

1 **Electronic Structure and Anisotropic Compression of Os_2B_3 to 358 GPa**

2 Kaleb C. Burrage, Chia-Min Lin, Wei-Chih Chen, Cheng-Chien Chen*, and Yogesh K. Vohra*

3 *Department of Physics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA*

4 E-mail: chencc@uab.edu; ykvohra@uab.edu

5

6 **Abstract**

7 High pressure study on ultra-hard transition-metal boride Os_2B_3 was carried out in a diamond anvil
8 cell under isothermal and non-hydrostatic compression with platinum as an X-ray pressure
9 standard. The ambient-pressure hexagonal phase of Os_2B_3 is found to be stable with a volume
10 compression $V/V_0 = 0.670 \pm 0.009$ at the maximum pressure of 358 ± 7 GPa. Anisotropic
11 compression behavior is observed in Os_2B_3 to the highest pressure, with the c -axis being the least
12 compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a
13 bulk modulus $K_0 = 397$ GPa and its first pressure derivative $K_0' = 4.0$. The experimental lattice
14 parameters and bulk modulus at ambient conditions also agree well with our density-functional-
15 theory (DFT) calculations within an error margin of $\sim 1\%$. DFT results indicate that Os_2B_3 becomes
16 more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to
17 the highest pressure. DFT further enables the studies of charge distribution and electronic structure
18 at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds
19 result in a high incompressibility along the crystal c -axis. Our work helps to elucidate the
20 fundamental properties of Os_2B_3 under ultrahigh pressure for potential applications in extreme
21 environments.

22

23 Keywords: transition-metal borides, ultra-hard materials, high pressure, diamond anvil cell,
24 synchrotron x-ray diffraction, density functional theory, mechanical properties, crystal anisotropy

