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Tensor Graphical Model: Non-convex
Optimization and Statistical Inference

Xiang Lyu, Will Wei Sun, Zhaoran Wang, Han Liu, Jian Yang, Guang Cheng

Abstract—We consider the estimation and inference of graphical models that characterize the dependency structure of
high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we
assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. A critical challenge in the
estimation and inference of this model is the fact that its penalized maximum likelihood estimation involves minimizing a non-convex
objective function. To address it, this paper makes two contributions: (i) In spite of the non-convexity of this estimation problem, we
prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains
an estimator with an optimal statistical rate of convergence. (ii) We propose a de-biased statistical inference procedure for testing
hypotheses on the true support of the sparse precision matrices, and employ it for testing a growing number of hypothesis with false
discovery rate (FDR) control. The asymptotic normality of our test statistic and the consistency of FDR control procedure are
established. Our theoretical results are backed up by thorough numerical studies and our real applications on neuroimaging studies of
Autism spectrum disorder and users’ advertising click analysis bring new scientific findings and business insights. The proposed

methods are encoded into a publicly available R package Tlasso.

Index Terms—asymptotic normality, hypothesis testing, optimality, rate of convergence.

1 INTRODUCTION

IGH-DIMENSIONAL tensor-valued data are observed
H in many fields such as personalized recommendation
systems and imaging research [1], [2], [3], [4], [5], [6], [7], [8],
[9]. Traditional recommendation systems are mainly based
on the user-item matrix, whose entry denotes each user’s
preference for a particular item. To incorporate additional
information into the analysis, such as the temporal behav-
ior of users, we need to consider tensor data, e.g., user-
item-time tensor. For another example, functional magnetic
resonance imaging (fMRI) data can be viewed as a three-
way tensor since it contains brain measurements taken on
different locations over time under various experimental
conditions. Also, in the example of microarray study for
aging [10], thousands of gene expression measurements are
recorded on 16 tissue types on 40 mice with varying ages,
which forms a four-way gene-tissue-mouse-age tensor.

In this paper, we study the estimation and inference of
conditional independence structure within tensor data. For
example, in the microarray study for aging we are interested
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in the dependency structure across different genes, tissues,
ages and even mice. Assuming data are drawn from a
tensor normal distribution, a straightforward way to esti-
mate this structure is to vectorize the tensor and estimate
the underlying Gaussian graphical model associated with
the vector. Such an approach ignores the tensor structure
and requires estimating a rather high dimensional precision
matrix with an insufficient sample size. For instance, in
the aforementioned fMRI application the sample size is
one if we aim to estimate the dependency structure across
different locations, time and experimental conditions. To
address such a problem, a popular approach is to assume
the covariance matrix of the tensor normal distribution is
separable in the sense that it is the Kronecker product of
small covariance matrices, each of which corresponds to
one way of the tensor. Under this assumption, our goal is
to estimate the precision matrix corresponding to each way
of the tensor and recover its support. See §1.1 for a detailed
survey of previous work.

The separable normal assumption imposes non-
convexity on the penalized negative log-likelihood function.
However, most existing literatures do not fix this gap be-
tween computational and statistical theory. As we will show
in §1.1, previous work mainly focus on establishing the
existence of a local optimum, rather than offering efficient
algorithmic procedures that provably achieve the desired lo-
cal optima. In contrast, we analyze an alternating minimiza-
tion algorithm, named as Tlasso, that attains a consistent
estimator after only one iteration. This algorithm iteratively
minimizes the non-convex objective function with respect to
each individual precision matrix while fixing the others.

The established theoretical guarantees of the Tlasso algo-
rithm are as follows. Suppose that we have n observations
from a K order tensor normal distribution. We denote by
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my, si, di, (k = 1,. .., K) the dimension, sparsity, and max
number of non-zero entries in each row of the k-th way
precision matrix. Besides, we define m = Hle my. The
k-th precision matrix estimator from the Tlasso algorithm
achieves a \/my(my + si) logmy/(nm) convergence rate
in Frobenius norm, which is minimax-optimal in the sense
it is the optimal rate one can obtain even when the rest
K — 1 true precision matrices are known [11]. Moreover,
under an extra irrepresentability condition, we establish a

Vmylogmy/(nm) convergence rate in max norm, which
is also optimal, and a dg+/my logmy/(nm) convergence

rate in spectral norm. These estimation consistency results,
together with a sufficiently large signal strength condition,
further imply the model selection consistency of edge recov-
ery. Notably, these results demonstrate that, when K > 3,
the Tlasso algorithm achieves above estimation consistency
even if we only have access to one tensor sample, which
is often the case in practice. This phenomenon was never
observed in the previous work.

The dependency structure in tensor makes support re-
covery very challenging. To the best of our knowledge,
no previous work has been established on tensor precision
matrix inference. In contrast, we propose a multiple testing
method. This method tests all the off-diagonal entries of
precision matrix, built upon the estimator from the Tlasso
algorithm. To further balance the performance of multiple
tests, we develop a false discovery rate (FDR) control pro-
cedure. This procedure selects a sufficiently small critical
value across all tests. In theory, the test statistic is shown to
be asymptotic normal after standardization, and hence pro-
vides a valid way to construct confidence interval for the en-
tries of interest. Meanwhile, FDR asymptotically converges
to a pre-specific level. An interesting theoretical finding is
that our testing method and FDR control are still valid even
for any fixed sample size as long as dimensionality diverges.
This phenomenon is mainly due to the utilization of tensor
structure information corresponding to each mode.

In the end, we conduct extensive experiments to evaluate
the numerical performance of the proposed estimation and
testing procedures. Under the guidance of theory, we also
propose a way to significantly accelerate the alternating
minimization algorithm without sacrificing estimation accu-
racy. In the multiple testing method, we empirically justify
the proposed FDR control procedure by comparing the re-
sults with the oracle inference results which assume the true
precision matrices are known. Additionally, analyses of two
real data, i.e., the Autism spectrum disorder neuroimaging
data and advertisement click data from a major Internet
company, are conducted, in which several interesting find-
ings are revealed. For example, differential brain functional
connectivities appear on postcentral gyrus, thalamus, and
temporal lobe between autism patients and normal controls.
Also, sports news and weather news are strongly dependent
only on PC, while magazines are significantly interchained
only on mobile.

1.1 Related Work and Contribution

A special case of our sparse tensor graphical model (when
K = 2) is the sparse matrix graphical model, which is
studied by [12], [13], [14], [15]. In particular, [12] and [13]

only establish the existence of a local optima with de-
sired statistical guarantees. Meanwhile, [14] considers an
algorithm that is similar to ours. However, the statistical
rates of convergence obtained by [13], [14] are much slower
than ours when K = 2. See Remark 3.6 for a detailed
comparison. For K = 2, our statistical rate of convergence in
Frobenius norm recovers the result of [12]. In other words,
our theory confirms that the desired local optimum studied
by [12] not only exists, but is also attainable by an efficient
algorithm. In addition, for matrix graphical models, [15]
establishes the statistical rates of convergence in spectral
and Frobenius norms for the estimator attained by a similar
algorithm. Their results achieve estimation consistency in
spectral norm with only one matrix observation. However,
their rate is slower than ours with K = 2. See Remark
3.12 for detailed discussions. Furthermore, we allow K to
increase and establish estimation consistency even in Frobe-
nius norm for n = 1. Most importantly, all these results
focus on matrix graphical model and can not handle the
aforementioned motivating applications such as the gene-
tissue-mouse-age tensor dataset.

