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—— Abstract

The Schnorr-Stimm dichotomy theorem [31] concerns finite-state gamblers that bet on infinite
sequences of symbols taken from a finite alphabet 3. The theorem asserts that, for any such sequence
S, the following two things are true.

(1) If S is not normal in the sense of Borel (meaning that every two strings of equal length
appear with equal asymptotic frequency in S), then there is a finite-state gambler that wins money
at an infinitely-often exponential rate betting on S.

(2) If S is normal, then any finite-state gambler betting on S loses money at an exponential rate
betting on S.

In this paper we use the Kullback-Leibler divergence to formulate the lower asymptotic divergence
div(S||e) of a probability measure o on X from a sequence S over X and the upper asymptotic
divergence Div(S||a) of a from S in such a way that a sequence S is a-normal (meaning that
every string w has asymptotic frequency a(w) in S) if and only if Div(S||a) = 0. We also use the
Kullback-Leibler divergence to quantify the total risk Riske(w) that a finite-state gambler G takes
when betting along a prefix w of S.

Our main theorem is a strong dichotomy theorem that uses the above notions to quantify the
exponential rates of winning and losing on the two sides of the Schnorr-Stimm dichotomy theorem
(with the latter routinely extended from normality to a-normality). Modulo asymptotic caveats in
the paper, our strong dichotomy theorem says that the following two things hold for prefixes w of S.

(1) The infinitely-often exponential rate of winning in 1 is oPv(Slle)fw]

(2') The exponential rate of loss in 2 is 27 Riske (),
We also use (1’) to show that 1 — Div(S||a)/c, where ¢ = log(1/minges a(a)), is an upper bound
on the finite-state a-dimension of S and prove the dual fact that 1 — div(S||a)/c is an upper bound

on the finite-state strong a-dimension of S.
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1 Introduction

An infinite sequence S over a finite alphabet is normal in the 1909 sense of Borel [7] if every
two strings of equal length appear with equal asymptotic frequency in S. Borel normality
played a central role in the origins of measure-theoretic probability theory [6] and is intuitively
regarded as a weak notion of randomness. For a masterful discussion of this intuition, see
section 3.5 of [22], where Knuth calls normal sequences “oo-distributed sequences.”

The theory of computing was used to make this intuition precise. This took place in three
steps in the 1960s and 1970s. First, Martin-Lof [28] used constructive measure theory to
give the first successful formulation of the randomness of individual infinite binary sequences.
Second, Schnorr [30] gave an equivalent, and more flexible, formulation of Martin-L6f’s
notion in terms of gambling strategies called martingales. In this formulation, an infinite
binary sequences S is random if no lower semicomputable martingale can make unbounded
money betting on the successive bits of S. Third, Schnorr and Stimm [31] proved that an
infinite binary sequence S is normal if and only if no martingale that is computed by a
finite-state automaton can make unbounded money betting on the successive bits of S. That
is, mormality is finite-state randomness.

This equivalence was a breakthrough that has already had many consequences (discussed
later in this introduction), but the Schnorr-Stimm result said more. It is a dichotomny theorem
asserting that, for any infinite binary sequence S, the following two things are true.

1. If S is not normal, then there is a finite-state gambler that makes money at an infinitely-

often exponential rate when betting on S.

2. If S is normal, then every finite-state gambler that bets infinitely many times on S loses
money at an exponential rate.

The main contribution of this paper is to quantify the exponential rates of winning and
losing on the two sides (1 and 2 above) of the Schnorr-Stimm dichotomy.

To describe our main theorem in some detail, let ¥ be a finite alphabet. It is routine to
extend the above notion of normality to an arbitrary probability measure a on X. Specifically,
an infinite sequence S over X is a-normal if every finite string w over X appears with
asymptotic frequency a/®/(w) in S, where af is the natural (product) extension of a to
strings of length ¢. Schnorr and Stimm [31] correctly noted that their dichotomy theorem
extends to a-normal sequences in a straightforward manner, and it is this extension whose
exponential rates we quantify here.

The quantitative tool that drives our approach is the Kullback-Leibler divergence [23],
also known as the relative entropy [12]. If & and § are probability measures on X, then the
Kullback-Leibler divergence of 8 from « is

D(a||8) = E, log %,
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i.e., the expectation with respect to a of the random variable log% : 3 = RU{oo}, where
the logarithm is base-2. Although the Kullback-Leibler divergence is not a metric on the
space of probability measures on X, it does quantify “how different” S is from «, and it has
the crucial property that D(«||8) > 0, with equality if and only if o = 3.

