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Abstract

Shrinkage prior has gained great successes in many data analysis, however,
its applications mostly focus on the Bayesian modeling of sparse parameters.
In this work, we will apply Bayesian shrinkage to model high dimensional
parameter that possesses an unknown blocking structure. We propose to im-
pose heavy-tail shrinkage prior, e.g., t prior, on the differences of successive
parameter entries, and such a fusion prior will shrink successive differences to-
wards zero and hence induce posterior blocking. Comparing to conventional
Bayesian fused LASSO which implements Laplace fusion prior, t fusion prior
induces stronger shrinkage effect and enjoys a nice posterior consistency pro-
perty. Simulation studies and real data analyses show that t fusion has su-
perior performance to the frequentist fusion estimator and Bayesian Laplace
fusion prior. This t fusion strategy is further developed to conduct a Bayesian
clustering analysis, and our simulations show that the proposed algorithm
compares favorably to classical Dirichlet process modeling.
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1 Introduction

High dimensionality plays an important role in modern statistical appli-
cations such as genomics, image processing, finance and etc. An overview for
the development of high dimensional analysis can be found in van der Geer
and Bühlmann (2011) and references therein. To overcome ill-posed prob-
lems that involve high dimensional parameters, one usually assumes that
the true parameter value lies in a low dimensional subspace. To obtain such
low dimensional estimation, the idea of regularization is commonly used,
via penalized likelihood approaches or using informative prior specifications.
Various penalty functions have been proposed for consistent frequentist es-
timation, including LASSO (Tibshirani, 1996), Smoothly Clipped Absolute
Deviation (SCAD) (Fan and Li, 2001), adaptive LASSO (Zou, 2006) and
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Minimax Concave Penalty (MCP) (Zhang, 2010). For high dimensional
Bayesian inferences, sparsity induced priors, such as spike-and-slab prior
(Jiang, 2007; Liang et al., 2013; Narisetty and He, 2014; Song and Liang,
2014; Yang et al., 2015; Castillo et al., 2015; Scott and Berger, 2010; John-
son and Rossel, 2012), are widely used for model selection. Fused LASSO
(Tibshirani et al., 2005) considers another type of low dimensional embed-
ding of a high dimensional parameter θ = (θi)

p
i=1 where the successive dif-

ferences ϑi = θi − θi−1 are assumed to be sparse as well, in other words,
there exists a consecutive block partition of θi’s, such that θi’s are con-
stant within each block. Fused LASSO method proposes a penalty function
λ1

∑
|θi| + λ2

∑
|ϑi| which consists of two terms that encourage sparsity

among θi’s and ϑi’s respectively.
In this work, we consider the following Gaussian mean problem:

yi = θ∗i + εi (1.1)

where εi’s are iid normal error with unknown variance σ2. Similarly to
fused LASSO applications, we also assume true parameter θ∗ is blocky in
the sense that there exists a partition {B∗

1, . . . ,B∗
s} of {1, ..., n} such that

θ∗i ’s are constant for all i ∈ B∗
k. Correspondingly, we define set G∗ = {2 ≤

i ≤ n : ϑ∗
i := θ∗i − θ∗i−1 �= 0} whose number of elements is supposed to

be much smaller than n. We are interested in conducting Bayesian struc-
ture recovery of θ∗. Motivated by the L1 fusion penalty used by fused
LASSO estimator (Tibshirani et al., 2005), as well as the development of
the Bayesian LASSO (Park and Casella, 2008), Kyung et al. (2010) intro-
duced Bayesian fused LASSO by imposing independent Laplace priors on
all successive differences. The implementation of Laplace shrinkage prior
can significantly reduce the posterior sampling costs compared to spike-and-
slab modeling, and conceptually, the Laplace prior can be nicely interpreted
as a Bayesian counterpart of L1 penalty. However, many recent Bayesian
theoretical developments show that in the context of sparse linear regres-
sion models, Laplace prior fails to achieve satisfactory posterior contraction
(Castillo et al., 2015; Bhattacharya et al., 2015; Song and Liang, 2017). It is
believed that the posterior inconsistency of Laplace prior is due to its expo-
nentially light tail, and Song and Liang (2017) suggests to use heavy tail prior
distribution for sparse linear regression models, which can induce sufficient
Bayesian shrinkage effect and thereafter guarantee to recover the sparsity
structure.

We find that the above phenomenon holds for Bayesian fusion estima-
tion as well: imposing Laplace prior on (θi − θi−1) leads to a smoothly
varying θi estimation rather than a blocky θ, thus it fails to identify the



Bayesian Fusion Estimation via t Shrinkage 3

blocking structure. Therefore, in this paper, we propose to use independent
student-t priors on successive differences θi−θi−1 for a Bayesian fusion prob-
lem. Our results show that such a simple t fusion Bayesian modeling leads
to very accurate posterior estimation. More importantly, comparing with
Laplace prior or frequentist L1 penalization, its performance on detecting the
blocking structure is much better. The asymptotic posterior convergence in-
duced by t fusion prior is investigated as well. A related Bayesian work
is Shimamura et al. (2018) who proposed to use a Normal-Exponential-
Gamma (NEG) prior for the successive differences. However, their Bayesian
inference is only based on the maximum a posterior (MAP) estimator,
while our application tries to fully utilize the whole posterior distributional
information.

Furthermore, we consider a practically useful extension to Bayesian fu-
sion estimation. Instead of assuming that θ∗ has a consecutive blocking
structure, it is more realistic to assume that θ∗ possesses an unknown clus-
tering structure. In other words, θ∗i ’s that are not necessarily consecutive
can still share the same value. In a broader scope, such a clustering problem
can be viewed as a simplest example of subgroup analysis where we assume
that a subject-related parameter θ follows an unknown grouping structure.
For example, in clinical trial studies, the treatment effects may vary across
different subpopulations, but remain the same for the patients belonging
to the same subpopulation. If one can correctly identify the subpopulation
structure, then specific medical therapies can be prescribed for each sub-
population to maximize the treatment effectiveness. The existing models for
Bayesian cluster analysis (Wade and Ghahramani, 2018; Heller and Ghahra-
mani, 2005; Mozeika and Coolen, 2018; Berger et al., 2014) usually impose
discrete priors on the clustering structure, along with a conditional prior
on θ given specific clustering structure. In contrast, we propose to directly
model the parameter θ via t fusion prior.

This paper is organized as follows. In Section 2, we study the Bayesian fu-
sion problem with t prior specification. We will present the posterior asymp-
totic result, and discuss its difference from the Laplace prior. In Section 3,
we will use the t fusion prior to solve the clustering problem. Several simula-
tion studies and one real data application are presented in Section 4. Finally,
Section 5 provides more discussions and remarks. All technical proofs are
postponed to the Appendix.

Throughout this work, the following notations are used. Given two pos-
itive sequences {an} and {bn}, an � bn means lim(an/bn) = ∞ and an � bn
means −∞ < lim inf(an/bn) ≤ lim sup(an/bn) < ∞. ‖x‖ and ‖x‖1 denote
L2 and L1 norms of vector x.
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2 Bayesian Fusion Via t Shrinkage Prior

2.1. Bayesian Modeling Suppose we observe independent data {yi :
i = 1, . . . , n} following model (1.1). The indexing of the data has cer-
tain practical or scientific meaning, under which we can assume that the
parameter vector θ∗ is “stepwise”, in the sense that most of the successive
differences ϑi = θi − θi−1 are exactly 0. To induce the sparsity for both
θi’s and ϑi’s, (Tibshirani et al., 2005) proposed the following fused LASSO
estimator

θ̂FL = argmin

(
‖y − θ‖2

2
+ λ1

n∑

i=1

|θi|+ λ2

n∑

i=2

|ϑi|
)

.

If one is not interested in pursuing the sparsity of θ’s, then a fusion estimator
(Rinaldo et al., 2009) can be used

θ̂F = argmin

(
‖y − θ‖2

2
+ λ

n∑

i=2

|ϑi|
)

= argmin

(
‖y − θ‖2

2
+ λ

n∑

i=2

|θi − θi−1|
)

,

(2.1)

for some tuning parameter λ. The above objective functions are both convex
and fast computation algorithms are developed, e.g. Liu et al. (2010) & Tib-
shirani et al. (2005). The penalty term λ

∑n
i=2 |θi − θi−1| can be interpreted

as the negative logarithm of prior density used for Bayesian inferences, there-
fore, a natural Bayesian expansion to Eq. 2.1 is Laplace (double exponential)
prior modeling (Kyung et al., 2010; Shimamura et al., 2018). To account for
the unknown variance parameters σ2 and θ1, a convenient prior specification
could be

σ2 ∼ Inverse-Gamma(aσ, bσ), θ1|σ2 ∼ N(0, σ2λ1),
(θi − θi−1)|σ2 ∼ Laplace(λ/σ), for all i = 2, . . . , n

(2.2)

where Laplace(a) denotes the distribution with cdf f(x) ∝ exp(−a|x|). Note
that besides the fusion prior imposed on consecutive differences, we also
assign a prior on θ1, this ensures the joint prior of θ is a proper prior
distribution.

