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ABSTRACT
Factormodeling is an essential tool for exploring intrinsic dependence structures among high-dimensional
random variables. Much progress has been made for estimating the covariance matrix from a high-
dimensional factor model. However, the blessing of dimensionality has not yet been fully embraced in the
literature: much of the available data are often ignored in constructing covariance matrix estimates. If our
goal is to accurately estimate a covariance matrix of a set of targeted variables, shall we employ additional
data,which arebeyond the variables of interest, in the estimation? In this article,weprovide sufficient condi-
tions for an affirmative answer, and further quantify its gain in terms of Fisher information and convergence
rate. In fact, even an oracle-like result (as if all the factors were known) can be achieved when a sufficiently
large number of variables is used. The idea of using data as much as possible brings computational chal-
lenges. A divide-and-conquer algorithm is thus proposed to alleviate the computational burden, and also
shown not to sacrifice any statistical accuracy in comparison with a pooled analysis. Simulation studies fur-
ther confirmour advocacy for theuseof full data, anddemonstrate the effectiveness of the above algorithm.
Our proposal is applied to a microarray data example that shows empirical benefits of using more data.
Supplementary materials for this article are available online.

1. Introduction

With the advance of modern information technology, it is now
possible to trackmillions of variables or subjects simultaneously.
To discover the relationship among them, the estimation of a
high-dimensional covariance matrix � has recently received a
great deal of attention in the literature. Researchers proposed
various regularization methods to obtain consistent estimators
of � (Bickel and Levina 2008; Rothman et al. 2008; Lam and
Fan 2009; Cai, Zhang, and Zhou 2010; Cai and Liu 2011). A key
assumption for these regularization methods is that � is sparse,
that is, many elements of � are small or exactly zero.

Different from such a sparsity condition, factor analysis
assumes that the intrinsic dependence is mainly driven by some
common latent factors (Johnson andWichern 1992). For exam-
ple, in modeling stock returns, Fama and French (1993) pro-
posed the well-known Fama–French three-factor model. In
the factor model, � has spiked eigenvalues and dense entries.
In the high-dimensional setting, there are many recent studies
on the estimation of the covariance matrix based on the factor
model (Fan, Fan, and Lv 2008; Fan, Liao, and Mincheva 2011,
2013; Bai and Li 2012; Bai and Liao 2013), where the number of
variables can be much larger than the number of observations.

The interest of this article is on the estimation of the covari-
ance matrix for a certain set of variables using auxiliary data
information. In the literature, we use only the data informa-
tion on the variables of interest. In the data-rich environment
today, substantially more amount of data information is indeed
available, but is often ignored in statistical analysis. For example,
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we might be interested in understanding the covariance matrix
of 50 stocks in a portfolio, yet the available data information
is a time series of thousands of stocks. Similarly, an oncologist
may wish to study the dependence or network structures among
100 genes that are significantly associated with a certain cancer,
yet she has expression data for over 20,000 genes from the whole
genome. Can we benefit from using much more rich auxiliary
data?

The answer to the above question is affirmative when a factor
model is imposed. Since the whole system is driven by a few
common factors, these common factors can be inferred more
accurately from a much larger set of data information (Fan,
Liao, andMincheva 2013), which is indeed a “blessing of dimen-
sionality.” A major contribution of this article is to characterize
how much the estimation of the covariance matrix of interest
and also common factors can be improved by auxiliary data
information (and under what conditions).

Consider the following factor model for all p observable data
yt = (y1t , . . . , ypt )′ ∈ R

p at time t :

yt = Bft + ut , t = 1, . . . ,T, (1)

where ft ∈ R
K is a K-dimensional vector of common factors,

B = (b′
1, . . . , b′

p)
′ ∈ R

p×K is a factor loading matrix with bi ∈
R

K being the factor loading of the ith variable on the latent fac-
tor ft , and ut is an idiosyncratic error vector. In the abovemodel,
yt is the only observable variable, whileB is amatrix of unknown
parameters, and (ft ,ut ) are latent random variables. Without
loss of generality, we assume E(ft ) = E(ut ) = 0 and ft and ut
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are uncorrelated. Then, the model implied covariance structure
is

� = Bcov(ft )B′ + �u,

where � = E(yty′
t ) and �u = E(utu′

t ). Observe that B and ft
are not individually identifiable, since Bft = BHH′ft for any
orthogonal matrix H. To this end, an identifiability condition
is imposed:

cov(ft ) = IK and B′�−1
u B is diagonal, (2)

which is a common assumption in the literature (Bai and Li
2012; Bai and Liao 2013).

Assume that we are only interested in a subset S among a total
of p variables in model (1).We aim to obtain an efficient estima-
tor of

�S = BSB′
S + �u,S,

the covariance matrix of the s variables in S, whereBS is the sub-
matrix of B with row indices in S and �u,S is the submatrix of
�u with row and column indices in S. As mentioned above, the
existing literature uses the following conventional method:

� Method 1: Use solely the s variables in the set S to estimate
common factors ft , the loadingmatrixBS, the idiosyncratic
matrix �u,S, and the covariance matrix �S.

This idea is apparently strongly influenced by the nonparametric
estimation of the covariance matrix and ignores a large portion
of the available data in the other p− s variables. An intuitively
more efficient method is

� Method 2: Use all the p variables to obtain estimators of
ft , the loading matrix B, the idiosyncratic matrix �u, and
the entire covariance matrix �, and then restrict them to
the variables of interest. This is the same as estimating ft
using all variables, and then estimating BS and �u,S based
on the model (1) and the subset S with ft being estimated
(observed), and obtaining a plug-in estimator of �S.

