output an encoding of A(I, w).
To show that Theorem 5.3 holds, we prove that N, Xg |=f; ®.,, holds for all w € ¥* where 5 is the constant

_ € 75;1 — 8o
®o1Qn? -

We prove this via induction over the strings w € £* via the following two lemmas, and then show these lemmas suffice to
prove Theorem 5.3.

(5.28)

Lemma 5.4 (Base case). N, Xg #f; ;.

Lemma 5.5 (Induction step). Forall w e ¥* anda € &

N.%o =y Pw = N.Xo =5 ®ua. (529)

126 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

Main Theorem
(Theorem 5.3)

JN
[)

Base Case Induction Step
(Lemma 5.4) (Lemma 5.5)
A

/

State Restoration Copy Back
(Lemma 5.7) (Lemma 5.10)

Initialization Transition
(Lemma 5.6) (Lemma 5.9)
y

Reset
(Lemma 5.8)

Computation Lemmas

Fig. 4. Refinements of the main theorem into lemmas.

Proof of Theorem 5.3. Assume the hypothesis. Let ¢ = (u,V,h) be a context that satisfies a(c), let &= (@,V,h) be
(8u, 8p)-close to ¢, let Xy be p-close to xg, let N be §;-close to N, let w = w(u), and let €,, = (i1, Yq, hp). It suffices to
show that Né!i“ﬂ is e-close to a signal v e C[V] such that ®(u,v) is satisfied.

By the induction of Lemmas 5.4 and 5.5, we know that N, Xg i=f; ®,,. It follows that Yo n-encodes A, w) in ﬁlewy,-q] t)

for all t > t(u). If the NFA M accepts the string w, then F N Ad, w) # (3, so there exists a q € F such that ﬁéw,"‘ﬂ (H)(Yq) >
p(Yq) — n for all £ > 7 (u). Since the perturbed initial state Xg is g-close to Xg, it follows that p(Yy) > 1 — 8. Thus,

Ne, 1,(O(Yg) > 1—8—1

for all t > 7(u). We also know that the only difference between R’éw,fm and N’e,iﬂ is the effect of the measurement pertur-
bation by 8. Thus, Né,,“a (6)(Yq) > 1 — 80 — 1 — 8. Finally, since € > 8, 4 8¢ + 7, it follows that ﬁé,)‘q} (t)(Yq) > 1—¢, and since
Y, e V, the function I’vé,,“o is e-close to satisfying yr; of ¢.

Similarly, if M rejects w, then F N A(I, w) =, therefore for all Y € V and t > T (), Né’io(t)(Y) < 114 8 < €. Therefore
N¢ g, is €-close to satisfying ¢, of ¢. It follows that Ng 3, is e-close to a function v € C[V] such that the I/O requirement

¢ (u,v) holds. Therefore N,xg =3 ®. O
It remains to be shown that Lemmas 5.4 and 5.5 hold. The proofs of these are extensive and are broken down into
several supporting lemmas which are visualized in Fig. 4.

The first two of these supporting lemmas are:

Lemma 5.6 (Initialization lemma). Y ¢ ég-encodes I at timet = %

Lemma 5.7 (State restoration lemma). Let A € Q be a set of states of the NFA, and let t1, t3 € [0, 00) be times such that t1 + % <ts.
If the following two conditions hold:

1. Yo o5-encodes A at time t1 and
2. x*(t) <y forallt € [ty,t2] and for all X* € U*,

then Y n-encodes A forall t € [ty + 3, t2].

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 127

Xr

(=]

—_

S
[

Xe |

0 |- | |]
LIRS N N S N D B N s e D D D B B |

b b+4 b+8 b+l12

Fig. 5. The X;-, Xy,- and X, -pulses of the final a-event.

Lemma 5.6 requires that during the first half-second, the encoding of the initial states is not negatively affected. This
ensures that the input enhancement modules will activate without any noise accumulating in the state species. The proof
of Lemma 5.6 is included in Appendix B.

Lemma 5.7 states that if the state species of N are approximately encoding a set of states A after the last symbol event
of its input, then not only will N continue to encode A, it will improve the accuracy of its encoding to #. This lemma serves
two purposes: to restore the accuracy of an encoding after processing a symbol event, and to maintain that accuracy as long
as no more symbol events arrive. The proof of Lemma 5.7 is included in Appendix C.

Using the initialization and state restoration lemmas, we can now prove the base case of the induction.

Proof of Lemma 5.4. Let ¢=(u, V,h) be a context satlsfymg a;(c), let €= (11, V, h) be (8, 0)- ~close to c, let Xo be §p-close
to Xo, and let N be 8,-close to N. To show that N, Xg)= ®;, we now only need to show that .N’c %, is n-close to a signal

v € C[V] that satisfies ¢; (u, v). Let X(t) be the unique solution of the IVP defined by N and the initial condition Xg. It now
suffices to show that Yo n-encodes I for all t > t(u) =1.

By Lemma 5.6, we know that Yq é&p-encodes I in state i(%). Then the hypothesis of Lemma 5.7 is satisfied with A=1
and t; = % Since w(u) = A, no symbol event will ever occur in the input. It follows that every species X € U will have
a concentration less than 8, in @ for all t € [0, oc). By Theorem 4.2, all the input enhancers will activate by time t = %
and so each enhanced signal X* € U* will be held at a concentration less than y for all t > % Since this will remain true
indefinitely, any choice of t; > 1 will satisfy the hypothesis of Lemma 5.7. Thus, Lemma 5.7 tells us Yo will n-encode I for
allt>1. O

We now turn our attention to proving Lemma 5.5. Let w € £* and a € £ and assume the inductive hypothesis N, Xo #5’
Dy holds Let ¢ = (u, V, h) be a context satlsfylng otwﬂ(c) let €= (G, V, h) be (8,, 0)-close to ¢, let Xy be p-close to Xg, and
let N be &-close to N. It suffices to show that N is n-close to a function v € C[V] which satisfies ¢wq(u, v). We must
show that for all t > (u) the set Yo n-encodes A(I wa) at time t.

Let I = [b, b+ 12] be the final symbol event of the input u. Then we know that I is an a-event and that T(u) =b + 12.
All the remaining work of proving Lemma 5.5 involves closely examining the behavior of N during the a-event of [b, b+12].
Recall that an a-event consists of three pulses as shown in Fig. 5:

1. an X;-pulse during (b, b + 4] that resets portal species Zg to encode §,

2. an Xg-pulse during [b + 4, b + 8] that computes the transition function of the NFA and stores the result in the portal
species, and

3. an X,-pulse that copies the values of the portal species back into the state species Yq.

Since the a-event is partitioned into three separate pulses, it is natural to break the proof into three parts, each correspond-
ing to one of the pulses.

Lemma 5.8 (Reset lemma). Zy n-encodes @ at time b + 4.

