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Abstract

In this paper, we present a numerical algorithm for an accurate and efficient
computation of the convolution of the frequency domain layered media Green’s
function with a given density function. Instead of compressing the convolution
matrix directly as in the classical fast multipole method, fast direct solvers, and
fast H-matrix algorithms, this new algorithm considers a translated form of the
original matrix so that many existing building blocks from the highly optimized
free-space fast multipole method can be easily adapted to the Sommerfeld in-
tegral representations of the layered media Green’s function. An asymptotic
analysis is performed on the Sommerfeld integrals for large orders to provide an
estimate of the decay rate in the new “multipole” and “local” expansions. To
avoid the highly oscillatory integrand in the original Sommerfeld integral repre-
sentations when the source and target are close to each other, or when they are
both close to the interface in the scattered field, mathematically equivalent alter-
native direction integral representations are introduced. The convergence of the
multipole and local expansions formulas and quadrature rules for the original
and alternative direction integral representations are numerically validated.
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1. Introduction

Acoustic and electromagnetic wave propagation in layered media has been
a very important research topic for many modern applications including solar
cells [1, 2], photonic crystals [3], meta-materials [4], and applied geophysics [5].
The efficient numerical simulation of waves in layered media in the frequency do-
main is still a challenging task in scientific computing. One of the key numerical
difficulties arises from the Sommerfeld integral representation for a general lay-
ered media Green’s function [6, 7]. For example, consider a simple three-layered
medium (e.g., air-sea-seabed or meta-materials) for the case of electromagnetic
scattering in transverse magnetic (TM) polarization with layer interfaces at
y =0 and y = —d and a source located in the top layer at xo = (zg, yo) with
yo > 0 (see Figure 1). Assume ki, ko, and k3 are the wave numbers and the
permeability is constant in each layer. The layered-media Green’s function is
the solution of the Helmholtz equations

Au,(x) + kful(x) = —4(x0,%x),1=1,2,3

with interface conditions

u1(x) = ua(x), %(x) = %(X) for x = (z,0),
uz(x) = uz(x), %(X) = %(x) for x = (z, —d).

Applying the integral transforms and matching the continuity conditions at the
interfaces to reduce the differential equations to a system of algebraic equations,
then inverse transforming its solutions back to the original domain, the Green’s
function can be analytically represented as different Sommerfeld integrals for
different layers [8]. For example, the scattered field at x; = (z1,y1) in the
middle layer (—d < y1 < 0) contains the reflected field from the top and bottom
interfaces. The reflected field from the top interface g4 (formula for the bottom
interface is similar) is represented by

g5(x1,%0) = / eV k3y giden g =/ AT —kiyo o —idzo 1 ah(N)dX
oo 4/ N2 — k3

where

d\/A2—k2
222 2 _ 2. /32 _ k2 _ 2
() = e (A2 4+ /A k3\/A k3 — k3)

sinh(dy/A2 — k3)(A2 + /22 — k2 /22 — k2 = k3) + /A2 = k3(\/32 = kF + /A2 — k3) cosh(dy/A2 — k)

is referred to as the density on the top interface [9] (see Example 3 in Section 3
for further details). A discretization of the integral equation description of the
wave field in layered media leads to a linear system, where each entry in the
coefficient matrix requires the evaluation of one or more of these Sommerfeld
integrals [10, 11], which becomes computationally expensive, particularly when
the source and target are close to the same interface, e.g., when both y; and yq
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Figure 1: Three-layered medium with a source point xg in the top layer and a target point
x1 in the middle layer.

are close to the upper (y = 0) interface and |z1 — zo| > |y1 — yo| in the function
gt. Note that even state-of-the-art fast direct solvers or H-matrix algorithms
[12, 13, 14, 15] require a sufficient number of samples of the coefficient matrix
entries before the matrix can be effectively compressed for further numerical
linear algebra operations.

This paper is aimed at completely resolving two of the many existing chal-
lenges in the simulation of waves in layered media: (a) an optimal fast algorithm
for the application of the layered media Green’s function to a given density
function, and (b) an effective numerical scheme to compute the layered media
Green’s function when the source and target are close to each other, or close
to the media interface. Firstly, we present a general algorithm framework for
an optimal fast solver. The new algorithm compresses a transformed version
of the original matrix, and both the expansions and translation operators are
derived using mathematical analysis techniques. The transformed matrix ap-
proach makes it possible for the new algorithm to use many well-optimized
numerical tools from existing free-space fast multipole method (FMM) with mi-
nor or no changes. This approach is different from existing FMM, fast direct
solver, and fast H-matrix algorithms which compress the coefficient matrix di-
rectly. The error analysis of the expansion is based on the asymptotic analysis
of integrals which can be generalized to layered media Green’s functions in three
dimensions. Secondly, by introducing different integration contours for the Som-
merfeld integral representation of the layered media Green’s function, the new
method can also effectively and accurately evaluate the interactions when either
the source, or target, or both are close to the interface between different layers.
The resulting algorithm complexity is asymptotically optimal O(N) in the low
frequency regime, with a prefactor close to that of the well-developed free-space
FMM algorithms.

To present these ideas, we restrict our attention to the two-dimensional (2-D)
layered media in this paper and organize the paper as follows: In Section 2, we
summarize all necessary building blocks for the new algorithm and present the
pseudocode and complexity analysis. Section 3 provides several Green’s func-
tions examples. In Section 4, we present a detailed analysis of the numerical
algorithm, including the asymptotic expansion based truncation error analysis
of the new “multipole” (far-field) and “local” expansions, and the mathemati-
cally equivalent alternative direction Sommerfeld integral representations of the



original layered media Green’s function. Section 5 presents numerical results de-
signed to validate the algorithm analysis. We summarize our results and discuss
future work in Section 6.

2. Adapting Free-space FMM for 2-D Layered Media Green’s Func-

tions

We first present the algorithm framework. Detailed analysis of each algo-
rithm component will be covered in Section 4. This section is written for readers
with sufficient knowledge of the classical FMM [16], which is becoming a stan-
dard topic in scientific computing.

2.1. Summary of Algorithm Building Blocks

We use notation and terminology commonly adopted by the FMM commu-
nity, and present the building blocks in the same order as they appear in the
algorithm.

Layered Media Green’s Functions.

The layered media Green’s function consists of the free-space and scattered
field parts. Since the free-space Green’s function is well-studied, we focus on a
general form of the scattered field Green’s function. For a target point x = (z,y)
in the layer with wave number &k and a source point xg = (z,yo) in the layer
with wave number kg, the scattered field Green’s function is given by

oo
s _ VIR (g4 d) gide N RZge —idao TN g
X,Xg) = e e'"’e e
97 (%, Xo) /_OO 4T/ N2 — k2 1)

where d is a constant, and the density function o(\) is independent of x and
xo which converges to a constant when A — +o0o (see examples in Section 3).