We will show that Method 2 is more efficient than Method 1
in the estimation of ft and �S as more auxiliary data informa-
tion is incorporated. By treating common factor as an unknown
parameter, we calculate its Fisher information that grows with
more data being used in Method 2. In this case, a more efficient
factor estimate can be obtained, for example, through weighted
principal component (WPC) method (Bai and Liao 2013). The
advantage of factor estimation is further carried over to the esti-
mation of �S by Method 2 in terms of its convergence rate.
Moreover, if the number of total variables is sufficiently large,
Method 2 is proven to perform as well as an “oracle method,”
which observes all latent factors. This lends further support to
our aforementioned claim of “blessing of dimensionality.” Such
a best possible rate improvement is new to the existing literature,
and counted as another contribution of this article. All these
conclusions hold when the number of factors K is assumed to
be fixed and known, while s, p, and T all tend to infinity.

The idea of using data as much as possible brings compu-
tational challenges. Fortunately, we observe that all the p vari-
ables are controlled by the same group of latent factors. Having
said that, we can actually split p variables into smaller groups,
and then use each group to estimate latent factors. The final
factor estimate is obtained by averaging over these repeatedly
estimated factors.Obviously, this divide-and-conquer algorithm

can be implemented in a parallel computing environment, and
thus produces factor estimators in amuchmore efficientway.On
the other hand, our theory illustrates that this new method per-
forms as well as the “pooled analysis,” where we run the method
over the whole dataset. Simulation studies further demonstrate
the boosted computational speed and satisfactory statistical
performance.

The rest of the article is organized as follows. We com-
pare the Fisher information of the factors by the two meth-
ods in Section 2. Section 3 describes the WPC method. As
a main result, the convergence rates of different estimators of
�S are further compared in Section 4 under various norms.
Section 5 introduces the divide-and-conquer method for accel-
erating computation, while Section 6 presents all simulation
results. Section 7 gives a microarray data example to illustrate
our proposal. All technical proofs are delegated to theAppendix.

For any vector a, let aS denote a sub-vector of a with indices
in S. Denote ‖a‖ the Euclidean norm of a. For a symmet-
ric matrix A ∈ R

d×d , let AI,J be the submatrix of A with row
and column indices in I and J, respectively. We write AS for
AS,S for simplicity. Let λ j(A) be the jth largest eigenvalue of
A. Denote ‖A‖ = max{|λ1(A)|, |λd(A)|} the operator norm of
A, ‖A‖max = maxi j |ai j| the max-norm of A, where ai j is the
(i, j)th entry of A, ‖A‖1 = maxi

∑d
j=1 |ai j| the L1 norm of

A, ‖A‖F = √
tr(A′A) the Frobenius norm of A, and ‖A‖M =

d−1/2‖M−1/2AM−1/2‖F the relative norm of A to M, where the
weight matrix M is assumed to be positive definite. For a non-
square matrix C, let CS be the submatrix of C with row indices
in S.

2. Fisher Information of Common Factor

In this section, we treat the vector of common factors as a fixed
unknown parameter, and compute its Fisher informationmatri-
ces based on Method 1 and Method 2. In the computation, the
loading matrix B is treated as deterministic in Proposition 2. In
Proposition 3, the Fisher information is computed for each given
B and then averaged over B by regarding it as a realization of
a chance process, which bypasses the block diagonal assump-
tion needed without taking average over B. In other sections, we
adopt the convention regarding the factors as random and B as
fixed.We start by calculating the Fisher information of θt := Bft ,
which serves as an intermediate step in obtaining that for ft . For
simplicity of notation, time t is suppressed in (yt , ft ,ut , θt ) so
that it becomes (y, f,u, θ) in this section.

Given a general density function of y, denoted as h(y; θ), the
Fisher information of θ contained in full data is given by

Ip(θ) = E
[(

∂ log h(y; θ)

∂θ

)(
∂ log h(y; θ)

∂θ

)′]
.

When only data in S is used, the Fisher information of θS is given
by

IS(θS) = E
[(

∂ log hS(yS; θS)

∂θS

)(
∂ log hS(yS; θS)

∂θS

)′]
,

where hS is the marginal density of yS for the target set of
variable S. Our first proposition shows that {Ip(θ)}S, the
submatrix of Ip(θ) restricted on S, dominates IS(θS)under amild
condition.
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Proposition 1. If h(y; θ) = h(y − θ) and the density function
h(y − θ) satisfies the following regularity condition:

∇yS

∫
h(yS − θS, ySc − θSc )dySc

=
∫

∇ySh(yS − θS, ySc − θSc )dySc , (3)

then {Ip(θ)}S � IS(θS) in the sense that {Ip(θ)}S − IS(θS) is pos-
itive semidefinite.

The regularity condition (3) is fairly mild, as illustrated in the
following examples.

Example 1. In model 1, if uS and uSc are independent, then (3)
holds.
Example 2. If y follows an elliptical distribution that

h(y; θ) ∝ g
(
(y − θ)′�−1(y − θ)

)
,

where the mapping function g(t ) : [0,∞) → [0,∞) satisfies
that |g′(t )| ≤ cg(t ) for some positive constant c, and E|y| <

∞, then (3) holds. Example 2 includes some commonly used
multivariate distributions as its special cases, for example,
the multivariate normal distribution and the multivariate t-
distribution with degrees of freedom greater than 1. The proof
is given in Appendix A.2.