Lemma 5.9 (Transition lemma). Z Zl—o—encodes 3(!, wa) during the interval [b + 8,b + 12].

128 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

Lemma 5.10 (Copy back lemma). Y o %-encodes A(I, wa) at time b + 11.5.

These three lemmas are the computation lemmas and their proofs are provided in Appendix D. Intuitively, the Reset
Lemma simply says that the portal species are “reset” to encode the empty set during the X,-pulse so that the transition
function of the NFA can be properly computed during the X,-pulse. Similarly, the Transition Lemma says that the transition
function is successfully computed during the X;-pulse and maintained through the X -pulse. Finally, the Copy Back Lemma
says that near the end of the X.-pulse, Yq is properly encoding the correct set of states Ad, wa).

Using the above computation lemmas, we now finish the proof of the induction step.

Proof of Lemma 5.5. By Lemmas 5.8, 5.9, and 5.10, we know that Yq %—encodes the set 3(1, wa) at time b + 11.5. Since
this g-event [b, b + 12] is the last event in the input signal u, the terminus of u is 7(u) = b + 12. This means that x(t) < g
for each X e U and for all time t > b + 11. By Theorem 4.2, the input enhancers will clean up the input signals so that
x*(t) <y for all t > b+ 11.5. Finally, by Lemma 5.7, we know that Yo will n-encode A(I,wa) for all t > b+ 12 = t(u).
Thus, Ne’ﬁ is n-close to a signal v € C[V] that satisfies the 1/O requirement ¢,. O

This concludes the proofs of the main supporting lemmas of Theorem 5.3. Proofs of Lemmas 5.6 and 5.7 are provided in
Appendix B and C, respectfully, and the proofs of the computation lemmas are given in Appendix D.

6. Conclusion

Unlike traditional CRNs where input is constrained to an initial state, I/O CRNs have designated input species for pro-
viding input signals over time. These input species may only be used catalytically which requires the /O CRN to access
its input nondestructively. We also introduced a notion of satisfying a requirement robustly. In particular, robust [/O CRNs
must satisfy their requirement even in the presence of adversarial perturbations to their input signals, output measurement
(decision), initial concentrations, and reaction rate constants.

Using these definitions, we showed that any nondeterministic finite automaton can be translated into an 1/O CRN that
robustly simulates it. Our translation also efficiently simulates an NFA by exploiting the inherent parallelism in the I/O
CRN model. Specifically, the nondeterminism (existential quantification) is achieved directly by simulating all possible paths
through the finite-state machine in parallel.

A key contribution of this paper is our proof that the translation robustly simulates the NFA in an adversarial environ-
ment. The proof was refined into two main parts corresponding to the two modules of our construction. The first module
diminishes noise in the input signals to an acceptable level and reshapes it to be closer to a square wave. We intention-
ally specified this module separately so that it can be used in other molecular computation devices. The second module is
responsible for computing the NFA transition function and maintains its state until the next symbol event occurs.

It should be noted that the nondestructive (catalytic) access that IO CRNs have to their inputs does not correspond
to current practice in DNA strand displacement CRNs. In fact, it is not immediately clear how to implement such access,
especially for long input signals. However, the advantages of such catalytic interfaces for modular design and verification
demonstrated here and elsewhere [20] indicate that future research should aim at achieving nondestructive access to inputs.

Finally, we hope that future research will improve our robustness bounds, extend robustness to stochastic CRNs, and
shed new light on possible tradeoffs among the number of species, the computation time, and robustness.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank students and faculty auditors in our molecular programming course for helpful and challenging discussions.
We thank Neil Lutz for a discussion that helped us finalize the I/O CRN model. We thank two anonymous referees for very
useful suggestions.
Appendix A. Proof of input enhancement theorem

This section is dedicated to proving Theorem 4.2. The proof is naturally partitioned into two parts: Appendix A.l is
dedicated to the analysis of the ODEs generated by the cascade of species in Construction 4.1, and Appendix A.2 presents a
complete proof of the theorem.

A.1. Cascade analysis

In this section, we only concern ourselves with analyzing systems of ODEs. The construction below is a simplified speci-
fication of the ODEs generated by the cascade from Construction 4.1. We use f (“forward”) and b (“backward”) for the rate

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

129

constants of climbing up the cascade and falling to the bottom of the cascade, respectively. Notice that we also fold in the
concentration of the input species X into the constant f. This simplification allows us to thoroughly analyze the behavior

of the cascade whenever X is held constant and is enough to prove the theorem in the following section.

Construction A1. Given f > 0,b > 0,andn e N, let xg, ..., X, : [0, 0c) — [0, 00) be functions that satisfy the ODEs

de 1

a =l§bxi—f?<0,

dx; .

i =fxi_ 1 —(f+b)x for0<i<n,
dx,

Ttn =fxn,1 7bxn-

(A1)

(A2)

(A3)

We will now solve for explicit solutions to an IVP generated by the ODEs above using induction. These solutions have

similar structure, so we define the following family of functions to describe their solution.

Construction A.2.Given f > 0,b>0,p>0andie N, let F; : [0, c0) — [0, 00) be the function

- F O\ e an tFU + b)F
Fi(t)_p(f-l-b) e kz:; Kl .

Observation A3.If f >0,b >0, p > 0,i € N and F; is constructed according to Construction A.2, then
1
/ elf+bi F;(t)dt = ?E(‘f+b)£Fi+1 +C
forsome C e R.

Proof. Assume the hypothesis. Then by the definition of F; from equation (A.4),

o0

i k bk
ferm nomen(hs) [2532
k=i

The integral can be evaluated to obtain

0 Lk k 0k k
k=i ' + k=i+1 '

for some C; € R. Inserting this into (A.6), we obtain

o0

N\ 1 tf(f +b)k
(f+b)t | g, _
/e Fitat p(f+b) J’Jrlak:zt_+1 mo O

1
= e/ a0+ C

for some C € R, which is the right side of (A.5). O

(A4)

(AS5)

(A6)

LemmaA4.Iff>0,b>0,p>0,neN,and for 0 <i <n the functions x; and F; are constructed according to Construction A.1

and A.2 such that x9(0) = p and x;(0) =0 forall 0 < i <n, then forall t € [0, c0),
xi(t) = Fi(t) — Fi;1 (t) forO<i<n,
Xn(t) = Fp(t).

Proof. Assume the hypothesis. We begin by proving (A.7) by induction on i.
Since Z?:u %‘r—" =0, it follows that Z}LU x;(t) = p for all t € [0, o). Therefore (A.1) can be simplified to

dXO
o =b(p — x0) — fxo,

130 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

and has solution

x(t)=p—p (ﬁ) (1 — e*‘””)t) = Fo(t) — F1(t).