When the “+” sign is used in e Az_kgyo, y+d—1yp is assumed to be positive in
order to guarantee integrability. Sample Sommerfeld integral representations of
layered media Green’s functions for acoustic waves and time harmonic Maxwell’s
equations (vector Helmholtz equations) can be found in [6, 9, 17, 18, 19] and
in Section 3. Rigorous analysis of the density function properties in a general
layered media setting requires a detailed study of the corresponding system
of linear equations derived from the integral transforms and by matching the
interface conditions. Interested readers are referred to example 3 in Section 3
for further discussions. In the following, the mathematical formulas for the “+”
sign are presented. The formulas for the “—” sign can be derived in the same
way and are thus omitted.

Multipole Expansion and Source-to-Multipole (S2M) Translation Op-
erator. Assume there are N sources from the same layer located in a box cen-
tered at x2 = (xf,y?), each carrying a charge ¢; located at x; = (x;,y;). Their



contributions to the far-field location x = (x,y) are given by
N
x) = > 4;9°(x,%;) (2)
j=1

/ —\/>\2 kz(y+d) AT Zq e\/k —koyje—z)\arj 0()‘) d)\.
AT/ A2 — k2

j=1

Lemma 1 (Multipole Expansion). The far-field contributions at x due to
charges q; located at x5, j = 1,2,--- N in a box centered at X} in Eq. (2) have
the multipole expansion

Z M,®,(z,y), (3)

p=—00

where the multipole coefficient is given by
M, Zq] (kor;)e™ "4, (4)

(rj,0;) are the polar coordinates of x; with respect to xg, J,, is the Bessel func-
tion of order p, the new multipole basis function is given by

P
B, (z,y) = /oo o VIR (y—y +d) jiMa ) (/\ — VA - k%) ()
— 00

A,
ko Am/N2 — k2

(5)
and 5(\) = a(N)e VAR VAT—kGye

We refer to forming the multipole expansion in Eq. (3) as the Source-to-Multipole
(S2M) operator. Eq. (4) is derived by applying the Jacobi-Anger formula

[20] eikreost = 5% ™ ], (kr)e™? to the term Zjvzl eV TR e ide;
Using the new basis ®, instead of the classical Hankel functions, the mul-
tipole coefficients M, in Eq. (4) become identical to those in the free-space
Helmholtz FMM [21] derived using Graf’s addition theorem. Therefore, the
existing free-space S2M operator for the Helmholtz equation with the same
wave number ko can be used directly to derive the coefficients M, of the com-
pressed representation in Eq. (3). Note that the asymptotic properties of
F(\) = o(N)e VN Rt VA Kyl remain the same as the original o(\) as
A — £oo.

_ _ L2
Remark: By introducing the change of variable z = % in Eq. (5), the

expansion > M,z is the Laurent expansion of the function

p=—00

N

E VA =k (y;—v) e~ A= —ze)

=1



and M, is the expansion coefficient independent of A (or z).

At the low-frequency regime when both kg and k are small, the number
of terms required in the truncated layered media multipole expansion for a
prescribed error tolerance is approximately the same as that in the free-space
Laplace FMM. We leave the truncation error analysis of the multipole (and
local) expansions to Section 4.

Multipole-to-Multipole (M2M) Translation Operator. In FMM, multi-
pole expansion of the parent is constructed by translating the multipole expan-
sion of the children. Translating the center of a multipole expansion from a child
box to its parent box is referred to as the Multipole-to-Multipole (M2M) trans-
lation operator. Since the multipole coefficients for the layered media in Eq. (4)
are the same as those for the free-space Green’s function for the Helmholtz equa-
tion with wave number kg for both the parent and child boxes, we therefore have
the following lemma:

Lemma 2 (M2M). The M2M translation operator for the layered media Green’s
function in Eq. (4) is the same as the M2M operator for the free-space Green’s
function of the Helmholtz equation with wave number ko. The parent’s multipole
coefficients M, are given by

My =" M, gJy(koriz)e' ™ (6)
gq=—00

where M,_, are the child’s multipole coefficients and (r12,612) are the polar
coordinates of the child’s center with respect to the parent’s center.

Thus, the free-space M2M translation operator can be used without any change
to obtain the multipole expansions for all the boxes on the hierarchical tree
structure for the layered media Green’s function.

Local Expansion and Multipole-to-Local (M2L) Translation Operator.
Notice that the potential field ¢(x) in a particular layer satisfies the Helmholtz
equation with wave number k. We therefore use the same Bessel function based
expansion as that for the free-space Green’s function with wave number k to
compress the received far-field contributions into a local expansion of the target
box centered at x! = (z!,y!) entirely located within a target layer.

Lemma 3 (Local Expansion). The potential function ¢ due to the far-field
source contributions can be compressed into a local expansion

$(x) = > LyJy(kr)e™, (7)

p=—00

where (r,0) are the polar coordinates of x with respect to the target box center xt,
and Ly, is called the local expansion coefficient. Evaluating the local expansion
at a target point is referred to as the Local-to-Target (L2T) translation operator.



Similar to the free-space FMM, the compressed far-field multipole expansion
of the source box centered at x¢ given by Eq. (3) can be translated into a local
expansion in Eq. (7) of the target box centered at x!, by substituting the plane
wave formula

o e\
¢ Mamm VRN ) = N (kr)e ™ (MII:A) 8)

m=—0o0

into the basis function ®, from Eq. (5), where (r, ) are the polar coordinates
of x with respect to the target box center at x%. Translating the multipole
expansion to a local expansion is referred to as the Multipole-to-Local (M2L)
translation operator and we have the following lemma.

Lemma 4 (M2L). The local expansion coefficients of a target box centered at
xt, due to the contributions from particles in a source box centered at x5 de-
scribed by its multipole expansion in Eq. (8), can be computed using the M2L
translation matriz A = {A, 4} using

o0
Lp = Z Apaqu (9)
q=—00
where
Apq = /oo Pe— VAR (ye—yi+d) iX(zp—xy) »

(AR "a-var—w2\ s o
k ko A/ A2 — k2

Note that when |yf — y + d| < |zt — z%|, the evaluation of A, , can be very
costly due to the highly oscillatory term eN@i=23) | This difficulty can be re-
solved by using the alternative direction integral representation of the translation
operator that will be discussed in Section 4. The translation matrix A can be
precomputed for optimal efficiency when the geometries of the layered media
and embedded objects are fixed, or computed on the fly using the Gauss and
Laguerre quadrature rules for the alternative direction integral representations.

Local-to-Local (L2L) Translation Operator. The local expansion of the
parent can be translated to its children using the Local-to-Local (L2L) transla-
tion operator given by the following lemma [21, 22].