We next compute the Fisher information of f based on the
full dataset, denoted as I(f), and the partial dataset restricted
on S, denoted as IS(f). This can be done easily by noting that
I(f) = B′Ip(θ)B. Indeed, the WPC estimators used in Methods
1 and 2 achieve such efficiency since their asymptotic variances
are proven to be the inverse of I(f) and IS(f), respectively; see
Remark 1.

Proposition 2 shows that I(f) dominates IS(f), if Ip(θ) is
block-diagonal, that is, {Ip(θ)}S,Sc = 0. Hence, common factors
can be estimated more efficiently using additional data ySc . The
above block-diagonal condition implies that the idiosyncratic
error of additional variables cannot be confounded with that
of the variables-of-interest. For example, if u is normal, then
{Ip(θ)}S,Sc = 0 indeed requires that uS is independent of uSc .

Proposition 2. Under condition (3), if {Ip(θ)}S,Sc = 0, I(f) �
IS(f).

So far we treat B as being deterministic. Rather,
Proposition 3 regards {bi} as a realization of a chance pro-
cess. Under this assumption, the expectation of I(f) over B
is shown to always dominate that of IS(f). In other words, we
can claim that averaging over loading matrices, a larger dataset
contains more information about the unknown factors.

Proposition 3. If {bi}pi=1 are iid random loadings with E(bi) = 0
and (3) holds, then E[I(f)] � E[IS(f)], where the expectation is
taken with respect to the distribution of B.

3. Efficient Estimation of Common Factor

In this section, we construct an efficient estimator of the com-
mon factors by showing that its asymptotic variance is exactly
the inverse of its Fisher information. This together with the
arguments in Section 2 enables us to draw a conclusion that

using more data results in a more efficient factor estimator with
a smaller asymptotic variance.

From a least-square perspective, when the loading matrix
B is known, ft can be estimated by the weighted least-
squares: argminft∈RK

∑T
t=1(yt − Bft )′�−1

u (yt − Bft ). In the
high-dimensional setting (p � T ), we assume �u is a sparse
matrix and define its sparsity measurement as

mp = max
i≤p

∑
j 
=i

I(σu,i j 
= 0),

where σu,i j is the (i, j)th entry of �u. (4)

In particular, we assume the following sparsity condition:

mp = o

(
min

{
1
p1/4

√
T

log p
, p1/4

})
and

p∑
i=1

∑
j 
=i

I(σu,i j 
= 0) = O(p). (5)

Now, we propose to solve the following constrained weighted
least-square problem:

(B̂, f̂1, . . . , f̂T ) = argmin
B,ft

T∑
t=1

(yt − Bft )′�̃
−1
u (yt − Bft ),

subject to
1
T

T∑
t=1

ft f ′t = IK; B′�̃
−1
u B is diagonal, (6)

where �̃u is a regularized estimator of �u to be discussed later.
The above constraint is a sample analog of the identifiability con-
dition (2). The involvement of the weight �̃

−1
u is to account for

the heterogeneity among the data and leads to more efficient
estimation of (B, ft ) (Choi 2012; Bai and Liao 2013).

Indeed, an initial estimator �̃u of the idiosyncratic matrix
�u is needed for solving the constrained weighted least-square
problem. We propose to obtain such an estimator by the fol-
lowing procedure, which is in the same spirit as the estima-
tion of the idiosyncratic matrix in the POETmethod (Fan, Liao,
and Mincheva 2013). Let Sy = T−1∑T

t=1(yt − ȳ)(yt − ȳ)′ be
the sample covariance of y and {(λi, ζi)}pi=1 be eigen-pairs of
Sy with λ1 ≥ λ2 ≥ · · · ≥ λp. Denote R = Sy −∑K

i=1 λiζiζ
′
i. We

estimate �u by �̃u, whose (i, j)th entry

σ̂u,i j =
{
rii, for i = j,
si j(ri j), for i 
= j, where R = (ri j),

si j(ri j) is a general entry-wise thresholding function (Antoniadis
and Fan 2001) such that si j(z) = 0 if |z| ≤ τi j and |si j(z) − z| ≤
τi j for |z| > τi j. In our article, we choose hard-thresholding even
though SCAD (Fan and Li 2001) andMCP (Zhang 2010) are also
applicable. We specify the entry-wise thresholding level as

τi j(p) = C√riir j jω(p), where ω(p) =
√
log p
T

+ 1√
p
,

(7)
and C is a constant chosen by cross-validation. The threshold-
ing parameter Cω(p) is applied to the correlation matrix. This
is similar to the adaptive thresholding estimator for a general



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 383

covariance matrix (Rothman, Levina, and Zhu 2009), where the
entry-wise thresholding level depends on p.

With �̃u being the thresholding estimator described above,
the constrainedweighted least-square problem (6) can be solved
by the weighted principal component (WPC)method. The solu-
tion is given by

F̂ = (̂f1, . . . , f̂T )′ and B̂ = T−1YF̂, (8)

where Y = (y1, . . . , yT ) and the columns of F̂ are the eigenvec-
tors corresponding to the largest K eigenvalues of the T × T
matrix

√
TY′�̃

−1
u Y (Bai and Liao 2013).