Here we use the empirical frequencies of symbols in S to define the asymptotic lower
divergence div(S||a) of o from S and the asymptotic upper divergence Div(S||a) of a from S
in a natural way, so that S is a-normal if and only if Div(S||a) = 0.

The first part of our strong dichotomy theorem says that the infinitely-often exponential
rate that can be achieved in 1 above is essentially at least 2PV(SIo)lwl where w is the prefix
of S on which the finite-state gambler has bet so far. More precisely, it says the following.

1’. If S is not a-normal, then, for every v < 1, there is a finite-state gambler G such that,
when G bets on S with payoffs according to «, there are infinitely many prefixes w of S
after which G’s capital exceeds 27 Piv(Slla)lwl

The second part of our strong dichotomy theorem, like the second part of the Schnorr-
Stimm dichotomy theorem, is complicated by the fact that a finite-state gambler may, in
some states, decline to bet. In this case, its capital after a bet is the same as it was before
the bet, regardless of what symbol actually appears in S. Once again, however, it is the
Kullback-Leibler divergence that clarifies the situation. As explained in section 3 below, in
any particular state ¢, a finite-state gambler’s betting strategy is a probability measure B(q)
on X. If B(q) = «, then the gambler does not bet in state g. We thus define the risk that
the gambler G takes in state ¢ to be

riskg(q) = D(a‘ |B(Q)>7

i.e., the divergence of B(q) from not betting. We then define the total risk that the gambler
takes along a prefix w of the sequence S on which it is betting to be the sum Riskg(w) of
the risks riskg(q) in the states that G traverses along w. The second part of our strong
dichotomy theorem says that, if S is a-normal and G is a finite-state gambler betting on .S,
then after each prefix w of S, the capital of G on prefixes w of S is essentially bounded above
by 2~ Riska(w) " Tn some sense, then, G loses all that it risks. More precisely, the second part
of our strong dichotomy says the following.

2/, If S is a-normal, then, for every finite-state gambler G and every v < 1, after all but
finitely many prefixes w of S, the gambler G’s capital is less than 277 Riske(w),

A routine ergodic argument, already present in [31], shows that, if a finite-state gambler
G bets on an a-normal sequence S, then every state of G that occurs infinitely often along S
occurs with positive frequency along S. Hence 2 above follows from 2’ above.

Our strong dichotomy theorem has implications for finite-state dimensions. For each
probability measure « on ¥ and each sequence S over X, the finite-state a-dimension
dimpg(S) and the finite-state strong a-dimension Dimpg(S) (defined in section 4 below) are
finite-state versions of Billingsley dimension [5, 10] introduced in [26]. When « is the uniform
probability measure on X, these are the finite dimension dimgg(.9), introduced in [14] as a
finite-state version of Hausdorff dimension [20, 17], and the finite-state strong dimension
Dimpg(S), introduced in [2] as a finite-state version of packing dimension [35, 34, 17].
Intuitively, dimpg(S) and Dimpg(S) measure the lower and upper asymptotic a-densities of
the finite-state information in S.

51:3
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Here we use part 1 of our strong dichotomy theorem to prove that, for every positive
probability measure a on ¥ and every sequence S over X,

dimgg(S) <1 — Div(S]|a)/c,
where ¢ = log(1/mingex a(a)). We also establish the dual result that, for all such o and S,
Dimpg(S) <1 —div(S||a)/c.

Research on normal sequences and normal numbers (real numbers whose base-b expansions
are normal sequences for various choices of b) connected the theory of normal numbers so
directly to the theory of computing. Further work along these lines has been continued
in [21, 29, 3, 33]. After the discovery of algorithmic dimensions in the present century
[24, 25, 14, 2], the Schnorr-Stimm dichotomy led to the realization [8] that the finite-state
world, unlike any other known to date, is one in which maximum dimension is not only
necessary, but also sufficient, for randomness. This in turn led to the discovery of nontrivial
extensions of classical theorems on normal numbers [11, 36] to new quantitative theorems
on finite-state dimensions [19, 16], a line of inquiry that will certainly continue. It has
also led to a polynomial-time algorithm [4] that computes real numbers that are provably
absolutely normal (normal in every base) and, via Lempel-Ziv methods, to a nearly linear time
algorithm for this [27]. In parallel with these developments, connections among normality,
Weyl equidistribution theorems, and Diophantine approximation have led to a great deal
of progress surveyed in the books [15, 9]. This paragraph does not begin to do justice to
the breadth and depth of recent and ongoing research on normal numbers and their growing
involvement with the theory of computing. It is to be hoped that our strong dichotomy
theorem and the quantitative methods implicit in it will further accelerate these discoveries.