For the induction step, assume that x;(t) = F;(t) — F;+1(t) for some 0 <i <n — 1. By (A.2), the derivative of x;,1 is

dx;
— = fxi— (f +b)xiya,

which can be solved using the integrating factor method. Thus, we obtain the family of solutions

Xip1(6) = e~ U+ f eI ()t

=0 [U f (Fi) ~ Fapa) .
It immediately follows from Observation A.3 that

Xi41(t) = Fiyq(t) — Fipa(t) + C e~ U0

for some C € R. By the initial condition, x;+1(0) =0, and therefore C = 0. This completes the induction and shows that (A.7)
holds.
It remains to be shown that (A.8) holds. Since ZLO xj(t) = p for all t € [0, 00), we know that

n—1
X () =p— Y x(
ar

for all t € [0, 00) which can be written in terms of equation (A.4) in the following way:

n—1 n—1
Xa(t) =Fo(t) +) Fis1(t) — Y Fi(D).
i=0 i=0

Finally, we obtain (A.8) after canceling terms in the above equation. O
Lemma A.5. Under the assumptions of Lemma A.4,
5® = Fa® > p -1 (1 fne’%(f“’)t) (A.9)
Tl n f + b -
forallt € [0, co).

Proof. It suffices to show that

o0 Lk k

_ t“(f +b) _1

e (f+b)tz - > 1—pe—nf+he (A10)
k=n

The left-hand side of the (A.10) is related to the incomplete gamma function y by

o0 Lk k
e D,y @, (F+ b))
¢ g K (=1

The incomplete gamma function is well understood and many useful bounds exist. One particularly useful bound by Alzer [1,
24] is
Y (a,%)
I'(a)

> (1 - e’sﬂx)a,

for a > 1 where s, = |T'(1 +a)|’%. It follows that

Y, (f + b)) —sa(f+0)t "
m—1)! > (1 ey

_1 ..
where s; = (n!)”n. Since n" > n!, we know s, > % whence

b)t
7)/01(’,1({;:'))5 (] —e’%(f“’)‘)n >1—ne~ s g

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 131

Corollary A.6. Under the assumptions of Lemma A.4,

_ p(f\
Xn(t) = Fu(t) > 5 (m) (A11)

n log(2n)
foralit = b

LemmaA.7Z.Iff >0,b>0, p>0,neN,and for 0 <i <n the functions x; and F; are constructed according to Construction A.1
and A.2 such that x;(0) = 0 for all 0 < i < n and x,(0) = p, then for all t € [0, c0),

xi(t) = ;F{_;.l(t) for0O<i<n. (A12)

Proof. Assume the hypothesis. We prove (A.12) by induction on i.
Since 31 % =0, it follows that 3" ;x;(t) = p for all t € [0, oc). Therefore (A.1) can be simplified to

%0 — b 00~ 0,

and has solution

b b
— _e—(f+byy _ 2|
xn(t)—P(f b)(l e t)— i F1(D).

For the induction step, assume that x;(t) = %FH] (t) for some 0 <i<n—1. By (A.2), the derivative of x;;1 is

dx;
ﬂ;t“ = fxi— (f +b)xiy1-

By the integrating factor method, we obtain the solution

Xip1 () =e_(f+b)t/e(f+b)ffx1~(t)dt=e_(f+b)ffe(f+b)fb.F,-+1(t)dt.

It follows from Observation A.3 that
b
Xiy1(t) = TFiJrz(f) + Ce~U+Dt
for some C € R. By the initial condition, x;+1(0)=0,s0 C=0. O

Lemma A.8. Under the assumptions of Lemma A.7,

Xa(t) < pe P 4+ p (ﬁ)n (1 - e””) (A13)

forallt € [0, c0).

Proof. Assume the hypothesis. By equation (A.3), the derivative of x; is
dx,
T: = [Xp_1(t) — bx, ().

Therefore x,; has a solution of the form

X () =e’bffebrfxn,1 (t)dt.

By Lemma A.7, we know that x,_1(t) = %Fn(t), therefore

Xn(t) = e f eP b Fp (t)dt

n o Lk k
_ bt [bt f —(febpe o E U D)
=e fe bp (_f+b) e kE,n — dt

(I et [y U D
_bp(f+b)e fe g T dt.

132 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

Using the Taylor series of the exponential function, we can rearrange the integral to obtain

2k k n—1 g k
t b t b
]e-ffz—(f,j) dt:fe—ff (g(f+b)tz(fk_:_))dt
k=n ’ k=0 ’
n-1 k
=febtdt—z%ftke*ﬁdt.
k=0)
Since
st K _penntif!
ffe dtzfﬁe ZOT+C1=
1=

for some C; € R, and
bt g _ 1 bt
e dt = Ee + CZ,

for some C3 € R, we see that

A L (f by K Sl
o= (155) M[BEMZT(WE ")re

k=0
f\", . b th Foye! frzk:tffi bt
(L) st S () e e
f+b f = \f+b — il
for some C3, C4 € R. By the initial condition, x,(0) = p. Therefore we can solve for C4 in the equation
-1 n—k—1
F\', b~ S
=pl|—— - —_— C
p p(f+b +pf§ o +Ca,
and we see that
—1 n—k—1
) (i)
Ca=p—p|—) —p—= - .
2P p(f+b s 2\ is

After substituting this value for C4 into our equation for x,, we obtain

_ o—bt f)n bt
Xxn(t) = pe +p(—f+b (1—e)+ A,
where
A—pbe—b‘ni(f)"kl e_ﬂzkjﬂfl
U f —\f+b — il '

The lemma immediately follows from the fact that A< 0. O

At this point, we have derived the solutions and bounds necessary for the cascade of species Xg, ..

., X, from Construc-

tion 4.1. However, we must prove a few lemmas concerning the other two species X* and X" that interact with the top of

the cascade.

Construction A.9. Given f >0and b > 0, let x,X : [0, oc) — [0, 00) be functions that satisfy the ODEs

dx

— = _—b
dt fr=bx,
%=bx—f§.

dt

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 133

Lemma A.10. If x and X are functions constructed according to Construction A.9 with f > 0and b > 0, then forall t € [0, c0),

aw=p(?£3)@4f%“ﬁj+ﬁm-rqﬁﬁ (A16)
X(t) =p —x(1), (A17)

where p = x(0) + x(0).

Proof. Assume the hypothesis. Since fi_): + g—f =0, it follows that for all ¢ € [0, o0)

x(t) +x(t) = x(0) + x(0),

and therefore (A.17) holds.
To show (A.16) holds, we solve the ODE (A.14) which can be written as

dx
E=f(pf?c)fbx,

which has solution (A.16). O
Lemma A.11. If € € (0, %), T > 0, and x, X are constructed according to Construction A.9 with p = x(0) + x(0), and
1 2p €
>—log| —), b=<fl=—]).
e tim(2). vr(5)
then x(t) > p—eand X(t) < € forallt > 1.