In the following, we give a result showing that the WPC esti-
mator is asymptotically efficient. Indeed, Bai and Liao (2013)
derive the asymptotic normality of f̂t under the following
conditions:

(i) All eigenvalues of B′B/p are bounded away from zero
and infinity as p → ∞;

(ii) There exists a K × K diagonal matrix Q such that
B′�−1

u B/p → Q. In addition, the diagonal elements of
Q are distinct and bounded away from infinity.

(iii) For each fixed t ≤ T , (B′�−1
u B)−1/2B′�−1

u ut
d−→

N(0, IK ), as p → ∞, together with the sparsity assump-
tion (5), and some additional regularity conditions given
in Section A.1.When

√
p log p = o(T ), it is shown that

√
p(̂ft − Hft )

D−→ N(0,Q−1), (9)

whereH is a specific rotation matrix given by

H = V̂−1F̂′FB′�̃
−1
u B/T, (10)

and V̂ is a K × K diagonal matrix of the largest K eigen-
values of Y′�̃

−1
u Y/T . The rotation matrix H is intro-

duced here so that Hft is an identifiable quantity from
the data. See more discussion about the identifiability in
Remark 2.

Condition (i) is a “pervasive condition” requiring that the
common factors affect a nonnegligible fraction of subjects. This
is a common assumption for the principal components based
methods (Fan, Liao, and Mincheva 2011; Bai and Liao 2013). In
condition (ii), B′�−1

u B is indeed the Fisher information (under
Gaussian errors) contained in p variables, while the limitQ can
be viewed as an average information for each variable. Hence,
the asymptotic normality in (9) shows that f̂t is efficient as its
asymptotic variance attains the inverse of the (averaged) Fisher
information.
Remark 1. The results in Section 2 together with (9) imply that
Method 2 is in general better thanMethod 1 in the estimation of
common factors. To explainwhy, we consider two different cases
here. When p is an order of magnitude larger than s, where s is
the number of variables of interest. Method 2 produces a better
estimator of factors with a faster convergence rate. Even when p
and s diverge at the same speed, the factor estimator based on
Method 2 is shown to possess a smaller asymptotic variance, as
long as �u,S,Sc = 0. Recall that B′�−1

u B = I(f) and B′
S�

−1
u,SBS =

IS(f) under Gaussian errors, and they also correspond to the
inverse of the asymptotic variance given by Methods 1 and 2,
respectively. Then, Proposition 2 implies that Method 2 has a
smaller asymptotic variance, if �u,S,Sc = 0. Alternatively, if B is

treated as being random, Proposition 3 immediately implies that
E(B′

S�
−1
u,SBS) � E(B′�−1B). Therefore, even without the block

diagonal assumption, Method 2 produces a more efficient factor
estimate on average.

4. CovarianceMatrix Estimation

One primary goal in this article is to obtain an accurate estima-
tor of the covariance matrix �S = E(ySy′

S) for the variables-of-
interest. In this section, we compare three different estimation
methods, namely, Methods 1, 2, and Oracle Method, in terms
of their rates of convergence (under various norms). Obviously,
these rates depend on how accurately the realized factors are
estimated as demonstrated later.

Below we describe these three methods in full details.
� Method 1:
i. Use solely the data in the subset S to obtain estimators
of the realized factors F̂(1) and the loading matrix B̂1 =
T−1YSF̂(1) based on (8);

ii. Let (̂f (1)
t )′ be the tth row of F̂(1), (̂b(1)

i )′ be the ith row
of B̂1, ûit = yit − (̂b(1)

i )′̂f (1)
t , and σ̂i j = 1

T
∑T

t=1 ûit û jt .
The (i, j)th entry of the idiosyncratic matrix estima-
tor �̂

(1)
u,S of �u,S is given by thresholding σ̂i j at the level

of Cθ̂
1/2
i j ω(s), where ω(s) is defined in (7) and θ̂i j =

1
T
∑T

t=1(ûit û jt − σ̂i j)
2;

iii. The final estimator is given by �̂
(1)
S = B̂1B̂′

1 + �̂
(1)
u,S.

� Method 2:
i. Use all p variables to obtain the estimate F̂(2) as given in
(8) for the realized factors and then estimate the loading
BS by B̂2 = T−1YSF̂(2);

ii. Follow the same procedure as in Method 1 to obtain the
estimator �̂

(2)
u,S but based on F̂(2) and B̂2;

iii. The final estimator is given by �̂
(2)
S = B̂2B̂′

2 + �̂
(2)
u,S.

� Oracle Method:
i. Estimate the loading by B̂o = T−1YSF, where F =

(f1, . . . , fT )′ are the true factors.
ii. The idiosyncratic matrix estimator �̂

o
u,S is given by the

same procedure as in Method 1, with b̂(1)
i and f̂ (1)

t being
replaced by b̂oi and ft , respectively.

iii. The final estimator is given by �̂
o
S = B̂oB̂′

o + �̂
o
u,S.

Theorem1depicts the estimation accuracy of�S by the above
three methods with respect to the following measurements:

‖�̂S − �S‖�S , ‖�̂S − �S‖max,

∥∥∥�̂−1
S − �−1

S

∥∥∥ ,

where ‖�̂S − �S‖�S = p−1/2‖�−1/2
S �̂S�

−1/2
S − IS‖F is a norm

of the relative errors. Note that the results of Fan, Liao, and
Mincheva (2013) cannot be directly used here since we employ
theweighted principal component analysis to estimate the unob-
served factors. This is expected to be more accurate than the
ordinary principal component analysis, as shown inBai andLiao
(2013). Indeed, the technical proofs for our results are tech-
nically more involved than those by Fan, Liao, and Mincheva
(2013).