In the context of sparse tensor graphical model with
a general K, [16] show the existence of a local optimum
with desired rates, but do not prove whether there exists an
efficient algorithm that provably attains such a local opti-
mum. In contrast, we prove that our alternating minimiza-
tion algorithm achieves an estimator with desired statistical
rates. To achieve it, we apply a novel theoretical framework
to consider the population and sample optimizers sepa-
rately, and then establish the one-step convergence for the
population optimizer (Theorem 3.1) and the optimal rate
of convergence for the sample optimizer (Theorem 3.4). A
new concentration result (Lemma S.1) is developed for this
purpose, which is also of independent interest. Moreover,
we establish additional theoretical guarantees including the
optimal rate of convergence in max norm, the estimation
consistency in spectral norm, and the graph recovery con-
sistency of the proposed sparse precision matrix estimator.

In addition to the literature on graphical models, our
work is also related to another line of work about nonconvex
optimization problems. See, e.g., [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29] among others. These
existing results mostly focus on problems such as dictionary
learning, phase retrieval and matrix decomposition. Hence,
our statistical model and analysis are completely different
from theirs.

Our work also connects with a recent line of work on
Bayesian tensor factorization [30], [31], [32], [33], [34], [35],
[36]. In particular, they model covariance structure along
each mode of a single tensor as an intermediate step in
their tensor factorization. These covariance structures are
imposed on core tensor or factor matrices to serve as the
priors. Our work is fundamentally different from these pro-
cedures as they focus on the accuracy of tensor factorization
while we focus on the graphical model structure within
tensor-variate data. In addition, their tensor factorization
is applied on a single tensor while our procedure learns
dependency structure of multiple high-dimensional tensor-
valued data.

In the end, the tensor inference part of our work is
related to the recent high dimensional inference work, [37],
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[38] and [39]. The other two related work are [40] and [41].
To consider the statistical inference in the vector-variate
high-dimensional Gaussian graphical model, [42] proposes
the multiple testing procedure with FDR control, [43] ex-
tend the de-biased estimator to precision matrix estimation,
and [44] consider a scaled-Lasso-based inference procedure.
To extend the inference methods from the vector-variate
Gaussian graphical model to the matrix-variate Gaussian
graphical model, [45], [46] propose multiple testing methods
with FDR control and establish their asymptotic properties.
However, these existing inference work can not be directly
applied to our tensor graphical model.

Notation: In this paper, scalar, vector and matrix are de-
noted by lowercase letter, boldface lowercase letter and
boldface capital letter, respectively. For a matrix A =
(A;;) € R¥™4 we denote ||Allw,||All2,||Allr as its
mayx, spectral, and Frobenius norm, respectively. We define
[ All1off == 3,4, |Ai;| as its off-diagonal ¢; norm and
lAll,, = max; > ;|A; ;| as the maximum absolute row
sum. We denote vec(A) as the vectorization of A which
stacks the columns of the matrix A. Let tr(A) be the trace
of A. For an index set S = {(4,4),4,j € {1,...,d}}, we
define [A]s as the matrix whose entry indexed by (i,5) € S
is equal to A;;, and zero otherwise. For two matrices
A € R™*" Ay € RPX9, we denote A1 ® Ay € R™P*X"4 g
the Kronecker product of A; and Aj. We denote 1,4 as the
identity matrix with dimension d x d. Throughout this paper,
we use C,C1,Cy, ... to denote generic absolute constants,
whose values may vary from line to line.

Organization: §2 introduces the main result of sparse tensor
graphical model and its efficient implementation, followed
by the theoretical study of the proposed estimator in §3.
84 contains all the statistical inference results including a
novel test statistic for constructing confidence interval and
a multiple testing procedure with FDR control. §5 demon-
strates the superior performance of the proposed methods
and performs extensive comparisons with existing methods
in both parameter estimation and statistical inference. §6
illustrates analyses of two real data sets, i.e., the Autism
spectrum disorder neuroimaging data and advertisement
click data from a major Internet company, via the proposed
testing method. §7 summarizes this article and points out
a few interesting future work. Detailed technical proofs are
available in supplementary material.

2 TENSOR GRAPHICAL MODEL

This section introduces our sparse tensor graphical model
and an alternating minimization algorithm for solving the
associated nonconvex optimization problem.

2.1 Preliminary

We first introduce the preliminary background on ten-
sors and adopt the notations used by [47]. Throughout
this paper, higher order tensors are denoted by bold-
face Euler script letters, e.g. 7. We consider a K-way
tensor 7 € R™MXm2XxmKk When K = 1 it reduces
to a vector and when K = 2 it reduces to a matrix.
The (i1,...,ix)-th element of the tensor 7 is denoted as
Tiy....ix- We denote the vectorization of 7 as vec(T) =

T
(7-1,1,...,17 te 77—m1,1,...,17 ce 77~1,m2,..,,mK7Tml,MQ,...,mK) 6
R™ with m = ][], my. In addition, we define the Frobenius
norm of a tensor 7 as

ITle = [ D T2 e
U1, 0l K

In tensors, a fiber refers to a higher order analogue of
matrix row and column. A fiber is obtained by fixing all
but one of the indices of the tensor, e.g., for a tensor 7T,
the mode-k fiber is given by T, .. i 1.:ini,....inc- Matri-
cization, also known as unfolding, is a process to transform
a tensor into a matrix. We denote 7y as the mode-k
matricization of a tensor 7. It arranges the mode-k fibers
to be the columns of the resulting matrix. Another useful
operation in tensor is the k-mode product. The k-mode
(matrix) product of a tensor 7 € R™1X™2X XK with a
matrix A € R7*™* is denoted as T x; A and is of the size
my X -+ Xmp_1 X J Xmpy1 X - Xmg. Its entry is defined
as

myg
(T Xk Ay osins diinsn i = D, Tirveoviie Ay

ir=1

Furthermore, for a list of matrices {A1, ..., Ax} with Ay €

R™eXMk e define

Tx{Al,...,AK}::TxlAl XQ---XKAK.

2.2 Statistical Model

A tensor T € R™MiXm2X-Xmr f{sllows the tensor nor-
mal distribution with zero mean and covariance matrices
¥,..., 2k, denoted as T ~ TN(0;X4,...,Xk), if its
probability density function is p(7%1,...,Xk) =

K —m _1
<2w>‘T’”{H |zkm}exp (1T x =7 |2/2), @1)
k=1

where m = [, my and £71/2 = {2712 52y

When K = 1, this tensor normal distribution reduces to
the vector normal distribution with zero mean and covari-
ance X;. According to [47], it can be shown that 7 ~
TN(0; %4, ..., X¥k) if and only if vec(7) ~ N(vec(0); Xx ®
---®3X1), where vec(0) € R™ and ® is the matrix Kronecker
product.

We consider the parameter estimation for the tensor
normal model. Assume that we observe independently
and identically distributed tensor samples 71, ..., 7, from
TN(0; X3, ...,X% ). We aim to estimate the true covari-
ance matrices (X7,...,X%) and their corresponding true
precision matrices (2}, ..., Q%) where Qf = Z;7! (k =
1,..., K). To address the identifiability issue in the parame-
terization of the tensor normal distribution, we assume that
I19Q%||lF =1fork=1,..., K. This renormalization does not
change the graph structure of the original precision matrix.