According to Andrews and Mallows (1974), the above Laplace(λ/σ) prior
can be rewritten as a scale mixture of normal distributions:

(θi − θi−1)|σ2, λi ∼ N(0, λiσ
2), λi ∼ exp(−λ2/2),

where exp(a) denotes the exponential distribution f(x) ∝ exp(−ax).
This hierarchical representation for Laplace prior leads to a Gibbs
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sampling update that is similar to the Bayesian LASSO (Park and Casella,
2008):

λ−1
i ∼ Inverse-Gaussian(λσ/|θi − θi−1|, λ2) for all i = 2, . . . , n,

σ2 ∼ Inverse-Gamma

(

aσ + n, bσ + ‖y−θ‖2
2 +

θ21
2λ1

+
n∑

i=2

(θi−θi−1)
2

2λi

)

,

θi ∼ N(μi, νi) for i = 1, . . . , n
(2.3)

where ν−1
i = 1/σ2 + 1/λi+1σ

2 + 1/λiσ
2, μi = νi(yi/σ

2 + θi+1/λi+1σ
2 +

θi−1/λiσ
2) for i = 1, . . . , n; λn+1 is considered to be infinite, and θ0 is

consider to be 0; Inverse-Gaussian(a, b) denotes inverse Gaussian distribution
with cdf f(x) ∝ x−3/2 exp[−b(x− a)2/(2a2x)].

Despite the popularity of Laplace prior in many applications, recent
Bayesian works (Castillo et al., 2015; Bhattacharya et al., 2015; Song and
Liang, 2017) point out that, if we impose independent θi|σ2 ∼ Laplace(λ/σ)
for linear regression models with a sparse regression coefficient θ, then the
induced posterior has only a sub-optimal contraction rate, or even diverges.
In other words, the posterior distribution of θ doesn’t contract into a small
neighborhood around true value θ∗ appropriately. For a blocky parameter
θ, we observe similar empirical results, as showed in the toy example in
Section 2.3: the Laplace fusion prior fails to shrink the observations, which
belongs to the same block, towards a same value. Hence, the resultant
Bayesian estimate of θ doesn’t have a step-wise pattern at all.

Following the theoretical discovery of Song and Liang (2017), we con-
sider using a class of heavy tailed priors for the successive differences ϑi’s.
Specifically, this work will assign a t shrinkage prior:

σ2 ∼ Inverse-Gamma(aσ, bσ), θ1|σ2 ∼ N(0, σ2λ1),
(θi − θi−1)|σ2 ∼ tdf (sσ), for all i = 2, . . . , n

(2.4)

where ta(b) denotes t distribution with degree of freedom a and scale param-
eter b. Note that the above t distribution can be rewritten as an inverse-
gamma scaled Gaussian mixture as

(θi − θi−1)|σ2, λi ∼ N(0, λiσ
2), λi ∼ Inverse-Gamma(at, bt),

where at, bt satisfy df = 2at and s =
√
bt/at. Under this t prior, the

posterior distribution still allows a full conditional Gibbs sampler, where the
updates for θi’s and σ2 are exactly the same as in Eq. 2.3 and the update of
λi’s follows

λi ∼ Inverse-Gamma

(

at + 1/2, bt +
(θi − θi−1)

2

2σ2

)

for all i = 2, . . . , n.
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To further understand the difference between the Laplace fusion prior
and t fusion prior, we compare their conditional prior π(θi|θi−1, θi+1, σ) for
1 < i < n. Note that this conditional distribution is completely determined
by the fusion priors imposed on θi+1 − θi and θi − θi−1. Figure 1 plots
the function − log[π(θi|θi−1 = −1, θi+1 = 1, σ = 1)], up to a constant, for
both prior specifications. It is clear that the conditional t fusion prior al-
locates most of its prior mass at the two small neighborhoods centered at
θi−1 and θi+1, given a sufficiently small scale parameter s. In other words,

Figure 1: The negative logarithm of conditional prior − log[π(θi|θi−1 =
−1, θi+1 = 1, σ = 1)] under different hyperparameter values
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the prior introduces a strong shrinkage effect on θi, towards either θi−1 or
θi+1. Therefore, for all i = 2, . . . , n − 1, θi will merge with either θi−1 or
θi+1 in the posterior distribution, which thereafter induces a posterior block-
ing structure. On the other hand, the conditional Laplace fusion prior has
a uniform prior density within the interval [θi−1, θi+1]. Hence, it doesn’t
encourage the posterior of θi to be grouped with either θi−1 or θi+1. It
is worth to mention that the NEG fusion prior (Shimamura et al., 2018)
also has a similar pattern for its conditional prior density function. But a
critical difference between t prior and NEG prior, is that the density for
NEG prior is non-differentiable at 0. Therefore, the MAP of NEG fusion
prior possesses an exact blocking structure, and Shimamura et al. (2018)
only use this MAP for Bayesian inferences rather than the whole poste-
rior distributional information. But the t prior is continuously differentiable
everywhere (the functions displayed in the upper plot of Fig. 1 are actu-
ally smooth at -1 and 1). Hence, its MAP doesn’t have blocky structure,
and in this work we will utilize all the posterior samples for the Bayesian
analysis.

2.2. Posterior Contraction of Bayesian t Fusion In this section, we
study the theoretical performance of t fusion prior specification (2.4). Our
theoretical investigation follows the framework of Song and Liang (2017),
which studies the posterior convergence rate of coefficient β in high di-
mensional sparse regression models y = Xβ + ε. Note the model (1.1)
can also be represented as a sparse linear regression, where the design ma-
trix X is a n by n matrix whose lower triangle entries are all 1 and β =
(θ1, ϑ2, . . . , ϑn) is a unknown sparse vector. The following theorem studies
the general posterior convergence properties given an independent prior over
all ϑi’s.

Theorem 2.1 (Posterior consistency). Assume that |G∗| ≺ n/ logn, and the
prior specification follows that σ2 ∼ Inverse-Gamma(aσ, bσ), θ1 and ϑi’s are
conditionally independent given σ2 with prior density π(θ1, ϑ2, . . . , ϑn|σ) ∝
(1/σ)nfθ(θ1/σ)

∏n
i=2 fϑ(ϑi/σ). Furthermore, if

∫ |G∗| logn/n2

−|G∗| logn/n2

fϑ(x)dx ≥ 1− n−(1+u), for some u > 0,

− log(πϑ) = O(logn), where πϑ = min|x|≤maxi |ϑ∗
i /σ

∗|+1 fϑ(x),

− log(πθ) = O(|G∗| log n), where πθ = min|x|≤|θ∗1/σ∗|+1 fθ(x),

aσ log(1/bσ) + bσ/σ
∗2 + (aσ + 2) log(σ∗2) = O(|G∗| logn),

(2.5)
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then there exist a constant M and εn �
√
|G∗| log n/n, such that the poste-

rior distribution satisfies

π(‖θ − θ∗‖ ≥ Mσ∗√nεn|y) → 0,

where the convergence holds in probability or in L1 w.r.t. the probability
measure of y.

The proof closely follows the Theorem A.1 in Song and Liang (2017), and
for the sake of readability, the proof is provided in the Appendix. The first
inequality of sufficient condition set (2.5) requires that the prior imposed
on ϑi’s is highly concentrated around zero, such that it induces sufficient
Bayesian shrinkage effect for those ϑi’s whose true values are 0. The rest
inequalities of Eq. 2.5 essentially require that the prior density at true pa-
rameter is at least of order e−cnε2n for some c, and this helps to prevent
over-shrinkage for those ϑi’s whose true values are not 0. Similar conditions,
which need the prior to be “thick” at true parameter values, are regularly
used in Bayesian literature (Jiang 2007; Kleijn and van der Vaart 2006b;
Ghosal et al., 2000, 2007). Given the concrete forms for prior density fθ and
fϑ, the second and third inequalities of Eq. 2.5 are equivalent to some upper
bound constraints on the magnitude of θ∗1 and maxi |ϑ∗

i | (see e.g., Corollary
2.1). The fourth inequality of Eq. 2.5 trivially holds for any fixed aσ and bσ
if σ∗2 is assumed to be a constant. If the unknown error variance is supposed
to be varying with respect to n, e.g., the studies of Gaussian sequence models
(Johnstone, 2010) commonly assume that σ∗2 ∝ n−1, then one can choose a
fixed aσ and bσ � n−κ for some κ > 0. Under such a choice, condition (2.5)
holds as long as −κ log n ≤ log(σ∗2) < K log n for some positive constant K.

The above result states that almost all the posterior mass contracts into a
neighborhood of θ∗ with radius Mσ∗√nεn, that is, the posterior convergence
rate is of order σ∗√|G∗| log n. Note that if the partition index set G∗ were
known, the oracle rate of contraction turns out to be O(σ∗√|G∗|). Hence,
the Bayesian shrinkage achieves the ideal risk up to a logarithmic term in n.
In frequentist literature, Theorem 2.7 of Rinaldo et al. (2009) showed that
the convergence rate of fused LASSO is no larger than O(σ∗√|G∗| log |G∗|).
However, this rate is not directly comparable to ours, since an additional
minimal signal strength condition, which ensures that G∗ can be fully recov-
ered in probability, is imposed in Rinaldo et al. (2009).

The posterior distribution of ϑ is always continuous, and doesn’t directly
provide Bayesian inferences for the block structure, or equivalently, the un-
known G∗. The following result characterizes some asymptotic performance
of posterior block partition via discretization.
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Theorem 2.2 (Posterior selection). Assume the conditions of Theorem 2.1
hold, denote G(θ, σ) = {i : |ϑi/σ| < εn/n}, then the posterior of G(θ, σ)
satisfies

π({|G(θ, σ)\G∗| > δ|G∗|}|y) → 0,

for some fixed constant δ, where the convergence holds in probability and in
L1.