We assume that s is much less than p, that is, s = o(p),
but both tend to infinity. Under the pervasive condition (i),



384 Q. LI ET AL.

‖�S‖ ≥ cs and therefore diverges. For this reason, we con-
sider the relative norm ‖�̂S − �S‖�S , instead of ‖�̂S − �S‖, and
the operator norm ‖�̂−1

S − �−1
S ‖ for estimating the inverse. In

addition, we consider another element-wise max norm ‖�̂S −
�S‖max. We show that if p is large with respect to s and T ,
Method 2 performs as well as the Oracle Method, both of which
outperform Method 1. As a consequence, even if we are only
interested in the covariance matrix of a small subset of vari-
ables, we should use all the data to estimate the common factors,
which ultimately improves the estimation of �S. In particular,
we are able to specify an explicit regime of (s, p) under which
the improvements are substantial. However, when s � p, that is,
they are in the same order, using more data does not show as
dramatic improvements for estimating �S. This is expected and
will be clearly seen in the simulation section.

Before stating Theorem 1, we need a few preliminary results:
Lemmas 1–3. Specifically, Lemma 1 presents the uniform con-
vergence rates of the factor estimates by Methods 1 and 2.
Based on that, Lemmas 2 and 3 further derive the estimation
accuracy of factor loadings and idiosyncraticmatrix by the three
methods, respectively. These results together lead to the estima-
tion error rates of�S in Theorem 1 w.r.t. three measures defined
above. Additional Lemmas supporting the proof are given in
the Appendix. Again, these kinds of results cannot be obtained
directly from Fan, Liao, and Mincheva (2013) due to our use of
WPC.
Lemma1. Suppose that conditions (i), (ii), the sparsity condition
(5), and additional regularity conditions (iv)–(vii) in SectionA.1
hold for both s and p. If

√
p log p = o(T ) and T = o(s2), then

we have

max
t≤T

∥∥∥̂f (1)
t − H1ft

∥∥∥ = OP

(
1√
T

+ T 1/4
√
s

)
and

max
t≤T

∥∥∥̂f (2)
t − H2ft

∥∥∥ = OP

(
1√
T

+ T 1/4

√
p

)
,

where H1 = V̂−1
1 F̂(1)′FB′

S�̃
−1
u,SBS/T , H2 = V̂−1

2 F̂(2)′FB′�̃
−1
u

B/T , V̂1 is the diagonal matrix of the largest K eigenvalues
of Y′

S�̃
−1
u,SYS/T and V̂2 is the diagonal matrix of the largest K

eigenvalues of Y′�̃
−1
u Y/T .

Remark 2. H1 and H2 correspond to the rotation matrix H
defined in (10) using Methods 1 and 2, respectively. Recall that
F = (f1, . . . , fT )′, thenHft = T−1V̂−1F̂(Bf1, . . . ,BfT )′�̃

−1
u Bft .

Note that Hft only depends on quantities V−1F̂, �̃
−1
u and the

identifiable component {Bft}Tt=1. Therefore, there is no identifi-
ability issue regardingHft . In other words, even though ft itself
may not be identifiable, an identifiable rotation of ft can be con-
sistently estimated by f̂t .

Lemma 1 implies thatMethod 2 produces a better factor esti-
mate if

0.5 < γs < 1.5 ≤ γp < 2,

by representing s and p as s � Tγs and p � Tγp .
It is not surprising that the estimation accuracy of load-

ing matrix also varies among these three methods as shown in
Lemma 2.

Lemma 2. Under conditions of Lemma 1,

max
i≤s

∥∥̂b(1)
i − H1bi

∥∥ = OP (w1) , where w1 := 1√
s

+
√
log s
T

,

max
i≤s

∥∥̂b(2)
i − H2bi

∥∥ = OP (w2) , where w2 := 1√
p

+
√
log s
T

,

max
i≤s

∥∥̂boi − bi
∥∥ = OP (wo) , where wo :=

√
log s
T

.

Similarly, Lemma 2 indicates that Method 2 performs as well
as the Oracle Method, both of which are better than Method 1,
that is, w2 = wo < w1, if

0.5 < γs < 1 ≤ γp < 2,

by representing s and p in the order of T as above. We remark
that the extra terms 1/

√
s and 1/

√
p in w1 and w2 (in compar-

ison with the oracle rate wo) are due to the factor estimation.
Another preliminary result regarding the estimation of the iden-
tifiable component b′

ift is given in Lemma A.1.
Similar insights can be delivered from Lemma 3 on the esti-

mation of �u,S.

Lemma 3. Under conditions of Lemma 1, it holds that∥∥�̂(1)
u,S − �u,S

∥∥ = OP (msw1) = ∥∥(�̂(1)
u,S
)−1 − �−1

u,S

∥∥,∥∥�̂(2)
u,S − �u,S

∥∥ = OP (msw2) = ∥∥(�̂(2)
u,S
)−1 − �−1

u,S

∥∥,∥∥�̂o
u,S − �u,S

∥∥ = OP (mswo) = ∥∥(�̂o
u,S
)−1 − �−1

u,S

∥∥,
wherems is defined as in (4) with p being replaced by s.

Now, we are ready to state our main result on the estimation
of �S based on the above preliminary results. From Theorem 1,
it is easily seen that the comparison of the estimation accuracy
of �S among three methods is solely determined by the relative
magnitude of wo, w1, and w2. Therefore, we should use addi-
tional variables to estimate the factors if p is much larger than
s in the sense that T/ log s = O(p) and s log s = o(T ) (implying
w2 = wo < w1).

