
Algorithmic Randomness in Continuous-Time Markov Chains*

Xiang Huang
1
, Jack H. Lutz

1
, and Andrei N. Migunov

1

Abstract—In this paper we develop the elements of

the theory of algorithmic randomness in continuous-

time Markov chains (CTMCs). Our main contribution

is a rigorous, useful notion of what it means for

an individual trajectory of a CTMC to be random.

CTMCs have discrete state spaces and operate in

continuous time. This, together with the fact that

trajectories may or may not halt, presents challenges

not encountered in more conventional developments

of algorithmic randomness.

Although we formulate algorithmic randomness in

the general context of CTMCs, we are primarily

interested in the computational power of stochastic

chemical reaction networks, which are special cases

of CTMCs. This leads us to embrace situations in

which the long-term behavior of a network depends

essentially on its initial state and hence to eschew as-

sumptions that are frequently made in Markov chain

theory to avoid such dependencies.

After defining the randomness of trajectories in

terms of a new kind of martingale (algorithmic bet-

ting strategy), we prove equivalent characterizations

in terms of constructive measure theory and Kol-

mogorov complexity.

Index Terms—algorithmic randomness, continuous

time Markov chain, chemical reaction network

I. Introduction
In this paper we develop the elements of the theory of

algorithmic randomness in continuous-time Markov chains
(CTMCs). Specifically, our main contribution is a rigorous,
useful notion of what it means for an individual trajectory
(also called a single orbit) of a CTMC C to be random
with respect to C and an initial state–or probability
distribution of initial states–of C. This is a first step
toward carrying out Kolmogorov’s program of replacing
probabilistic laws stating that almost every trajectory has
a given property with randomness laws stating that every
random trajectory has the property. More generally, we
are initiating an algorithmic “single orbit” approach (in
the sense of Weiss [25]) to the dynamics of CTMCs. In
a variety of contexts ranging from Bernoulli processes
to ergodic theory, Brownian motion, and algorithmic
learning, this algorithmic single-orbit approach has led
to improved understanding of known results [10], [3],
[14], [19], [22], [13], [4], [7], [1], [5], [20], [18], [6], [21].
In the context of fractal geometry, this approach has even
led to recent solutions of classical open problems whose

*This research was supported in part by National Science
Foundation grants 1247051, 1545028, and 1900716.

1Department of Computer Science, Iowa State University,
Ames, Iowa 50011, USA.

Email addresses:{huangx,lutz,amigunov}@iastate.edu

statements did not involve algorithms or single orbits [11],
[12].
The fact that CTMCs have discrete state spaces and

operate in continuous time, together with the fact that
trajectories may or may not halt, presents challenges
not encountered in more conventional developments of
algorithmic randomness. Our formulation of randomness
is nevertheless general. Because we are interested in
the computational power of stochastic chemical reaction
networks (which are special cases of CTMCs) we embrace
situations in which the long-term behavior of a network
depends essentially on its initial state. Our development
thus does not make assumptions that are frequently used
in Markov chain theory to avoid such dependencies.
Our approach is also general in another sense, one

involving Kolmogorov’s program, mentioned above. Once
one has succeeded in replacing an “almost every” proba-
bilistic law with an “every random” law, a natural next
question is, “How much randomness is su�cient for the
latter?” Saying that an individual object is random is
saying that it “appears random” to a class of compu-
tations. Roughly speaking, an object is algorithmically
random (or Martin-Löf random) if it appears random to
all computably enumerable sets. But weaker notions of
randomness such as computable randomness, polynomial-
space randomness, polynomial-time randomness, and
finite-state randomness, have also been extensively in-
vestigated. Three examples of answers to the “how much
randomness su�ces” question in the context of infinite
binary sequences are that (i) every algorithmically random
sequence satisfies Birkho�’s ergodic theorem [22]; (ii)
every polynomial-time random sequence satisfies the
Khinchin-Kolmogorov law of the iterated logarithm [23];
and (iii) every finite-state random sequence satisfies the
strong law of large numbers [17].

Although we are primarily concerned with algorithmic
randomness in the present paper, we want our randomness
notion to be general enough to extend easily to other
computational‘’levels” of randomness, so that “how much
randomness” questions can be formulated and hopefully
answered. For this reason, we define algorithmic random-
ness in CTMCs using the martingale (betting strategy)
approach of Schnorr [15]. This approach extends to other
levels of randomness in a straightforward manner, while
our present state (i.e., lack) of knowledge in computa-
tional complexity theory does not allow us to extend
other approaches (e.g., Martin-Löf tests or Kolmogorov
complexity, which are known to be equivalent to the
martingale approach at the algorithmic level [10], [3],