A standard approach to estimate 2}, k£ = 1,..., K, is
to use the maximum likelihood method via (2.1). Up to a
constant, the negative log-likelihood function of the tensor
normal distribution is

K

1 1 m
g(ﬂl, .. ,QK) = itr[S(ﬂK(g . ®Ql)]—f Z mikbg |Qk|,

2 k=1
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where S := 137" vec(T;)vec(T;)". To encourage the
sparsity of each precision matrix in the high-dimensional
scenario, we propose a penalized log-likelihood estimator

which minimizes ¢, (€, ...,Qk) =

1 al| at
—t[S(Qx @ @) — > —log || + > Pr, (),
m =1 Tk k=1

(2.2)
where Py, (-) is a penalty function indexed by the tuning
parameter \g. In this paper, we focus on the lasso penalty
[48] Py, (%) = A Z#j [[€%]:,]- The estimation procedure
applies similarly to a broad family of penalty functions, for
example, the SCAD penalty [49], the adaptive lasso penalty
[50], the MCP penalty [51], and the truncated ¢; penalty [52].

The penalized model from (2.2) is called the sparse
tensor graphical model. It reduces to the m;-dimensional
sparse gaussian graphical model [53], [54], [55] when K =1,
and the sparse matrix graphical model [12], [13], [14], [15]
when K = 2. Our framework generalizes them to fulfill the
demand of capturing the graphical structure of the higher-
order tensor-valued data.

2.3 Estimation

This section introduces the estimation procedure for the
proposed sparse tensor graphical model. A computationally
efficient algorithm is provided to alternatively estimate all
precision matrices.

Recall thatin (2.2), ¢, (1, . . ., Qk) is jointly non-convex
with respect to €21,...,Qx. Nevertheless, it turns out to
be a bi-convex problem since g, (1, ..., Q) is convex in
2, when the rest K — 1 precision matrices are fixed. The
nice bi-convex property plays a critical role in our algorithm
construction and its theoretical analysis in §3.

Based on the bi-convex property, we propose to solve
this non-convex problem by alternatively updating one
precision matrix with other matrices being fixed. Note that,
for any £ = 1,..., K, minimizing (2.2) with respect to 2,
while fixing the rest K’ — 1 precision matrices is equivalent
to minimizing

1
L(Qk) = 7’[1‘(8/6916) - —log|ﬂk| +)‘k||ﬂk||170ff' (2.3)
m my
Here, S, := 25" VEVET where VF = [T x
O ST 0 SV N o A .,Q}(/Q}](k) with x the ten-

sor product operation and [](;) the mode-k matricization
operation defined in §2.1. The result in (2.3) can be shown
by noting that V¥ = [T] 1, (Q%Q@J' : ~®Q,1c/+21®ﬂ]1€/,21®' - ®
Qi/ 2)T according to the properties of mode-k matricization
shown by [47]. Hereafter, we drop the superscript k of
Vf if there is no confusion. Note that minimizing (2.3)
corresponds to estimating vector-valued Gaussian graphical
model and can be solved efficiently via the glasso algorithm
[55].

The details of our Tensor lasso (Tlasso) algorithm are
shown in Algorithm 1. It starts with a random initialization
and then alternatively updates each precision matrix until it
converges. In §3, we will illustrate that the statistical proper-
ties of the obtained estimator are insensitive to the choice of
the initialization (see the discussion following Theorem 3.5).
In our numerical experiments, for each k = 1,..., K, we

Algorithm 1 Solve sparse tensor graphical model via Tensor
lasso (Tlasso)

1: Input: Tensor samples 7;...,7,, tuning parameters
A1, ..., Ak, max number of iterations 7T'.
2: Initialize 910)7 ey Qg) randomly as symmetric and
positive definite matrices and set ¢t = 0.
Repeat:
t=1t+4 1.
Fork=1,..., K:
Given Qgt), o
for Q,(f) via glasso.
Normalize ﬂ,(:) such that ||Q,(f)||p =1
8: End For
9: Until t =T
10: Output: @, = Q") (k=1,...,K).

t t—1
Ko R o1

il s ,Q%_l), solve (2.3)

N

set the initialization of k-th precision matrix as 1,,,, which
leads to superior numerical performance.

3 THEORY OF STATISTICAL OPTIMIZATION

We first prove the estimation errors in terms of Frobenius
norm, max norm, and spectral norm, and then provide the
model selection consistency of the estimator output from
the Tlasso algorithm. For compactness, we defer the proofs
of theorems to supplementary material.

3.1 Estimation Error in Frobenius Norm

Based on the penalized log-likelihood in (2.2), we define the
population log-likelihood function as ¢(€24,...,Qk) :=

K
%E{tr[vec(T)vec(T)T(QK@)- -~ =) mik log ||

= 3.1)

By minimizing ¢(i,...,Q2k) with respect to €,

k = 1,...,K, we obtain the population mini-

mization function with the parameter Qg =
{Ql, ey Qk—h Qk+1, ey QK}, i.e.,

My (Qr)—k) = ar%min q(Qq,...,Qxk). (3.2)
k

Our first theorem shows an interesting result that the

above population minimization function recovers the true
parameter in only one iteration.

Theorem 3.1. For any k = 1,..., K, if Q; (j # k) satisfies
tr(X3€2;) # 0, then the population minimization function in

P * -1 *
(3.2) satisfies My (Qx)—r) = m [my [T, tr(Z5925)] Q.

Theorem 3.1 indicates that the population minimiza-
tion function recovers the true precision matrix up to a
constant in only one iteration. If ©; = QF,j # k, then
My (Qr)—x) = Q. Otherwise, after a normalization such
that || My (Qx)—«)|lF = 1, the normalized population min-
imization function still fully recovers Q7. This observation
suggests that setting 7' = 1 in Algorithm 1 is sufficient.
Such a theoretical suggestion will be further supported by
our numeric results.

In practice, when the population log-likelihood function
(3.1) is unknown, we can approximate it by its sample
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version ¢, (€21, ...,k) defined in (2.2), which gives rise
to the statistical estimation error. Similar as (3.2), we define
the sample-based minimization function with parameter
Q[K]—k = {Qla teey Qk—h Qk’-‘rla SRR QK} as

My (Qg)—p) = ar%minqn(ﬂl,...,ﬂl(). (3.3)
k
In order to derive the estimation error, it remains to
quantify the statistical error induced from finite samples.
The following two regularity conditions are assumed for this
purpose.

Condition 3.2 (Bounded Eigenvalues). For any k =
1,..., K, there is a constant C; > 0 such that,

0< Cl § /\min(EZ) S )\max(EZ) S 1/01 < 0,

where Apin(2}) and Amax(X}) refer to the minimal and
maximal eigenvalue of X}, respectively.

Condition 3.2 has been commonly assumed in the pre-
cision matrix estimation literature in order to facilitate the
proof of estimation consistency [56], [57], [58].

Condition 3.3 (Tuning). For any £ = 1,..., K and some
constant Cy > 0, the tuning parameter )\, satisfies

1/Co+/logmy./(nmmy) < A < Can/logmy/(nmmy,).

Before characterizing the statistical error, we define a
sparsity parameter for Qf, k= 1,..., K. Let S := {(¢, ) :
[Q5]i ; # 0}. Denote the sparsity parameter sy, := S| —my,
which is the number of nonzero entries in the off-diagonal
component of £2}. For each k =1, ..., K, we define B(£2})
as the set containing €27 and its neighborhood for some
sufficiently large radius « > 0, i.e., B(2}) :=

{QeR™ ™. Q=00 0;|Q—Q|r <a}. (B4

Theorem 3.4. Suppose that Conditions 3.2 and 3.3 hold. For
any k = 1,..., K, the statistical error of the sample-based
minimization function defined in (3.3) satisfies that, for any
fixed 2; € B(Q2}) (j # k),

1M1 (s ) = MR )|

— 0, \/mk(mk +sk)logmk) . (35)

nm

where M}, (2(x]—x) and ]\/Zk(Q[K]_k) are defined in (3.2)
and (3.3), and m = H,I::l M.