Therefore, the posterior distribution of G(θ, σ), which is induced by the
posterior of (θ, σ2) and mapping G(·, ·), can be treated as a discrete poste-
rior distribution for the unknown G∗ and used for Bayesian block partition
selection. Theorem 2.2 essentially claims that the number of false positive
selections via discretization G(·, ·) is bounded in posterior probability. Such
a result is comparable to the model selection behavior of Bayesian Dirichlet-
Laplace shrinkage (Bhattacharya et al., 2015). It is worth to note that if
certain minimal signal strength condition holds as well, i.e., min{ϑ∗

i �=0} |ϑ∗
i | is

bounded away from zero, with additional assumptions, one can derive an even
stronger posterior selection consistency result that π(G(θ, σ) = G∗|y) →p 1,
following the proof of Theorem 2.3 in Song and Liang (2017). Readers of
interests can easily derive such posterior selection consistency by themselves.

It is not difficult to verify the condition (2.5) for the proposed t fusion
shrinkage prior (2.4).

Corollary 2.1. When fθ is the cdf of normal distribution N(0, λ1) and
fϑ is the cdf of a t distribution with scale parameter s, then the first three
inequalities of Eq. 2.5 hold when

log(maxi |ϑ∗
i |/σ∗) = O(log n),

θ∗21 /(λ1σ
∗2) + log(λ1) = O(logn),

and s = n−c for some sufficiently large c.

The above results hold not only for the scaled t prior, but also for any
other choice of fϑ, as long as fϑ has a polynomially decaying tail. Note that
the above results can not be generalized to light tailed distributions such as
Laplace fusion prior, since it will lead to an unrealistic sufficient condition
that maxi |ϑ∗

i |/σ∗ = o(1).
2.3. Bayesian Posterior Inference In this section, we illustrate the pos-

terior behavior of Bayesian t fusion with a toy example, and compare it to
Bayesian Laplace fusion. We will also discuss other issues related to hyper-
parameter choice.

A simulation data was generated with n = 100 and σ∗ = 0.5. The data
and underlying true parameter value are plotted in Fig. 2. Three estimation
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Figure 2: Upper Left: Simulated toy data; Upper Right: Frequentist fusion
estimation (2.1); Lower Left: Marginal posterior boxplots for each θi un-
der Laplace fusion prior; Lower Right: Marginal posterior boxplots under t
fusion prior. The red curve denotes the true θ∗i ’s which contain three blocks

procedures are considered: 1) L1 fusion estimation (2.1) where the tuning
parameter is selected by cross validation; 2) Bayesian Laplace prior (2.2)
with λ =

√
2 log n, aσ = 0.5, bσ = 0.5 and λ1=5; 3) Bayesian t prior (2.4)

with at = 2, bt = 0.005, aσ = 0.5, bσ = 0.5 and λ1 = 5. Note the reason we
choose λ =

√
2 log n for Bayesian Laplace is that the theoretical choice for

the tuning parameter in frequentist L1 fused estimation is of order σ∗√logn
(Rinaldo et al., 2009).

The posterior samples are obtained by Gibbs sampler for 2000 iterations.
The frequentist estimator and boxplots of Bayesian marginal posterior dis-
tributions are displayed in Fig. 2. Note that for the sake of readability of
the figure, we don’t draw the outliers in these boxplots.
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The comparison shows that the L1 fusion penalty leads to a strictly sparse
ϑ̂ estimation and the estimated θ̂ does have a blocking structure, but there
is a mild over-partition issue. Due to the nature of Bayesian shrinkage prior,
the two Bayesian approaches only produce continuous posterior samples of
ϑi. Compared with the Laplace prior, the advantages of t prior are quite ob-
vious. Its posterior concentration is better, i.e., shorter boxes and whiskers
for the boxplots, and posterior mean is much closer to the true red curve.
Although its posterior estimation is not exactly blocky, one can visually iden-
tify the three blocks. In contrast, the Laplace prior generates larger posterior
variance, and its posterior center smoothly fluctuates around the true step
function. As discussed at the end of Section 2.1, Laplace fusion prior itself
merely introduces shrinkage effect for the successive differences, and hence
the data fluctuation carries over to the posterior distribution of θ. In this
case, it is clear that it has not recovered the underlying block structure.

Note that for both (2.2) and (2.4) prior specifications, their posterior
distributions highly depend on the choices of hyperparameters, especially the
scale parameters of the Laplace (parameter 1/λ) and t prior (parameter s)
distribution. To understand the influence of the scale parameter, we increase
and decrease the scale parameter by a factor of

√
10, for both Laplace and

t priors. The corresponding posteriors are displayed in Fig. 3.
From Fig. 3 and its comparison with Fig. 2, we see that, for t prior specifi-

cation, smaller scale hyperparameter leads to smaller posterior variation, and
vise versa. Choosing an overly large scale parameter weakens the shrinkage
effect, thus it fails to shrink the θi’s that belong to the same block towards
same value, and the corresponding posterior estimation is not flat within
blocks. On the other hand, choosing an overly small scale hyperparameter,
although yields very strong shrinking and grouping effect, may potentially
over-partition the data. In conclusion, the scale parameter of t fusion prior
controls the aggressiveness of posterior block partition. For Laplace prior,
both increasing or decreasing scale parameter can not remedy its poor be-
havior demonstrated in Fig. 2. The choice of scale parameter only affects the
smoothness of posterior of θ. Smaller scale parameter leads to smoother non-
parametric estimation which is similar to smooth spline regression; larger
scale parameter leads to a rather rugged estimation. This phenomenon can
be partially explained by Fig. 1. As the scale of the Laplace prior decreases
(i.e., λ increases), the conditional prior of θi given (θi−1, θi+1) acts more
and more like a uniform distribution over [θi−1, θi+1]. Hence, conditional on
(θi−1, θi+1), the posterior of “local” total variation, |θi+1 − θi| + |θi − θi−1|,
always decreases to the minimum possible value (i.e., |θi+1−θi−1|) when the
scale parameter decreases to zero, regardless of the observation value yi.



12 Q. Song and G. Cheng

Figure 3: Bayesian posterior with different choice of scale parameter. Upper
Row: The scale parameter decreases by a factor of

√
10. Lower Row: The

scale parameter increases by a factor of
√
10

As showed in the previous toy example, the hyperparameter value plays
an important role for the performance of Bayesian posterior inferences. The
theoretical suggestion, i.e., the first inequality of Eq. 2.5, gives a very small
scale parameter, which in practice leads to severe over-partition issue under
moderate n. Unlike frequentist high dimensional penalization estimation
whose tuning parameter is usually determined by cross validation or selection
criterion such as EBIC (Chen and Chen 2008, 2012), choosing an appropriate
value for the hyperparameter posts many difficulty for Bayesian statisticians.
Conventional choices include imposing a hyper-prior on the hyperparameter
(van der Pas et al., 2017; Castillo and van der Vaart, 2012) or empirical
Bayes (Robbins, 1985). For high dimensional sparse GLMs, Liang et al.
(2013) suggests choosing a hyperparameter such that the posterior mean and
posterior mode are close. Several Bayesian works (Shimamura et al., 2018;
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Betancourt et al., 2017) consider only using the sparse MAP as the Bayesian
estimator, and thus abandon the whole posterior distributional information.
This strategy somehow reduces the Bayesian computation to a frequentist
optimization problem, and then the hyperparameter can be determined by
EBIC criterion. It is beyond the scope of this work to theoretically study how
to select an appropriate hypereparameter, i.e., the scale parameter of the t
prior. An empirical suggestion based on authors’ experience is to choose the
scale parameter of Eq. 2.4 such that

P (|tdf (s)| ≥
√
log n/n) ≈ 1/n. (2.6)

Although it doesn’t quite satisfy the conditions in Corollary 2.1 which sug-
gests s = n−c for some large c, but in practice, it indeed yields a reason-
able and stable Bayesian performance. Note that our prior choice at = 2,
bt = 0.005 in the above toy example approximately satisfies (2.6).

3 Bayesian t Shrinkage for Bayesian Clustering

In this section, we would like to extend the applications of Bayesian t
fusion shrinkage to Bayesian clustering problem, where the parameter θ in
model (1.1) is assumed to follow an unknown clustering structure. In other
words, the observations yi’s are not organized in a sensible order, and we no
longer assume that the true cluster consists of only consecutive indexes.

A full Bayesian clustering analysis, or subgroup identification, usually
imposes a prior on the clustering structure, including the number of clus-
ters and how to partition observations into these clusters. For example, one
could consider that the cluster structure arises from a tree splitting process,
and impose certain prior on the tree nodes (Berger et al., 2014; Heller and
Ghahramani, 2005). The resultant posterior sampling hence usually requires
a reversible-jump Metropolis-Hastings move to travel across different clus-
tering models in the sampling space, which can be quite inefficient. Another
common approach is to model a mixture distribution via nonparametric pri-
ors such as Dirichlet process or Chinese restaurant process (Neal, 2000).
These mentioned approaches enforce explicit clustery posterior samples by
directly applying discrete prior on subgroup structure. In this section, we
will show how to use Bayesian t shrinkage to induce implicit posterior clus-
tering structure.