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

U.S. Government work not protected by
U.S. copyright

615

[14], [19]) to time-bounded complexity classes.
We develop our algorithmic randomness theory in

stages. In section 2 we develop the underlying qualitative
structure of Boolean transition systems, defined so that
(i) state transitions are nontrivial, i.e., not from a state
to itself, and (ii) trajectories may or may not terminate.
In section 3 we add probabilities, thereby defining

probabilistic transition systems. For each probabilistic
transition system Q and each initialization ‡ of Q we
then define (Q,‡)-martingales, which are strategies for
betting on the successive entries in a sequence of states of
(Q,‡). Following the approach of Schnorr [15], we then
define a maximal state sequence q of (Q,‡) to be random
if there is no lower semicomputable (Q,‡)-martingale
that succeeds on q, i.e., makes unbounded money betting
along q. This notion of randomness closely resembles the
well-understood theory of random sequences over a finite
alphabet [10], [3], [14], [19], except that here the state
set may be countably infinite; transitions from a state to
itself are forbidden; and a state sequence may terminate,
in which case it is random.
Section 4 is where we confront the main challenge of

algorithmic randomness in CTMCs, the fact that they
operate in continuous, rather than discrete, time. There
we develop the algorithmic randomness of sequences t =
(t0, t1, ...) of sojourn times ti relative to corresponding
sequences ⁄ = (⁄0,⁄1, ...) of nonnegative real-valued rates
⁄i. Each ⁄i in such a sequence is regarded as defining an
exponential probability distribution function F⁄i , and the
sojourn times ti are to be independently random relative
to these. We use a careful binary encoding of sojourn
times to define ⁄-martingales that bet along sequences of
sojourn times, and we again follow the Schnorr approach,
defining a sequence t of sojourn times to be ⁄-random
if there is no lower semicomputable ⁄-martingale that
succeeds in it.

In section 5 we put the developments of sections 3 and 4
together. A trajectory of a continuous-time Markov chain
C is a sequence · of ordered pairs (qn, tn), where qn is a
state of C and tn is the sojourn time that C spends in state
qn before jumping to state qn+1. For each continuous-time
Markov chain C, we define the notion of a C-martingale.
Following Schnorr once again, we define a trajectory · of
C to be random if no lower semicomputable martingale
succeeds on it. We also give a Kolmogorov complexity
characterization of the randomness of trajectories of
continuous-time Markov chains.

II. Boolean transition systems

Before developing algorithmic randomness for se-
quences of states with respect to computable, probabilistic
transition systems, we develop the underlying qualitative
(not probabilistic) structure by considering transition
systems that are Boolean. Some care must be taken to
accommodate the fact that, in cases of interest, a sequence
of states may either be infinite or end in a terminal state.

Formally, we define a Boolean transition system to be an
ordered pairQ = (Q, ”) where Q is a nonempty, countable
set of states, and ” : Q ◊ Q æ {0, 1} is a Boolean state
transition matrix satisfying ”(q, q) = 0 for all q œ Q.

Intuitively, a Boolean transition system Q = (Q, ”) is a
nondeterministic structure that may be initialized to any
nonempty set of states in Q. For q, r œ Q, the entry ”(q, r)
in the Boolean transition matrix ” is the Boolean value
(0 = false; 1 = true) of the condition that r is reachable
from q in one “step” of Q. The irreflexivity requirement
that every ”(q, q) = 0 (i.e., that ” have a zero diagonal)
reflects the fact that, in all cases of interest in this paper,
transitions are nontrivial changes of state. We formalize
this intuition, because the formalism will be useful here.

We write Q<Ê for the set of all finite sequences of states
in Q, QÊ for the set of all infinite sequences of states in Q,
and Q

ÆÊ = Q
<Ê fiQ

Ê. The length of a sequence q œ Q
ÆÊ

is

|q| =
;

l if q = (q0, q1, ..., ql≠1) œ Q
<Ê

Ê if q œ Q
Ê

<
.

A sequence q œ Q
ÆÊ can thus be written as q = (qi|i <

|q|) in any case. We write () for the empty sequence
(sequence of length 0).

For q, r = (ri|i < |r|) œ Q
ÆÊ, we say that q is a prefix

of r, and we write q ı r, if |q| Æ |r| and q = (ri|i < |q|).
It is easy to see that ı is a partial ordering of QÆÊ.
An initialization of a Boolean transition system Q =

(Q, ”) is a Boolean-valued function ‡ : Q æ {0, 1} whose
support supp(‡) = {q œ Q|‡(q) ”= 0} is nonempty.

A Boolean transition system Q = (Q, ”) admits a
sequence q = (qi|i < |q|) œ Q

ÆÊ with an initialization ‡,
and we say that q is Q-admissible from ‡, if the following
conditions hold for all 0 Æ i < |q|.

(i) If i = 0, then ‡(qi) = 1.
(ii) If i+ 1 < |q|, then ”(qi, qi+1) = 1.

A sequence q œ Q
ÆÊ that is Q-admissible from ‡

is maximal if, for every sequence r œ Q
ÆÊ that is Q-

admissible from ‡, q ı r =∆ q = r.
We use the following notations.
A[Q](‡) = {q œ Q

ÆÊ|q is a maximal
Q-admissible sequence from ‡}.

When Q is obvious from the context, we omit it from
the notation and write these sets as Adm(‡) and A(‡).
Note that elements of AdmQ(‡) are required to be finite
sequences.