2 Divergence and normality

This section reviews the discrete Kullback-Leibler divergence, introduces asymptotic ex-
tensions of this divergence, and uses these to give useful characterizations of Borel normal
sequences.

2.1 The Kullback-Leibler divergence

We work in a finite alphabet ¥ with 2 < [X| < co. We write X¢ for the set of strings of
length ¢ over &, ¥* = (J;2, £ for the set of (finite) strings over ¥, £¢ for the set of (infinite)
sequences over ¥, and X% = %* U Y. We write A for the empty string, |w| for the length
of a string w € ¥*, and |S| = w for the length of a sequence S € ¥¥. For z € ¥=¢ and
0 < i < |z|, we write z[i] for the i-th symbol in z, noting that x[0] is the leftmost symbol
in x. For z € ¥=¥ and 0 <4 < j < |x|, we write z[i..j] for the string consisting of the i-th
through j-th symbols in x. Specially, we write = | n to mean z[0..n — 1]. For z, y € X%,
we write x C y if  is a prefix of y. We write z C y to denote x being a strict prefix of vy,
which excludes the case x = y.

A (discrete) probability measure on a nonempty finite set 2 is a function 7 : Q@ — [0, 1]
satisfying

Z m(w) = 1. (2.1)
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Figure 1 Two views of the simplex A({0, 1,2}).

We write A(2) for the set of all probability measures on Q, AT () for the set of all 7 € A(Q)
that are strictly positive (i.e., m(w) > 0 for all w € Q), Ag(Q) for the set of all 7 € A(Q) that
are rational-valued, and Aa (Q) = AT(Q) N Ag(Q). In this paper we are most interested in
the case where Q = X¢ for some £ € Z7.

Intuitively, we identify each probability measure = € A(2) with the point in RI®l whose
coordinates are the probabilities 7(w) for w € Q. By (2.1) this implies that A(Q) is the
(|Q| — 1)-dimensional simplex in RI®l whose vertices are the points at 1 on each of the
coordinate axes. (See Figure 1 for an illustration with |Q2|= 3.) For each w € Q, the vertex
on axis w is the degenerate probability measures 7, with m,(w) = 1. The centroid of the
simplex A() is the uniform probability measure on 2, and the (topological) interior of A(()
is AT(Q2). We write 0A(Q) = A(R2) ~ AT(Q) for the boundary of A(f2).

» Definition. ([23]). Let o, € A(Q2), where 2 is a nonempty finite set. The Kullback-Leibler
divergence (or KL-divergence) of § from « is

IKaHﬂ)=:Ehlmg%» (2.2)

where the logarithm is base-2.

Note that the right-hand side of (2.2) is the a-expectation of the random variable
o
log—: Q2 —R
B
defined by

<10g g) (w) = log o)

for each w € Q. Hence (2.2) is a convenient shorthand for

a(w)

Blw)

Note also that D(«||8) is infinite if and only if a(w) > 0 = S(w) the some w € .

D(a]|8) = 3 a(w)log

weN

51:5
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The Kullback-Leibler divergence D(«al|3) is a useful measure of how different S is from «.
It is not a metric (because it is not symmetric and does not satisfy the triangle inequality),
but it has the crucial property that D(al|8) > 0, with equality if and only if & = 5. The two
most central quantities in Shannon information theory, entropy and mutual information, can
both be defined in terms of divergence as follows.
1. Entropy is divergence from certainty. The entropy of a probability measure o € A(Q),
conceived by Shannon [32] as a measure of the uncertainty of «, is

> a(w)D(r,|a), (2.3)

weN

H(e)

i.e., the a-average of the divergences of « from the “certainties” m,,.

2. Mutual information is divergence from independence. If «, 8 € A(f) have a joint
probability measure v € A(Q x Q) (i.e., are the marginal probability measures of 7), then
the mutual information between a and 3, conceived by Shannon [32] as a measure of the
information shared by « and f, is

I(a; B) = D(eB||v), (2.4)
i.e., the divergence of « from the probability measure in which « and 8 are independent.