To implement shrinkage prior, we need to formulate the problem in a
proper statistical modeling framework such that its parameter possesses cer-
tain sparsity feature. Conceptually, imposing shrinkage priors on θi − θi−1

shall not work for this clustering problem since {θi − θi−1}ni=2 is no longer
a sparse vector. However, if some meaningful permutation r of θi is known
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such that {θr(i) − θr(i−1)}ni=2 is indeed a sparse vector, for example, θr(i) is
ascending or descending, then the problem will reduce to Bayesian shrinkage
fusion studied in the previous section.

However, in practice, such r(·) is generally not available. Thus one simple
solution would be to substitute r(·) with some estimator r̂(·). For model
(1.1), a trivial estimator is the rank statistic of the responses yi, i.e., yr̂(i) =
y(i) where y(i) denotes the order statistics of yi’s. Thus this leads to hybrid
Bayesian modeling, depending on a frequentist pilot estimator r̂:

σ2 ∼ Inverse-Gamma(aσ , bσ), θr̂(1)|σ2 ∼ N(0, σ2λ1),

(θr̂(i) − θr̂(i−1))|σ2, λi ∼ N(0, σ2λi), λi ∼ Inverse-Gamma(at, bt) for all i = 2, . . . , n.

(3.1)

The corresponding posterior Gibbs sampler follows:

λi ∼ Inverse-Gamma

(

at + 1/2, bt +
(θr̂(i) − θr̂(i−1))

2

2σ2

)

for all i = 2, . . . , n.

σ2 ∼ Inverse-Gamma

(

aσ + n, bσ +
‖y − θ‖2

2
+

θ2r̂(1)

2λ1
+

n∑

i=2

(θr̂(i) − θr̂(i−1))
2

2λi

)

,

θr̂(i) ∼ N(μi, νi), for i = 1, . . . , n (3.2)

where ν−1
i = 1/σ2+1/λi+1σ

2+1/λiσ
2 and μi = νi(yr̂(i)/σ

2+θr̂(i+1)/λi+1σ
2+

θr̂(i−1)/λiσ
2).

The idea of taking advantage of a pilot estimator θ̂ and its rank statistic
r̂(i) has also been implemented in the two-stage frequentist approach (Ke et
al., 2015a).

It is worth to mention that posterior consistency results described in
Theorems 2.1 and 2.2 for Bayesian shrinkage fusion don’t apply to the above
Bayesian modeling (3.1) even when θr̂(i) is in ascending order, because εr̂(i)’s
are no longer iid error observations. Such a data dependent prior (3.1) can
also be interpreted as a misspecified Bayesian modeling (Kleijn et al., 2006a),
where the data is the order statistics y(i) from a mixture distribution, and we
model y(i)’s as independent Gaussian variables whose mean function E(y(i))
is a step function.

Although the prior modeling (3.1) is quite natural and intuitive, there are
several issues. First, compared with the iid observations, it is more difficult
to to identify the underlying clustering structure of sorted observations. For
example, it is much more difficult to visually identify the 3-cluster structure
in the toy data showed in Fig. 4 than the toy data showed in Fig. 2. Secondly,
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Eq. 3.1 fails to take account of uncertainty of the estimator r̂, and the strict
monotonicity of yr̂(i) will always carry over to the posterior of θr̂(i). Thirdly,
over-clustering will occur. To understand this, let us consider that all data
yi’s have the same mean, i.e., there is only one cluster. But the mean
function of the sorted data, E(y(i)), is actually a strictly increasing function.
From the perspective of Bayesian misspecification, our posterior of θr̂(i)’s
should contract towards the best step function, in the sense of minimizing the
Kullback–Leibler divergence (Kleijn et al., 2006a), rather than towards the
constant function E(yi). This causes the over-clustering, and furthermore,
the posterior consistency of t shrinkage prior established in Corollary 2.1
doesn’t hold anymore.

Theorem 3.1. Assume that all yi ∼ N(0, 1) with known variance σ∗ =
1. If the prior (3.1) is used (except that there is no necessity to impose a
prior on σ2) and the scale parameter satisfies − log(bt) � logn, then in high
probability

π(‖θ‖ ≤
√
M log n|y) < 1/2,

i.e., the rate-
√
log n posterior consistency fails.

The negative result in Theorem 3.1 motivates us to propose an adaptive
pseudo Bayesian shrinkage approach. Instead of using a fixed estimator r̂,
we update the “working” order r of θ over iterations. To be specific, we
adopt the following pseudo “Gibbs” sampling algorithm: In each iteration,

1. update λi ∼ Inverse-Gamma

(
at + 1/2, bt +

(θr(i) − θr(i−1))
2

2σ2

)
for all i = 2, . . . , n.

2. update σ2 ∼ Inverse-Gamma

(
aσ + n, bσ +

‖y − θ‖2
2

+
θ2
r(1)

2λ1
+

n∑
i=2

(θr(i) − θr(i−1))
2

2λi

)
,

3. update θr(i) ∼ N(μi, νi), for i = 1, . . . , n, (3.3)

4. update r(·) = the rank statistic of the current sample θ.

where in step 3, ν−1
i = 1/σ2 + 1/λi+1σ

2 + 1/λiσ
2 and μi = νi(yr(i)/σ

2 +
θr(i+1)/λi+1σ

2+θr(i−1)/λiσ
2). Comparing to Eq. 3.2, the essential difference

is that we update r(·) to the rank statistic of the newly obtained θ in each
iteration.

There are a couple of rationales behind the algorithm (3.3). First, the up-
date of r potentially allows algorithm (3.3) to incorporate some uncertainty
of rank statistic into the posterior sampling. Heuristically, if the current r(·)
is close to the true ranking, Eq. 3.3 will shuffle the ordering of θ within
each cluster, hence yr(i) acts like independent samples yielded by random
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permutation within cluster, rather than order statistics. Secondly, the
sampling algorithm (3.3) can be somehow connected with a full Bayesian
modeling:

r ∼ Uniform distribution over all possible permutations,

σ2 ∼ Inverse-Gamma(aσ , bσ), θr(1)|σ2 ∼ N(0, σ2λ1),

(θr(i) − θr(i−1))|σ2, λi ∼ N(0, σ2λi), λi ∼ Inverse-Gamma(at, bt) for all i = 2, . . . , n.

(3.4)

Under (3.4), the conditional posterior of r(·) follows π(r|θ, λ1, . . . , λn, y) ∝
exp{−

∑n
i=2(θr(i)−θr(i−1))

2/λ2
iσ

2}, from which sampling is expensive. How-
ever, when most of λ2

i s are tiny, the distribution of π(r|θ, λ′
is, y) will be highly

concentrated around its MAP which is approximately the rank statistic of θ.
Therefore, updating r to the rank statistic of current sample θ, as in Eq. 3.3,
can be viewed as a convenient sampling of π(r|θ, λ′

is, y) under the uniform
hyperprior of r. And such a hyperprior does benefit the posterior asymp-
totic performance, at least it remedies the posterior inconsistency described
in Theorem 3.1 when there is only one underlying cluster.

Theorem 3.2. Assume that all yi ∼ N(θ0, σ
2), i.e. θ∗ is a vector of

θ0’s. If prior (3.4) is used with bt = n−c for some sufficiently large c,
and θ20/(λ1σ

∗2) + log(λ1) = O(log n) then there exist constant M and εn �√
log n/n, such that

π(‖θ − θ∗‖ ≥ Mσ∗√nεn|y) → 0,

where the convergence holds in probability and L1.

Further investigations will be pursued to assess the posterior contrac-
tion induced by Eq. 3.4 when the true parameter θ∗ has multiple-cluster
structure. The minimal cluster difference min{(i,j):θi �=θj} |θi − θj | shall play
a crucial role for the Bayesian asymptotics. If the minimal cluster differ-
ence is bounded by constant, then even the best Bayes classifier makes as
many as O(n) misclassifications, which leads to

√
n-rate L2 error. And we

conjecture that when the minimal cluster difference is large than
√
M logn

for some constant M , the posterior distribution induced by Eq. 3.4 leads to
satisfactory Bayesian consistency.

It is worth to mention that the r-update step in algorithm (3.3) may
critically change the stochastic stability of the algorithm and the ergodicity
of Markov chains generated by Eq. 3.3 is still unclear. Therefore, in our
application we use it with caution. In all our simulations and toy examples,
we initialize with r = r̂, and the r-update step (i.e. step 4 in Eq. 3.3) is only
implemented every other 20 iterations after certain burn-in period.
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In frequentist literature, another popular approach to cluster θi’s is to
impose a pairwise difference penalty as

∑
i�=j p(|θi−θj |) for some penalty p(·)

(Ma and Huang, 2017; Shen and Huang, 2012; Ke et al., 2015b). Although
it is tempting to develop a Bayesian counterpart, i.e., using a prior of form
π(θ) ∝

∏
i�=j π(θi − θj) with sparsity induced π, there are several problems.

First, the pairwise differences {θi − θj}i�=j must satisfy triangle inequality,
hence the prior specification π(θ) ∝

∏
i�=j π(θi − θj) is actually not an inde-

pendent prior over all pairwise difference {θi− θj}i�=j , and it will be difficult
to characterize the effect of such dependency in the prior distribution. Sec-
ond, even under clustering structure, {θi − θj}i�=j are actually not sparse.
For example, if there are two balanced groups among θi’s, then half of the
pairwise differences are nonzero. Imposing a sparse prior on a non-sparse
system will lead to severe overshrinkage problem, and our simulation shows
that such prior shrinks all θi towards ȳ. Third, such pairwise difference prior
will also heavily increase the computational burden of posterior sampling.