Theorem 3.4 establishes the estimation error associated
with M}, () for arbitrary Q; € B(£2}) with j # k.
In comparison, previous work on the existence of a local
solution with desired statistical property only establishes
theorems similar to Theorem 3.4 for ©2; = QF with j # k.
The extension to an arbitrary £2; € B(£2}) involves non-
trivial technical barriers. Specifically, we first establish the
rate of convergence of the difference between a sample-
based quadratic form and its expectation (Lemma S.1) via
Talagrand’s concentration inequality [59]. This result is also
of independent interest. We then carefully characterize the
rate of convergence of S; defined in (2.3) (Lemma S.2).
Finally, we develop (3.5) using the results for vector-valued
graphical models developed by [60].

According to Theorem 3.1 and Theorem 3.4, we obtain
the rate of convergence of the Tlasso estimator in terms of
Frobenius norm, which is our main result.

Theorem 3.5. Assume that Conditions 3.2 and 3.3 hold. For
any k = 1,..., K, if the initialization satisfies Q;O) € B(Q;)
for any j # k, then the estimator Q. from Algorithm 1 with
T = 1 satisfies,

€2 = ] = O <\/m’“<m’“ * Sk)logm’“) 66)

nm
where m = Hszl my and B(2}) is defined in (3.4).

Theorem 3.5 suggests that as long as the initialization
is within a constant distance to the truth, the Tlasso algo-
rithm attains a consistent estimator after only one iteration.
This consistency is insensitive to the initialization since the
constant o in (3.4) can be arbitrarily large. In literature,
[16] show that there exists a local minimizer of (2.2) whose
convergence rate can achieve (3.6). However, it is unknown
if their algorithm can find such a minimizer since there
could be many other local minimizers.

A notable implication of Theorem 3.5 is that, when
K > 3, the estimator from the Tlasso algorithm can achieve
estimation consistency even if we only have access to one
observation, i.e., n = 1, which is often the case in practice. To
see it, suppose that K = 3 and n = 1. When the dimensions
mi, Mg, and mgy are of the same order of magnitude and
s = O(my) for k = 1,2,3, all the three error rates
corresponding to k = 1,2, 3 in (3.6) converge to zero.

Theorem 3.5 implies that the estimation of the k-th preci-
sion matrix takes advantage of the information from the j-th
way (j # k) of the tensor data. Consider a simple case that
K = 2 and one precision matrix 2] = 1,,, is known. In this
scenario the rows of the matrix data are independent and
hence the effective sample size for estimating €25 is in fact
nmy. The optimality result for the vector-valued graphical
model [11] implies that the optimal rate for estimating €23
is /(ma + s2)log ma/(nmy), which is consistent with our
result in (3.6). Therefore, the rate in (3.6) obtained by the
Tlasso estimator is minimax-optimal since it is the best rate
one can obtain even when §27 (j # k) were known. As far
as we know, this phenomenon has not been discovered by
any previous work in tensor graphical model.

Remark 3.6. For K = 2, our tensor graphical model re-
duces to matrix graphical model with Kronecker prod-
uct covariance structure [12], [13], [14], [15]. In this
case, the rate of convergence of €2; in (3.6) reduces
to y/(my + s1)logmy/(nmy), which is much faster than
V/ma(my + s1)(logm; +logma)/n established by [13]
and +/(m; + mz)log[max(my,ma,n)]/(nms) established
by [14]. In literature, [12] shows that there exists a local
minimizer of the objective function whose estimation errors
match ours. However, it is unknown if their estimator can
achieve such convergence rate. On the other hand, our
theorem confirms that our algorithm is able to find such
estimator with an optimal rate of convergence.
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3.2 Estimation Error in Max Norm and Spectral Norm

We next derive the estimation error in max norm and spec-
tral norm. Trivially, these estimation errors are bounded by
that in Frobenius norm shown in Theorem 3.5. To develop
improved rates of convergence in max and spectral norms,
we need to impose stronger conditions on true parameters.

We first introduce some important notations. Denote dj,
as the maximum number of non-zeros in any row of the true
precision matrices €2}, that is,

dr '= max |{j e{l,...,mp}: [Q)i; # O}|, (3.7)
i€{l,....omy}

with | - | the set cardinality. For each covariance matrix X7,

we define ksx = [|X][ .- Denote the Hessian matrix '}, :=

Q7 © Q7 e R™ME, whose entry (T%](i,5),(s,t) corre-
sponds to the second order partial derivative of the objective
function with respect to [Qg];; and [Q]s ;. We define its
sub-matrix indexed by Sy as [Tf]s,.s, = [} ' ®@Q; s, 5,
which is the [Si| X |Si| matrix with rows and columns
of I'j, indexed by Si and Sj, respectively. Moreover, we
define rr: = [||([T]s,.s.) 7" |- In order to establish the
rate of convergence in max norm, we need to impose an
irrepresentability condition on the Hessian matrix.

Condition 3.7 (Irrepresentability). For each k = 1,..., K,

there exists some «y; € (0, 1] such that

max || [Ti]es, ((Crls, s.) 1H1 <1 - a.
eEeSy
Condition 3.7 controls the influence of the non-connected
terms in S§ on the connected edges in S;. This condition
has been widely applied for developing the theoretical
properties of lasso-type estimator [43], [61], [62].

Condition 3.8 (Bounded Complexity). For each k& =
1,..., K, the parameters £y and xr; are bounded and the
parameter dy, in (3.7) satisfies d, = o(y/nm/(my, logmy)).

Theorem 3.9. Suppose Conditions 3.2, 3.3, 3.7 and 3.8 hold.
Assume s, = O(my,) for k = 1,..., K and assume m) s are
in the same order, i.e., m; < mg < --- <X mg. For each k, if
the initialization satisfies ngo) € B(Q2}) for any j # k, then
the estimator i from Algorithm 1 with T' = 2 satisfies,
myg log my )

(3.8)
nm

9.~ . =on (
In addition, the edge set of ﬁk is a subset of the true edge
set of Q}, that is, supp(€2) C supp(Q2}).

Theorem 3.9 shows that the Tlasso estimator achieves
the optimal rate of convergence in max norm [11]. Here we
consider the estimator obtained after two iterations since we
require a new concentration inequality (Lemma S.3) for the
sample covariance matrix, which is built upon the estimator
in Theorem 3.5.

Remark 3.10. Theorem 3.9 ensures that the estimated pre-
cision matrix correctly excludes all non-informative edges
and includes all the true edges (i,7) with |[Q}]; ;] >

my logmy/(nm) for some constant C' > 0. There-
fore, in order to achieve the variable selection consistency
sign(Q;) = sign(Q}), a sufficient condition is to as-

sume that the minimal signal min; j)esupp(;) [[2]i5] >

C\/mylogmy/(nm) for each k. This confirms that the

Tlasso estimator is able to correctly recover the graphical
structure of each way of the high-dimensional tensor data.

A direct consequence from Theorem 3.9 is the estimation
error in spectral norm.