Proof. Assume the hypothesis. Then by Lemma A.10, for all t > 7,

x()=p (ﬁ) (1 —e +b)f) +x(0)e~ DT

()

s 12 ()0 (5.0 5 <

X(t) > ! =Y ep(1-5Y 2 p-e o
=21y 25)=P(1-5;) =p—<

A.2. Proof of input enhancement theorem

We now have the machinery that we need to prove the Input Enhancement Theorem.

Proof of Theorem 4.2. Assume the hypothesis. Then t > 0, € € (0, %), & = (8y, 8y, 80, 8) with 8, € (0, %). 8 € (0,€), 8 €
(0, %), 8 >0, and N(X) = N%¥)(z,¢,6) and x((]x) are constructed according to Construction 4.1. We now must show that
N x(0 =8 90 (7).)

Now let n = |S|—2, let ¢ = (u, V, h) be a context satisfying a(c), let € = (@1, V, h) be (8,, 8y)-close to c, let Xy be §p-close

to x((]x), let N be 8¢-close to N, and let p and p* be the constants

p=Y) RoX), p*=%(X)+RX).
i=0

It now suffices to show that Né,,“o is e-close to a function v € C[V] that satisfies ¢ (u,v), i.e., if (b, I) is an input event
for u, then (b, I;) must be an output event for v. We prove this in two cases corresponding to b=1 and b =0 by invoking
many of the lemmas from the previous section.

The state species of N are naturally split up into two parts. The first part is the cascade of species X, ..., X, and the
second part are the species X*, X" which are affected by the top of the cascade. The ODEs for species Xg, ..., X, of N can
be derived from the reactions in Construction 4.1 along with the perturbed mass action function from equation (3.5) and
are

134 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

dx L. o
thU =Y kixi — (kix)xo, (A18)
i=1
dx; - ~ R)
i (k1x)xi—1 — (k1x + k1)x; forO<i<n, (A19)
dx - A
d—t” = (k1x)%Xn_1 — k1xn. (A.20)
Similarly, the ODEs for X* and X are
dx* S ~
cht = (ko) — kox*, (A21)
¥
(A22)

dx A S _
i kax™® — (kaxy)X*.

Since & 4 &X° _ 0, it is easy to show that x*(t) +x*(t) = p* for all t € [0, oo). Similarly, Z?:o xi(t) = p for all t € [0, c0).

Let (1,I) be an input event for u, where [= [t1,t3]. Since the input signal can be perturbed by §,, it follows that
x(t) >1—4, for all t € I. We also know that the rate constants can be perturbed by ;. To minimize the concentration of
X, in the interval I, we assume that all the concentration of Xy, ..., X, is in Xp at time t;. We also maximize the rate of
falling down the cascade and minimize the rate of climbing the cascade.

Therefore by Lemma A4, for all t €1,

; f b)ni B 4D (e
+ il ’

where f = (ki —8,)(1 —8,) and b =kq + 8. Since x, is monotonically increasing, for all t € [t; + %, ta], X (t) > xn@), and

Xn(t) >p (

i=n

therefore

!) Z tl(f_J!r by e~ (D)

x“(t)>p(f+b i

i=n

By Lemma A.5, for all t € [t + 5, t3],

X (1) >p (ﬁ) (1 —ne*%(f“’)%).

Since k1 > 8 + rﬂz—"au) log(2n), Corollary A.6 tells us

nrq
w05 (755) (3)
_bp ((k1 = 8)(1 = 8y))"
T2 k1 — &)1 —8y) + k1 + 8

_pf 1-8& \"
T2\1-6,+u)’

where u = kif?;: Since k1 > 2@, we know that u <1+ 8, and therefore

p1—-8\"

t = .

xn()>2(3)
10 2

n
Since the initial condition can be perturbed by at most 8, p > =5 (q) , therefore

Xp(£) >

H

€ — oy

for all t € [t1 + 3, t2].
Recall that the ODEs for X* and X* are (A.21) and (A.22). To minimize the concentration of X* in the interval [t; + % 2],

we minimize the production of X* and maximize the production of X*. By Lemma A.10, for all t € [t; + T, t5],

X(t) > p* (%) (1 7ef(f+b)%) ,

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 135

where f = (ky — 6,()% and b =k, + 8. Since ky > 48, then ﬁ;fg‘; < 3 and therefore

€—§ 5 €—34
b=ky+8 < ——— | (ka — &) =ty
€ — & 3
whence
€ — 8y
b< TS f.

Since ﬁ >1and k, =2 log (ﬁ) + 48,

5 2 3 2 2p*
f=(ka =4 > Zlog| ——) > =log Py,
€8, T € — &y T € —dp

By Lemma A.11, for all t € [t; + 7, t2],

) > p* — €+ 8.

Since the initial state can only be perturbed by at most 8y and the output function can only introduce &, error. It immedi-
ately follows that

Né,ig(t) >1—¢€.

Therefore N’E_;‘O (t) is e-close to satisfying the requirement that (1, I;) is an output event.
It remains to be shown that Né_io is e-close to handling input events of the form (0, I). To show this, let (0,1) be an
input event, and let I =[t1, t;]. Therefore x(t) < é, for all t € I. Similar to the above argument, by Lemma A.8, for all t €,

n
—b(t—t1) f (. —b(t—ﬁ))

xn(t) < pe + R — 1—e

n(t) <p P ([b)

where f = (k1 + 8;)8y and b = ky — 8. Since this function is monotonically decreasing, for all t € [t; + %, t2],
f)” bt
Xq(t) < e +pe "2
a(t) <p (Fib p

(k1 + 805y Y b
= e 2
pﬁh+m&+h—& P

8u n+ e—b3
p T p)

where u = E;ﬁi Since k1 > %;5“) we know that u > 1 —§,, whence for all t € [t1 + % ta],

Xn(t) < p&T + pe~P3.

n
Since p < % (ﬁ) + 260,

10 26y
1-4y

10+e—8, { 26, \" Y
e 232
= € — &y (lfau) p

2 (1-a\T
<3 —a) \ 25, pe "=

n
) +80 4+ pe b3

; 64
Since n > log(%) (m)

32 (e — 8p)? b
0 < 3 5 (64) e

€ — &

+pe 2.

[
I

136 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

n
As we showed before, p < ﬁ (ﬁ) + 289, whence

G*(Sh 32 4 n _bI _pl
Xn(t e 2 4+ 26pe 2.
0<% *3(6—6;1)(1—6“) e
n
Since b=k; — 8, > %log((eﬁ_ﬁ)z (1_2811))

€ — &y € — & _pI € — 8 € — 8
250605 < £ ,
6 o N <5 T3

whence for all t € [t; + £, t2]

x (1) <

€ — &y

Xn (t) <

We now bound the concentration of X* and X". If f=ky+ Sk)% and b = k; — &, then by Lemma A.10

for all t € [t; + T, tz]. Since ’,2%?’: > 3,

€—68, € —9d € —é&p
< (k2 — &) < D

f=ka+&) b.