Lemma 5 (L2L). As the basis for the local expansion of the layered media
Green’s function is the same as that for the free-space Green’s function of the
Helmholtz equation with wave number k, the L2L translation operator for the
layered media Green’s function in Eq. (7) is therefore the same as the L2L
operator of the free-space FMM for the Helmholtz equation with wave number
k. The child’s local coefficients L, are given by

zp: Z Lpquq(k’le)e_iqwn_ﬂ) (11)

g=—00
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Figure 2: Source-to-Target by M2L translation. Image sources are well separated from target.

where L,_, are the parent’s local expansion coefficients and (ri2,012) are the
polar coordinates of the parent’s box center with respect to the child’s box center.

This lemma states that the free-space L2L translation operator can be used
without change to derive the local expansion of the child box from its parent’s
for the layered media case.

Direct Source-to-Target (S2T) Interactions. For neighboring boxes, the
interaction of the source and target can be handled in two ways: (1) by evaluat-
ing the Sommerfeld integral directly, or (2) for the scattered field contribution
from sources in a source box, when its multipole expansion is also valid in its
neighboring target box, e.g., due to the constant d in Eq. (5), the source box’s
multipole expansion can be translated and merged into the target box’s local
expansion using the same M2L translation operator as we discussed previously
for the interaction list boxes, which will be evaluated later using the very effi-
cient L2T operator for the leaf boxes. We demonstrate (2) using the scattered
Green’s function interaction of two neighboring boxes for the half-space medium
with impedance boundary condition in Figure 2. When the method of images
representation of the scattered Green’s function is considered [19, 23], the neigh-
bor box’s contribution from particles x1, x2 and x3 is equivalent to that from
the far-field point- and line-images starting from xi™, x¥™ and x{™, and hence
the neighbor’s multipole expansion in Eq. (3) becomes valid. In such cases, the
FMM tree can be modified accordingly to further accelerate the computation.
One numerical difficulty of evaluating the layered media Green’s function
for direct S2T interaction or entries of the translation matrix A in M2L comes



from the oscillatory term e** when the other exponential terms in the integrand

decay slowly: for example, in the free-space Green’s function,

_ > —VA2—k2y iz 1
X,Xg) = e e ———=dA\ 12
R e (12)

where the source point is located at the origin (z¢,y0) = (0,0) and the target
point is located in the first quadrant (x > 0 and y > 0). In the new version of
FMM [22, 24, 25], it is referred to as the “north” plane wave expansion because
this formula is valid when y > 0. However, when y is very close to the line y = 0
and z > 0, a huge number of quadrature points has to be used to resolve the
oscillatory term e¢** due to the very slow decay of e~ VA*~**¥_ Similar problems
arise when evaluating the direct interaction of the source and target points that
are close to the interface of the layered media and the M2L translation matrix
A in Eq. (9).

To understand the origin of this problem, we divide the Sommerfeld integral
representation into the propagating (JA\| < k) and evanescent (|]\| > k) parts.
After a change of variables as in [24], Eq. (12) can be rewritten as

1 T ) 1 e
g(x,x0) = / ethlysino—zcost) gg 4~ / e W cos(\/t2 + k2x)dt.
0 0

A omi

The first and second integrals are called the propagating part and evanescent
part, respectively. For the propagating part, the number of required Gauss
quadrature points to evaluate the integral only depends on k and r = /22 + y2,
which is typical. However, when y < z, the integrand in the evanescent part
e~ cos(Vt2 + k2x) requires many Laguerre quadrature points to resolve the
oscillatory term cos(v/#2 + k2x) because e~ decays slowly. This problem can be
resolved alternatively by using the equivalent “east” plane wave representation
forx >0

1 (" . - 1 o
g(x,x%0) = 47/ etk(—ycosOtasing)gg 4 —/ e " cos(V12 + k2y)dt,
0 0

T 2mi

which can be derived from the “north” plane wave representation using contour
integration as will be discussed in Section 4. Since y < x, the evanescent part
of the alternative direction integral can be evaluated using a small number of
Laguerre quadrature points. Similar representations can also be derived for
the “south” and “west” directions for general layered media Green’s functions
by using the method of images, contour integration, or applying the integral
transforms directly in the alternative direction.

“Layer Conforming” Adaptive Tree Structure. In more complicated ge-
ometries, it is still an open problem how to effectively merge the multipole ex-
pansions from child boxes in two different layers, or find one unified analytical
local expansion for a box containing target points from different layers. There-
fore, in existing implementation, we only allow the M2L interaction of boxes
that are located entirely inside a layer. This constraint requires the generation



and optimization of a “layer conforming” adaptive tree structure, which is cur-
rently being studied for general layered media settings. However, since most of
practical applications have less than 10 layers, the computational complexity
will increase at most by a constant factor.

2.2. Algorithm Pseudocode

We present the algorithm pseudocode in Algorithm 1. Compared with
the classical FMM for free-space kernels, the adapted FMM for layered me-
dia Green’s function only differs in the layer conforming adaptive tree, the M2L
and S2T subroutines, and the number of expansion terms when the wave num-
bers are different. All other subroutines and functions from free-space FMM
can be adopted with minor or no changes by the layered media FMM.

2.3. Algorithm Complexity

We compare the algorithm complexity of the layered media FMM (LM-
FMM) with that of the free-space FMM (FS-FMM).

In the upward pass, only the free-space S2M and M2M translation operators
are used. Thus, if the number of expansion terms is the same as that of the free-
space case, the LM-FMM has the same number of operations as the FS-FMM
in the upward pass. In the downward pass, the L2L operator of the LM-FMM
has the same complexity as that of the FS-FMM. However, the M2L operator
requires more operations when the M2L translation matrix is computed on the
fly, as at least one integral has to be evaluated to find each entry of the trans-
lation matrix. Note that these integrals can be evaluated efficiently when the
alternative direction integral representations are used (further discussed in Sec-
tion 4). Moreover, the translation matrix can often be re-used by many boxes in
the same level in the hierarchical tree structure. On the other hand, when the
translation matrix A is precomputed, the algorithm complexity in the downward
pass is about the same as that in the classical FS-FMM. In Step 4, the evalu-
ation of the local expansion in the LM-FMM has the same complexity as that
in the FS-FMM. For the direct source to target (S2T) interactions, more oper-
ations are needed than FS-FMM because the alternative direction Sommerfeld
integrals have to be evaluated. In summary, when the local direct interaction
operations are not counted (which can be very efficient on parallel computers),
the translation matrix A is precomputed, and the number of expansion terms
is the same as that of the FS-FMM, the total number of operations of the LM-
FMM is about the same as that of the FS-FMM. In Section 4, we show that for
many settings, the number of expansion terms of the LM-FMM is in the same
order as that of the FS-FMM, for example, when the wave numbers of different
layers are all in the low-frequency regime.