To illustrate and compare the performance of Eqs. 3.2 and 3.3, a simple
toy example is conducted. We simulate a data set with n = 100 data points
that belong to 3 underlying subgroups. For both (3.2) and (3.3), we choose
at = 2, bt = 0.005, aσ = bσ = 0.5 and λ1 = 5. In addition, we compare them
with frequentist L1 fusion

θ̂ = argmin ‖y − θ‖2/2 + λ

n∑

i=2

|θr̂(i) − θr̂(i−1)|, (3.5)

and Bayesian Dirichlet process modeling

yi|θi, σ2 ∼ N(θi, σ
2), θi ∼ G,

G ∼ Dirichlet-Process(N(0, λ), a) and σ2 ∼ Inverse-Gamma(aσ, bσ)

(3.6)

with λ = 5, a = 0.1 and aσ = bσ = 0.5. The posterior sampling algorithms
of Dirichlet process modeling are discussed in (Neal, 2000). The frequentist
estimator and posterior boxplots of θi’s under different priors are plotted in
Fig. 4. This figure clearly shows that frequentist L1 fusion estimator fails
to yield clustering structure for monotone sorted yr̂(i)’s, especially for the

middle portion of the data, one always has θ̂r̂(i) = y(i). Dirichlet process
induces a quite reasonable posterior clustering, however its posterior con-
centration is not good, in the sense that the posterior variance is quite large.
In the opposite, the t modeling (3.1) has a strong prior concentration, which
contributes to a better posterior variation, and encourages posterior cluster-
ing. However, consistent to our previous arguments, a severe over-clustering
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Figure 4: Toy example comparison among difference approaches. Upper
Left: Frequentist fusion estimation (3.5); Upper Right: Marginal posterior
boxplots for each θi under Dirichlet process prior; Lower left: Marginal
posterior boxplots for each θi under t prior (3.2); Lower right: Marginal
posterior boxplots under t prior (3.3). The blue points denote the sorted
observed data y(i). The red points denote the true θ∗ corresponding to the
data ascending order

occurs, and the posterior identifies more than 6 clusters. At last, the poste-
rior obtained by algorithm (3.3) combines both advantages of DP prior and
Eq. 3.1. Comparing with DP prior, it has much smaller posterior variance;
comparing with prior (3.1), the over-clustering issue is greatly alleviated.
More discussions can be found in the simulation section.

4 Simulation and Data Anlaysis

4.1. Bayesian Fusion Simulations In our first simulation studies, we
consider model (1.1) with σ∗ = 0.5 and true parameter θ∗ ∈ R

100 hav-
ing three consecutive blocks. These three blocks are B∗

1 = {1, . . . , b1},
B∗
2 = {b1 + 1, . . . , b1 + b2}, B∗

3 = {b1 + b2 + 1, . . . , b1 + b2 + b3} where
(b1, b2, b3) ∼ multinomial(100, (1/3, 1/3, 1/3)), and θ∗i = 0, 2 or 4 within
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each block respectively. We compare the performance among Bayesian t
fusion (2.4), Bayesian Laplace fusion (2.2) and frequentist L1 fusion (2.1),
based on 100 replications. The choices of the hyperparameters are same to
the toy example discussed in Section 2.3.

To compare the accuracy of parameter estimations, we calculate the L2

estimation error, ‖θ̂− θ∗‖2 and ‖θ̂− θ∗‖1, for frequentist and Bayes estima-
tor (posterior mean). To assess the performance of block structure recovery,
we consider several comparison criteria. We define the “adjacency” ma-
trix as Σ = (ωij) = (1{θi = θj}), and corresponding estimation error of

Σ: R = ‖Σ∗ − Σ̂‖1 =
∑

i,j |ω̂ij − ω∗
ij |. For L1 fusion estimator, Σ̂ is triv-

ially estimated by ω̂ij = 1{θ̂Fi = θ̂Fj }. For Bayesian shrinkage approaches,
since their posterior samples are continuous, it is necessary to “sparsify”
the continuous posterior in order to retrieve a sparse structure estimation
for Ω. In literature, this is usually done by 1) hard thresholding (Li and
Pati, 2017; Tang et al., 2016; Carvalho et al., 2010; Ishwaran and Rao,
2005), or 2) decoupling shrinkage and selection methods (Hahn and Car-
valho, 2015; Xu et al., 2017). All these mentioned approaches depend solely
on the posterior scaling, and do not take into account of the degree of prior
concentration. Therefore, following the suggestion made in Song and Liang
(2017), we estimate ω̂ij = 1{|θ̂i − θ̂j |/σ̂ ≤ π1/2n}, where θ̂i and σ̂ are the
Bayes estimator, π1/2n denotes the (1− 1/2n) quantile of the prior distribu-
tion imposed on successive difference ϑi/σ. This choice tries to increases the
robustness of Bayesian inference: if an overly small or large scale parameter
s is used, the estimation for ωi,j will adapt accordingly. For t shrinkage (2.4),
π1/2n = st1/2n where s is the scale parameter, t1/2n is the 1− 1/2n quantile
of t distribution with df = 2at; for Laplace shrinkage (2.2), π1/2n = log n/λ.
Since different priors have different corresponding π1/2n values, and com-
parison solely based on the value of R may not be completely fair. Hence,
we also consider the following two statistics: W = Average{w∗

ij �=0}|θ̂i − θ̂j |
denotes within-block average variation, and B = min{w∗

ij=0} |θ̂i− θ̂j | denotes
the between-block separation. A larger B and smaller W indicate a better
block identification performance. The results are summarized in Table 1.

The simulation results show that the Bayesian t fusion yields the most
accurate estimation in terms of L2 error. This Bayes estimator also induces
the best clustering result, as it has the largest between-group separation
and smallest within-group variation. In comparison, the frequentist fusion
estimator has a worse accuracy. It is well known that L1 penalty introduces
estimation bias (Fan and Li, 2001), but unlike the LASSO penalty which
introduces a bias of λ, fused L1 penalty introduces only a bias as small as
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Table 1: Comparison among Bayesian t fusion, Bayesian Laplace fusion, and
L1 fusion
Methods Bayesian

t fusion
Bayesian
Laplace
fusion

L1 fusion

L2 error of θ 1.3243 2.2323 1.5916
Standard error 0.0602 0.0324 0.0421
W (the smaller the better) 0.05584 0.2182 0.2128
Standard error 0.0028 0.0037 0.0077
B (the larger the better) 1.4243 0.6792 1.1302
Standard error 0.0684 0.0211 0.0398
R (the smaller the better) 387.32 85.6 1360.9
Standard error 32.0628 6.2375 53.2685

The report is based on average results from 100 replications. Refer to Section 4.1 for the
definition of R, W and B

λ/ni (Rinaldo et al., 2009) where ni is the number of elements in each block.
Hence, its estimation performance is still acceptable. The L1 fusion also has
a much larger R statistics. This is consistent to observation from our toy
example, that L1 fusion has a mild over-partition issue. Bayesian Laplace
fusion, on the other hand, has a much worse estimation behavior due to its
insufficient shrinkage effect. As discussed in Section 2.3, the Laplace fusion
tends to yield smooth changing θ̂i’s, thus it has a much smaller between-
block separation. Note that Laplace shrinkage does obtain the smallest R
statistic, but this doesn’t imply that it has a good performance on structure
recovery. It has a small R statistics because the Laplace fusion prior doesn’t
have strong prior concentration and its corresponding π1/2n is much larger
than t fusion.

4.2. Bayesian Clustering Simulations In our second simulation studies,
we consider model (1.1) with σ∗ = 0.5 and true parameter θ∗ ∈ R

100 having
three unknown clusters. With equal probability, θ∗i = 0, 2, or 4. We aim to
compare different approaches including Bayesian t modeling (3.2) and (3.3),
Dirichlet process prior (3.6) and the frequentist bCARDS estimation (3.5)
using L1 fusion (Ke et al., 2015a). Besides the comparison of L2 error of
the Bayesian/frequentist estimator, we also compare the posterior mean of
squared L2 error, Eπ(θ|y)‖θ − θ∗‖2, among the Bayesian approaches. Note
that the L2 error of Bayes estimator only tells how good is the posterior
center, while the posterior mean of squared L2 error tells how good is dis-
tributional posterior contraction.
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Note that the simulation setting seems similar to our previous study in
Section 4.1, but as mentioned in Section 3, clustering problem is much more
difficult than fusion problem. To see that, assume there are three balanced
clusters for θ, let z1 be the largest observation in the 0’s cluster and z2 be the
smallest observation in the 2’s cluster. By the well known result (Royston,
1982), E(z1) ≈ 1.04 > 0.96 ≈ E(z2). Therefore, misclassification will always
happen for those extreme observations, and B = min{w∗

ij=0} |θ̂i−θ̂j | is always
around 0 for all methods, therefore, the comparison of B statistic values are
meaningless. Because of that, to assess how well these methods identify and
separate unknown clusters, we re-define the B statistic as

B̃ = the bottom 10% quantile of {|θ̂i − θ̂j |}{w∗
ij=0}.

The simulation results are summarized in Table 2.
The comparison shows that DP prior yields the best point estimator in

terms of estimation error, and the adaptive t shrinkage method (3.3) gives
a slightly worse, but comparable point estimator. t shrinkage approaches
do yield better posterior contraction than DP prior (i.e., smaller posterior
mean of squared L2 error), which is consistent to the insight obtained from
the toy example in Section 3.