Corollary 3.11. Suppose the conditions of Theorem 3.9 hold,
forany k =1,..., K, we have

~ " my log my,
1€ — Q;|, = Op (dm/g> . (@9)
nm
Remark 3.12. Now we compare our obtained rate
of convergence in spectral norm for K = 2 with

that established in the sparse matrix graphical model
literature. In particular, [15] establishes the rate of
Op(v/mu(si vV 1) log(my Vms)/(nmy)) for k = 1,2
Therefore, when d2 < (s; V 1), which holds for example
in the bounded degree graphs, our obtained rate is faster.
However, our faster rate comes at the price of assuming the
irrepresentability condition. Using recent advance in non-
convex regularization [63], we can actually eliminate the
irrepresentability condition. We leave this to future work.

4 TENSOR INFERENCE

This section introduces a statistical inference procedure for
sparse tensor graphical models. In particular, built on Tlasso
algorithm, a consistent test statistic is constructed for hy-
pothesis

HOk,ij . [QZ]l’] = 0 V.S. Hlk,ij . [QZL’] 75 0, (41)

Vi<i<j<mpandk =1,..., K. Also, to simultaneously
test all off-diagonal entries, a multiple testing procedure is
developed with false discovery rate (FDR) control.

4.1 Construction of Test Statistic

Without loss of generality, we focus on testing 27. For a
tensor 7 € R"™ XXMk denote T_;, i, i € R™ 71 as
the vector by removing the i;-th entry of 7., . ... Given
that 7 follows a tensor normal distribution (2.1), we have,
Vi1 € ma, Tiy o, iz | T—in in, i ™

K
N (—[Qﬂhlll [ Tiy —is Ty im i [Qﬂ;l“ H [Ei*c]z‘k,ik>
k=2
4.2)
Inspired by (4.2), our tensor graphical model can be re-

formulated into a linear regression. Specifically, for tensor
sample 7;, 1 =1,...,n, (4.2) implies that,

Tisinsin, i = 7?111,2-2,...,”(91‘1 + &l i, oine s 4.3)
_[Qﬂ_l [Qi]ila_il’and

where regression parameter 8;, = i
;

noise

K
~ N(O; [QT];?“ H [EZ]%,M)

k=2

fl;il,iz,...,i;{ (4.4)

Let ﬁl be an estimate of €2; obtained from Tlasso
algorithm. Naturally, a plug-in estimate of 8;, follows, i.e.,
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. N N PN
i, = (0rys -5 Omy—1,) T = =[5, [Q1]i,,—i, - Denote
a residual of (4.3) as &4, is,....ix =

= - T
Tisivsiesie = Tivsioseosine — (Timinsioyosie = T—ivsinyovine) irs

where T = Y";', Ti/n. Correspondingly, its sample covari-
anceis, V1 <i < j<my, 0;; =
n ma

ZZ Z &1727 71(51]12,

—1
(n I=1i=1  ix=1

In light of (4.4), information of [Q}]; ; is encoded in g; ;.
In this sense, a test statistic is proposed, i.e.,

0ij + i

J Y1 <i<j<my. 4.5)
w

Tiyj =

Intuition of 7; ; is extracting knowledge of [Q7]; ; from o; ;
via two-step correction. Notably, bias correction term fi; ; :=
@71@7 j + 0j, jé\j_LfL‘ reduces bias resulting from estimation
error of éi and éj. In addition, variance correction term

e eSSk

ma - [tr(S2)) - - [tr(Sk)J?
eliminates extra variation introduced by the rest
K — 1 modes (see (4.4)). Here S, = ey 1V VT
is an estimate of X, where ‘77 = [T X
(@70 N R, with @

from Tlasso algorithm.
Theorem 4.1 establishes asymptotic normality of 7 ;.

Symmetrically, such normality can be extended to the rest
K — 1 modes.

Theorem 4.1. Assume the same assumptions of Theorem
3.9, we have, under null (4.1),

-1
o= (n-1m i — N(0; 1)
ml@z zQ]]

in distribution, as nm/m; — oo.

Theorem 4.1 implies that, when K > 2, asymptotic
normality holds even if we have a constant number of
observations, which is often the case in practice. For ex-
ample, let n = 2 and my < mg, nm/my still goes to
infinity as m1, ma diverges . This result reflects an inter-
esting phenomenon specifically in tensor graphical models.
Particularly, hypothesis testing for certain mode’s precision
matrix could take advantage of information from the rest
modes in tensor data. As far as we know, this phenomenon
has not been discovered by any previous work in tensor
graphical models.

4.2 FDR Control Procedure

Though our test statistic enjoys consistency on single entry,
simultaneously testing all off-diagonal entries is more of
practical interest. Thus, in this subsection, a multiple testing
procedure with false discovery rate (FDR) control is devel-
oped.

Given a thresholding level ¢, denote ¢ (7;;) =
1{|7,;] > <}. Null is rejected if ¢ (7; ;) = 1. Correspond-

ingly, false discovery proportion (FDP) and FDR are defined
as

{0, 5) € Ho = ¢(75) = 1}
{@5) 1 <i<j<ma,e(fiy) =1} V1
and FDR = E(FDP). Here Ho = {(4,7) : [Qi]i; = 0,1 <
i < j < ma}. A sufficient small ¢ is ideal that significantly
enhances power, meanwhile controls FDP under a pre-

specific level v € (0,1). In particular, the ideal thresholding
value is

FDP =

G :=inf{¢ > 0: FDP < v}.

However, in practice, ¢, is not attainable due to un-
known H, in FDP. Therefore, we approximate ¢, by
the following heuristics. Firstly, Theorem 4.1 implies that
P(p(T; ;) = 1) is close to 2(1 — ®(s)) asymptotically. So
the numerator of FDP is approximately 2(1 — ®(¢))|Ho|-.
Secondly, sparsity indicates that most entries are zero. Con-
sequently, |Ho| is nearly w := my(m; — 1)/2. Under the
above concerns, an approximation of ¢, is ¢ =

} (4.7)

2(1 - @(s))w
G 5) ri<Jrpe(Tig) =13 V1 ™

Algorithm 2 Support recovery with FDR control for sparse

tensor graphical models

inf{§>0:

which is a trivial one-dimensional search problem.

1: Input: Tensor samples 71 ..., 7,, {ﬁk}szl from Algo-
rithm 1, and a pre-specific level v.

2: Initialize: Support S = 0.

3: Compute test statistic 7; ;, V1 < ¢ < j < my, defined in
Theorem 4.1.

4: Compute thresholding level < in (4.7).

5: If 74,5 > ¢ V1 < i < j < my, reject null hypothesis and
set S =S U{(i,5), (4,9}

6: Output: SU{(4,7) : 1 <i<my}.

Algorithm 2 describes our multiple testing procedure
with FDR control for support recovery of {27. Extension to
the rest K — 1 modes is symmetric. Clearly, FDR and FDP
for 27 from Algorithm 2 are

{(i,4) € Ho : e(Ti) = 1}
{(i,5) 1 <i<j<my,oe(Tiy) =1} v 1
and FDR; = E(FDP;). To depict their asymptotic behavior,

two additional conditions are imposed related to size of true
alternatives and sparsity.

FDP, =

Condition 4.2 (Alternative Size). Denote w3 = m

IZ50% - 12515/ (ma - (tr(EE)“ tr(Z )) ): Itholdsthat

{(Z J) 1 <0 < j < omy,|[Q7i/ VI, =

4y/mwomy logmy /((n — 1)m) }| > /Ioglog my.

Condition 4.3 (Sparsity). For some p < 1/2 and v > 0,
there exists a positive constant C' such that . énax ’{ j:1<

j<mi g # 6, ][@i] = (logmy) 277} < Cmf.