3. Examples of 2-D Layered Media Green’s Functions

We consider the potential at a target point x = (x,y) due to a source charge
with density go located at xo = (zg,¥yo). The source and target may be located

10



Algorithm 1 Adapting Free-space FMM for Layered Media Green’s Functions

Step 1: Initialization

Generate an adaptive layer conforming tree and precompute necessary ta-
bles.

Step 2: Upward Pass
for{=L,---,0do
for all boxes j on level [ do
if j is a leaf node then
compute S2M using free-space S2M operator.
else
compute M2M using free-space M2M operator.
end if
end for
end for

Step 3: Downward Pass
for/=1,---,L do
for all boxes j on level [ do
shift local expansion of j’s parent to j using free-space L2L operator.
collect interaction list contribution using M2L operator in Eq. (9).
collect valid neighbor box multipole expansion using M2L operator.
end for
end for

Step 4: Evaluate Local Expansions and Direct Interactions

for each leaf node (childless box) do

evaluate local expansion (L2T) at each particle location.

collect un-evaluated source target interaction (S2T) from neighbor boxes
(including self) using alternative direction Sommerfeld integrals.
end for

11



in the same or different layers with the j* interface located at y = y;. The
wave numbers are kg for the source layer and k for the target layer, respectively.

To derive the layered media Green’s function, a Fourier transform is usu-
ally performed along the z-direction, reducing the 2-D Helmholtz equation to
an ODE system which can be solved analytically with some unknown density
functions in the Sommerfeld integral representations. The density functions are
obtained by solving a linear system of algebraic equations to match the interface
conditions. In this paper, we consider the Green’s function in a generalized form

G(x,%o) = / o~ VAZT=RZ (y+d) gidz yE/ X2 —k3yo ,—idao o d\ 13
(x,%0) . yI s v (13)

where d is a constant and o(\) converges to a constant when A — +oo. Many
2-D layered media Green’s functions are in this particular form. In the following
discussions, we refer to the first two exponential terms e~ VA ~k (UFd) gidr o5 the

target term, the third and fourth exponential terms e® N =kiyoe—iAzo a4 the
source term, and o(A) as the image term (for reasons which will be explained
later). We present a few sample Green’s functions, all in the form of Eq. (13).
Example 1: Free-space Green’s Function. The first example is the free-
space Green’s function for the Helmholtz equation with wave number k. For a
source point xo = (xg,y0) and a target point x = (x,y) with y — yo > 0, the
free-space Green’s function is given by the Sommerfeld integral of the form

_ > —VA2—k2y _idz VAZ—k2yo —idlxo 1
X,Xq) = e e'"’e e —dA\. 14
9(x;%o0) /_OO A/ NZ = 2 1)

Example 2: Half-space with Zero Dirichlet Boundary Condition. The
second example is the half-space problem with Dirichlet condition (total field is
0) at the layer interface located at y = 0. We assume the source is located at
%o = (20, yo0) in the upper half plane (yo > 0). Using the method of images, the
scattered field for a target point located at x = (x,y) in the upper half plane
(y > 0) can be represented as

s —VA2—k2y idz  —VA2—k2yo —idxo 1 /
g (X, X = e e & & E—— )\ 15
( O) [oo AT/ A2 — k2 ( )

To satisfy the Dirichlet boundary condition, an image charge is added at the
location (zg, —yo) and —1 is the charge of the image source. Interested readers
are referred to [26] for more details.

Example 3: Half-space with Impedance Boundary Condition. The
third example is the half-space Green’s function with the impedance boundary
condition

ou
jau = 1
9y iau =0 (16)

at the layer interface y = 0. The scattered field at a target point x = (x,y) due
to the source at xg = (xg,yo), where both points are located in the upper half

12



plane with wave number k, is given by

s _ >~ —VAZ=k2y ide  —V/AZ—k2yy —ilxo 1 v A2 —k? +ia
9°(x,%0) = e e e —d.
oo ArVANZ — k2 VD2 — k2 —ia

(17)
In [19, 23], it was shown that the term %;z::ztzz can be derived using the
method of complex images. We therefore refer to the o(\) = YA =K topy

VAZ—k?2—ia
as the image term. This Green’s function was also discussed in [26]. Note that

when A\ — 00, 0 — 1.

Example 3: Three-layered Medium with Transmission Condition. The
last example we consider in this paper is the Green’s function for a three-layered
medium with the transmission condition in [9], where the layer interfaces are
located at y = 0 and y = —d (See Figure 1). Let a source point be located in
the top layer at xg = (2o, y0) and a target point be located at x = (z,y). In
the first layer (y > 0), the scattered field g5 is the field reflected from bottom
layers. In the second layer (—d < y < 0), the scattered field consists of the
contribution from top and bottom interfaces g5 = g + g5. In the third layer
(y < —d), the scattered field g3 is the transmitted field from the source in the
first layer. By matching the continuity of the field, the scattered field in each
layer can be represented as

> /2 ; /2 . 1
g7 (x,%0) = e~ VAT TRy gidz o=/ A *k%yoeﬂ)‘moial(k)d}\,
4m\/A\2 — k?
gh(x,%x0) = eVAZ 3y gida =/ X2 —kiyo o —iAzo . ab(N)d,
A /A2 — k3
/g2 N N2kl g 1
gS(X, XO) — e A kQ(y+2d)ez>\xe VA klyoe iATo : 20_12)()\)(1)\’
Am\/ A2 — k3
s —/A2—k2 iz, —4/A2—k? —iA\z 1
93(x,Xo) :/ e VA TR (yH2d) oidz o=/ A —kiyo o —iA Oﬁﬂg()\)dA
oo Adm\/ A2 — k3

where (o1(\), 5 (N), a5(N), 03(N\))7 is the solution of the linear system

I s e ) 0

VA2—k2 VA2—k3 o
0 e—dV3—kE 1 VAR o
1 1 —em IVATR 0 o
0 e VAR -1 -1
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The solution (1(\), a4(N), a5(N), 03(N\)7 is explicitly given by

sinh(d\/AQ—kg) (—)x2+\/>\2—k%\/>\2—k§+k%)+\/>\2—k%(\/Az—k%—\/kz—kg) cosh(d\/kz—kg)
sinh(d\/ﬂfkg) (A2+\/k2—k%\/AQ—kg—k%)Jr\/)\Q—k%(\/Az—k%+\/)\2—k§) cosh(d\/AQ—k%)
sinh(d\/AQ—kg) <A2+\/A2—k%\/>\2—k§—k%)+\/>\2—k§ (\/k2—k%+\/>\2—k§) cosh(d\/m)
h sinh(d\/k2—k§> (>\2+\/A27k§\/>\27k§7k§)+\/x27k§ (\/AQ—kar\/)\Q—k%) cosh(cﬁ/}ﬂ—k%)
sinh(d\/AQ—kg) <>\2+\/A2—krf\/Az—kg—k§)+\/>\2—k§ (\/kz—k%Jr\/)\Q—k%) cosh(dm)

Note that when A — Fo00, each o function converges to a constant.