The three Bayesian approaches have approximately the same perfor-
mance for between-cluster separation (B̃ statistic), while the DP prior has
a smaller within-cluster variation (W statistic). The frequentist estimator
(3.5) has the worst performance in almost every aspect. In summary, DP
prior does yield the best Bayes point estimation, but the adaptive t shrinkage
(3.3) has the best Bayesian contraction, and its posterior mean, as a point
estimator, has reasonable performance for estimation and clustering struc-
ture recovery. Furthermore, by comparing the results between t shrinkage
method (3.3) and (3.2), we conclude that the r-update step implemented in
algorithm (3.3) does improve the performance of t shrinkage in every aspect
for this clustering problem.

It is worth to remind the readers that although the adaptive t fusion
approach (3.3) updates the working order r over iterations, it still doesn’t
take into account full uncertainty of r, since the r-update step ignores all
other possible choices of data ordering. As pointed out by one of the referees,
this greatly reduces the posterior uncertainty, and leads to underestimated
posterior variance. This doesn’t affect the Bayesian estimation accuracy too
much, as seen from the simulations, but will affect the validity of Bayesian
high-order inferences such as Bayesian credible intervals. Our simulation
shows that under 90% nominal level, the credible intervals induced by the
DP prior achieves an average of 90.71% coverage, but the adaptive t fusion
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and hybrid t fusion approaches only achieve 55% and 23% coverage proba-
bility respectively. Therefore, further theoretical investigations on posterior
properties, such as Bernstein-von Mises phenomenon, are necessary.

4.3. Real Data Set Analysis In this section, we consider a real compar-
ative genomic hybridization (CGH) dataset (Tibshirani and Wang, 2007).
The dataset is available from the R package cghFLasso and it contains
n = 990 observations. We are interested in a fusion estimation for the
mean trend in order to detect the ”hot-spot” region, i.e., the corresponding
genes have extra DNA copies. We apply Bayesian t shrinkage fusion (2.4),

Figure 5: Real data application: 1) CGH data; 2) posterior mean of t shrink-
age fusion; 3) posterior mean of Bayesian Laplace fusion; 4) frequentist L1

fusion estimator; 5) comparison of the two approaches within a segment of
[80,120]
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Bayesian Laplace fusion, and frequentist L1 fusion (2.1) to this real data
set. For the Bayesian t fusion approach, the hyperparameter is chosen as
at = 2 and bt = 0.0007, following the suggestion of Eq. 2.6. For the Bayesian
Laplace prior, its λ =

√
2 log(990). All these point estimations are plotted

in Fig. 5. The Bayesian Laplace fusion method yields a rather rugged mean
trend estimation, and in contrast, the Bayesian t fusion and frequentist L1

fusion yield a much flatter and smoother mean trend estimation. To com-
pare Bayesian t fusion and frequentist L1 fusion approaches and demonstrate
the advantage of t shrinkage, we display the estimation results within the
segment [80,120]. It is obvious that all approaches induce almost the same
blocking structure. But the difference is that, for t shrinkage prior, the θ̂i
within each block is very close to the sample mean of the block; but for L1

fusion and Bayesian Laplace fusion, there is a large bias between θ̂i and the
sample mean of the block.

5 Final Remarks

In this work, we study the Bayesian inference for a vector parameter θ
which has an unknown blocking structure, using Bayesian shrinkage prior.
For the ease of representation, this work focuses on the application of t fusion
prior, but our theorems actually holds for any polynomially decaying prior
distribution. We demonstrate that a simple t fusion prior leads to satisfac-
tory posterior contraction, and is powerful to recover the blocking structure.
We recommend not to use Laplace fusion prior since it can only induce a
smoothly varying posterior estimation. Although this work mainly focuses
on the normal sequence models, but the presented t fusion modeling and
the posterior asymptotic results can be easily extended to more complicated
regression models such as y = Xβ + Zθ + ε for some blocky parameter θ.

We also extend the use of shrinkage prior to a more general clustering
problem. To the best of authors’ knowledge, this is the first attempt in lit-
erature to use Bayesian shrinkage to recover unknown clustering structure.
The basic idea is to find a pilot order r̂, and then fuse all pairs of neigh-
bors (that are determined by r̂) via shrinkage priors. An adaptive r-update
step is further incorporated to improve the clustering performance. Simu-
lations show that the proposed algorithms (3.2) and (3.3) have reasonable
performance. Comparing to the conventional Dirichlet process modeling, it
yields better posterior contraction, but at the cost of reduced empirical cov-
erage. Further theoretical investigations are necessary to understand their
asymptotic behaviors. In practice, this idea can be generalized to cluster-
ing problem of multi-dimensional data as well, i.e., yi = θi ∈ R

d. Since we
can not rank multivariate vectors, the possible alternative is to construct a
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minimum spanning tree (MST) (Li and Sang, 2018), and impose shrinkage
fusion prior on the pair of θi that is connected by a edge in the MST.
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betancourt, b., rodŕıguez, a. and boyd, n. (2017). Bayesian fused lasso regression for
dynamic binary networks. Journal of Computational and Graphical Statistics 26, 4,
840–850.

bhattacharya, a., pati, d., pillai, n.s. and dunson, d.b. (2015). Dirichlet-laplace priors
for optimal shrinkage. Journal of the American Statistical Association 110, 1479–
1490.

carvalho, c.m., polson, n.g. and scott, j.g. (2010). The horseshoe estimator for sparse
signals. Biometrika 97, 465–480.

castillo, i. and van der vaart, a. (2012). Needles and straw in a haystack: Posterior
concentration for possibly sparse sequences. The Annals of Statistics 40, 4, 2069–
2101.

castillo, i., schmidt-hieber, j. and van der vaart, a.w. (2015). Bayesian linear re-
gression with sparse priors. Annals of Statistics, 1986–2018.

chen, j. and chen, z. (2008). Extended bayesian information criteria for model selection
with large model spaces. Biometrika 95, 759–771.

chen, j. and chen, z. (2012). Extended bic for small-n-large-p sparse glm. Statistica Sinica
22, 555–574.

fan, j. and li, r. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association 96, 1348–1360.

ghosal, s., ghosh, j.k. and van der vaart, a.w. (2000). Convergence rates of posterior
distributions. Annals of Statistics 28, 2, 500–531.

ghosal, subhashis and van der vaart, a.w. (2007). Convergence rates of posterior
distributions for noniid observations. Annals of Statistics 35, 1, 192–223.

hahn, p.r. and carvalho, c.m. (2015). Decoupling shrinkage and selection in bayesian
linear models: a posterior summary perspective. Journal of the American Statistical
Association 110, 435–448.

heller, k.a. and ghahramani, z. (2005). Bayesian hierarchical clustering. In Proceedings
of the 22nd international conference on Machine learning, 297–304.

ishwaran, h. and rao, j.s. (2005). Spike and slab variable selection: frequentist and
bayesian strategies. Annals of Statistics, 730–773.



26 Q. Song and G. Cheng

jiang, w. (2007). Bayesian variable selection for high dimensional generalized linear mod-
els: Convergence rate of the fitted densities. Annals of Statistics 35, 1487–1511.

johnson, v.e. and rossel, d. (2012). Bayesian model selection in high-dimensional set-
tings. Journal of the American Statistical Association 107, 649–660.

johnstone, i.m. (2010). High dimensional bernstein-von mises: simple examples. Institute
of Mathematical Statistics Collections 6, 87.

ke, z.t., fan, j. and wu, y. (2015a). Homogeneity pursuit. Journal of the American
Statistical Association 110, 509, 175–194.

ke, z.t., fan, j. and wu, y. (2015b). Homogeneity pursuit. Journal of the American
Statistical Association 110, 175–194.

kleijn, b.j.k., van der vaart, a.w. et al. (2006a). Misspecification in infinite-dimensional
bayesian statistics. The Annals of Statistics 34, 2, 837–877.

kleijn, b.j.k. and van der vaart, a.w. (2006b). Misspecification in infinite-dimensional
bayesian statistics. Annals of Statistics 34, 837–877.

kyung, m., gill, j., ghosh, m. and casella, g. (2010). Penalized regression, standard
errors, and bayesian lassos. Bayesian Analysis 5, 2, 369–411.

laurent, b. and massart, p. (2000). Adaptive estimation of a quadratic functional by
model selection. Annals of Statistics, 1302–1338.

li, h. and pati, d. (2017). Variable selection using shrinkage priors. Computational Statis-
tics & Data Analysis 107, 107–119.

li, furong and sang, huiyan (2018). Spatial homogeneity pursuit of regression coefficients
for large datasets. Journal of the American Statistical Association, (just-accepted),
1–37.

liang, f., song, q. and yu, k. (2013). Bayesian subset modeling for high dimensional
generalized linear models. Journal of the American Statistical Association 108, 589–
606.

liu, j., yuan, l. and ye, j. (2010). An efficient algorithm for a class of fused lasso problems.
In Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 323–332.

ma, s. and huang, j. (2017). A concave pairwise fusion approach to subgroup analysis.
Journal of the American Statistical Association 112, 517, 410–423.

mozeika, a. and coolen, a. (2018). Mean-field theory of bayesian clustering.
arXiv :1709.01632.

narisetty, n.n. and he, x. (2014). Bayesian variable selection with shrinking and diffusing
priors. The Annals of Statistics 42, 2, 789–817.