5 3
Since b=k, — & > 2 log (ﬁ) > 21og (EZ_LEH) by Lemma A.11, for all t € [t + T, t2],

() > p* — €+ 8.

Since x*(t) + X*(t) = p* for all t € [0, co), it follows that x*(t) <€ — &, for all t € I;. Since p* > 1 + &, it follows that
(M) >1—e+8; foralltels;.

Finally, since the output function can at most deviate by 8, from the solutions of x*(t) and X*(¢), it is clear that Né!io is
e-close to having (0, I;) as a valid output event. O

Appendix B. Proof of initialization lemma

Proof of Lemma 5.6. In this proof, we must show that the IO CRN N, when initialized with its initial state xq, will still be
do-encoding its set of initial states I at time t = % Before we begin the argument, we must fix the arbitrary perturbations
of the I/O CRN. Since this lemma applies to both the base case and the induction step of our overall argument, we fix
an arbitrary input string w € £*. Now let ¢ = (u, V,h) be a context satisfying o (€), let € = (@, V, h) be (8,, 0)-close to
¢, let &y be Sp-close to Xg, let N be 8 -close to N, and let %(t) be the unique solution of N when initialized to %q. To
complete the proof we must show that Yo n-encodes I in the state i((%). In other words, for each g € I we must show that
¥q(3) > p(Yq) —n and for each q ¢ I that y,(3) <.
For the first part, let g € I. Recall that the ODE for Yy is

dy a _ PO A _ A _
o =lerize —kaXZayq +kayyg — kaye¥g
> kzyﬁq - ,22.Vq7§ — k280Z4y4.

Since 122 is 8-close to the constant k, we have

dy _ — _
1 = (o = 80Y¥q — (2 + 80 yq¥g — (ka + 80Zq V.

Since the sum of the concentrations of Z; and Z; is the constant p(Z,), we know that Z,(t) is bounded by p(Z,). Thus,
dy

= e = 80Y¥q — (ko + 80 yeTg — (k2 = 8)30p(Zg) Y-

Since ¥, = p(Yq) — ¥4, we can simplify the ODE to

d
Y1 ey - 80V (p(Yq) — ¥g) — (k2 + 8)yq(P(Yq) — ¥g)?

dt
— (k2 — 8)dop(Zg)yyq.

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 137

At this point, everything in the ODE is a constant except for the function y,. If we let a, b, ¢, and p be the constants

a=ky—8, b=ka+d& c=(k2—-8)p(Zd. p=py),
then we can rewrite the ODE in a simpler form

dyq

dr
The above ODE has identical structure to that of the termolecular signal restoration algorithm from [29]. This means that
if the inequality ¢ < 4@ +b) holds, we can make use of Theorem 3.2 from [29] to bound the concentration of Y during the
interval [0, 7]. It is routine to verify this and can easily be shown using the facts that k; > 25, 1 — &g < p(Zg) <1+ ép, and
80, 8k < 25-

At this point, we know that during the interval [0, %] the behavior of Y, is bounded by the termolecular signal restora-
tion algorithm and that the constant ¢ is small enough to introduce bistability to the system. We now show that the
concentration of Yy is attracted to the stable fixed point close to 1 and therefore remains unaffected.

Let E; and E; be the constants

> ay2(p — ¥q) — byq(p — ¥9)* — cyq.

a+b
=p—A, (B.2)

El=p(i)+A, (B1)

where A= 5 () (1 — V1= c*) and c*=c- 4;”“’) These constants are two of the equilibrium points of the signal restora-
tion algorithm mentioned previously. Because of the stability of these points shown in [29], if y4(0) > E, then Y, will
converge to E;, whereas if y,(0) < E; then it would converge to 0. It is routine to verify that y,(0) > E; but can be easily
shown using the bounds mentioned previously along with y,(0) > 1 — &.

Since Eq is the decision point of the signal restoration algorithm, Theorem 3.2 from [29] tells us that the concentration
of Y, will converge away from the constant E; to the constant E;. It immediately follows from the fact that E1 < y4(0) < Ez
that yq(t) > y¢(0) > 1 — o for all t € [0, 1.

It remains to be shown that if g ¢ I, then yq(%) < 8p. This immediately follows by the symmetry imposed by the dual
relationship of Yq and Yq. O

Appendix C. Proof of state restoration lemma

Proof of Lemma 5.7. In this proof, we must show that the I/0 CRN N, when initialized with Xy, is capable of maintaining
and improving its encoding of a set A C Q. Before we begin the argument, we must fix the arbitrary perturbations of the
I/O CRN. Since this lemma also applies to both the base case and the induction step of our overall argument, we fix an
arb1trary input string w € *. Now let ¢ = (u, V, h) be a context satisfying a,(c), let € = (@, V, h) be (Su, 0)-close to c, let
%o be 8g-close to Xg, let N be &;-close to N, and let X(t) be the umque solution of N when initialized to Xq.

We also assume the hypothesis of Lemma 5.7, i.e,, that Yg E—encodes the set A C Q in state X(t1) and x*(t) < y for all
t € [t1,t2] and for each X* € U*. To complete the proof, we must show that Yo n-encodes A for all t € [t + %, t2].

Let q € A. Recall that the ODE for Yy is

dyq & o P
d—tq = kox}20¥g — koX}Zqyq + kay2y, — kayVi-

We will be examining the behavior of Y, during the interval [y, tz]. During this interval, we know by the hypothesis that
x*(t) <y for each X* € U*. Thus we know that during the interval [tq, t;]
> kay2yq — kaye V2 — kay gy,
> (k2 — 8)ya(p(Yq) — ¥g) — (k2 + 8)yq(P(Yq) — ¥g)*
— (k2 +8)yp(Zg)yq-

Now if we define the constants a, b, ¢, and p to be

dt

a=k2*5k, b=k2+8k= C=(k2+5k)p(zq)]/a pzp(Yq)s

then we can rewrite the above ODE as

dy
&~ Wa® — yo) —bya(p — y9)* — cye.

138 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

We also define the constants E; and E;

b
Ei=p|— A, Cl1
=r (5 €
E2=p—A, (C-ZJ
where A=2 (ﬁ) (1-vT=0%) and ¢* =c- *552.

It is easy to verify that ¢ < % and Eq < yq4(t1), so Theorem 3.2 from [29] tells us that yg(t) is converging toward the
value E;.