Theorem 1. Under conditions of Lemma 1, it holds that
1. For the relative norm, ‖�̂(1)

S − �S‖�S = OP(
√
sw2

1 +
msw1), ‖�̂(2)

S − �S‖�S = OP(
√
sw2

2 + msw2), and
‖�̂o

S − �S‖�S = OP(
√
sw2

o + mswo).
2. For the max-norm, ‖�̂(1)

S − �S‖max = OP(w1), ‖�̂(2)
S −

�S‖max = OP(w2), and ‖�̂o
S − �S‖max = OP(wo).

3. For the operator norm of the inverse matrix,
‖(�̂

(1)
S )−1 − �−1

S ‖ = OP(msw1), ‖(�̂
(2)
S )−1 − �−1

S ‖ =
OP(msw2) and ‖(�̂

o
S)

−1 − �−1
S ‖ = OP(mswo).

Remark 3. So far, we assumed that the number of factors
K is fixed and known. A data-driven choice of K has been
extensively studied in the econometrics literature, for exam-
ple, by Bai and Ng (2002), Kapetanios (2010). To estimate K,
we can adopt the method by Bai and Ng (2002) and pro-
pose a consistent estimator of K (by allowing p,T → ∞) as
follows:

K̂ = argmin
0≤k≤N

log
{

1
pT

‖Y − T−1YF̂kF̂′
k‖2F
}

+ kg(p,T ),
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whereN is a predefinedupper bound, F̂k is aT × kmatrixwhose
columns are

√
T times the eigenvectors corresponding to the

largest k eigenvalues of Y′Y, and g(p,T ) is a penalty function.
Two examples suggested by Bai and Ng (2002) are

g(T, p) = p+ T
pT

log
(

pT
p+ T

)
or

g(T, p) = p+ T
pT

log(min{p,T}).

Under our assumptions (i)–(x), all conditions required by theo-
rem 2 of Bai and Ng (2002) hold. Hence, their theorem implies
that P(K̂ = K) → 1. Then, conditioning on the event that
{K̂ = K}, our Theorem1 still holds by replacingK with K̂. Other
effective methods for selecting the number of factors include
the eigen ratio method by Lam and Yao (2012) and Ahn and
Horenstein (2013).

Remark 4. When K grows with p and T , Fan, Liao, and
Mincheva (2013) gave the explicit dependence of the conver-
gence rates on K for their proposed POET estimator. By adopt-
ing their technique, we can obtain the following results:

1. ‖�̂(1)
S − �S‖�S = OP(K

√
sw2

1 + K3msw1), ‖�̂(2)
S −

�S‖�S = OP(K
√
sw2

2 + K3msw2), ‖�̂o
S − �S‖�S =

OP(K
√
sw2

o + K3mswo);
2. ‖�̂(1)

S − �S‖max = OP(K3w1), ‖�̂(2)
S − �S‖max = OP

(K3w2),‖�̂o
S − �S‖max = OP(K3wo);

3. ‖(�̂
(1)
S )−1 − �−1

S ‖ = OP(K3msw1), ‖(�̂
(2)
S )−1 − �−1

S ‖
= OP(K3msw2), ‖(�̂

o
S)

−1 − �−1
S ‖ = OP(K3mswo).

Again, the rate difference among three types of estima-
tors only depends on wo, w1, and w2. Therefore, the
same conclusion (when p is much larger than s, using
additional variables improves the estimation of �S) can
still be made even if K diverges. As long as K diverges
in the rate that K = o(min{1/(√sw2

1 ), 1/(msw1)
1/3}),

K = o(1/w1/3
1 ) or K = o(1/(msw1)

1/3), the same bless-
ing of dimensionality phenomena persist in terms of
estimation consistency in relative norm, max norm, or
operator norm of the inverse, respectively.

5. Divide-and-Conquer ComputingMethod

As discussed previously, we prefer using auxiliary data infor-
mation as much as possible even we are only interested in the
covariance matrix of some particular set of variables. But this
can bring up heavy computational burden. This concern moti-
vates a simple divide-and-conquer scheme that splits all p vari-
ables in Y. Without loss of generality, assume that p rows of
matrix Y can be evenly divided into M groups with p/M vari-
ables in each group. The s variables of interest can possibly be
assigned to different groups.

Divide-and-Conquer Computation Scheme
1. In the mth group, obtain the initial estimator �̃u,m by

using the adaptive thresholding method as described in
Section 3 based on the data in themth group only.

2. Denote Ym as the data vector corresponding to the vari-
ables in the mth group and let F̂m = (̂fm,1, . . . , f̂m,T )′,

where its columns are the eigenvectors correspond-
ing to the largest K eigenvalues of the T × T matrix√
TY′

m�̃
−1
u,mYm. The computation in the above two steps

can be done in a parallel manner.
3. Average {̂fm,t}Mm=1 to obtain a single estimator of ft as

f̄t = 1
M

M∑
m=1

f̂m,t .

The loading matrix estimate is given by B̄S = T−1YSF̄,
where F̄ = (f̄1, . . . , f̄T )′.