Intuitively, A[Q](‡) is the set of all possible “behaviors”
of the Boolean transition system Q = (Q, ”) with the
state initialization ‡ : Q æ {0, 1}. The fact that ” is
irreflexive implies that qi ”= qi+1 holds for all i œ N such
that i+ 1 < |q| in every admissible sequence q = (qi|i <
|q|) œ A[Q](‡). In this paper we do not regard the indices
i = 0, 1, ... in a state sequence q = (q0, q1, ...) as successive
instants in discrete time. In our main applications, the
amount of time spent in state qi varies randomly and

616

continuously, so it is more useful to think of the indices
i = 0, 1, ... as finite ordinal numbers, i.e., to think of qi
as merely the i

th state in the sequence q.
Each x œ AdmQ(‡) is the name of the Q-cylinder

Ax(‡) = {q œ A[Q](‡)|x ı q}.

Each x œ Adm(‡) is a finite - and typically partial -
specification of each sequence q œ Ax(‡). The collection

A (‡) = A [Q](‡) = {Ax(‡)|x œ AdmQ(‡)}

is a basis for a topology on A(‡). The open sets in this
topology are simply the sets that are unions of (finitely or
infinitely many) cylinders in A (‡). The metric (in fact,
ultrametric) d on Q

ÆÊ defined by

d(q, r) = 2≠|p|
,

where p is the longest common prefix of q and r (and
2≠Œ = 0), induces this same topology on A[Q](‡) for
each Boolean transition system Q = (Q, ”) and each state
initialization ‡ : Q æ [0, 1]. With this topology, A[Q](‡)
is a Polish space (a complete, separable metric space).
The isolated points in A[Q](‡) are (when they exist) the
sequences in A[Q](‡) that are finite, i.e., the sequences
x œ Q

<Ê fl A[Q](‡). Such sequences x are said to halt,
or terminate, in Q from ‡.

A Boolean transition system Q = (Q, ”) is computable
if the elements of Q are naturally represented in such a
way that (i) the Boolean-valued function ” is computable,
and (ii) the set of terminal states (i.e., states q œ Q

such that ”(q, r) = 0 for all r œ Q) is decidable. An
initialization ‡ : Q æ {0, 1} is computable if its support
is decidable.
Boolean transition systems raise significant and deep

problems in distributed computing [9], [2], but our focus
here is on randomness, which we begin in the following
section.

III. Random state sequences
This section develops the elements of algorithmic

randomness for sequences of states with respect to
computable, probabilistic transition rules.

Formally, we define a probabilistic transition system to
be an ordered pair Q = (Q,fi), where Q is a countable
set of states, and fi : Q ◊ Q æ [0, 1] is a probabilistic
transition matrix, by which we mean that fi satisfies the
following two conditions for each state q œ Q.

(1) fi(q, q) = 0.
(2) The sum fi(q) =

q
rœQ fi(q, r) is either 0 or 1.

If the sum fi(q) in condition 2 is 0, then q is a terminal
state. If fi(q) is 1, then q is a nonterminal state.

If Q = (Q,fi) is a probabilistic transition system, and
we define ” : Q ◊ Q æ {0, 1} by

”(q, r) = sgn(fi(q, r))

for all q, r œ Q, where sgn : [0,Œ) æ {0, 1} is the signum
function

sgn(x) =
;

0 if x = 0
1 if x > 0 ,

then QB = (Q, ”) is the Boolean transition system
corresponding to Q. The essential di�erence between QB

and Q is that, while ”(q, r) merely says whether it is
possible for QB (or Q) to transition from q to r in one
step, fi(q, r) is the quantitative probability of doing so.
An initialization of a probabilistic transition system

Q = (Q,fi) is a discrete probability measure ‡ on Q, i.e.,
a function ‡ : Q æ [0, 1] satisfying

q
qœQ ‡(q) = 1. The

Boolean version of such an initialization ‡ is the function
‡B : Q æ {0, 1} defined by

‡B(q) = sgn(‡(q))

for each q œ Q. It is clear that ‡B is an initialization of
QB .

Given a probabilistic transition system Q = (Q,fi) and
an initialization ‡ of Q, we define the sets

Adm(‡) = AdmQ(‡) = AdmQB (‡B),
A(‡) = A[Q](‡) = AQB (‡B),

relying on the fact that the right-hand sets were defined
in section 2. The notations and terminology in section
2 leading up to these definitions are similarly extended
to probabilistic transition systems, as are the definitions
of the Q-cylinders Ax(‡) and the basis A (‡) for the
topology A(‡).

What we can do here that we could not do for Boolean
transition systems is define a Borel probability measure
on each set A[Q](‡). Specifically, for each probabilistic
transition system Q = (Q,fi) and each initialization ‡ of
Q, define the function

µQ,‡ : AdmQ(‡) æ [0, 1]

as follows. Let x = (xi|i < |x|) œ AdmQ(‡). If |x| = 0,
then µQ,‡(x) = 1. If |x| > 0, then

µQ,‡(x) = ‡(x0)
|x|≠2Ÿ

i=0
fi(xi, xi+1). (3.1)

Since x is a name of the cylinder Ax[Q](‡), each
µQ,‡(x) here should be understood as an abbreviation of
µQ,‡(Ax(‡)), which is intuitively the probability that an
element of Ax[Q](‡) begins with the finite sequence x.

Observation 1: If a sequence x œ AdmQ(‡) does not
terminate, then

µQ,‡(x) =
ÿ

xıyœAdmQ(‡),|y|=|x|+1
µQ,‡(y) (3.2)

The above observation implies that µQ,‡ can, by
standard techniques, be extended to a Borel probability
measure on A[Q](‡), i.e., to a function µQ,‡ that assigns
probability µQ,‡(E) to every Borel set E ™ A[Q](‡).