The form of the Green’s function in Eq. (13) is not surprising. Clearly, the
first target term satisfies the Helmholtz equation at the target layer with wave
number k, and the source term satisfies the Helmholtz equation at the source
layer with wave number kg. The third term is independent of the variables xq
and x, and we collect all the exponential growth or decay terms in the constant
d in the target term so the image term converges to a constant when A — +oo.

4. Analysis of Layered Media Fast Multipole Method

We present a detailed analysis of the algorithm for layered media Green’s
function in this section. We focus on the following two topics: (a) the num-
ber of terms in the multipole and local expansions and truncation errors, and
(b) evaluation of the local direct interactions and M2L translation operators
using the mathematically equivalent alternative direction Sommerfeld integral
representation.

4.1. Truncating the Multipole and Local Expansions

We study the decay rates of the terms in the multipole and local expansions
by considering the setting of a single source with a unit charge located at xo =
(20, y0). The multipole expansion describes the potential at far-field locations
as a function of x = (x,y) due to a charge in the source box, namely,

d(x) = > Myy(x,y), M,=Jy(kor)e ™’

p=—00

where (r,0) are the polar coordinates of the point (xg,yo) with respect to the
source box center x{ = (z2,y5). The basis function ®,(x) is given by

o p ~
P (X) _ / e—\/A2—k2(y—y§+d)ei)x(ac—nci) A— \% A2 — k(Q) U(/\) d\
»(X) =
—0o0 ko Am/ A2 — k2
(19)
and we define the “modified” distance between x and x] of the multipole ex-
pansion as p = /(y — y5 + d)? + (z — 2%)2. The multipole expansion can be
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considered as a compressed representation of the source box’s contribution to
be sent to the far-field locations. Similarly, the local expansion associated with
each target box compresses the received far-field contributions and describes the
potential as a function of (z — 2,y — y!) given by

o(x)= Y Lydp(ki)e'® = N J,(k7)eP? W, (20, y0),

p=—00 p=—00

where (7, 9) are the polar coordinates of the point (z,y) with respect to the
target box center x., = (zf,y!). The basis function ¥,(xo) is given by

Y\ P ~
Wy (x0) = /OO (A i )\2> L G A ) )\
k Y SVORIE 2
(20)
where 5(A\) = o(A)e VA Fut VA2 =kuc We define the “modified” distance be-
tween xo and x!, of the local expansion as p = \/(yL — yo + d)? + (zL — x¢)2.
Similar to the FS-FMM where the truncation errors of the multipole and
local expansions are determined by the decay rate of |J,(kr)H,(kp)|, we study
the decay rate of the term |J,(kor)®,(z,y)| for the multipole expansion, and
|Jp (k) ,(z0,y0)| for the local expansion for different physical parameter set-
tings. When all other variables are fixed, J, — 0 and Hp,®,, ¥, — oo as
p — oo. Therefore, it is necessary to understand the asymptotic behavior of
these functions for large p values.

— 00

Asymptotic Forms of Bessel Functions for Large Order. The asymptotic
expansion for large-order Bessel functions is a well-studied topic. We cite the
following well-known results from [20], which are valid for fixed z when v — oco.

Ty (2) ~ \/2177 (%)V (21)

Y, (2) ~ —iHY (2) ~ iHP (2) ~ —\/Z (%)w. (22)

Therefore, for the free-space Green’s function,

,
| Tp+1(kor) Hp 1 (Kop)| /| Jp(kor) Hp (Kop)| ~ >

and the truncation errors of both the free-space multipole and local expansions
decay exponentially as p — oo [21].

Asymptotic Approximation of Integrals. The asymptotic expansion for
the Bessel functions can be derived from the integral representations of these
special functions. Note that these integral representations are similar to the
layered media Green’s functions. Therefore the same asymptotic analysis tech-
niques can be applied, and the results can be used to derive more precise error
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bounds when truncating the layered media multipole and local expansions. We
demonstrate this ideas using the following examples.
We start with the integral representation of the Bessel function [20],

_n T

7

Jn(z) = o e cos(nb)df
n T 00 . k
= 227 @cos(n@)d@
T k=0 )
N AL L L
= 1 5 (cos 6)" cos(nb)do.
k=0 " LT

Note that when k < n, the integral f:r(cos 0)* cos(nf)dd = 0. By applying
Stirling’s formula n! ~ v27n(2)" to the leading order of the expansion, one
recovers the asymptotic form of the Bessel function for large orders in Eq. (21).
This asymptotic expansion is valid for all z values and provides a more accu-
rate estimate when studying the truncation error in the multipole and local
expansions, especially in the low frequency regime when kor and kr are small.

For the layered media Green’s function, both integrals in the basis functions
®, and ¥, can be formulated as

oo /)2 12 P
/ e*\/Wyei)\z A A k2 U()‘) d\ (23)
—o0 k2 4 /A2 — k3

where k; is the wave number in the target layer and ks is the wave number in
the source layer. The integral can be divided into three parts, when (a) |\ <
min{ky, k2}, (b) |A| > max{ki, k2}, and (c) min{ky, k2} < |A| < max{ky,k2}.
The asymptotic expansion for each part can be derived using existing asymptotic
analysis techniques for integrals [27]. When ki = ko, the integral in (a) is
often referred to as the “propagating” part and the integral in (c¢) becomes the
“evanescent” part. The asymptotic properties of the basis functions ®, and ¥,
are determined by the “propagating” part for large ||x|| values with fixed p,
and by the “evanescent” part for large p values with fixed ||x||. To understand
the truncation errors in the multipole and local expansions of the layered media
Green’s function, we therefore focus on the evanescent part and demonstrate
the asymptotic analysis for the simplified integral

0o 2 7 72\7 .
/ ot i/ R VIR + VB R -k a(t) i, (24)
0 ko A/t + kF

where we assume ki > k9. The case when k1 < ko can be analyzed in a similar
way. Instead of deriving the asymptotic expansion of Eq. (24) directly, we
adopt the following steps to further simplify the integral to a more standard
form that is commonly used when analyzing the asymptotic behavior of the
Bessel functions. First, using the polar coordinates (r,8) of (x,y), we rewrite
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the {z, y}-related exponential part as