We now show that the constant E; is sufficiently high to restore the concentration of Y4 to at least p(Yg) —n. Using the
definition of y in (5.15), kz in (5.13), and the fact 8, §p < %, it is not difficult to show that:

1+
- 2c _ 2y(ka +8)p(Zg) <2y ;;2 (1 +50) _n (€3)
pa p(Yq) (ka2 — &) 1- g 1—8g 8
It follows that
E2=p(Ye) —A>p(Yo) — 4. (C4)

By Theorem 3.3 in [29], the amount of time At it takes the signal restoration reactions to restore the concentration of
Yy to p(Yq) — n from p(Yq) — &p is bounded by
a+b

——1
abp?(1 fcﬁ‘glz—:f))

At < ogu, (C.5)

where
_(p—n—ED(E2—p+do)
 (p—d0o—E)(E2a—p+n)’
Using previous definitions and bounds, it is routine to verify that the right-hand side of (C.5) is bounded by %
It follows that within % time, the concentration of Y, reaches p(Yy) —n, and therefore for all t € [t; + % tz], yq@t) >
Yg) — 1.
. 'F})ﬂs gnishes one half of the proof, namely, that if g € A that the I/O CRN N robustly keeps the value of Y; n-close to

p(Yq) during the interval [t + % t2]. It remains to be shown that for q ¢ A, yq(t) <n for all t € [t1 + % t2]. This follows by
the symmetry of Y, and its dual Y,. O

Appendix D. Proofs of computation lemmas

In this appendix, we prove Lemmas 5.8, 5.9, 5.10. Recall that there are variables defined in Section 5 that are relevant
to these lemmas, and we repeat them here for readability. Let w € £* and a € £ and assume the inductive hypothesis
N, Xg |=‘,‘: ®,, of Lemma 5.5 holds. Let ¢ = (u, V, h) be a context satisfying a4 (c), let ¢ = (11, V, h) be (8, 0)-close to ¢, let
%o be 8g-close to Xg, and let N be Sx-close to N.

Let I =[b,b + 12] be the final symbol event of the input u. Then I is an a-event and 7(u) = b + 12. The proofs of
computation lemmas involves closely examining the behavior of the I/0 CRN N during the three pulses of this a-event s
shown in Fig. 6:

Before we start proving the computation lemmas, we first state and prove some helpful observations.

Observation D.1. Y n-encodes 3([, W) during the interval [b, b + 8].

Proof. Let u* be a terminal input such that u*(t) = u(t) for all t € [0, b] and u*(t) =0 for all ¢t > b. Then w(u*) = w and
T(u*) < b. Since N,Xg |=;‘7* ¢, by our inductive hypothesis, we know that Yo n-encodes A(I, w) starting at time 7(u®).
Since u and u* agree at every t € [0, b], the concentrations of Y, for each g € Q must also agree at every time t € [0, b].
Therefore Yo n-encodes K(I, w) at time b. Finally, the input species X, is below §, during the interval [b, b + 8], so the
values of the species in Yq will be maintained by the state restoration reactions as shown in the proof of Lemma 5.7 in
Appendix C. O

Observation D.2. x} (b), xf(b) < y.

Proof. This follows from the fact that the concentrations of inputs X, and X, are less than §, in the interval [b — %,b].
Therefore the preprocessed input species X} and X have time to drop below y before time b. 0O

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 139

Xr o\ o

Fig. 6. The X;-, Xy,- and X, -pulses of the final a-event.
D.1. Proof of reset lemma

Proof of Lemma 5.8. For q € Q, the ODE for Z; is

qu [biv v 7
T —kix7zq + Z kix;y52q
(5.a,9)eA
<—(i—8)%zg+ Y (ki +8)x;p(Yr)Zg.
(s,a,q)eA
The interval [b,b + 4] is an X,-pulse and therefore every species X} for a € £ must have concentration y -close to zero.
Therefore

dz _
o <k -sxzgt Y Pk + 807
(s,a,q)eA
< — (k1 — &)X zg + |Q|(1 + o) (1 + 8) ¥ Zg.

During the interval [b + 1, b + 2], the species X; is 8,-close to one. Therefore during the interval [b + 1.5, b + 2] the species
Xy is y-close to 1. Thus

dz, _
d—t‘f <=k —8)(A = Y)zg + Q|1 + o)kt + 8y Zg.

Let f b, and p be constants defined by

A

f=1QI(1 +8)(ky + &)y b= (ki —8)(1 -), p=p(Zy,

then we can rewrite the above ODE as
dzg - I
— < fzg — bz,
dt fzg q

which has identical structure to the ODE from Construction A.9. By Lemma A.10, we have the bound

zg(b+2)<p (!) (1 —e’(ﬂﬁ)%) +2zq(b +1.5)-e’(}+5)%

o
d

>
—~ 4+
o

) (1 _ e%ﬁfb%) + pe— b3

>
+
o

(AbA) e=G+5)3 < 5F 4 pe—t.

>

+ |~

o>

SN——
+
>

140 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

Using the definition of k; from equation (5.12), it is easy to show that k; > &, + % log (@) therefore

4@+m<ﬁ}+%
It is routine but easy to verify that pf > 7. and so zg(b+2) < 7.
During the interval [b + 2, b + 4], the derivative of Z; is bounded by

dzg - . an 1
(Tf<f(pfzq),<pf,<i,

which means less than g of Z, is produced over the interval [b 4+ 2, b + 4]. Therefore z;(b 4 4) < 7. Since q was arbitrary,
this means that Zg n-encodes the set @ at time b+4. O

D.2. Proof of transition lemma

Proof of Lemma 5.9. We prove this in two steps. First we prove that if g € E(I, wa), then for all t € [b+8,b+12] z4(t) >
p(Zq) — %, and second we prove that if g ¢ E(I, wa), then for all t € [b+8,b+12] z;(t) < 21—0. We also depend on the fact
that Lemma 5.8 states that all the portal species have been reset to a concentration less than 7 at time b + 4.

For the first part, let g € 3(1, wa). Then there exists a state s € 3([, w) such that (s,a, g) € A. This means that there is
at least one reaction from equation (5.7) and Construction 5.1 that computes the transition (s, a,q) € A. Therefore we can
bound the ODE corresponding to Z; by

dz - - _
d_tq =-kixzg+ Y kixyszg,
(s.a.9)eA
> —Elx,‘f‘zq —O—fclx;‘ysiq,
> —(k1 + &)X zg + (k1 — 8K)X; ¥sZg-
During the interval [b + 5, b + 6], the input signal is at the peak of the X;-pulse, and therefore during the interval [b +
5.5, b + 6] we know that
dzg
dt
By Observation D.1, the set Yo n-encodes E(I, w) during [b, b+ 8], and since s € E(I, w) we know that

> —(k1 + 8y zg + (k1 — 8 (1 — ¥)ysZy.

dz,
dt

Now let }‘ b, and p be the constants

> —(k1 +8)yzq + (k1 — (1 — ¥)(1 — m)zg.

A

f=®& —8)0 -y -n b=k +8)y b=p(Zy,
so that

dzg
dt
Then by Lemma A.10, we have the bound

> }"Eq - Ezq.