Definition 1: If Q is a probabilistic transition system
and ‡ is an initialization of Q, then a (Q,‡)-martingale
is a function

d : AdmQ(‡) æ [0,Œ)

617

such that, for every non-terminating sequence x œ
AdmQ(‡),

d(x)µ(x) =
ÿ

xıyœAdmQ(‡),|y|=|x|+1
d(y)µQ,‡(y) (3.3)

where µ = µQ,‡.
Intuitively, a (Q,‡)-martingale d is a gambler that bets

on the successive states in a sequence q = (qi|i < |q|) œ
A[Q](‡). The gambler’s initial capital is d(()), and its
capital after betting on a prefix x œ AdmQ(‡) of q is
d(x). The condition (3.3) says that the payo�s are fair
with respect to the probability measure µ = µQ,‡ in the
sense that the conditional expectation of the gambler’s
capital after betting on the state following x in q given
that x ı q, is exactly the gambler’s capital before placing
this bet.
Definition 2: A (Q,‡)-martingale d succeeds on a

sequence q œ A[Q](‡) if the set

{d(x)|x œ AdmQ(‡) and x ı q}

is unbounded.
The success set of a (Q,‡)-martingale d is S

Œ[d] =
{q œ A[Q](‡)|d succeeds on q}.
Following standard practice, we develop randomness

by imposing computability conditions on martingales.
Recall that, if D is a discrete domain, then a function
f : D æ R is computable if there is a computable function
‚f : D ◊ N æ Q such that, for all x œ D and r œ N,

| ‚f(x, r) ≠ f(x)| Æ 2≠r
.

The parameter r here is called a precision parameter.
A function f : D æ R is lower semi-computable if there

is a computable function ‚f : D ◊ N æ Q such that the
following two conditions hold for all x œ D.

(i) For all s œ N, ‚f(x, s) Æ ‚f(x, s+ 1) < f(x).
(ii) limsæŒ ‚f(x, s) = f(x).

The parameter s is sometimes called a patience pa-
rameter, because the convergence in (ii) can be very
slow. A probabilistic transition system Q = (Q,fi) is
computable if the elements of Q are naturally represented
in such a way that (i) the probability transition matrix
fi : Q ◊ Q æ [0, 1] is computable in the above sense, and
(ii) the support of fi and the set of terminal states are
decidable. (It is well known ([8], [24]) that (ii) does not
follow from (i). Fortunately, (ii) does hold in many cases
of interest, including chemical reaction networks).

Similarly, an initialization ‡ of a probabilistic transition
system Q = (Q,fi) is computable if (i) the function ‡ :
Q æ [0, 1] is computable, and (ii) the support of ‡ is
decidable.
Let Q be a probabilistic transition system that is

computable, and let ‡ be an initialization of Q that
is also computable. A state sequence q œ A[Q](‡)
is (algorithmically) random if there is no lower semi-
computable (Q,‡)-martingale that succeeds on q.

This notion of random sequences in A[Q](‡) closely
resembles the well-understood theory of random sequences
on a finite alphabet [26], [16]. The main di�erences
are that here the state set may be countably infinite;
transitions from a state to itself are forbidden; and a
state sequence may terminate, in which case it is clearly
random.

IV. Random sequences of sojourn times
The “sojourn time” that a continuous-time Markov

chain spends in a state before jumping to a new state
may be any element of (0,Œ], i.e., any duration t

that is either a (strictly) positive real number or Œ.
This section thus develops the elements of algorithmic
randomness for sequences of durations t œ (0,Œ] with
respect to sequences of probability measures that occur
in continuous-time Markov chains.
A rate in this paper is a non-negative real number

⁄ œ [0,Œ). We rely on context to distinguish this standard
use of ⁄ from the equally standard use of ⁄ to denote the
empty string.

We interpret each rate ⁄ > 0 as a name of the exponen-
tial probability measure with rate ⁄, i.e., the probability
measure on (0,Œ] whose cumulative distribution function
F⁄ : (0,Œ] æ [0, 1] is given by

F⁄(t) = 1 ≠ e
≠⁄t

for all t œ (0,Œ], where e
≠Œ = 0. We interpret the rate

⁄ = 0 as a name of the point-mass probability on (0,Œ]
that concentrates all the probability at Œ. This has the
cumulative distribution function F0 : (0,Œ] æ [0, 1] given
by

F0(t) =
;

0 if t œ (0,Œ)
1 if t = Œ

We associate each string w œ {0, 1}ú with the interval
Iw ™ [0, 1] defined as follows. Let w be the lexicographi-
cally i

th (0 Æ i < 2|w|) element of {0, 1}|w| where 0|w| is
the 0th element and 1|w| is the (2|w| ≠ 1)st element. Then

Iw = (2≠|w|
i, 2≠|w|(i+ 1)].

Note that, for each w œ {0, 1}ú and l œ N, the intervals
Iwu, for u œ {0, 1}l, form a left-to-right partition of Iw,
i.e., a partition of Iw in which Iwu lies to the left of Iwv

if and only if u lexicographically precedes v.
For each rate ⁄ œ [0,Œ) and each string w œ {0, 1}ú,

define the interval

D⁄(w) = F
≠1
⁄ (Iw) ™ (0,Œ].