Two additional properties of the Kullback-Leibler divergence are useful for our asymptotic
concerns. First, the divergence D(«||3) is continuous on A(£2)? (as a function into [0, 00]).

Hence, if o, € A(Q2) for each n € N and lim o, = « in the sense of the Euclidean metric
n—oo
on the simplex A(Q), then 1Lm D(a||a) = le D(al|a,) = 0. Second, the converse holds.

It is well known [12] that

1
S " o — B2
D(allp) = 515l — I,

where |la — (|1 = >, cola(w) — B(w)] is the L1-norm. Hence, if either lim D(ay|la) =0
n—oo

or lim D(allay,) =0, then lim o, = a.

n— o0 n—00

More extensive discussions of the Kullback-Leibler divergence appear in [12, 13].

2.2 Asymptotic divergences

For nonempty strings w,xz € ¥*, we write

#ow.) = [tm < 2 1| almlul.m-+ Dlwl - 1] = )
for the number of block occurrences of w in x. Note that 0 < #5(w,z) < %
For each S € ¥, n € Z*, and X # w € ¥*, the n-th block frequency of w in S is
#o(w, S[0..njw|-1])
n

g (W) = (2.5)
Note that (2.5) defines, for each S € ¥« and n € Z™*, a function
Tign: LN {A} — Q.

For each such S and n and each ¢ € Z1, let ﬂg)n =gy, | ¥ be the restriction of the function
s, to the set $¢ of strings of length £.
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» Observation 2.1. For each S € ¥* and n, £ € Z*,
ﬂg)n € AQ(EZ)v

i.e., T[E,;)TL is a rational-valued probability measure on %¢.

We call ng) the n-th empirical probability measure on X¢ given by S.
A probability measure o € A(X) naturally induces, for each £ € Z™T, a probability measure
a®) € A(XY) defined by

[w]—1

a9 (w) = H a(wli]). (2.6)
i=0
The empirical probability measures ng)n provide a natural way to define useful empirical
divergences of probability measures from sequences.

» Definition. Let £ € ZT, S € ¥¥, and a € A(X).
1. The lower ¢-divergence of o from S is div,(S||a) = lim infD(TtSnHa ).

2. The upper {-divergence of a from S is Divy(S||a) = hm sup D( Ha ).
3. The lower divergence of « from S is div(S||a) = sup dlw(SHoz)/E
4

. The upper divergence of a from S is Div(S||a) = sup Div,(S]|a) /L.
LeZ+

A similar approach gives useful empirical divergences of one sequence from another.

» Definition. Let £ € ZT and S, T € X¥.
1. The lower ¢-divergence of T from S is dive(S||T) = lim infD(Tr(Z) I 7'[“) )
2. The upper £-divergence of T from S is Dive(S||T) = hm sup D(my (é) al 71(6) )
3. The lower divergence of T from S is div(S||T) = sup d1Vg(SHT)/€
4. The upper divergence of T from S is Div(S||T) = esuzpr Div(S||T)/¢.

€

2.3 Normality
The following notions are essentially due to Borel [7].

» Definition. Let « € A(X), S € X%, and L € Z™.
1. S is a-l-normal if, for all w € X¢,
_ )
nh_{%QT[sn( w) = o' (w).
2. S is a-normal if, for all £ € ZT, S is a-f-normal.

3. S is f-normal if S is p-f-normal, where g is the uniform probability measure on 3.
4. S is normal if, for all £ € Z*, S is f-normal.

» Lemma 2.2. For alla € A(X), S € 3%, and £ € Z*, the following four conditions are
equivalent.

(1) S is a-L-normal.

(2) Dive(S]la) = 0.

(3) For every a-C-normal sequence T € X%, Div,(S||T) = 0.

(4) There exists an a-f-normal sequence T € ¥¢ such that Dive(S||T) = 0.

STACS 2020
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Lemma 2.2 (proved in the appendix) immediately implies the following.

» Theorem 2.3 (divergence characterization of normality). For all o € A(X) and S € ¥, the
following conditions are equivalent.

(1) S is a-normal.

(2) Div(S]|a) = 0.

(3) For every a-normal sequence T € ¥, Div(S||T) = 0.

(4) There exists an a-normal sequence T € X% such that Div(S||T) = 0.

3 Strong Dichotomy

This section presents our main theorem, the strong dichotomy theorem for finite-state
gambling. We first review finite-state gamblers.
Fix a finite alphabet ¥ with || > 2.