25

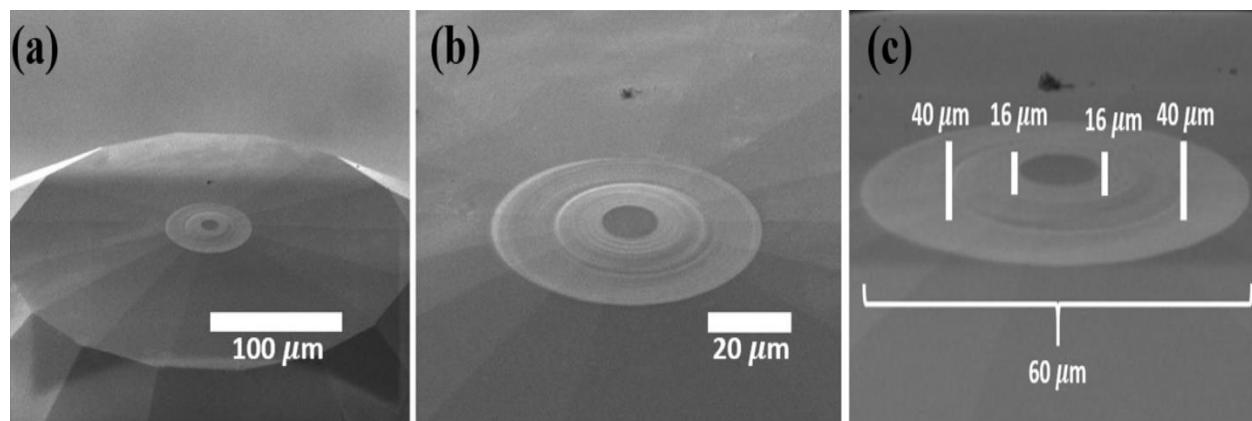
26

27

28

29

30 **1. Introduction**


31 The high-pressure behavior of ultra-hard and highly incompressible materials such as
32 covalently bonded light elements (*C*, *N*, *O*, and *B*), refractory metals (*Re*, *Os*, etc.), and ceramic
33 materials like transition-metal carbides and borides (*WC*, *ReB*₂, *OsB*₂, etc.) are of interest because
34 of their superior mechanical properties and industrial applications as super abrasives [1-3]. The
35 premium example of ultra-hard materials is diamond, and its mechanical and optical properties
36 under extreme conditions have been studied in detail [4]. However, diamonds and other carbon-
37 based materials are prone to oxidation in air at moderately high temperatures and reaction with
38 ferrous alloys, which make them less desirable in many industrial applications. Transition-metal
39 borides (TMBs) are proposed alternatives to diamond for abrasives and cutting tools, because some
40 TMBs like *OsB*₂ have high hardness of 25-35 GPa [5-7] and thermal stability at high temperatures.
41 The light-element boron forms covalent bonds with the transition metal once incorporated
42 interstitially in the metal lattice. The directional covalent bonds combined with the high valence
43 electron density gives the material its high incompressibility and hardness value. To date, micro-
44 hardness at ambient pressure and high-pressure studies have been carried out on to a maximum
45 pressures of 25-30 GPa, yet none has been conducted to pressures comparable to the bulk modulus
46 of the material other than a static compression of *ReB*₂ to 241 GPa [8]. Gu et al. have showed that
47 many TMBs, such as *OsB*₂, *OsB*, and *Os*₂*B*₃, have similar compression curves as diamond up to
48 30 GPa [9]. While many of the osmium-based TMBs were studied in detail, *Os*₂*B*₃ has received
49 little attention. The boron atom positions and crystal structure within *Os*₂*B*₃ were not accurately
50 determined until neutron diffraction experiments revealed its *B*-*B* distances in 2012 [10].

51 Recent advancements in diamond anvil cell (DAC) devices have allowed compression
52 experiments to reach multi-megabar pressures using focused ion beam (FIB) machined diamond
53 anvils [11-14]. These toroidal designs produced in Refs. [11] and [12] help reduce elastic
54 deformation known as cupping in diamonds under extreme pressures. These developments have
55 allowed diamond anvils to sustain static pressures as high as 5 megabars (500 GPa) in DACs,
56 replicating pressures of inner-planetary cores [12]. In this study, we utilize the toroidal diamond
57 anvil technology combined with X-ray diffraction (XRD) to compress the *Os*₂*B*₃ hexagonal phase.
58 For the first time, ultra-incompressible *Os*₂*B*₃ is studied under static pressures up to 358 ± 7 GPa.

59 The experimental data show good agreements with corresponding first-principles simulations.
60 This combined experiment-theory work provides insights to elucidate the fundamental properties
61 of Os_2B_3 under ultrahigh pressure for extreme-environment applications.

62 **2. Experimental and Computational Methods**

63 Compression experiment on Os_2B_3 was carried out with specially fabricated diamond
64 anvils that were machined using a Ga^+ focused ion beam (FIB). A toroidal design with a 16 micron
65 culet and 40 micron outer region was made with a TESCAN LYRA 3 FIB parameters of 30keV
66 accelerating voltage, 4.5 nA beam current, and a 50 nm beam size at the University of Alabama's
67 Central Analytical Facility. The total depth of the toroid design was milled to 3 microns and was
68 surrounded by an outer flat region extending to 60 microns shown in Figure 1. Two anvils were
69 fabricated in this fashion and placed within a membrane driven diamond anvil cell (DAC) in an
70 opposed anvil configuration. Compression of the sample material was conducted without using a
71 pressure medium and was non-hydrostatic in nature. A rhenium gasket was indented to 25 micron
72 thickness with a laser drilled sample hole of 8 micron diameter for sample placement. The gasket
73 aids in the prevention of radial displacement of the sample material as well as minimizing
74 diamond-diamond contact. The hexagonal phase of Os_2B_3 sample material (with space group
75 P6₃/mmc) was bought from American Elements of purity 99.9% and mixed with platinum powder
76 (99.97% purity) from Alfa-Aesar for pressure calibration.

77
78 **Figure 1.** Top view of machined toroidal anvil atop beveled diamond anvil culet. (b) Close-up image of
79 toroidal design on the central culet (c) Close-up side view of the toroidal anvil with design parameters of
80 16, 40, and 60 microns labeled.