24 +6) > 76+ 550+ 45 (L (1-e0+01)
f+b
spd ﬁe—%>ﬁ(1§)ﬁe-%—ﬁﬁ(§+e—%)
F+b f f

4(144g)
n

Using the definition of k; from equation (5.12), it is easy to show that k1 > 8, + (lfy)zufn) log(
that

). Therefore we know

zg(b+6)>p—p +%

3| T

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 141

It is routine but easy to show that p2 < g, therefore we have the bound

(NS

zy(b+6)>p— g
Finally, we know that Z, is bounded during the interval [b+ 6,b + 12], Z; by

dzg

> —bp=—(k1 + 8y P(Zg) > — (k1 + 8y (1 + 8p).

It is also routine but easy to verify that (k1 + &)y (1 + o) < % and therefore %ﬂ > —% during this interval. This means
at most g of Z; can be destroyed by tirﬁe b+12, and thus, for all t € [b+ 8,b 4 12], z4(t) > p(Zg) —-n> p(Zq) — %.

It remains to be shown that if g ¢ A(I, wa), then for all t € [b+8,b 4+ 12] z(t) < 21—0. Let g ¢ A(I, wa). Then for all
(s,a,9) € A(I,wa), s ¢ A(I, w). Therefore, we have the following bound for Z; in the interval [b 44, b 4 12].

dz A A _ A _
d_tq = —kixfzy + Z k1x3yszg < Z kX3 YsZg
(s,a,9)eA (s,a,q)€A
<1QI(k1 +)1+ 80)n(1 +80) = |Q | (k1 + &) (1 + 80)*n.
Therefore

24(b+12) < zo(b +4) +8/Q (k1 + &) (1 +80)*n

1
<1 +8|Q |k + &)1 +80)%n < 55 O

D.3. Proof of copy back lemma

Proof of Lemma 5.10. In this proof, we assume the result of Lemma 5.9, i.e., Zg %—encodes A(I, wa) during the interval
[b+8,b+12]. We now focus on the behavior of Y, during the interval [b+ 8, b + 12]. We begin by examining the ODE for
Y, which is

dyq

=A+B
dt +5

where A = f(zszqiq — ﬁzxé‘iq ¥q and B = ko yqu — ko yqﬁ. We begin by bounding the signal restoration part of the ODE
with

B > yq¥q((ka — 8K)yq — (k2 + 8)7,)

8
= —k2y¥, (wq ~p(Ye) (1 - é)) :

Since yq + ¥, = p(Yy), it is not difficult to show that minimizing B under these constraints yields the inequality
ka 3 S 3
B> ——p(Y 1+ .
> 6 p(Yy) (ks

Now let g € A(l, wa). Then by Lemma 5.9, zq(t) > p(Zg) — % for all t € [b+8, b+ 12]. During the interval [b+9, b+ 10], the
input species X, is at a peak which means that X} is above 1 — y during the interval [b+ 9.5, 10]. Therefore the derivative
for Y4 during this interval is bounded by

dy ~ _ ~ L k2 Ok 3
d_tq > kaxizg¥, — kaxiZgyq — E;:'(Yq)3 (1 + P

:a(ﬁ_yq)_ﬁyq_e

Ok 1
.

A Sk 1
b=k (1+—)(A+d0)=—
2 (144) 0w

where

a

142 TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143

. ko 3 Sk 3
=2p¥)3(1+ =

¢ 6p(Q) (+k2)
ﬁ=p(yq)-

This ODE is easily solvable, and therefore we obtain the bound

pa— ¢ o
Yalb+9.75) > I:HE (lfe_(”b)%). (D)
It is routine but easy to verify that
pai—¢ 2 8k
—>-pYp(1+—]). D.2
a+b L q)(kz) (B2)

Using the specification of k2 from equation (5.13), it is clear that k3 > 8 + 4log 4 g Therefore we know that

—y)(1—8p— 5
3

FNE

1—e @b o _p-t

Plugging this inequality along with equation (D.2) into equation (D.1), we obtain

2 &\ (3)_ p(Yy) 8k
Yalb +9.75) > 2p(¥o) (1 + E) (Z) -2t (1 + E) |

During the interval [b +9.75, 10], the derivative of Yy is still bounded by

dyq T byt v 2y i
d_tq > kax;2qy g — kaXiZgyq — k2yq¥, (qu —p¥o) (] ; E))
~ —_ ~ —_— 17 8k
= k2X?quq - k2x:zqu + kzyqu (qu o p(Yq) (] + E)) .

p(Yq)

Since the concentration of Y, is greater than = (1 + %) at time t = 9.75, we know that the ODE of Y; during the

interval [b +9.75, b+ 10] is bounded by

dy, =« — k= aon B
d_tq > kzlequ —kax{Zgyq > a(p — yq) — byq.

By Lemma A.10 we obtain the bound

Yq(b+10) > i) (A a B) (‘1 - e*(ﬁAHS)%) + ¥q(b+9.75) - e*(ﬁ#»ﬁ)%

a+
+5(355) e)=a(1-3) (=)
>ﬁ*ﬁg—ﬁe_a%.

It is routine but easy to verify that p2 < 4 and pe—it < 25+ S0 we have the bound yg(b + 10) > p(Yg) — 5.

It remains to be shown that if q ¢ E(I , wa) that yq(b+10) < 21—0. This holds by symmetry of Y4 and ?q. O

References

[1] Horst Alzer, On some inequalities for the incomplete gamma function, Math. Comput. 66 (218) (1997) 771-778.

[2] Dana Angluin, James Aspnes, David Eisenstat, A simple population protocol for fast robust approximate majority, Distrib. Comput. 21 (2) (2008) 87-102.

[3] Dana Angluin, James Aspnes, David Eisenstat, Eric Ruppert, The computational power of population protocols, Distrib. Comput. 20 (4) (2007) 279-304.

[4] Tom M. Apostol, Calculus, Volume 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability, John Wiley
& Sons, 1969.

[5] Rutherford Aris, Prolegomena to the rational analysis of systems of chemical reactions, Arch. Ration. Mech. Anal. 19 (2) (1965) 81-99.

[6] Karl Johan Astrém, Richard M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, 2008.

[7] Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, Erik Winfree, A general-purpose CRN-to-DSD compiler with formal verifi-
cation, optimization, and simulation capabilities, in: Proceedings of the 23rd International Conference on DNA Computing and Molecular Programming,
in: Lecture Notes in Computer Science, 2017, pp. 232-248.

[8] Filippo Bonchi, Damien Pous, Checking NFA equivalence with bisimulations up to congruence, in: Proceedings of the 40th Symposium on Principles of
Programming Languages, ACM, 2013, pp. 457-468.

[9] Filippo Bonchi, Damien Pous, Hacking nondeterminism with induction and coinduction, Commun. ACM 58 (2) (2015) 87-95.

TH. Klinge et al. / Theoretical Computer Science 816 (2020) 114-143 143

[10] Luca Cardelli, Morphisms of reaction networks that couple structure to function, BMC Syst. Biol. 8 (2014) 84.

[11] Luca Cardelli, Attila Csikdsz-Nagy, The cell cycle switch computes approximate majority, Sci. Rep. 2 (2012).