» Definition ([31, 18, 14]). A finite-state gambler (FSG) is a 4-tuple
G = (Q767S7B)>

where @ is a finite set of states, § : Q x ¥ — @ is the transition function, s € Q is the start
state, and B : Q@ — Ag(X) is the betting function.

The transition structure (@, d, s) here works as in any deterministic finite-state automaton.
For w € ¥*, we write §(w) for the state reached from s by processing w.

Intuitively, a gambler G = (Q, 9, s, B) bets on the successive symbols of a sequence
S € ¥¢¥. The payoffs in the betting are determined by a payoff probability measure o € A(X).
(We regard o and S as external to the gambler G.) We write dg o(w) for the gambler G’s
capital (amount of money) after betting on the successive bits of a prefix w C S, and we
assume that the initial capital is dg (X)) = 1.

The meaning of the betting function B is as follows. After betting on a prefix w C S, the
gambler is in state d(w) € Q. The betting function B says that, for each a € ¥, the gambler
bets the fraction B(d(w))(a) of its current capital dg o(w) that wa C S, i.e., that the next
symbol of S is an a. If it then turns out to be the case that wa C S, the gambler’s capital
will be

B(3(w))(a) o)

dg,o(wa) = dg,qo(w) a(a)

(Note: If a(a) = 0 here, we may define dg (wa) however we wish.)
The payoffs in (3.1) are fair with respect to «, which means that the conditional -
expectation

Z ala)dg o (wa)

a€X

of dg o(wa), given that w C S, is exactly dg o(w). This says that the function dg 4 is an
a-martingale.

If §(w) = ¢ is a state in which B(q) = «, then (3.1) says that, for each a € ¥, dg o(wa) =
dg,o(w). That is, the condition B(g) = « means that G does not bet in state g. Accordingly,
we define the risk that G takes in a state ¢ € Q) to be

riskg(¢q) = D(a||B(q))-
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i.e., the divergence of B(q) from not betting. We also define the total risk that G takes along
a string w € X* to be

Riske(w) = Y riska (6(w)).

We now state our main theorem.

» Theorem 3.1 (strong dichotomy theorem). Let o € A(X), S € ¥, and v < 1.
1. If S is not a-normal, then there is a finite-state gambler G such that, for infinitely many
prefives w C .S,
dg.o(w) > 97 Div(S||a)|w|

2. If S is a-normal, then, for every finite-state gambler G, for all but finitely many prefizes
wC S,

dG,a(w) <9277 Riskg (w) .

Proof. To prove the first part, let S be a non-normal sequence. Then by Theorem 2.3, we
know that Div(S||a) > 0. Let 7 < 1 and let ¢ > 0. By the definition of Div(S||c) there must
exist £ such that

Dive(S||a)/¢ > r Div(S]|a). (3.2)
That is

lim sup D(ﬂg)nﬂa(z)) > lr Div(S||a).

n—roo

We can pick a subsequence of indices ny’s, such that limy_, o D(”g)nk [[a®) = Dive(S||e).

Therefore by inequality (3.2)
(g, lla®) > tr Div(]le) (3.3)

for sufficiently large k. In particular, by compactness of [0, 1]‘22‘ equipped with £;-norm, we
can further request that

)

lim 7g;, ~ exists. (3.4)

k—o0

Let 719 = mo(r, m) € Ag(X*) be the m-th ﬂg) that satisfies (3.3), indexed by k. By the

s
way we define 7y, we have

D(7ts.n, ||a®) > D(mo|a'?) > ¢r Div(S]|a), (3.5)

and

(0

smell =0, asm — oo and k — oo, (3.6)

|0 — 7
whence D’s continuity in section 2.1 tells us that

D(W(f,)nkHWO) — 0, asm — oo and k — oc. (3.7)
Also note that,

lim D(mol[a®) = lim D(r). [ja®) = Dive(S||a) > 0. (3.8)
m—00 k— 00 "Mk

51:9
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For a fixed 1ty = mo(r, m), by the definition, for any ny, sufficiently large, we have
D(x),, lla®) > D(molla®)(1 =€) > 0. (3.9)

By doing the above we pick a probability measure 7 that is “far” away from o), we
now hard code 7 in a gambler G = (Q, d, s, B), where

if </
Q=x1 §(w,a) = {:w ;f :Zz: _/ s=\, and B(w)(a) = mp(a|w),

where 7 (alw) describes the conditional probability (induced by 7y) of occurrence of an a
after w € @, and is defined by 7y (a|w) = 7 (wa)/my(w), where for u € @, the notation 7o (u)
is defined recursively by mo(w) = >, o5, To(wa).