4. The idiosyncratic matrix is estimated as follows. Let
f̄ ′t be the tth row of F̄ and b̄′

i be the ith row of
B̄S. Let ûit = yit − b̄′

i f̄t , σ̂i j = T−1∑T
t=1 ûit û jt , and θ̂i j =

T−1∑T
t=1(ûit û jt − σ̂i j)

2. The (i, j)th entry of �̄u,S is
given by thresholding σ̂i j at the level ofCθ̂

1/2
i j ω(s), where

ω(s) is defined as in (7) with p replaced by s.
5. The final estimator of the covariance matrix is given by

�̄S = B̄SB̄′
S + �̄u,S.

We show that, ifM is fixed,

‖�̄S − �S‖�S = OP
(√

sw2
2 + msw2

)
,

‖�̄S − �S‖max = OP (w2) ,

‖(�̄S)
−1 − �−1

S ‖ = OP (msw2) .

These rates match the rates of �̂(2)
S attained by Method 2, where

all p variables are pooled together for the analysis. The proof is
given in Appendix A.3. The simulation results in Section 6 fur-
ther demonstrate that without sacrificing the estimation accu-
racy, the divide-and-conquer method runs much faster than
Method 2. Therefore, the divide-and-conquer method is prac-
tically useful when dealing with massive dataset.

The main computational cost of our method comes from
taking the inverse of �̃u. For our Method 2, where all p vari-
ables are pooled together for the analysis, the computational
complexity of the inversion is O(p3). On the other hand, for
the divide-and-conquer method, the corresponding estimator
�̃u,m in the mth group only needs a computational cost of
O((p/M)3) to be inverted. Then, the total computation com-
plexity is O(p3/M2). Hence, the computational speed can be
boosted by M2-fold. Such a computational acceleration can
also be observed from simulation study results in Figure 1(d).
Other operations like the eigen-decomposition on the T × T
matrix

√
TY′�̃

−1
u Y do not have dominating computational

cost, as we assume that p is much larger than T . WhenM grows
too fast, the divide-and-conquer method may lose estimation
efficiency compared with the pooled analysis (Method 2).
However, considering its boost of computation, the divide-and-
conquer method is practically useful when dealing with massive
dataset.

6. Simulations

We use simulated examples to compare the statistical perfor-
mances of Methods 1, 2, and the Oracle Method. We fix the
number of factors K = 3 and repeat 100 simulations for each
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Figure . Estimation error by four methods and their computational time: the dotted lines represent the means over  simulations and the segments represent the
corresponding standard deviations.

combination of (s, p,T ). The loading bi, the factor ft and the
idiosyncratic error ut are generated as follows:

� {bi}pi=1 are iid from NK (0, 5IK ).
� {ft}Tt=1 are iid from NK (0, IK ).
� {ut}Tt=1 are iid from Np(0, 50Ip).

The observations {yt}Tt=1 are generated from (1) using bi, ft , and
ut from the above. Tables 1–4 report the estimation errors of the
factors, the loading matrices, and the covariance-of-interest �S
in terms of different measurements.

We see from Tables 1 and 2 that when s = 50 and p =
1000, 2000, Method 1 performs much worse thanMethod 2, for
both T = 200 and T = 400. However, when s increases to 800
with pbeing the same, Tables 3 and 4 show that the improvement
of Method 2 over Method 1 is less profound. This is expected
as the set of interest already contains sufficiently rich informa-
tion to produce an accurate estimator for realized factors. In
general, we note that Method 2 is the most advantageous in
the settings where s is much smaller than p. In addition, from

Tables 3 and 4, we can tell that Method 2 comes closer to the
Oracle method as p grows. In practice, we also observe that
the WPC factor estimator performs better than the unweighted
PC estimator when ut is heteroscedastic. Due to the space
limit, we choose not to present the simulation results in this
model.

For further comparison with the divide-and-conquer
method, we vary T from 50 to 500 and set (s, p,M) as
s = �T 0.6�, p = �T 1.4�, and M = �T 0.2�. Figure 1 shows
the estimation errors of the four methods together with the
corresponding computational time. Again, when p is large,
Method 2 performs as well as the Oracle Method, both of
which greatly outperform Method 1. However, its computation
becomes much slower in this case. In contrast, the divide-and-
conquer method is much faster, while maintaining comparable
performance as Method 2. In the extreme case that p is around
6000 (T = 500), the divide-and-conquer method can boost the
speed by nine-fold for Method 2.
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Table . Comparison of three methods when s is much smaller than p (T= ).

(s, p) (50, 1000) (50, 2000)

Method M M ORA M M ORA

||�̂S − �S||�S
.(.) .(.) .(.) .(.) .(.) .(.)

||�̂−1
S − �−1

S || .(.) .(.) .(.) .(.) .(.) .(.)

||�̂S − �S||max .(.) .(.) .(.) .(.) .(.) .(.)

maxt≤T ||f̂t − Hft || .(.) .(.) NA .(.) .(.) NA

maxi≤s ||̂bi − Hbi|| .(.) .(.) .(.) .(.) .(.) .(.)

maxi≤s,t≤T ||̂b′
i f̂t − b′

ift || .(.) .(.) .(.) .(.) .(.) .(.)

NOTE: M, M, and ORA stand for Method , , and Oracle method, respectively.

Table . Comparison of three methods when s is much smaller than p (T= ).