7k1r<tsin(9)7icos(9)‘/k%+t2>
— i /124 k2 k1 k1
e tyez t?+kiz _ e X

Second, we define a new variable u = tSi]:l(a) — ZCOS(O)k”l KiHt? Clearly, the new
integral for the u-variable is on a complex contour, not on the real axis. Third,
using contour integration and the residue theorem, we can rewrite the integral
on the complex contour back to the sum of an integral on the real axis and
an easy-to-analyze integral on a line segment in the complex plane (which will
be explained in detail in Section 4.2). Finally, we focus on the asymptotic
expansion of the dominating integral

/oo - (ﬁ(u) + @2(u) — k%)p g’(ﬂ) oy — o0 o—kiru (f(u))pg(u)du,
0

ko drvi+ a2 Jo

where B(u) = ki (Vu? + 1sin(d) — iucos(f)) and 5(u) = 6(t(u)). For any fixed
z = kir, one approach to find the asymptotic behavior of this integral is to
first perform another change of variable A = kyru = zu (or u = ﬁ = %) and
consider the new integral

S AN N d) oo - ~ k ! A
[T (1) a DD = [T (mz) () - (,Csz) 3(2)ax
where 3(z) = VAZ + 22sin(f) — iAcos(f). Under proper conditions, the func-

- = P
tion (ﬁ(z) +4/82%(2) — (%2)2) §(2) is an analytic function for z values on the

right-half complex plane away from the origin. Thus, we can consider its Taylor

expansion
~ - k D W k
6(z)+\/52(z)—(22)2> 9(2) =" tr(\p, 2)2
( kl g z kZ:O k p kl

as a function of z. Then, the integral representation of the evanescent part can

be derived as
oo o0 k
_ —\ 2 k
(]fg’r‘) p kgzo (/0 e tk()\,p, ]{;l)d)\> z .

The leading order term of the expansion for very large p values is approximately
(kor) PP / e M(2A)PdA
0

for some constant fy, which has the same asymptotic properties as the Hankel
function Hp(kgr)eipeo. Note that the expansion can be used to study the proper-
ties of both the case when p — +00, or when z is small (low-frequency regime).
Without presenting the details, we summarize our results in the following the-
orem.
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Theorem 1. (1) The multipole and local expansions satisfy the following con-
vergence estimates for large p values,

<

| Tp1 (k1) @pia (2, y) | /| Jp (Rar) @y (2, )| ~ =, (25)

| Jp+1(k2m) ¥ p i1 (w0, Yo)l /[ Jp(kar) Wy (20, Yo )| ~ F (26)

hS)
<3

where r is the distance from the particle to its box center and p (or p) is
the “modified” distance between the box center and far-field point. Both d
and + sign are considered to correct the p (or p) value. For example, p =

\/(y —ys+d)? + (z — 23)? for ®(x,y) in Eq. (5) and p = \/(yﬁ +d—yo)? + (2 — )2
for U(xo,y0) in Eq. (20).

(2) When the wave numbers ki and ko are small, the required number of terms

in the multipole and local expansions for a prescribed accuracy in the layered

media FMM is approrimately the same as that in the free-space FMM.

This theorem simply states that both the multipole and local expansions in the
layered media FMM are exponentially convergent and presents the asymptotic
convergence rates.

Remark: When the frequency is zero, the asymptotic analysis results are the
same as that from the standard FMM error analysis for the Laplace equation.
In particular, p =9, 18, 27, and 36 for 3-, 6-, 9-, and 12-digit accuracy, respec-
tively. When the frequency increases, more terms are required. Estimates of the
asymptotic regime and implicit relations between p and layered media settings
are further studied in Section 5 (see Figures 6 and 7).

Remark: Note that when using the “modified” distance, the truncated multi-
pole expansion of the scattered field Green’s function may become valid for a
neighboring (including self) target box, and therefore can be translated to its
neighbor’s local expansion using the M2L operator instead of the more expensive
S2T operator. See Figure 2 for the method of images interpretation.

Laplace Transform and Complex Images. For many layered media Green’s
functions, one can justify that the inverse Laplace transform of &(z) can be
derived using the Fourier-Mellin integral formula

~ 1 THT s
L7HGYHt) = o lim e*'5(2)dz

T, T—00 y—iT

where the integration is done along the vertical line Re(z) = « in the complex
plane and v is greater than the real part of all singularities of &(z), so that the
image part in the layered media Green’s function can be represented as

F(\) = /Ooo e VARG (E=0) £ (1)t

for some =y which may be the same as 7. Substituting this representation into
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the original layered media Green’s function in Eq. (13), we have

— 2 2
X XO / / VAZ—k2 (y+d) pire eiMyo—M(t—’yo)e—Mxof(t)d)\dt.
4mV/A2 — k2

(27)
In this new representation, f(¢) can be considered as the complex image located
at (zo,+yo — t). For many layered media, it is sufficient to analyze the conver-
gence of the multipole and local expansions of the layered media Green’s func-
tions for each t-mode where the new source box center is at (zg, £y — (t —0)).
n [23], this complex image approach is applied to the 2-D half-space layered
medium Green’s function with impedance boundary conditions (see Example 3
of Section 3), and it becomes straightforward to verify using the complex images
that for the same prescribed accuracy requirement, the number of expansion
terms for the layered medium case is no more than that for the free-space case.
Another application of the complex image approach is for the direct source-
target (S2T) interactions. For a neighboring source box, when all the complex
images of the scattered field are well-separated from the target box, the source
box’s multipole expansion becomes applicable, and it is more efficient to trans-
late the multipole expansion to a local expansion of the target box (see Figure
2). This technique is used in [23] to compute the scattered field part of the
source-target interactions.

Precomputed Tables for Number of Expansion Terms. In practice, both
the asymptotic expansion and complex image approach only give a very rough
estimate of the number of terms required in different expansions of the layered
media Green’s function. A more practical approach is to precompute a table (or
table of tables) for different layered media settings. This approach is problem
dependent. We are constructing such tables for several real world applications,
and results will be reported in the future.

4.2. Alternative Direction Sommerfeld Integral Representations

Another difficulty in simulating waves in layered media is when the source
and target are very close to each other, or when the source and target are close
to the interface of different layers for the scattered field. In these cases, the
computation of layered media Green’s function and the M2L translation opera-
tor becomes extremely expensive. For example, when y —yo > 0 is close to zero
and |z — x| is relatively a big number in the Sommerfeld integral representation
of the free-space Green’s function in Eq. (14) or the half-space layered medium
Green'’s function with impedance boundary conditions in Eq. (17), the exponen-
tial term e~ VA ~F*(¥=v0) decays slowly and the highly oscillatory term e**(*—%o)
must be sufficiently sampled. A similar problem occurs for the M2L operator
in Eq. (9). When the ratio of (y! — y$ +d) /|2 — 25| is small, a wide range of A
values must be sampled before the integrand decays to zero sufficiently.