Let u=ag---ap_q be in Xf. The following observation captures the above intuition:

B(M)(ao) -+ - B(u[0..£ — 2])(as—1) _ 7o (u)
alag) -+ alag_1) a®(u)

Now let w = S [ ny for some k. We can view w as

W= UUL * - Up—1Up, where |u;| =£€for 0<i<n-—1andu, =ag---a, with m <.

Then we have

n—1

doa(w) = ( H ;(2)((”1;))) B(\)(ag) - - - B(un[0..m — > Cy H a(@ (3.10)

0 a(a0)~-~a(am)

B(\)(ag)*B(un[0.m—1])(am)
a(ao)--ofag—1)

over ¥<¢. Taking log on both sides of (3.10) we get

where Cj is the minimum value of , where u,, = ag - - - a,, ranges

n—1
7o (i) o (u)
log dg o(w) —log Cy > log = #0o(u, w) log ,
2% a0 lz o8 G
- #o(u, w) © ( 7to(U)
- |Ze w08 aw |Zen & 0O (u)
) (0)
7Ts (1) %) T (1)
— ’ _ 1 )
nz|:e [ﬂsn %8 o) I8 T
4 4
= n (D), ) = DA, lImo)) (3.11)

Then by (3.9), for w = S | ng long enough, we have
log d.o(w) — log Cy > n(D(ng{ma(@) - D(ng%m)))
> n(D(molla?)(1 — €) ~ Dt Im0)) = 4 Do) (1~ 26),
Therefore, by (3.5) we have
do(w) > Co2 2 D(mollat?) 5 glulr(1-26) Div(s]|a),

Since r and 1 — 2¢ can be picked arbitrary close to 1, take r(1 — 2¢) > =, then
dg.o(w) > 97 Div(S||e)|w]|

for w = S | ni long enough.
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We now prove the second part of the main theorem.

Let S be a normal number, G an arbitrary finite-state gambler. By Proposition 2.5 of [31],

G = (Q,d, s, B) will eventually reach a bottom strongly connected component (a component

that has no path to leave) when processing S. A similar argument can also be found in [33].

Without loss of generality, we will therefore assume that every state in G is recurrent in
processing S.
Let w=ag - ap—1 £ S. Then

B(6(\))(ao) - - 3(5( [ag.-an—2]))(an—1)
a(ag) -+ aan— 1)
B a)\ #ac,w(q,a)
1111 ( iq(il() )) , (3.12)

qeEQ aex

dG,a(w) =

where the notation #¢ (¢, @) denotes the number of times G lands on state ¢ and the next
symbol is a while processing w. Similarly, we use the notation #¢ ,,(q) to denote the number
of times GG lands on ¢ in the same process.

Taking the logarithm of both sides of (3.12), we have

IOgdG a Z Z #G w Q7 IOg (()() )

geEQ acex
#G w Q7 B(Q)(a)
_ %#Gw ; - )16 8 e (3.13)

By a result of Agafonov [1], which extends easily to the arbitrary probability measures
considered here, we have that, for every state ¢, the limit of % along S exists and
converges to a(a). That is

lim #G,w(% a)

o (5) = a(a), (3.14)

for every state q.

Therefore, by equations (3.13) and (3.14), and the fact that there are finitely many states,

we have

log dg,a(w) < Y _ #aw(a) Y_(ala) +o(1)) log Bff)a(a)

qeQ a€y

_ Z —riska(q)#cw(q) + Z #Haw( Z o(1) log BgI)a @)

q€Q qeQ a€X

= — Riskg(w) + Z #a,u( Z o(1) log b

qeQ a€EX
= Riskg(w)(—1+ o(1)).

It follows that

de a(w> < 2—(1+o(1)) RiskB(w)7

so part 2 of the theorem holds. <
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51:12  Asymptotic Divergences and Strong Dichotomy

4 Dimension

Finite-state dimensions give a particularly sharp formulation of part 1 of the strong dichotomy
theorem, along with a dual of this result.