(s, p) (50, 1000) (50, 2000)

Method M M ORA M M ORA

||�̂S − �S||�S
.(.) .(.) .(.) .(.) .(.) .(.)

||�̂−1
S − �−1

S || .(.) .(.) .(.) .(.) .(.) .(.)

||�̂S − �S||max .(.) .(.) .(.) .(.) .(.) .(.)

maxt≤T ||f̂t − Hft || .(.) .(.) NA .(.) .(.) NA

maxi≤s ||̂bi − Hbi|| .(.) .(.) .(.) .(.) .(.) .(.)

maxi≤s,t≤T ||̂b′
i f̂t − b′

ift || .(.) .(.) .(.) .(.) .(.) .(.)

NOTE: M, M, and ORA stand for Method , , and Oracle method, respectively.

7. Real Data Example

We use a real data example to illustrate how different utiliza-
tion of available variables can affect the inference of the variables
of interest. Krug et al. (2012) carried out a gene profiling study
among 40 Portuguese and Spanish adults to identify key genetic
risk factors for ischemic stroke. Among them, 20 subjects were

patients having ischemic stroke and the others were controls.
Their gene profiles were obtained using the GeneChip Human
Genome U133 Plus 2.0 microarray. The data were available at
Gene Expression Omnibus with access name “GSE22255.”

To judge how effectively the gene expression can distin-
guish ischemic stroke and controls, we applied the Linear Dis-
criminant Analysis (LDA) to this dataset. We randomly chose

Table . Comparison of three methods when s is comparative to p (T= ).

(s, p) (800, 1000) (800, 2000)

Method M M ORA M M ORA

||�̂S − �S||�S
.(.) .(.) .(.) .(.) .(.) .(.)

||�̂−1
S − �−1

S || .(.) .(.) .(.) .(.) .(.) .(.)

||�̂S − �S||max .(.) .(.) .(.) .(.) .(.) .(.)

maxt≤T ||f̂t − Hft || .(.) .(.) NA .(.) .(.) NA

maxi≤s ||̂bi − Hbi|| .(.) .(.) .(.) .(.) .(.) .(.)

maxi≤s,t≤T ||̂b′
i f̂t − b′

ift || .(.) .(.) .(.) .(.) .(.) .(.)

NOTE: M, M, and ORA stand for Method , , and Oracle method, respectively.

Table . Comparison of three methods when s is comparative to p (T= ).

(s, p) (800, 1000) (800, 2000)

Method M M ORA M M ORA

||�̂S − �S||�S
.(.) .(.) .(.) .(.) .(.) .(.)

||�̂−1
S − �−1

S || .(.) .(.) .(.) .(.) .(.) .(.)

||�̂S − �S||max .(.) .(.) .(.) .(.) .(.) .(.)

maxt≤T ||f̂t − Hft || .(.) .(.) NA .(.) .(.) NA

maxi≤s ||̂bi − Hbi|| .(.) .(.) .(.) .(.) .(.) .(.)

maxi≤s,t≤T ||̂b′
i f̂t − b′

ift || .(.) .(.) .(.) .(.) .(.) .(.)

NOTE: M, M, and ORA stand for Method , , and Oracle method, respectively.
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Figure . Eigen-values of the sample covariance matrix for GSE.

10 subjects as the test set and the rest as the training set. We
repeated the random splitting for 100 runs. In each run, we
selected the set of expressed differentially (DE) genes with a
threshold of over 1.2-fold change and a Q-value ≤ 0.05, which
is a commonly used quantity to define DE genes (Storey 2002).
An LDA rule was then learned from the training set using the
selected genes and further applied to the test set for classifying
cases and controls. The LDA rule classifies a subject as a case if

δ̂
′
�̂

−1
(x − μ̄) ≥ 0, (11)

where δ̂ = μ̂1 − μ̂0 ∈ R
s is the samplemean difference between

the two groups (case–control), s is the number of selected genes,
�̂ ∈ R

s×s is an estimator of the true covariance matrix � of the
selected genes, and μ̄ = (μ̂1 + μ̂0)/2. μ̄, δ̂, and �̂ are obtained
from the training set and x is the gene expression of subjects in
the test set.

As s can be larger than the sample size, the traditional LDA
where �̂ is the sample covariance is no longer applicable. An
alternative method to estimate � is adopting the factor model.
Factor modeling is widely used in the genomics literature to
model the dependencies among genes (Kustra, Shioda, and Zhu
2006; Carvalho et al. 2012). Several factors, like the natural path-
way structure (Ogata et al. 2000) can be the latent factors affect-
ing the correlation among genes. A few spiked eigenvalues of
the sample covariance in Figure 2 also suggest the existence of
potential latent factors in this dataset. Again, there are two ways
using the factor model. One way is to use Method 1, where
all procedures are done based on the selected genes only. The
resulting rule is referred as “LDA-1” in Figure 3. Another way
is to use auxiliary data as in Method 2. More specifically, it
first uses data from all involved genes and subjects in the train-
ing set to estimate the latent factors. These estimated factors
are then applied to the set of selected genes, where their load-
ings and idiosyncratic matrix estimators are obtained. Comb-
ing them together produces the covariance matrix estimator,
which is still an s × s matrix. The resulting rule is referred as

Figure . Misclassification rates of LDA- and LDA- over  random splits: the dot-
ted lines represent themeans over  splits and the segments represent the corre-
sponding standard deviations.

“LDA-2” in Figure 3. Recall that the only difference between the
two rules is that they use different covariance estimators.

Figure 3 plots the average misclassification rates on the test
set against the number of factors for the 100 random splits . It is
clearly seen that LDA-2 gives better misclassification rates than
LDA-1,which is solely due to a different estimation of the covari-
ance matrix. The results lend further support to our claim that
using more data is beneficial.
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