81 X-ray diffraction (XRD) experiments were performed utilizing the X-ray diffraction setup
 82 at the HPCAT Beamline 16 BM-D at the Advanced Photon Source, Argonne National Laboratory
 83 [15]. The DAC was positioned so that an X-ray beam of wavelength $\lambda = 0.4133 \text{ \AA}$ and beam size
 84 $3.7 \mu\text{m}$ (vertical) $\times 3.8 \mu\text{m}$ (horizontal) FWHM (full width half maximum) along the
 85 compression axis and incident on the sample. Pressure gradients across the beam width were not
 86 measured, however, they are expected to be minimal due to the small size of the x-ray beam (3-4
 87 μm) compared to the diameter of the diamond culet (16 μm). XRD measurements were taken in
 88 approximately 2 GPa pressure steps totaling 157 data points. Scattered X-rays were collected on a
 89 Pilatus 1M detector situated downstream of beam incidence with sample to detector distance
 90 calibrated to 344.63 mm using CeO_2 calibration file analyzed in the Dioptas software. A schematic
 91 experimental setup was reported in Ref. [8]. The integrated sample XRD profiles were processed
 92 using the GSAS-II software [16] to extract crystal lattice parameters for the Os_2B_3 hexagonal
 93 phase, where the Os atom positions were held at $(1/3, 2/3, 1/4)$ and the B atoms at $(2/3, 1/3, 3/4)$.
 94 The Os_2B_3 data were fit to the 3rd-order Birch-Murnaghan equation of state (EOS) to determine
 95 the bulk modulus K_0 and its pressure derivative K_0' using the sample volumetric compression $x =$
 96 V_0/V :

$$97 P(V) = \frac{3}{2} K_0 \left[x^{\frac{7}{3}} - x^{\frac{5}{3}} \right] \left[1 + \frac{3}{4} (K_0' - 4) \left(x^{\frac{2}{3}} - 1 \right) \right]. \quad (1)$$

98 Ambient measurements of lattice parameters were taken at the University of Alabama at
 99 Birmingham via XRD analysis, and they were determined to be $a_0 = 2.915 \text{ \AA}$ and $c_0 = 12.92 \text{ \AA}$ for
 100 Os_2B_3 . The ambient pressure platinum lattice parameter was also measured to be $a_0 = 3.924 \text{ \AA}$ and
 101 LeBail refinement of platinum experimental XRD peaks showed error within pressure
 102 measurements to be under 2.0%.

103 The density functional theory (DFT) [17, 18] calculations were performed using a plane-
 104 wave basis and pseudopotential method as implemented in VASP (the Vienna ab initio simulation
 105 package, version 5.4.4) [19, 20]. We adopted the projector augmented wave (PAW) method [21,
 106 22], and considered both the Ceperley–Alder–Perdew–Zunger local density approximation (LDA)
 107 functional [23] and the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA)
 108 functional [24]. The Os $5\text{d}^66\text{s}^2$ and B $2\text{s}^22\text{p}^1$ states were treated as valence electrons, and a kinetic
 109 energy cutoff ENCUT of 420 eV was used in the expansion for the valence wave functions. Our

110 choice of ENCUT, which is 30% larger than the recommended value in the VASP pseudopotential
 111 files, suffices to converge the DFT total energy with a difference $< 10^{-4}$ eV/atom. The Monkhorst–
 112 Pack sampling integration over the Brillouin zone [25] was chosen by a Γ -centered k-point mesh
 113 with a grid size of 31x31x7 (resolution = $0.01 \times 2\pi/\text{\AA}$). The convergence criteria for self-consistent
 114 and structure relaxation calculations were set as 10^{-6} eV/unit cell and 10^{-3} eV/ \AA , respectively. The
 115 simulations are performed at zero temperature and various external pressures. At each given
 116 external pressure point, we first computed the fully relaxed lattice constants and atomic positions.
 117 Our calculated ambient lattice constants with the GGA functional are $a_0 = 2.943 \text{ \AA}$ and $c_0 = 12.939$
 118 \AA , while those with the LDA functional are $a_0 = 2.906 \text{ \AA}$ and $c_0 = 12.814 \text{ \AA}$. Both GGA and LDA
 119 results are similar to the experimental values, within an error margin of 1.0%.