The numerical difficulty is not from any inherent properties of the original
physical problem, rather, it is the result of using an inefficient integral repre-
sentation in the numerical computation. For the same Hankel function Hy(8r),
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which is the Green’s function of the free-space Helmholtz equation, a com-
mon practice is to divide R? into four overlapping regions-North, South, East,
West—corresponding to points (z,y) € R? with y > 0,y < 0,2 > 0,2 < 0,
respectively. In each region, the plane wave representation of Hy(fr) takes the
following forms:

5
=
=

_ (28)
ety sinf— xcose)d9+ o0 Sg(ty) ( i)z 4 e—ng(t)x) dt North,
ezﬂ( ysin 06—z cos 9)d9 + 1 0 ' ( ipg(t)z + eilpﬁ(t)a:) dt South
PB(t)
i cos 0+x sin 0 o Z —1
o g~y cos O )do + L f pﬂ ( sy 4 e=ips (V) 4t East,

077 iB(—ycosf— $51n0)d9+ 1 0 pe (:5) ( ipg(t)y +e—ng(t)y) dt West,

us

S

=
3

A= A A= e
—
© 3

=

where pg(t) = \/t? + 82, and (r,0) are the polar coordinates of the point (z,y).
For higher order Hankel functions H;(Br)e?, we have the following integral
representations:

Hl (ﬁr)eiw _

% fOW ei,@(y sin @ —x cos G)e—il0d9+
(7.1)1 0o gty <6ipg(t)w (%) + efipﬁ(t) pg(t) t dt NOI‘th,

w Jo s

ﬁ foﬂ' eiﬂ(—y sin 0 —x cos9)eil0d9+

T

(=) oo e [ Lipa(he (%)l_i_e—ima(t)w pf‘(th l) dt South,

w Jo 2
1 7™ if(zsinf—ycosb) il0
=, e e do+ l

dt East,

(—“17)’ Ooo ;;(‘:) <eip[-g(t)y (%) +6*1Pﬁ(t)y

(_ﬂl)L J"Oﬂ ei,@(—w sin @ —y cos G)G—il9d9+
l l
(G o (eiPB(t)y (Lgf)“) T emira(y (m;w) ) dt West,

[ 0

where the first and the second integrals in each formula are called the propa-
gating part and evanescent part, respectively. These directional representations
have been applied in the new version of FMM in both two and three dimensions
[22, 25, 28, 29]. They are also effective tools to compute the lattice sums of
the free-space Green’s functions [30, 31]. In these formulation, the oscillation
of the integrand in the propagating part is controlled by Sr, and hence no nu-
merical quadrature issues arise. For the evanescent part at overlapping regions,
e.g., when both x,y > 0, both the North and East integral representations are
valid and can be applied. However their numerical properties are very different.
Clearly, when y/x > 1, the North formula is preferred, and when y/z < 1,
the East formula can be computed more efficiently using existing quadrature
techniques.

The alternative direction integral can be derived using contour integration
and the residue theorem in two dimensions. Similar techniques are applied
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when evaluating integrals with highly oscillatory integrands and when deriving
the Schelkunoff formulation for the Sommerfeld integrals in the engineering
community [32, 33]. To demonstrate how this technique works, we consider the
contour integral for z,y > 0 in Figure 3

1 [ eiQAa+y/B2=22y)
- dA. (29)

T Jr /B2 -2

Since there are no singularities or branch cut points inside the contour I', we

have
1 etAz+4/B2=A2y) (30)
it —d)\:/+/+/+/+/ =0. 30
T Jr /3% = )\2 1 Je. 1 Jog 111

As e — 0and R — oo,

1 ei(kxﬂ—\/,@r"—)\?y) 1 ei(kx+\/52—k2y)
Ao, o f S 7
T Cr /ﬂQ _ AQ

—d
71— C. ,/ﬁQ_)\Q

d\ — 0,
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and
z(/\a:+\//32 /\Qy) z(/\x— B2— Azy)

%
I 5 / —/B /B -
1 i(Azt+/B2— )\Qy) i(Az+1 Bzy)
1 o 1 /
S8

1
T

— ),

i1 6 i/ A2 — 32

1 ()\x+ B2— Azy) ze( te—1 t2+62 )
Vi + B2

Therefore, the evanescent part in || ;7 can be computed using — ( /, I J 7 1). In
fact, the East plane wave representation can be re-derived from the North one
using this approach for z,y > 0.

For each Sommerfeld integral representation describing the interaction of
particles either in the same layer or two different layers, a few alternative di-
rection representations are derived analytically by choosing proper integration
contours depending on the layered media geometry and wave number settings.
We present more details in Section 5. In the algorithm implementation, depend-
ing on the location of the evaluation point (e.g., the ratio of (x —c¢)/(y — d) and
sign of x —¢), one of these (mathematically equivalent but numerically different)
formulas is selected and efficiently evaluated using standard quadrature rules.

dt.
IIr 5

5. Preliminary Numerical Experiments

In this section, we present numerical experiments to validate our theoretical
analysis of the general numerical framework. Matlab and Mathematica codes
are developed to numerically validate the analysis presented in Section 4.

Alternative Direction Sommerfeld Integral Representation. We have
studied and validated the alternative direction Sommerfeld integral formulas for
several layered media Green’s functions using Mathematica. Different direction
plane wave representations of the free-space Green’s function presented in Sec-
tion 4.2 can be readily found from existing literature [30, 31]. Therefore, we
focus on the results for the half-space layered medium with impedance bound-
ary condition. The three layered medium Green’s functions can be handled in
a very similar way. Interested readers are referred to the Mathematica files for
these formulas, as well as their validations.

For the half-space layered medium Green’s function, we focus on the evanes-
cent part of the Green’s function given by

% et eie VTR (1 4 )
VTR (—ia)

To avoid the pole on the imaginary axis, we have numerically tested the following
two contours. In the first contour (left of Figure 4), a positive ¢ value is chosen

dt. (31)
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Figure 4: Two different contours for half-space layered medium with impedance boundary
condition.

so that

) eftyei:v\/tr‘urikz (t+ZOl d tyezz t2+k2 (t‘i’la)d
t =
o VE+E (t—ia) </ / > VE+E2 (t—ia)

As the first term integrates from 0 to ¢ on a finite (and reasonably small by
proper choice of ¢) line segment (labeled IV'), it can therefore be efficiently
evaluated using standard Gauss quadrature rules. For the second integral, as
the sum of the contour integrals on I + IT + I1] is 0 and the integral on I7
approaches 0 when R — oo, the alternative direction representation of the
integral

00 e—tyei:m/t2+k2 (t—|—ZO¢)

L Ve (e

is given by

T _ee N (Verar -y (e + i) +ia)
0 (c+iA)? + k2 ((e+d) —ia)

This representation is numerically validated using Mathematica’s NIntegrate
with options AccuracyGoal—20, PrecisionGoal—20, WorkingPrecision—60,
MaxRecursion—100, Method—DoubleExponential for different x,y > 0 values.