Notably, Condition 4.2 and 4.3 imply an interesting
interplay between sparsity and number of true alternatives.
In addition, Condition 4.2 is nearly necessary in the sense
that FDR control for large-scale multiple testing fails if
number of true alternatives is fixed [64]. Also, if |Ho| = o(w)
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(Condition 4.3 fails), most hypotheses would be rejected,
and FDP; — 0. Thus FDR control makes no sense anymore.

Theorem 4.4 characterizes asymptotic properties of FDP,
and FDR; . For simplicity, we denote wo = |H|.

Theorem 4.4. Assume the same assumptions of Theorem
4.1, together with Condition 4.2 & 4.3. If my < (nm/my)"
and wp > cw for some positive constants r and ¢, we have

FDPyw/vwy — 1, and FDRjw/vwg — 1
in probability as nm/m; — oc.

Theorem 4.4 shows that our FDR control procedure is
still valid even when sample size is constant and dimension-
ality diverges. Similar to Theorem 4.1, this phenomenon is
specific to tensor graphical models.

Remark 4.5. Theorem 4.4 can be utilized to control FDR and
FDP of testing Kronecker product 2] ® - - - ® 27,. Consider
a simple example with K = 3, denote f1, f, f3 as numbers
of false discoveries of testing €27, €25, €235 respectively, and
d1, d2, ds as numbers of corresponding off-diagonal discov-
eries. FDP and FDR of testing 27 ® Q3 ® Q3 are

Oé()(mg + ds) + (04 — g + mlmg)f3
[Hi:1(dk + mk) - mlmgmg] V1

and FDR,. = E(FDP,.), where g = f1(mo + da) + (d1 —
f1 + ml)fg and o = (d1 + ml)(dg + mg) — mMi1ma. In
practice, values of fi, k € {1,2, 3}, can be estimated by vdj,
by Theorem 4.4, given that all precision matrices are sparse
enough. Therefore, define

FDP. =

b

_ap(ms +ds) + (o — afy + mima)uds
[Hi:ﬂdk + my) — mymamg| V1
where o = wvdi(m2 + 2d2) + (m1 — vdi)vdy. Similar

arguments of Theorem 4.4 imply that FDP./7 — 1 and
FDR./T — 1.

5 SIMULATIONS

In this section, we demonstrate superior empirical perfor-
mance of proposed estimation and inference procedures
for sparse tensor graphical models. These procedures are
implemented into R package Tlasso.

At first, we present numerical study of the Tlasso
algorithm with iteration 77 = 1 and compare it with
two alternative approaches. The first alternative method
is graphical lasso (Glasso) approach [55] that applies to
vectorized tensor data. This method ignores tensor structure
of observed samples, and estimates Kronecker product of
precision matrices 2} ® --- ® 2} directly. The second
alternative method is iterative penalized maximum like-
lihood method (P-MLE) proposed by [16]. This method
iteratively updates each precision matrix by solving an
individual graphical lasso problem while fixing all other
precision matrices until a pre-specified termination condi-
tion - 19 — QY| /K < 0.001 is met.

In the Tlasso algorithm, the tuning parameter for updat-
ing Qy, is set in the form of C'\/log my,/(nmmy,) as assumed
in Condition 3.3. Throughout all the simulations and real
data analysis, we set C' = 20. Sensitivity analysis in §5.4 of
the online supplement shows that the performance of Tlasso

is relatively robust to the value of C'. For a fair comparison,
the same tuning parameter is applied in P-MLE method for
k =1,..., K. Individual graphical lasso problems in both
Tlasso and P-MLE method are computed via huge. In the
direct Glasso approach, its single tuning parameter is chosen
by cross-validation automatically via huge.

In order to measure estimation accuracy of each method,
three error criteria are selected. The first one is Frobenius
estimation error of Kronecker product of precision matrices,
ie.,

1. ~ ~
E||Ql®~~®QKfQ’{®~~®Q} (5.1)

s

and the rest two are averaged estimation errors in Frobenius
norm and max norm, i.e.,

1 & 1 &
-0l £ 62
k=1 k=1

Note that the last two criteria are only available to P-MLE
method and Tlasso.

Two simulations are considered for a third order tensor,
i.e,, K = 3. In Simulation 1, we construct a triangle graph; in
Simulation 2, a four nearest neighbor graph is adopted for
each precision matrix. An illustration of generated graphs
are shown in Figure 1. Detailed generation procedures for
the two graphs are as follows.

Triangle: For each £ = 1,..., K, we construct covari-
ance matrix Xj € R™#*™*k guch that its (4, j)-th entry is
[Zk]i,j = exp(—|hi — h]|/2) with hy < hy < -+ < hmk-
The difference h; — h;—1, i = 2,...,my, is generated i.i.d.
from Unif(0.5,1). This generated covariance matrix mimics
autoregressive process of order one, i.e., AR(l). We set
Q; = ¥, !. Similar procedure has also been used by [60].

Nearest Neighbor: For each k = 1,..., K, we construct
precision matrix €, € R™+*™* djrectly from a four nearest-
neighbor network. Firstly, m;, points are randomly picked
from an unit square and all pairwise distances among
them are computed. We then search for the four nearest-
neighbors of each point and a pair of symmetric entries in
Q) corresponding to a pair of neighbors that has a randomly
chosen value from [—1, —0.5]U[0.5, 1]. To ensure its positive
definite property, the final precision matrix is designed as
Qf = Q + ([Muin () + 0.2 - 1y, ), where Ay () refers
to the smallest eigenvalue. Similar procedure has also been
studied by [65].

oo ®e 423 %0 Yo
o0 e p I B
i R o
[/ X \ \
e 5 9 Fe L0 ey S e
20 * ° [N . h J i 2
s i ) b AN o
» % o * * o o o P ee i@’
PO ' oo o
A R R I SR TS 5.
\ 'Y o ¢ £ ! 'S o
R. o 4 ./' ‘z‘ /e o
\ . 1 o
» . .. 4 /| [ ad
L} . .\‘\.\ .ﬂ/ — /‘\. .’\'3‘ [ 54
° e 54 /& /
®eq LI e .)' ‘,"

Fig. 1. An illustration of generated triangle graph (left) in Simulations
1 and four nearest neighbor graph (right) in Simulations 2. In this
illustration, the dimension is 100.

In each simulation, we consider three scenarios as fol-
lows. Each scenario is repeated 100 times. Averaged compu-
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tational time, and averaged criteria for estimation accuracy
and variable selection consistency are computed.

e Scenario sl: sample size n = 50 and dimension
(ml,mg,m3) = (107 107 10).

e Scenario s2: sample size n =
(ml,mg,mg) = (107 10, 10)

e Scenario s3: sample size n =
(ml,mg,mg) = (10, 10,20)

80 and dimension

50 and dimension

We first compare averaged computational time of all
methods, see the first row of Figure 2. Clearly, Tlasso is
dramatically faster than both competing methods. In par-
ticular, in Scenario s3, Tlasso takes about three seconds for
each replicate. P-MLE takes about one minute while the
direct Glasso method takes more than half an hour and is
omitted in the plot. As we will show below, Tlasso algorithm
is not only computationally efficient but also enjoys good
estimation accuracy and support recovery performance.