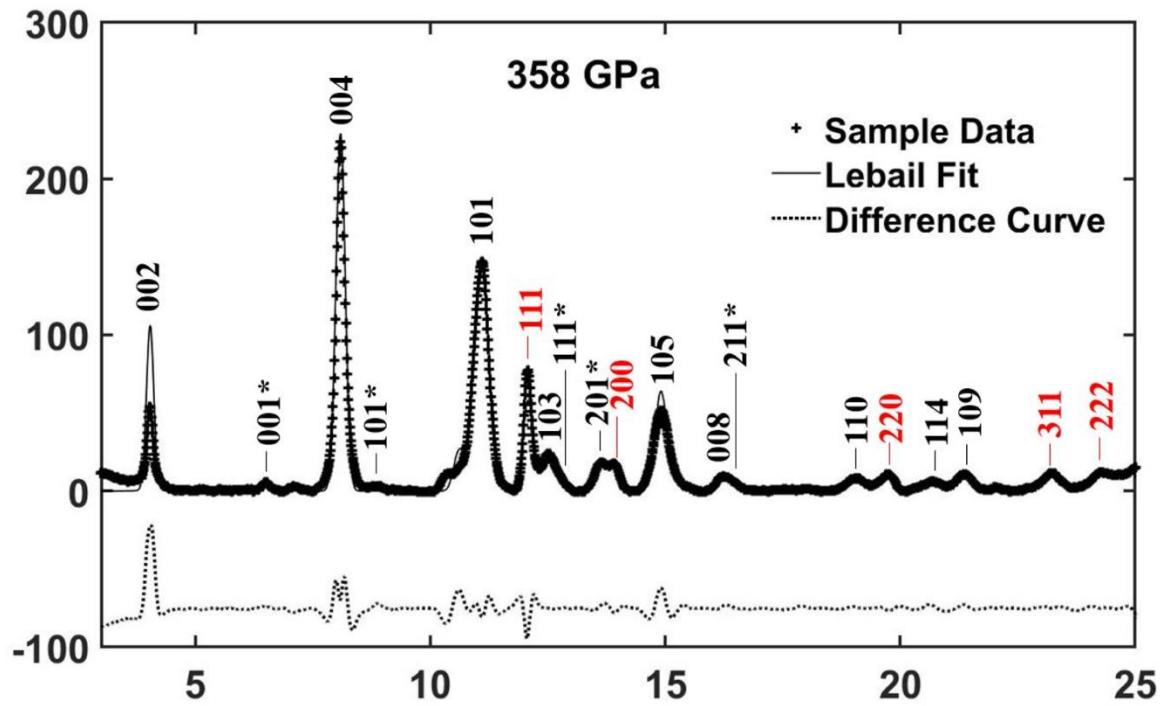
120 After the structure relaxation, we then computed the elastic tensor by using the strain–stress
 121 method [26] as embedded in VASP. The calculations included contributions from distortions of
 122 rigid ions and ionic relaxations. The ionic contributions can be obtained by inverting the ionic
 123 Hessian matrix, which is the matrix of second energy derivatives with respect to atomic positions,
 124 and multiplied by the internal strain tensor [27]. Base on the stress–strain relationship, we can
 125 derive the elastic constants C_{ij} and determine various mechanical properties. For example, in the
 126 Vogit–Reuss–Hill approximations [28-30], the bulk modulus (K) and shear modulus (G) are
 127 obtained as follows:

$$128 \quad K = (K_V + K_R)/2 \quad , G = (G_V + G_R)/2, \quad (2)$$

$$129 \quad K_V = [(C_{11} + C_{22} + C_{33}) + 2(C_{12} + C_{13} + C_{23})]/9, \quad (3)$$

$$130 \quad K_R = 1/[S_{11} + S_{22} + S_{33} + 2(S_{12} + S_{23} + S_{31})], \quad (4)$$