In the second contour (right of Figure 4), we assume (r 0) are the polar coor-
dinates of (x,y), and perform the change of variable u = £ sin § — i ¥ Ijk cosf.

The evanescent part then becomes

e~k ik cosOv1 + u2 + uksin 6 + ia
1 V14+u2ikcosOv1 +u? +uksind — i
VtH“ for t € [0, 00).

dr. (32)

e~ Y

du,

where the contour I is a curve defined by z(t) = £ sinf —
As the integral on I approaches 0 when R — oo, the evanebcent part becomes
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Figure 5: Convergence of the quadrature rules for different integrals.

the (negative) sum of the integrals on I11 and IV, given by

< emkru g(u) +ia

e V1itu? o(u) —ia

du (33)

and
Lk () + i

0 V1T o2 o(e(u) —ia

where ¢(u) = ikcosOv 1+ u? + uksinf, (u) = (¢ + icosf)u — icosf, and ¢
is a constant to be optimized so that both the Gauss quadrature applied on
IV and Laguerre quadrature on 111 converge rapidly. These formulas are also
validated using Mathematica for different (z,y) and ¢ values. Note that in the
second contour, the oscillatory term e*** or e*¥ is completely removed from
the integrand, at the cost of a new rational function on a contour closer to the
singularities.

We have numerically tested the convergence of the quadrature rules for the
original and mathematically equivalent alternative direction representations of
the half-space layered medium Green’s function. In Figure 5, we set x = 1,
y = 0.1, k = 1, and ¢ = 2, and present the numerical errors when different
numbers of nodes are used in the quadrature rules for different integrals. The
reference solutions are computed using Mathematica requesting more than 20
correct digits. On the left of Figure 5, we present the accuracy when different
numbers of Laguerre quadrature nodes are used for the original evanescent part
in Eq. (31), the integral on 1T of the first contour in Eq. (32), and the integral
on IIT of the second contours in Eq. (33). When y < z, the original integral
converges slowly due to the oscillatory term !Vt 5" The Laguerre quadrature
for the alternative direction integrals, on the other hand, converges much faster.

(¢ + icosb)du, (34)
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Figure 6: Convergence of the multipole expansions for impedance half-space layered medium.

For a fair comparison, we also present the convergence of the quadrature rules for
the integrals on finite line segments. When Legendre polynomial-based Gauss
quadrature is applied to the integral IV on both the first and second contours,
for double precision requirement, under the current setting of ¢, approximately
17 nodes are required for the integral IV on the first contour, while around 200
Gauss nodes are required for the integral IV on the second contour. In our
numerical implementation, since the formulas for the first contour are easy to
derive and manipulate, we therefore adopt the first contour for the evanescent
part of a general layered media Green’s function.

Convergence of Multipole and Local Expansions. As we have discussed in
Section 4.1, the convergence of the multipole and local expansions is determined
by the ratio of r/p, where r is the distance between the source (target) and
center of the source (target) box in the multipole (local) expansion, and p is
the “modified” distance between the far-field target (source) and center of the
source (target) box (constant d and =+ sign are considered). We have numerically
validated the analysis. In Figure 6, we present the results for the half-space
layered medium with impedance boundary conditions using settings Z¢qrget —
2 = 2, Ytarget T Y2 = 3, r = 1.5, k = 0.1, o = 1, and the modified distance
p= \/(xtarget —28)2 + (Ytarget + y2)?. On the left of the Figure, we compare
the propagating and evanescent parts of the basis ®, for different p values.
Clearly, for large order p, the propagating part can be neglected when analyzing
the truncation errors. On the right, we plot the ratio (Jp4+1Pp4+1)/(Jp,®,) as
p — too. As |p| increases, the ratio approaches the constant r/p (dashed green
line).

A similar analysis is performed for the three-layered medium Green’s func-
tion with wave numbers ki, ko, and ks in each layer. In the numerical exper-
iment, we set k1 = 1, ko = 3, k3 = 1 and consider the contribution from the

upper layer (y = 0)

X rErEy /212 : 1
g5(x,%0) = / eVA? RSy giAT o =y AT =iy o —iAzo —— oh(N)dA,
—0o0 4’/T\/ )\2 — kQ
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ratio

Figure 7: Convergence of the local expansion for the three-layered medium Green’s function.

where

. B edﬂ/x2,k§()\2+mmikg)
73(A) = sinh(dy/X2—k2)(A2+4/ A2 —kZ /A2 —kZ —k2)++/X2—k2 (/A2 =k +1/A2—k3) cosh(dy/X2—k2)
We study the convergence of the local expansion where the basis function
U, (z0,y0) is given by

[e'e] . 5 p
‘I’p(l‘oayo) :/ (W) e_\/m(yo—yi)eik(xo—xi)
—00 2
t
BN I = O % D\ (35)
N

We set g — 2! = 2, yo —y! = 3. Therefore, the modified distance p = /22 + 33.
The distance between the target and center of the target box is r = 1.5. We
neglect the propagating part in the layered medium Green’s function that is very
small compared with the evanescent part for large orders, and only consider the
integral from kg to co in the evanescent part of the basis function ¥,,. In Figure
7, we show the ratio (Jp+1¥p+1)/(Jp¥,), which clearly converges to r/p ~ 0.416
as p — 00.

6. Conclusion and Generalization

In this paper, we present a general numerical framework for the efficient
application of the layered media Green’s function to a given density function.
Instead of constructing and compressing the matrix directly, which involves the
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expensive evaluations of one or more Sommerfeld-type integrals for each ma-
trix entry, the new algorithm considers a transformed matrix, so existing fast
algorithms for the free-space Green’s function can be readily adapted for better
algorithm efficiency. Theoretical analysis on the convergence of the new expan-
sions and alternative direction Sommerfeld integral representations to accelerate
the convergence of the numerical quadrature rules are provided and numerically
validated. Similar to deriving the layered media Green’s functions, the de-
tailed translations, alternative direction Sommerfeld integral representations,
and number of terms in the expansions all depend on the geometric settings
and physical parameters, especially in three dimensions. We have studied a
few examples of such layered media Green’s functions in this paper, and we are
working on both the analysis and implementation details for other important
settings from domain applications. In particular, we are studying the optimal
alternative direction Sommerfeld integral representations and more accurate es-
timations of the number of expansion terms necessary in different scenarios.
Results from these investigations will be presented in the future.
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