[12] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik, Georg Seelig, Programmable chemical controllers
made from DNA, Nat. Nanotechnol. 8 (10) (2013) 755-762.

[13] Juan Cheng, Sarangapani Sreelatha, Ruizheng Hou, Artem Efremov, Ruchuan Liu, Johan R.C. van der Maarel, Zhisong Wang, Bipedal nanowalker by pure
physical mechanisms, Phys. Rev. Lett. 109 (2012) 238104.

[14] Matthew Cook, David Soloveichik, Erik Winfree, Jehoshua Bruck, Programmability of chemical reaction networks, in: Anne Condon, David Harel, Joost
N. Kok, Arto Salomaa, Erik Winfree (Eds.), Algorithmic Bioprocesses, in: Natural Computing Series, Springer, 2009, pp. 543-584.

[15] Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, Andrew J. Turberfield, DNA walker circuits: computational potential, design, and verification, in:
Proceedings of the 19th International Conference on DNA Computing and Molecular Programming, in: Lecture Notes in Computer Science, vol. 8141,
Springer, 2013, pp. 31-45.

[16] Domitilla Del Vecchio, Richard M. Murray, Biomolecular Feedback Systems, Princeton University Press, 2014.

[17] David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Damien Woods, The tile assembly model is intrinsically universal,
in: Proceedings of the 53rd Symposium on Foundations of Computer Science, IEEE, 2012, pp. 302-310.

[18] Shawn M. Douglas, Ido Bachelet, George M. Church, A logic-gated nanorobot for targeted transport of molecular payloads, Science 335 (6070) (2012)
831-834.

[19] Shawn M. Douglas, Adam H. Marblestone, Surat Teerapittayanon, Alejandro Vazquez, George M. Church, William M. Shih, Rapid prototyping of 3D
DNA-origami shapes with caDNAno, Nucleic Acids Res. (2009) 1-6.

[20] Samuel]. Ellis, Titus H. Klinge, James I. Lathrop, Robust chemical circuits, in: Selected papers from the International Conference on the Theory and
Practice of Natural Computing 2017, Biosystems 186 (2019) 103983, https://doi.org/10.1016/j.biosystems.2019.103983.

[21] Irving Robert Epstein, John Anthony Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, Oxford Uni-
versity Press, 1998.

[22] Péter Erdi, Jinos Téth, Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models, Manchester
University Press, 1989.

[23] Frangois Fages, Guillaume Le Guludec, Olivier Bournez, Amaury Pouly, Strong Turing completeness of continuous chemical reaction networks and
compilation of mixed analog-digital programs, in: Proceedings of the 15th International Conference on Computational Methods in Systems Biology,
Springer International Publishing, 2017, pp. 108-127.

[24] Walter Gautschi, The incomplete gamma functions since Tricomi, in: Tricomi’s Ideas and Contemporary Applied Mathematics, vol. 147, Francesco Gia-
como Tricomi (Ed.), Accademia Nazionale dei Lincei, 1998, pp. 203-237.

[25] Jeremy Gunawardena, Chemical reaction network theory for in-silico biologists, http://www.jeremy- gunawardena.com/papers/crnt.pdf, 2003.

[26] Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao Deng, Yan Liu, Hao Yan, DNA origami with complex curvatures in three-dimensional space,
Science 332 (6027) (2011) 342-346.

[27] Thomas A. Henzinger, Jean-Frangois Raskin, The equivalence problem for finite automata: technical perspective, Commun. ACM 58 (2) (2015) 86.

[28] Yonggang Ke, Luvena L. Ong, William M. Shih, Peng Yin, Three-dimensional structures self-assembled from DNA bricks, Science 338 (6111) (2012)
1177-1183.

[29] Titus H. Klinge, Robust signal restoration in chemical reaction networks, in: Proceedings of the 3rd International Conference on Nanoscale Computing
and Communication, ACM, 2016, 6.

[30] Dexter Kozen, Automata and Computability, Springer, 1997.

[31] Gabor Lente, Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks, Springer, 2015.

[32] Fumiya Okubo, Takashi Yokomori, The computational capability of chemical reaction automata, Nat. Comput. 15 (2) (2016) 215-224.

[33] Fumiya Okubo, Takashi Yokomori, The computing power of determinism and reversibility in chemical reaction automata, in: Andrew Adamatzky
(Ed.), Reversibility and Universality: Essays Presented to Kenichi Morita on the Occasion of his 70th Birthday, Springer International Publishing, 2018,
pp. 279-298.

[34] Lulu Qian, Erik Winfree, Scaling up digital circuit computation with DNA strand displacement cascades, Science 332 (6034) (2011) 1196-1201.

[35] Lulu Qian, Erik Winfree, A simple DNA gate motif for synthesizing large-scale circuits, J. R. Soc. Interface 8 (62) (2011) 1281-1297.

[36] Lulu Qian, Erik Winfree, Jehoshua Bruck, Neural network computation with DNA strand displacement cascades, Nature 475 (7356) (2011) 368-372.

[37] Michael O. Rabin, Dana Scott, Finite automata and their decision problems, IBM]. Res. Dev. 3 (2) (1959) 114-125.

[38] Paul W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature 440 (7082) (2006) 297-302.

[39] Nadrian C. Seeman, Nucleic acid junctions and lattices,]. Theor. Biol. 99 (2) (1982) 237-247.

[40] Lloyd M. Smith, Nanotechnology: molecular robots on the move, Nature 465 (7295) (2010) 167-168.

[41] David Soloveichik, Matthew Cook, Erik Winfree, Jehoshua Bruck, Computation with finite stochastic chemical reaction networks, Nat. Comput. 7 (4)
(2008) 615-633.

[42] David Soloveichik, Georg Seelig, Erik Winfree, DNA as a universal substrate for chemical kinetics, Proc. Natl. Acad. Sci. USA 107 (12) (2010) 5393-5398.

[43] Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, American Mathematical Society, 2012.

[44] Anthony S. Walsh, HaiFang Yin, Christoph M. Erben, Matthew J.A. Wood, Andrew]. Turberfield, DNA cage delivery to mammalian cells, ACS Nano 5 (7)
(2011) 5427-5432.

[45] Bryan Wei, Mingjie Dai, Peng Yin, Complex shapes self-assembled from single-stranded DNA tiles, Nature 485 (7400) (2012) 623-626.

[46] Erik Winfree, Algorithmic self-assembly of DNA, PhD thesis, California Institute of Technology, 1998.

[47] Damien Woods, Intrinsic universality and the computational power of self-assembly, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 373 (2046) (2015).

[48] Bernard Yurke, Andrew]. Turberfield, Allen P. Mills, Friedrich C. Simmel, Jennifer L. Neumann, A DNA-fuelled molecular machine made of DNA, Nature
406 (6796) (2000) 605-608.

[49] David Yu Zhang, Georg Seelig, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem. 3 (2) (2011) 103-113.