Example 2: If ⁄ > 0, then

D⁄(00) = (0, a1], D⁄(01) = (a1, a2],
D⁄(10) = (a2, a3], D⁄(11) = (a3,Œ],

where a1 = 2ln2≠ln3
⁄ , a2 = ln2

⁄ , and a3 = 2ln2
⁄ . On the

other hand, D0(00) = (0,Œ), D0(01) = D0(10) = ÿ, and
D0(11) = {Œ}.

618

Observation 3: If ⁄ > 0, then, for each l œ N, the
intervals D⁄(w), for w œ {0, 1}l, form a left-to-right
partition of (0,Œ] into intervals that are equiprobable
with respect to F⁄.

Example 2 shows that the assumption ⁄ > 0 is essential
here.
For each rate ⁄ œ [0,Œ), each duration t œ (0,Œ],

and each w œ {0, 1}ú, we call w a ⁄-approximation (or
a partial ⁄-specification) of t, and we write w ı⁄ t, if
t œ D⁄(w).
A rate sequence is a nonempty sequence ⁄ = (⁄i |

0 Æ i < |⁄|) œ [0,Œ)ÆÊ with the property that, for each
0 Æ i < |⁄|,

i+ 1 < |⁄| ≈∆ ⁄i > 0.

(That is, either ⁄ is finite with a single 0 entry, occurring
at the end, or ⁄ is infinite with no 0 entries.)
If ⁄ = (⁄i | 0 Æ i < |⁄|) is a rate sequence, then a

⁄-duration sequence is a sequence

t = (ti|i < |⁄|) œ (0,Œ]ÆÊ

such that, for each 0 Æ i < |⁄|,

ti < Œ ≈∆ ⁄i > 0.

We write D⁄ for the set of all ⁄-duration sequences. Note
that

D⁄ =
;

(0,Œ)|⁄|≠1 ◊ {Œ} if |⁄| < Ê

(0,Œ)Ê if |⁄| = Ê

depends only on the length of ⁄, not on the components
of ⁄.
If ⁄ = (⁄i | 0 Æ i < |⁄|) is a rate sequence, t = (ti|i <

|⁄|) œ D⁄ is a ⁄-duration sequence, and w = (wi|i <
|w|) œ ({0, 1}ú)<Ê is a finite sequence of binary strings
with |w| Æ |⁄|, then we call w a ⁄-approximation (or
a partial ⁄-specification) of t, and we write w ı⁄ t, if
wi ı⁄i ti holds for all 0 Æ i < |w|.
If ⁄ is a rate sequence and w œ ({0, 1}ú)<Ê is a finite

sequence of binary strings with |w| Æ |⁄|, then the ⁄-
cylinder generated by w is the set

D⁄(w) = {t œ D⁄ | w ı⁄ t}

of ⁄-duration sequences.
It is routine to verify that, for each rate sequence ⁄,

the collection

D⁄ = {D⁄(w) | w œ ({0, 1}ú)<Ê and |w| Æ |⁄|}

is a semi-algebra of subsets of dl that generates the ‡-
algebra B⁄ of all Borel subsets of D⁄. If we define

µ⁄ : D⁄ æ [0, 1]

by
µ⁄(D⁄(w)) = 2≠

q|w|≠1
i=0

|wi|

for all w = (wi | i < |w|) œ ({0, 1}ú)<Ê with |w| Æ |⁄|,
then it follows by standard techniques that µ⁄ extends
uniquely to a probability measure

µ⁄ : B⁄ æ [0, 1].

Note that B⁄ only depends on the length of ⁄, but µ⁄

also depends on the components of ⁄. When convenient,
we use the abbreviation

µ⁄(w) = µ⁄(D⁄(w)).

If ⁄ = (⁄i | 0 Æ i < |⁄|) is a rate sequence, then a
⁄-martingale is a function

d : ({0, 1}ú)<|⁄| æ [0,Œ)

that satisfies the following two conditions for all w =
(w0, ..., wn≠1) œ ({0, 1}ú)<|⁄|.
1) d(w) = d(w0,...,wn≠10)+d(w0,...,wn≠11)

2 .

2) If n+ 1 < |⁄|, then
d(w0, ..., wn≠1,⁄) = d(w0, ..., wn≠1).

(Note that the ⁄ entry on the left-hand side is the empty
string.)