neal, r.m. (2000). Markov chain sampling methods for dirichlet process mixture models.
Journal of computational and graphical statistics 9, 2, 249–265.

park, t. and casella, g. (2008). The bayesian lasso. Journal of the American Statistical
Association 103, 681–686.

rinaldo, a. et al. (2009). Properties and refinements of the fused lasso. The Annals of
Statistics 37, 5B, 2922–2952.

robbins, h. (1985). An empirical bayes approach to statistics. In Herbert Robbins Selected
Papers, 41–47.

royston, j.p. (1982). Algorithm as 177: Expected normal order statistics (exact and
approximate). Journal of the Royal Statistical Society. Series C (Applied statistics)
31, 2, 161–165.

scott, j.g. and berger, j.o. (2010). Bayes and empirical-bayes multiplicity adjustment
in the variable-selection problem. Annals of Statistics, 2587–2619.

http://arXiv.org/abs/1709.01632


Bayesian Fusion Estimation via t Shrinkage 27

shen, x. and huang, h.-c. (2012). Grouping pursuit through a regularization solution
surface. Journal of the American Statistical Association 105, 727–739.

shimamura, k., ueki, m., kawano, s. and konishi, s. (2018). Bayesian generalized fused
lasso modeling via neg distribution. Communications in Statistics-Theory and Meth-
ods, 1–23.

song, q. and liang, f. (2014). A split-and-merge bayesian variable selection approach for
ultra-high dimensional regression. Journal of the Royal Statistical Society, Series B,
in press.

song, q. and liang, f. (2017). Nearly optimal bayesian shrinkage for high dimensional
regression. arXiv :1712.08964.

tang, x., xu, x., ghosh, m. and ghosh, p. (2016). Bayesian variable selection and esti-
mation based on global-local shrinkage priors. arXiv :1605.07981.

tibshirani, r. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58, 267–288.

tibshirani, r., saunders, m., rosset, s., ji, z. and knight, k. (2005). Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67, 1, 91–108.

tibshirani, r. and wang, p. (2007). Spatial smoothing and hot spot detection for cgh
data using the fused lasso. Biostatistics 9, 1, 18–29.

van der geer, s. and bühlmann, p. (2011). Statistics for High-Dimensional Data Meth-
ods, Theory and Applications. Spring Series in Statistics, Springer.

van der pas, s.l., szabo, b. and van der vaart, a. (2017). Adaptive posterior contraction
rates for the horseshoe. arXiv :1702.03698.

wade, s. and ghahramani, z. (2018). Bayesian cluster analysis: Point estimation and
credible balls. Bayesian Analysis 13, 559–626.

xu, z., schmidt, d.f., makalic, e., qian, g. and hopper, j.l. (2017). Bayesian sparse
global-local shrinkage regression for grouped variables. arXiv:1709.04333.

yang, y., wainwright, m.j. and jordan, m.i. (2015). On the computational complexity
of high-dimensional bayesian variable selection. Annals of Statistics, in press.

zhang, c.-h. (2010). Nearly unbiased variable selection under minimax concave penalty.
Annals of Statistics 38, 894–942.

zou, h. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association 101, 1418–1429.

zubkov, a.m. and serov, a.a. (2013). A complete proof of universal inequalities for the
distribution function of the binomial law. Theory of Probability & Its Applications
57, 539–544.

Publisher’s Note. Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

A. Appendix

First, let us state some useful lemmas.

Lemma A.1 (Lemma 1 of Laurent and Massart 2000). Let χ2
d(κ) be a chi-

square distribution with degree of freedom d, and noncentral parameter κ,
then we have the following concentration inequality

Pr(χ2
d(κ) > d+ κ+ 2x+

√
(4d+ 8κ)x) ≤ exp(−x), and
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Pr(χ2
d(κ) < d+ κ−

√
(4d+ 8κ)x) ≤ exp(−x).

Lemma A.2 (Theorem 1 of Zubkov and Serov 2013). Let X be a Binomial
random variable X ∼ B(n, v). For any 1 < k < n− 1

Pr(X ≥ k + 1) ≤ 1− Φ(sign(k − nv){2nH(v, k/n)}1/2),

where Φ is the cumulative distribution function of standard Gaussian distri-
bution and H(v, k/n) = (k/n) log(k/nv) + (1− k/n) log[(1− k/n)/(1− v)].

The next lemma is a refined result of Lemma 6 in Barron (1998):

Lemma A.3. Let f∗ be the true probability density of data generation, fθ
be the likelihood function with parameter θ ∈ Θ, and E∗, Eθ denote the
corresponding expectation respectively. Let Bn and Cn be two subsets in
parameter space Θ, and φn be some test function satisfying φn(Dn) ∈ [0, 1]
for any data Dn. If π(Bn) ≤ bn, E

∗φ(Dn) ≤ b′n, supθ∈Cn
Eθ(1−φ(Dn)) ≤ cn,

and furthermore,

P ∗
{
m(Dn)

f∗(Dn)
≥ an

}

≥ 1− a′n,

where m(Dn) =
∫
Θ π(θ)fθ(Dn)dθ is the margin probability of Dn. Then,

E∗ (π(Cn ∪Bn)|Dn)) ≤
bn + cn

an
+ a′n + b′n.

Proof. Define Ωn to be the event of (m(Dn))/(f
∗(Dn)) ≥ an, and

m(Dn, Cn ∪Bn) =
∫
Cn∪Bn

π(θ)fθ(Dn)dθ. Then

E∗π(Cn ∪Bn)|Dn) = E∗π(Cn ∪Bn)|Dn)(1− φ(Dn))1Ωn

+ E∗π(Cn ∪Bn)|Dn)(1− φ(Dn))(1− 1Ωn) + E∗π(Cn ∪Bn)|Dn)φ(Dn)

≤ E∗π(Cn ∪Bn)|Dn)(1− φ(Dn))1Ωn + E∗(1− 1Ωn) + E∗φ(Dn)

≤ E∗π(Cn ∪Bn)|Dn)(1− φ(Dn))1Ωn + b′n + a′n
≤ E∗{m(Dn, Cn ∪Bn)/anf

∗(Dn)}(1− φ(Dn)) + b′n + a′n.

By Fubini theorem,

E∗(1− φ(Dn))m(Dn, Cn ∪Bn)/f
∗(Dn) =

∫
Cn∪Bn

∫
X
[1− φ(Dn)]fθ(Dn)dDnπ(θ)dθ

≤
∫
Cn

Eθ(1− φ(Dn))π(θ)dθ +

∫
Bn

∫
X

fθ(Dn)dDnπ(θ)dθ ≤ bn + cn.



Bayesian Fusion Estimation via t Shrinkage 29

Combining the above inequalities leads to the conclusion.

Proof of Theorem 2.1 and 2.2.

Let G = {g1, g2, . . . , gd} be a generic subset of {2, . . . , n}, and it also
represents potential a (d + 1)-group structure of θ as {{1, . . . , g1}, {g1 +
1, . . . , g2}, . . . , {gd + 1, . . . , n}}. Given G and its corresponding blocking
structure, θ̂G(y) denotes the estimation of θ based on block mean, i.e. θ̂G,j(y)

=
∑gj+1

i=gj+1 yi/(gj+1−gj) for all gj+1 ≤ j ≤ gj+1, and σ̂2
G(y) = ‖y−θ̂G‖2/(n−

|G| − 1).
To prove the posterior contraction, we will apply Lemma A.3. We define

the following testing function

φ(y) = 1{ ‖θ̂G − θ∗‖ ≥ √
nσ∗εn and |σ̂2

G − σ∗2| > σ∗2εn
for all G ⊃ G∗, |G| ≤ (1 + δ)|G∗|} (A.1)

for some δ > 0, and define Cn and Bn as:

Cn = {θ : ‖θ − θ∗‖ ≤ M
√
nσ∗εn, (1− εn)/(1 + εn) < σ2/σ∗2 < (1 + εn)/(1− εn)}c\Bn,

Bn = {θ : Among all {ϑ′
is}i/∈G∗ , there are at least δ|G∗| of them are greater than σεn/n}.

Note that when G ⊃ G∗, ‖θ̂G(y) − θ∗‖2 ∼ σ∗2χ2
|G|+1 and ‖y − θ̂G‖2

∼ σ∗2χ2
n−|G|−1, thus by Lemma A.1, we have that

P (‖θ̂G(y)− θ∗‖ ≥
√
nσ∗εn and |σ̂2

G − σ∗2| > σ∗2εn) ≤ exp{−c1nε
2
n},

for some constant c1, since |G| = O(|G∗|) ≺ nε2n and εn ≺ 1. Therefore,

E(θ∗,σ∗2)φ(y) ≤
(

n− 1

(1 + δ)|G∗|

)

exp{−c1nε
2
n} = exp{−c′1nε

2
n}, (A.2)

as long as nε2/[|G∗| log n] is sufficiently large.
For any (θ, σ2) ∈ Cn satisfying ‖θ − θ∗‖ ≤ M

√
nσ∗εn and σ2/σ∗2 ≥

(1 − εn)/(1 + εn), we define Ĝ = {i : θi − θi−1 ≥ σεn/n
2} ∪ G∗ (hence

|G| ≤ (1 + δ)|G∗|), thus

P(θ,σ2)(‖θ̂ ̂G
(y)− θ∗‖ ≤

√
nσ∗εn) = P(θ,σ2)(‖θ̂ ̂G

(y)− θ̂
̂G
(θ) + θ̂

̂G
(θ)− θ∗‖ ≤

√
nσ∗εn)

≤ P(θ,σ2)(‖θ̂ ̂G
(y)− θ̂

̂G
(θ)‖ ≥ ‖θ̂

̂G
(θ)− θ∗‖ −

√
nσ∗εn)

≤ P(θ,σ2)(‖θ̂ ̂G
(y)− θ̂

̂G
(θ)‖ ≥ M

√
nσ∗εn −

√
nσεn −

√
nσ∗εn)

≤ P

(
χ2
|G+1| ≥

[√
1− εn

1 + εn
(M − 1)− 1

]
nε2n

)
≤ exp{−c2nε

2
n}
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for some c2 given a large M , where the second inequality is due to the fact
that ‖θ̂

̂G
(θ)− θ‖ ≤ √

nσεn when θ ∈ Bn.