300 300
w w
k-] °
c c
8200- Glasso 8200 Glasso
[7] +P-MLE Q -+ P-MLE
K Tlasso & Tlasso
g100- 100
- — - /‘\‘
- [=
0- , , , 0 , ; ;
s S2 | s3 s s2 | s3
Scenarios Scenarios
0.08- 0.08-
0.06: Glasso 0.06] Glasso
[ *_Ii_’I—MLE [ *_Ii_’l—MLE
20.047 asso 20.04 asso
wi w
0.02- \\ 0.02-

———

s s

s2 | s3 s2 | s3
Scenarios Scenarios

Fig. 2. The first row: averaged computational time of each method in
Simulations 1&2, respectively. The second row: averaged estimation
error of Kronecker product of precision matrices of each method in
Simulations 1&2, respectively. Results for the direct Glasso method in
Scenario s3 is omitted due to its extremely slow computation.

In the second row of Figure 2, we compute averaged es-
timation errors of Kronecker product of precision matrices.
Clearly, with respect to tensor graphical structure, the direct
Glasso method has significantly larger errors than Tlasso
and P-MLE method. Tlasso outperforms P-MLE in Scenarios
sl and s2 and is comparable to P-MLE in Scenario s3. It is
worth noting that, in Scenario s3, P-MLE is 20 times slower
than Tlasso.

Next, we evaluate averaged estimation errors of preci-
sion matrices in Frobenius norm and max norm for Tlasso
and P-MLE method. The direct Glasso method only esti-
mate the whole Kronecker product, hence can not produce
estimate for each precision matrix. Recall that, as we show
in Theorem 3.5 and Theorem 3.9, estimation error for the k-
th precision matrix is Op(\/my(my + si) logmg/(nm)) in
Frobenius norm and Op(y/my logmy/(nm)) in max norm,
where m = miymams in this example. These theoretical
findings are supported by numerical results in Figure 3. In
particular, as sample size n increases from Scenario sl to s2,

estimation errors in both Frobenius norm and max norm ex-
pectedly decrease. From Scenario sl to s3, one dimension ms
increases from 10 to 20, and other dimensions m;, ms keep
the same, in which case averaged estimation error in max
norm decreases, while error in Frobenius norm increases
due to its additional /my, + sy effect. Moreover, compared
with P-MLE method, Tlasso demonstrates significant better
performance in all three scenarios in terms of both Frobenius
norm and max norm.

0.6~
£
g 20.1 6
0.5-
z P-MLE %
p “+Tlasso =0.14 %—MLE
-50.47 E lasso
£ 50.12
w =
0.3- w
s1 s2 s3 s1 s2 s3
Scenarios Scenarios
£
£ 50.175
20.5 =2
P-MLE X
w +Tlasso §0-1 50 P_MLE
-50_4 £ -+ Tlasso
g \/ go.125 \/
w =
0.3 Wo.100
s1 s3 s

s2 | s2 | s3
Scenarios Scenarios

Fig. 3. Averaged estimation errors of precision matrices in Frobenius
norm and max norm of each method in Simulations 1&2, respectively.
The first row is for Simulation 1, and the second row is for Simulation 2.

From here, we turn to numerical study of the proposed
inference procedure. Estimation of precision matrices in the
inference procedure is conducted under the same setting as
the former numerical study of Tlasso algorithm. Similarly,
two simulations are considered, i.e., triangle graph and
nearest neighbor graph. In both simulations, third-order
tensors are constructed, adopting the same three scenarios
as above: Scenario sl, s2, and s3. Each scenario repeats 100
times.

We first evaluate asymptotic normality of our test statis-
tic 7; ;. Figure 4 demonstrates QQ plots of test statistic
for fixed zero entry [Q3]s,1. Some other zero entries have
been selected, and their simulation results are similar. So we
only present results of [©27]¢,1 in this section. As shown in
Figure 4, our test statistic behaves very similar to standard
normal even when sample size is small and dimensionality
is high. It results from the fact that our inference method
fully utilizes tensor structure.

Then we investigate the validity of our FDR control
procedure. Table 1 contains FDP, its theoretical limit 7 (see
Remark 4.5), and power (all in %) for Kronecker product
of precision matrices under FDR control. Oracle procedure
utilizes true covariance and precision matrices to compute
test statistic. Each mode has the same pre-specific level
v = 5% or 10%. As show in Table 1, powers are almost
one and FDPs are small under poor conditions, i.e, small
sample size or large dimensionality. It implies that our in-
ference method has superior support recovery performance.
Besides, empirical FDPs get closer to their theoretical limits
if either of dimensionality and sample size is larger. This
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Fig. 4. QQ plots for fixed zero entry [Q7]e,1. From left column to right
column is scenario s1, s2 and s3. The first row is simulation 1, and the
second is simulation 2.

phenomenon backs up the theoretical justification in Theo-
rem 4.4. Thanks to fully utilizing tensor structure, difference
between oracle FPR and our data-driven FDP decreases as
either dimensionality or sample size grows.

TABLE 1
Empirical FDP, its theoretical limit 7, and power (all in %) of our
inference procedure under FDP control for the Kronecker product of
precision matrices in scenario s1, s2, and s3.

Siml Sim?2
v sl s2 s3 sl s2 s3
Empirical FDP (7)

5 oracle | 7.8 8.7 7.3 7.6 7.3 6.9
data- 6.7 74 7.2 6.9 7 7.3
driven | (9.9) (99) (99 | (11.1) (11.1) (11.1)

10 oracle | 15.7 162 149 | 151 145 147
data- 138 154 151 | 13.8 139 149
driven | (19.3) (19.3) (19.4)| (21.4) (21.4) (21.4)

Empirical Power

5 oracle | 100 100 100 99.9 100 99.9
data- 100 100 100 99.8 100 99.8
driven

10 oracle | 100 100 100 100 100 100
data- 100 100 100 99.9 100 99.9
driven

In the end, we evaluate the true positive rate (TPR) and
the true negative rate (TNR) of the Kronecker product of
precision matrices for Glasso, P-MLE, and our FDP control
procedure to compare their model selection performance.
Specifically, let a; ; be the (i, j)-th entry of Q] @ - -+ ® Q7
and @;; be the (¢,j)-th entry of ﬁl X ® ﬁK, TPR
and TNR of the Kronecker product are -, 1(a;; #
0,a7; # O)/Z@jﬂ(a;‘k,j # 0), and Zi,jﬂ(az‘,j = 0,a5; =
0)/>; 1(a; ; = 0). Pre-specific FDP level is v = 5%. Table 2
shows the model selection performance of all three methods.
A good model selection procedure should produce large
TPR and TNR. Our FDP control procedure has dominating
TPR and TNR against the rest methods, i.e., almost all edges
are identified and few non-connected edges are included.

In short, the superior numerical performance and cheap
computational cost in these simulations suggest that our
method could be a competitive estimation and inferential

TABLE 2 10
Model selection performance comparison among Glasso, P-MLE, and
our FDP control procedure. Here TPR and TNR denote the true
positive rate and true negative rate of the Kronecker product of

precision matrices.

Scenarios Glasso P-MLE Our FDP control

TPR TNR | TPR TNR | TPR TNR

sl | 0343 0.930 1 0.893 1 0.935

Sim1 s2 0.333 0.931 1 0.894 1 0.932
s3 | 0.146 0.969 1 0.941 1 0.929

sl 0.152 0.917 1 0.854 | 0.999 0.926

Sim2 s2 0.119 0.938 1 0.851 1 0.926
s3 0.078 0.962 1 0.937 | 0.998 0.928

tool for tensor graphical model in real-world applications.