Intuitively, a ⁄-martingale d is a strategy that a gambler
may use for betting on approximations wi of the durations
ti in a ⁄-duration sequence t = (ti | i < |t|). The
gambler’s initial amount of money is the value d(()) of
d at the empty sequence () of binary strings. If w =
(w0, ..., wn≠1) ı⁄ t, then d(w) is the amount of money
that the gambler has after betting on w. This condition
w ı⁄ t means that each ti is in the interval D⁄(wi) ™
(0,Œ]. If the gambler then chooses to bet on which
of the subintervals D⁄n≠1(wn≠10) and D⁄n≠1(wn≠11)
of D⁄n≠1(wn≠1) tn≠1 lies in, condition 1 above says
that the payo�s of these bets are fair with respect to
the exponential probability measure with rate ⁄n≠1.
(Note that D⁄n≠1(wn≠10) and D⁄n≠1(wn≠11) partition
D⁄n≠1(wn≠1) into equiprobable subintervals, but these
subintervals may have very di�erent lengths.) Condition
2 above says that the extension from (w0, ..., wn≠1) to
(w0, ..., wn≠1,⁄), does not involve a bet. The martingale
has values d(w) for all w œ ({0, 1}ú)<|⁄|, but our intuitive
gambler may place bets in many di�erent orders. For
example, the gambler may place a finite number of bets
on approximations of t1, then a finite number of bets
on approximations of t2, etc., but this ordering of bets
is an intuitive fancy, not part of the definition of the
⁄-martingale d.

A ⁄-martingale d succeeds on a ⁄-duration sequence t
if the set

{d(w) | w ı⁄ t}

is unbounded. The success set of a ⁄-martingale d is

S
Œ[d] = {t œ D⁄ | d succeeds on t}.

619

V. Random CTMC trajectories
We now develop the theory of randomness for sequences

of state-time pairs, representing trajectories of continuous-
time Markov chains.

A. Continuous-time Markov chains
A CTMC is an ordered triple,

C = (Q,⁄,‡)

where Q is a countable set of states, ⁄ : Q ◊ Q æ [0,Œ)
is the rate matrix satisfying ⁄(q, q) = 0 for every q œ Q,
and ‡ is the state initialization as described in section 3.
Let C = (Q,⁄,‡) be a CTMC. At each time t œ [0,Œ)
C is probabilistically in some state. At time t = 0, this
state is chosen according to ‡. For each state q œ Q, the
real number

⁄q =
ÿ

rœQ

⁄(q, r)

is the rate out of state q. If ⁄q = 0, then q is a terminal
state, meaning that, if C ever enters state q, then C

remains in state q forever. If a state q is nonterminal, i.e.,
⁄q > 0 and C enters q at some time t, then the sojourn
time for which C remains in state q before moving to a
new state is a random variable that has the exponential
distribution with rate ⁄q. Hence the expected sojourn
time of C in state q is 1

⁄q
. When C does move to a new

state, it moves to state r œ Q with probability

p(q, r) = ⁄(q, r)
⁄q

.

Note that the CTMC model uses “continuous time”
(times ranging over (0,Œ]) but “discrete state space”.
Accordingly, its state transitions, called jump transitions,
are instantaneous. Mathematically, if C jumps from state
q to state r at time t, we say that q is in the “new” state
r at time t, having been in the “old” state q throughout
some time interval [s, t) where s < t.

A trajectory of a CTMC C = (Q,⁄,‡) is a sequence ·
of the form

· = ((qn, tn) | n œ N) œ (Q ◊ (0,Œ))Œ
.

Intuitively, such a trajectory · denotes the turn of events
in which q0, q1, ... are the successive states of C and
t0, t1, ... are the successive sojourn times of C in these
states. Accordingly, we write

state· (n) = qn, soj· (n) = tn

for each n œ N. When convenient we write · as an ordered
pair

· = (q, t),

where
q = (qn | n œ N), t = (tn | n œ N).

There are two ways in which a trajectory (q, t) may fail to
represent a “true trajectory” of the CTMC C in the above
intuitive sense. First, it may be the case that p(qn, qn+1) =

0 (i.e. ⁄(qn, qn+1) = 0) for some n œ N. This presents
no real di�culty, since it merely says that the event
“state· (n) = qn and state· (n+1) = qn+1” has probability
0. The second way in which (q, t) may fail to represent a
“true trajectory” is for some qn to be a terminal state of
C. We deal with this by defining the length of a trajectory
· = (q, t) to be

||· || = min{n œ N | qn is terminal },

where min ÿ = Œ. We then intuitively interpret a
trajectory · = (q, t) with ||· || < Œ as the finite sequence

· Õ = ((qn, tÕn) | n Æ ||· ||),

where each

t
Õ
n =

I
tn if n < ||· ||
Œ if n = ||· ||

(V.1)

We write

� = �[C] = (Q ◊ (0,Œ))Œ

for the set of all trajectories of a CTMC, C.
Elements of (Q ◊ {0, 1}ú)ú are called approximations

or partial specifications of trajectories. The cylinder
generated by w = (q0, u0), (q1, u1), ..., (qn≠1, un≠1) œ
(Q ◊ {0, 1}ú)ú is the set �w of trajectories defined as
follows: If qi is terminal for some 0 Æ i < n ≠ 1 then
�w = ÿ. If qi is nonterminal for all 0 Æ i < n ≠ 1 and
qn≠1 is terminal, then

�w = {· œ � | (’0 Æ i < n)state· (i) = qi

and (’0 Æ i < n ≠ 1)soj· (i) œ D⁄i(ui)}.

If qi is nonterminal for all 0 Æ i < n then

�w = {· œ � | (’0 Æ i < n)[state· (i) = qi

and soj· (i) œ D⁄i(ui)]}.