Finite-state dimensions were introduced for the uniform probability measure on ¥ in
[14, 2] and extended to arbitrary probability measure on ¥ in [26]. For each o € A(X) and
each S € ¥, define the sets

BY(S) = {5 € [O,oo)‘ (3FSG G) lim sup o () ~*dg o (w) = oo}
w—S

and

65,4(8) = {5 € [0,00)| (FFSG G)lim inf al"! (1) ~*dga(w) = 00}

The limits superior and inferior here are taken for successively longer prefixes w C S. The
“strong” subscript of B, (S) refers to the fact that !l (w)'~*dg . (w) is required to converge
to infinity in a stronger sense than in &<(S).

» Definition ([26]). Let o € A(X) and S € X¥.
1. The finite-state a-dimension of S is dimpg(S) = inf &*(S).
2. The finite-state strong a-dimension of S is Dimpg(S) = inf &2, (.5)

It is easy to see that, for all « € A*T(X) and S € ¢, 0 < dimfg(S) < Dimfg(S) < 1.
» Theorem 4.1. For all a € A(X) and S € ¥ let ¢ = log(1/mingex a(a)). Then,
dimgg(S) < 1 - Div(S|e)/c
and
Dimy(S) < 1 — div(S]la)/e.

Proof. Let t < Div(S||a)/c, and let s =1 —¢. Fix £ such that Divy(S||a)/¢ > te, then for
io. n, D(ﬂfge’)nﬂa(f)) > (te. Note that o/l(w) > (1/2°)1*! for every w € X*.
Define the gambler G be G = (Q, 6, 50, B,,), where Q = ©S¢1,

5(w,a) wa if |lwa| < £
w,a) =
A if |lwal = ¢

so = A, and By (w)(a) = ﬂg})n(a|w), where ﬂg)n(am) describes the conditional probability
(induced by ng)n) of occurrence of an a after w € Q.
Let w =ag---as—; be in X¢.

Bu(N)(a0) -+ By (uf0..£ — 2))(ar_y)  Tyn(w)

afag) - alar—1) aO(u)”

Then for z € ¥* with z C S and |z|= ¢n, we have

()1 %dg o (2) = @l (2)tdg.a(2)

(£)
T ()
= ] (a%(u))

uext
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1

Therefore,

2]t :
A2 dga(z) >~ 2 PEEh 1)

=2
> 27c|z|t+c\z\t

Since the number of states is fixed, this implies dimpg(S) < 1 — Div(S||a)/c.
The proof of the other case is similar, where we use the fact that, for a.e. n,

D() 1)) > fte. <
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A Appendix

The following is a proof for Lemma 2.2.

Proof. Let «, S, and ¢ be as given.
(6)

To see that (1) implies (2), assume (1). Then lim 7y = af
n—oo

9 so the continuity of

KL-divergence tells us that
Dive(S]|a) = lim D(n) [la'P) =0,
i.e., that (2) holds.
To see that (2) implies (3), assume (2). Then lim D(ﬂg)nﬂa(e)) = Divy(S||a) = 0,
n— 00 ’
whence the £; bound in section 2.1 tells us that lim T(A(S«li)n = a¥. For any a-f-normal

n—oo

sequence T' € X¥, we have lim Ttgf)n = 04([), whence the continuity of KL-divergence tells us
n—oo ’
that

Dive(S||T) = lim D(n),|In),) = D(?|al) =0,
n—o0 ’ ’

i.e., that (3) holds.
Since a-f-normal sequences exist, it is trivial that (3) implies (4).
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Finally, to see that (4) implies (1), assume that (4) holds. Then we have
Tim_ D(my) ||m),) = Dive(S||T) = 0,
whence the £; bound in section 2.1 tells us that
Jimn 17, = 7 = 0. (A1)

We also have

: 0 _ ()
nh—>Hgo TCT’n -« ’
whence
Jimn i), — ol = 0. (4-2)

By (A.1), (A.2), and the triangle inequality for the £1-norm, we have
: © _ o). —
Jim [l7rgs, = =0,

whence

: © _ _(©
W T = O

i.e., (1) holds. <
Lemma 2.2 immediately implies the following.

» Theorem 2.3 (divergence characterization of normality). For all « € A(X) and S € 3¢, the
following conditions are equivalent.

(1) S is a-normal.

(2) Div(S||a) = 0.

(3) For every a-normal sequence T € ¥, Div(S||T) = 0.

(4) There exists an a-normal sequence T € X¥ such that Div(S||T) = 0.
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