6 REAL DATA ANALYSIS

In this section, we apply our inference procedure on two
real data sets. In particular, the first data set is from the
Autism Brain Imaging Data Exchange (ABIDE), a study
for autism spectrum disorder (ASD); the second set collects
users’ advertisement clicking behaviors from a major Inter-
net company.

6.1 ABIDE

In this subsection, we analyze a real ASD neuroimaging
dataset, i.e., ABIDE, to illustrate proposed inference pro-
cedure. As an increasingly prevalent neurodevelopmental
disorder, symptoms of ASD are social difficulties, commu-
nication deficits, stereotyped behaviors and cognitive delays
[66]. It is of scientific interest to understand how connectiv-
ity pattern of brain functional architecture differs between
ASD subjects and normal controls. After preprocessing,
ABIDE consists of the resting-state functional magnetic res-
onance imaging (fMRI) of 1071 subjects, of which 514 have
ASD, and 557 are normal controls. fMRI image from each
subject takes the form of a 30 x 36 x 30-dimensional tensor
of fractional amplitude of low-frequency fluctuations (fALFF),
calculated at each brain voxels. In other words, ABIDE has
514+557 tensor images (each of dimension 30 x 36 x 30) from
ASD and controls, and these tensor images are 3D scans of
human brain, whose entry values are fALFF of brain voxels
at corresponding spatial locations. fALFF is a metric charac-
terizing intensity of spontaneous brain activities, and thus
quantifies functional architecture of the brain [67]. Therefore
the support of precision matrix of fALFF fMRI images along
each mode encodes the connectivity pattern of brain func-
tional architecture. Dissimilarity in the supports between
ASD and controls reveals potentially differential connectiv-
ity pattern. In this problem, vectorization methods, such
as Glasso, will lose track of mode-specific structures, and
thus can not be applied. Due to high dimensionality, false
positive becomes a critical issue. However, P-MLE fails to
guarantee FDP control as demonstrated in the simulation
studies.

We apply the proposed inference procedure to recover
the support of mode precision matrices of fALFF fMRI im-
ages of ASD group (514 image tensors) and normal control
group (557 image tensors), respectively. Pre-specific FDP
level is set as 0.01%. The rest setup is the same as in §5.
Among the rejected entries of each group, we choose top 60
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significant ones (smallest p-values) along each mode. All the
selected entries show p-values less than 0.01%. Positions of
differential entries between ASD and controls are recorded
and mapped back to corresponding brain voxels. We further
locate the voxels in the commonly used Anatomical Auto-
matic Labeling (AAL) atlas [68], which consists of 116 brain
regions of interest. Brain regions including the voxels, listed
in Table 3, are suspected to have differential connectivity
patterns between ASD and normal controls.

Our results in general match the established literature.
For example, postcentral gyrus agrees with [69], which
identifies postcentral gyrus as a key region where brain
structure differs in autism. Also, [70] suggests that thalamus
plays a role in motor abnormalities reported in autism
studies. Moreover, temporal lobe demonstrates differential
brain activity and brain volume in autism subjects [71].

TABLE 3
Brain regions of potentially differential connectivity pattern identified by
our inference procedure.

Hippocampus_L ParaHippocampal_R Hippocampus_R

Temporal Sup_ L.  Amygdala_L Temporal_Sup_R
Insula_L Amygdala_R Insula_R
Frontal_Mid_R Thalamus_L Thalamus_R
Pallidum_L Putamen_L Caudate_R

Precentral_L Frontal_Inf_Oper_L
Precentral_R Postcentral_L
Temporal_Pole_Sup_R

Frontal_Inf_Oper_R
Postcentral_R

6.2 Advertisement Click Data

In this subsection, we apply the proposed inference method
to an online advertising data set from a major Internet
company. This dataset consists of click-through rates (CTR),
i.e., the number of times a user has clicked on an advertise-
ment from a certain device divided by the number of times
the user has seen that advertisement from the device, for
advertisements displayed on the company’s webpages from
May 19, 2016 to June 15, 2016. It tracks clicking behaviors of
814 users for 16 groups of advertisement from 19 publishers
on each day of weeks, conditional on two devices, i.e., PC
and mobile. Thus, two 16 x 19 x 7 x 814 tensors are formed
by computing CTR corresponds to each (advertisement,
publisher, dayofweek, users) quadruplet, conditional
on PC and mobile respectively. However, more than 95%
entries of either CTR tensor are missing. Hence, an alter-
nating minimization tensor completion algorithm [72] is
first conducted on the two tensors. Differential dependence
structures within advertisements, publishers, and days of
weeks between PC and mobile are of particular business
interest. Therefore, we apply the proposed inference pro-
cedure to advertisement, publisher, and dayofweek
modes of completed PC and mobile tensors respectively.
Setup is the same as in §6.1. Among the rejected entries
of each device, top (30,12,10) significant ones in mode
(advertisement, publisher, dayofweek) are selected.
All the selected entries show p-values less than 0.01%. Pairs
of entities, represented by the positions of differential entries
between PC and mobile, are suspected to display dissimilar
dependence when switching device.

Figure 5 demonstrates differential dependence patterns
between PC and mobile in terms of advertisement, pub-
lishers, and days of weeks. Note that red lines indicate
dependence only on PC, and black lines stand for those
only on mobile. Due to confidential reason, description on
specific entity of advertisement and publisher is not
presented. We only provide general interpretations on the
identified differential dependence patterns as follows. In
advertisement mode, credit card ads and mortgage ads
are linked on mobile. Such dependence is reasonable that
people involved in mortgage would be more interested in
credit card ads. On PC, uber share and solar energy are
interchained. It can be interpreted in the sense that both
uber share and solar energy are attractive for customers with
energy-saving awareness. As for publisher mode, sport
news publisher and weather news publisher are shown to
be dependent on PC. This phenomenon can be accounted
by the fact that sports and weather are the two most popu-
lar news choices when browsing websites. Also, magazine
publishers (e.g., beauty magazines, tech magazines, and TV
magazines) are connected on mobile. It is reasonable in the
sense that people tend to read several casual magazines
on mobiles for relaxing or during waiting. In dayofweek
mode, strong dependence is demonstrated among week-
days, say from Tuesday to Friday, on PC. However, no
clear pattern is showed on mobile. It can be explained that
employees operate PC mostly at work on weekdays but use
mobile every day.

Fig. 5. Analysis of the advertisement clicking data. Shown are differential
dependence patterns between PC (red lines) and mobile (black lines)
identified by our inference procedure. From left to right are advertise-

7 DISCUSSION

In this paper, we propose a novel sparse tensor graphical
model to analyze graphical structure of high-dimensional
tensor data. An efficient Tlasso algorithm is developed,
which attains an estimator with minimax-optimal conver-
gence rate in estimation. Tlasso algorithm not only is much
faster than alternative approaches but also demonstrates
superior estimation accuracy. In order to recover graph con-
nectivity, we further develop an inference procedure with
FDP control. Its asymptotic normality and validity of FDP
control is rigorously justified. Numerical studies demon-
strate its superior model selection performance. The above
evidences motivate our methods more practically useful in
comparison to other alternatives on real-life applications.
In Tlasso algorithm, graphical lasso penalty is applied
for updating each precision matrix of tensor data. Lasso
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penalty is conceptually simple and computationally effi-
cient. However, it is known to induce additional bias in es-
timation. In practice, other non-convex penalties, like SCAD
[49], MCP [51], or Truncated ¢, [52], are able to correct such
bias. Optimization properties of non-convex penalized high-
dimensional models have recently been studied by [73],
which enables theoretical analysis of sparse tensor graphical
model with non-convex penalties.
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