The probability µC(�w), usually written µC(w), of a
cylinder �w, is defined as follows: If n = 0 (i.e. w = ⁄),
then µC(w) = 1. If qi is terminal for some 0 Æ i < n ≠ 1,
then µC(�w) = 0. If qi is nonterminal for all 0 Æ i < n≠1
and qn≠1 is terminal, then

µC(�w) = ‡(q0)
n≠2Ÿ

i=0
[p(qi, qi+1)2≠|ui|].

If n > 0 and qi is nonterminal for all 0 Æ i < n, then

µC(�w) = ‡(q0)
n≠2Ÿ

i=0
p(qi, qi+1)

n≠1Ÿ

i=0
2≠|ui|.

A set X ™ � has probability 0, and we write µC(X) = 0,
if, for ‘ > 0, there is a set A ™ (Q ◊ {0, 1}ú)ú such that

X ™
€

wœA

�w

and ÿ

wœA

µC(�w) Æ ‘

620

From now on we assume that the states q œ Q have
canonical representations, so that it is clear what it means
for function f : Q æ Q, etc., to be computable.
A set X œ � has constructive probability 0 (or is a

constructive null set), and we write µC,constr(X) = 0, if
there is a computable function

g : N ◊ N æ (Q ◊ {0, 1}ú)ú

such that, for every k œ N,

X ™
Œ€

l=0
�g(k,l) and

Œÿ

l=0
µC(�g(k,l)) Æ 2≠k

.

A set X ™ � has constructive probability 1, and we
write µC,constr(X) = 1, if µC,constr(� \X) = 0.

Before we discuss C-martingales and their relation
to the above probability space, let us overload the
relation ı to also compare partial specifications to partial
specifications and to trajectories. If w œ (Q◊{0, 1}<Ê)<Ê

and S œ (Q ◊ {0, 1}ÆÊ)ÆÊ, we say w ı S if:
1. |v| Æ |w|
2. For all i, 0 Æ i Æ |v| ≠ 1, w[i] ı v[i] or v[i] ı w[i]
3. For all i, 0 Æ i Æ |v| ≠ 1, state(w[i]) = state(v[i])

We now introduce the notion of a C-martingale.

B. CTMC martingales
In place of µ⁄, µC , and µQ,‡ we will simply write

µ, µconstr. It should be clear from context which measure
is being used.

If C = (Q,⁄,fi) is a CTMC, then a C-martingale is a
function

d : (Q ◊ {0, 1}ú)ú æ [0,Œ)

with the following two properties.
1) For all w œ (Q ◊ {0, 1}ú)ú,

d(w)µ(w) =
ÿ

qœQ

d(w(q,⁄))µ(w(q,⁄)). (V.2)

2) For all w œ (Q ◊ {0, 1}ú)ú, q œ Q, and u œ {0, 1}ú,

d(w(q, u))µ(w(q, u)) =
ÿ

bœ{0,1}
d(w(q, ub))µ(w(q, ub))

(V.3)
Intuitively, a C-martingale d is a strategy for betting

on successive approximations w of a trajectory · of C. A
gambler using d starts with initial capital d(⁄) œ [0,Œ).
More generally, each value d(w) is the amount of money
that the gambler will have after betting on w. At this
stage, the C-martingale d tells the gambler how it may
proceed in either of the following two ways.
(i) The gambler may “move on” to bet on the value

of state· (|w|), which is the next state of · . In this
case condition (V.2) ensures that the payo�s for this
bet are fair.

(ii) The gambler may “stay” with the current state,
which is state· (|w| ≠ 1), and bet further on the
approximate value of soj· (|w| ≠ 1). In this case

condition (V.3) ensures that the payo�s for this bet
are fair.

A C-martingale d succeeds on a trajectory · if, for
every real number – > 0, there exists w œ (Q ◊ {0, 1}ú)ú

such that w ı · and d(w) > –.
The success set of a C-martingale d is

S
Œ[d] = {· œ �[C] | d succeeds on ·}.

Theorem 4: For every CTMC C and every set X ™
�[C], the following two conditions are equivalent.
(1) µ(X) = 0
(2) There is a C-martingale d such that X ™ S

Œ[d].
Theorem 5: For every CTMC C and every set X ™

�[C], the following two conditions are equivalent.
(1) µconstr(X) = 0.
(2) There is a lower semi-computable C-martingale d

such that X ™ S
Œ[d].

Much like the classical setting, we call a trajectory ·
Martin-Löf random if {·} is not of constructive measure
0.

C. Kolmogorov complexity characterization
Random trajectories can also be characterized using

Kolmogorov complexity. First, we briefly review this notion
in the classical setting. We fix a universal self-delimiting
Turing machine (see [10]), U . The Kolmogorov complexity,
K, of a (finite) string x in {0, 1}ú is the length of a shortest
program for a self-delimiting Turing machine which prints
x. That is, K : {0, 1}ú æ N is defined by

K(x) = min{|fi| | U(fi) = x and fi œ {0, 1}ú}.

When x is not a binary string, but some other finite
object, K(x) is defined from the above by routine coding.
Definition 3: The profile of a cylinder �w of a CTMC

is
prof(w) = (|u1|, ..., |un|),

where w = ((q1, u1), ..., (qn, un)).
Observation 6: For each CTMC C and each profile p,

ÿ

{w:prof(w)=p}

µC(w) = 1.