For any (θ, σ2) ∈ Cn satisfying σ2/σ∗2 < (1 − εn)/(1 + εn) or σ2/σ∗2 >
(1 + εn)/(1− εn),

P(θ,σ2)(|σ̂2
G − σ∗2| < σ∗2εn) = P(θ,σ2)(|‖y − θ̂G‖2/σ∗2(n− |G| − 1)− 1| < εn)

≤ P(θ,σ2)(1− εn < ‖y − θ̂G‖2/σ∗2(n− |G| − 1) < 1 + εn)

≤ P(θ,σ2)

(∣
∣
∣
∣
‖y − θ̂G(y)‖2

σ2
− (n− |G| − 1) |> (n− |G| − 1)εn

)

= P(θ,σ2)

(
|χ2

n−|G|−1(λ)− (n− |G| − 1)| > (n− |G| − 1)εn

)
≤ exp{−c′2nε

2
n}

for some c′2, where the noncentral parameter λ < nε2n ≺ (n− |G| − 1)εn.
Combining the results from the previous two paragraph, it is easy to

obtain that

sup
(θ,σ2)∈Cn

E(θ,σ2)[1− φ(y)] ≤ max{exp(−c2nε
2
n), exp(−c′2nε

2
n)}. (A.3)

Now we consider the marginal posterior density of data y. With proba-
bility P (‖ε‖ ≤ 2

√
nσ∗) (which converges to 1),

m(y)

f∗(y)
=

∫
σ2

∫
θ
σ∗n exp{−‖θ∗ − θ + ε‖2/σ2}dθdσ2

σn exp{−‖ε‖2/σ∗2}

≥
∫
σ2

∫
θ

exp

{
−‖θ∗ − θ‖2

σ2
− 2

(θ∗ − θ)T ε

σ2
+

‖ε‖2
σ∗2 − ‖ε‖2

σ2
− n log(σ/σ∗)

}

π(θ, σ2)dθdσ2

≥ π(max{|θ1 − θ∗1 |, |ϑi − ϑ∗
i |}/σ ≤ |G∗| log n/n2, 0 ≤ σ2 − σ∗2

≤ σ∗2|G∗| log n/n) exp{−c′3|G∗| log n}

for some constant c′3. Besides,

π(max{|θ1 − θ∗1 |, |ϑi − ϑ∗
i |}/σ ≤ |G∗| log n/n2, 0 ≤ σ2 − σ∗2 ≤ σ∗2|G∗| logn/n)

≥ πσ(σ
∗2) ∗O(σ∗2|G∗| logn/n) ∗ πθ ∗O(|G∗| logn/n2)

∗π|G∗|
ϑ [|G∗| logn/n2)]|G

∗| ∗ [πϑ({−|G∗| logn/n2, |G∗| log n/n2})]n

= exp{−c′′3 |G∗| logn}. (by the conditions imposed on the prior specifications)

for some constant c′′3. Thus

m(y)/f∗(y) ≥ exp{−(c′3 + c′′3 )|G∗| log n} = exp{−c3nε
2
n}, with probability tending to 1

(A.4)
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for some c3, where c3 can be sufficiently small when nε2n/[|G∗| log n] is large
enough.

At last, we study the prior probability of set Bn. Due to the prior
independence of ϑ′

is, π(Bn) = π[Bin(n − 1 − |G∗|, p) > (δ)|G∗|], where p ≤
(1/n)1+u. By Lemma A.2,

π(Bn) ≤ exp{−c4δ|G∗| logn} (A.5)

for some c4. Combine results (A.2), (A.3), (A.4) and (A.5), and we apply
Lemma A.3 to get the posterior consistency result that

π(Bn ∪ Cn|y) →p 0,

given a sufficient large constants δ and nεn/|G∗| log n.
Proof of Theorem 3.1.

Consider y = θ+d, where θ∗i ≡ 0 for all i and error d is order statistics of
standard normal variables, i.e. the density of d is f(d) = n!

∏
φ(di)1(d1 ≤

d2, . . . , dn−1 ≤ dn) and φ denotes the standard normal density. The prior
of θ follows π(θ) = π1(θ1)

∏n
i=2 πt,s(θi − θi−1), where πλ1 is the density of

N(0, λ1), and πt,s is the density of t distribution with tiny scale parameter
satisfying − log s � log n, i.e. conditions in Corollary 2.1 holds, and we
consider the misspecified posterior of form π(θ|Dn) = exp{−(y−θ)2/2}π(θ).

Define μ ∈ R
n as μi = 0 for all 1 ≤ i ≤ k = 3n/4, and μi = Z0.25/2 for

i > k where Z0.25 is the right 25% quantile of standard normal distribution,
thus ‖μ− θ∗‖2 � n.

Let Δθ be any vector such that ‖Δθ‖2 ≤ M logn. Then

− log

(
π(μ+Δθ)

π(θ∗ +Δθ)

)
= − log

(
πt,s(Z0.25/2 + Δθk)

πt,s(Δθk)

)
= O(− log s) = O(log n).

And

log

(
exp{−(y − μ−Δθ)2/2}
exp{−(y − θ∗ −Δθ)2/2}

)
= [(y − θ∗ −Δθ)2 − (y − μ−Δθ)2]/2

=
1

2

n∑
i=k+1

[(yi −Δθi)
2 − (yi − Z0.25/2−Δθi)

2] =
1

2

n∑
i=k+1

[(yi −Δθi)Z0.25 −
Z2

0.25

4
]

≥ 1

2

[
(‖yk+1:n‖1 −

√
nM log n/4)Z0.25 −

nZ2
0.25

16

]
≥ cn,
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for some positive constant c given sufficiently large n, where the inequal-
ities above hold since yn ≥ yn−1 · · · ≥ yk+1, and yk+1 ≈ Z0.25 with high
probability, due to large sample empirical quantile theory.

Combining the above two results, we have that the posterior density
satisfies π(μ + Δθ|Dn) � π(θ∗ + Δθ|Dn) for any ‖Δθ‖2 ≤ M log n with
high probability. Therefore, more posterior mass is distributed within the√
M log n-radius ball centered at μ than at the true parameter θ∗.

Proof of Theorem 3.2.

The proof of this theorem is quite similar to the proof of Theorem 2.1
and 2.2. We define the same testing function as in the proof of Theorem 2.1
and 2.2, and define the following two sets:

Cn = {θ : ‖θ − θ∗‖ ≤ M
√
nσ∗εn, (1− εn)/(1 + εn) < σ2/σ∗2 < (1 + εn)/(1− εn)}c\Bn,

Bn = {θ : Among all {θi − θi−1}ni=2, there are at leastδ of them are greater than σεn/n}.

Using the same arguments, one can still establish exponential separation
results (A.2) and (A.3).

To establish (A.4), we notice that

m(y)

f∗(y)
=

∫

σ2

∫

θ σ
∗n exp{−‖θ∗ − θ + ε‖2/σ2}dθdσ2

σn exp{−‖ε‖2/σ∗2}

≥
∫

σ2

∫

θ
exp

{

−‖θ∗ − θ‖2
σ2

− 2
(θ∗ − θ)T ε

σ2
+

‖ε‖2
σ∗2 − ‖ε‖2

σ2
− n log(σ/σ∗)

}

π(θ, σ2)dθdσ2

≥ π(max{|θi − θ∗i |}/σ ≤ logn/n, 0 ≤ σ2 − σ∗2 ≤ σ∗2 logn/n) exp{−c′3 logn}

for some constant c′3 and

π(max{|θi − θ∗i |}/σ ≤ log n/n, 0 ≤ σ2 − σ∗2 ≤ σ∗2 log n/n)

≥
∑

r

π(max{|θr(1) − θ∗r(1)|, |θr(i) − θr(i−1)|}/σ ≤ |G∗| logn/n2, 0

≤ σ2 − σ∗2 ≤ σ∗2 log n/n|r)π(r).

This ensures (A.4).
As for the prior probability of Bn, if the scale parameter for the t distribu-

tion is sufficiently small, i.e. s = n−w for some large w and
∫
±εn/n2 πt,s(x)dx ≥
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1−1/n1+u for some sufficiently large u where πt,s denotes the t density func-
tion with scale parameter s, then for any ranking r,

π(Bn|r) ≥ 1−π(max{θr(i)−θr(i−1)} ≤ σεn/n
2|r) ≥ 1−(1−1/n1+u)n ≈ n−u.

This hence implies that − log(π(Bn)) ≥ u logn.
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