The following two lemmas are analogous to standard re-
sults used in the Kolmogorov complexity characterization
of algorithmically random sequences.
Lemma 7: For every cylinder, �w of a CTMC C,

K(w) Æ l(w) +K(prof(w)) +O(1),

where l(w) = log 1
µC(w) is the “self-information” of w.

Lemma 8: There is a constant c œ N such that, for
every profile p of a CTMC C and every k œ N,

µC

3 €

w
prof(w)=p

K(w)<l(w)+K(p)≠k

�w

4
< 2c≠k

.

621

Substituting k +K(prof(w)) for k here gives

µC

3 €

w
prof(w)=p

K(w)<l(w)≠k

�w

4
< 2c≠k≠K(p)

.

With these lemmas, we can establish the Kolmogorov
complexity characterization of randomness for trajectory
objects, which is exactly analogous to a well-known char-
acterization of the algorithmic randomness of sequences
over finite alphabets [26], [16].
Theorem 9: A trajectory · is Martin Löf random if

and only if there exists k œ N, such that for every w ı · ,
K(w) Ø l(w) ≠ k.

References

[1] Kelty Allen, Laurent Bienvenu, and Theodore Slaman. On
zeros of Martin-Löf random Brownian motion. Journal of Logic
and Analysis, 6, 2015.

[2] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme
Leroux, and Filip Mazowiecki. The reachability problem for
Petri nets is not elementary. arXiv preprint arXiv:1809.07115,
2018.

[3] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic

Randomness and Complexity. Springer Science & Business
Media, 2010.

[4] Willem L. Fouché. Fractals generated by algorithmically
random Brownian motion. In Conference on Computability in

Europe, pages 208–217. Springer, 2009.
[5] Willem L. Fouché. Kolmogorov complexity and the geometry

of Brownian motion. Mathematical Structures in Computer

Science, 25(7):1590–1606, 2015.
[6] Mrinalkanti Ghosh and Satyadev Nandakumar. Predictive

complexity and generalized entropy rate of stationary ergodic
processes. In International Conference on Algorithmic Learning

Theory, pages 365–379. Springer, 2012.
[7] Bjørn Kjos-Hanssen and Anil Nerode. E�ective dimension

of points visited by Brownian motion. Theoretical Computer

Science, 410(4-5):347–354, 2009.
[8] Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser,

1991.
[9] Jérôme Leroux and Sylvain Schmitz. Demystifying reachability

in vector addition systems. In LICS 2015, pages 56–67. IEEE,
2015.

[10] Ming Li and Paul Vitányi. An Introduction to Kolmogorov

Complexity and Its Applications. Springer Science & Business
Media, 2013.

[11] Neil Lutz. Fractal intersections and products via algorithmic
dimension. In 42nd International Symposium on Mathematical

Foundations of Computer Science (MFCS 2017), pages 58:1–
58:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[12] Neil Lutz and Donald M. Stull. Bounding the dimension
of points on a line. In International Conference on Theory

and Applications of Models of Computation, pages 425–439.
Springer, 2017.

[13] Satyadev Nandakumar. An e�ective ergodic theorem and
some applications. In Proceedings of the fortieth annual ACM

symposium on Theory of computing, pages 39–44. ACM, 2008.
[14] André Nies. Computability and Randomness, volume 51. OUP

Oxford, 2009.
[15] Claus-Peter Schnorr. A unified approach to the definition of

random sequences. Mathematical Systems Theory, 5(3):246–
258, 1971.

[16] Claus-Peter Schnorr. A survey of the theory of random
sequences. In Basic Problems in Methodology and Linguistics,
pages 193–211. Springer, 1977.

[17] Claus-Peter Schnorr and Hermann Stimm. Endliche Automaten
und Zufallsfolgen. Acta Informatica, 1(4):345–359, 1972.

[18] Glenn Shafer and Vladimir Vovk. A tutorial on conformal
prediction. Journal of Machine Learning Research, 9(Mar):371–
421, 2008.

[19] Alexander Shen, Vladimir A. Uspensky, and Nikolay Vereshcha-
gin. Kolmogorov Complexity and Algorithmic Randomness,
volume 220. American Mathematical Society, 2017.

[20] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorith-

mic Learning in a Random World. Springer Science & Business
Media, 2005.

[21] Volodya Vovk, Alexander Gammerman, and Craig Saunders.
Machine-learning applications of algorithmic randomness. In
Proceedings of the Sixteenth International Conference on Ma-

chine Learning, pages 444–453. Morgan Kaufmann Publishers
Inc., 1999.

[22] Vladimir V. V’yugin. Ergodic theorems for individual random
sequences. Theoretical Computer Science, 207(2):343–361,
1998.

[23] Yongge Wang. Randomness and Complexity. PhD thesis,
University of Heidelberg, 1996.

[24] Klaus Weihrauch. Computable Analysis: An Introduction.
Springer, 2000.

[25] Benjamin Weiss. Single Orbit Dynamics. Number 95 in
Regional Conference Series in Mathematics. American Mathe-
matical Society, 2000.

[26] Alexander K. Zvonkin and Leonid A. Levin. The complexity
of finite objects and the development of the concepts of infor-
mation and randomness by means of the theory of algorithms.
Russian Mathematical Surveys, 25(6):83, 1970.

622