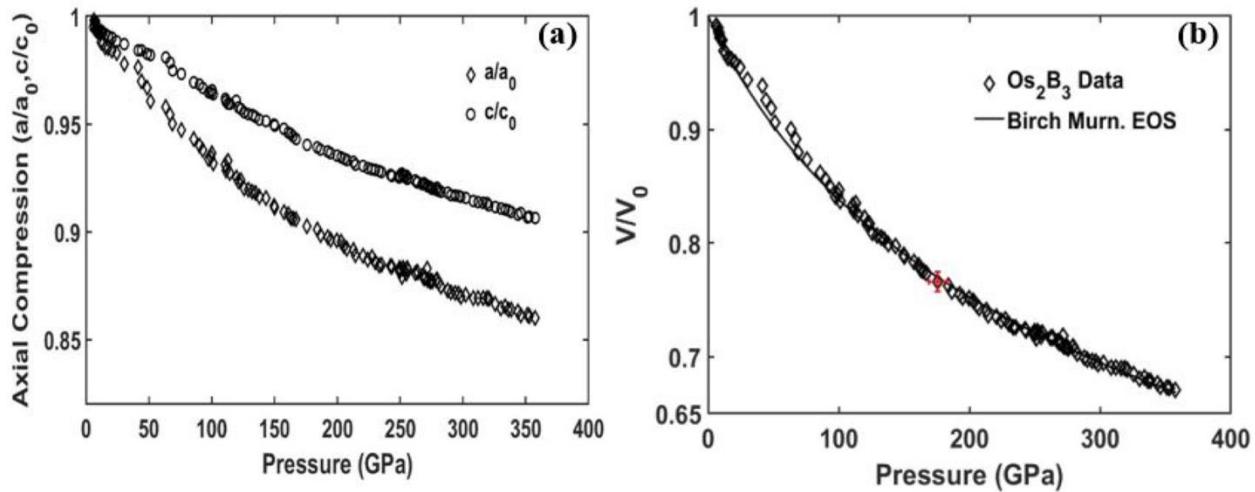
$$131 \quad G_V = [(C_{11} + C_{22} + C_{33}) - 2(C_{12} + C_{23} + C_{31}) + 3(C_{44} + C_{55} + C_{66})]/15, \quad (5)$$

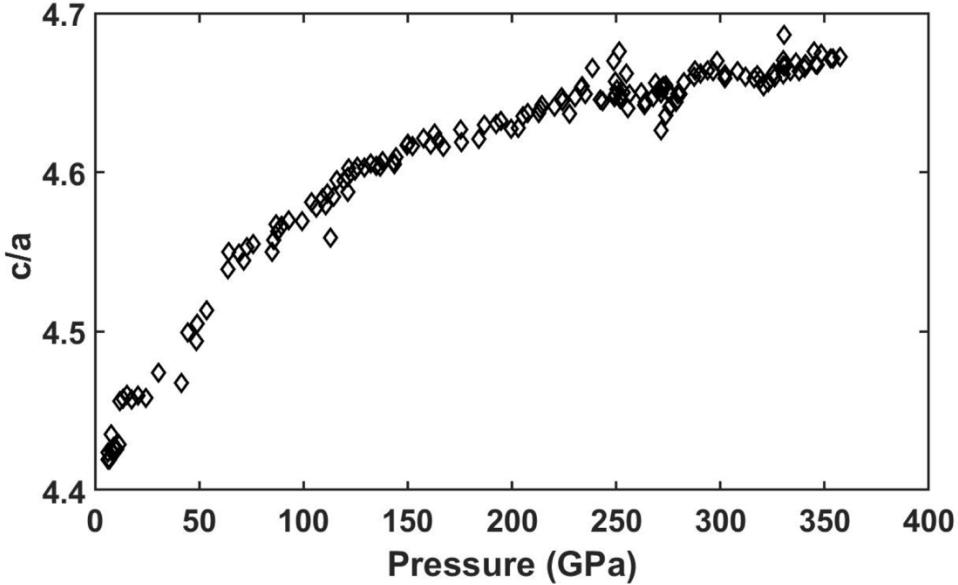

$$132 \quad G_R = 15/[4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{23} + S_{31}) + 3(S_{44} + S_{55} + S_{66})]. \quad (6)$$

133 Here, C_{ij} and S_{ij} are elastic constants and elastic compliances, respectively. The computed bulk
 134 modulus values K_0 at ambient conditions are 358.9 GPa with GGA, and 391.7 GPa with LDA. The
 135 LDA bulk modulus is consistent with previous theoretical values [9, 31], and it also agrees better
 136 (within an error margin of 1.5%) with the experimental value $K_0 = 397$ GPa obtained by fitting the
 137 experimental P - V curve to equation (1). In our GGA and LDA calculations of the mechanical

138 properties, their overall trends with pressure are comparable. Since the results from the LDA
139 functional agree better with the corresponding experiments, below we will mainly present and
140 discuss the LDA results. Finally, the theoretical structural visualization and charge distribution
141 were plotted by the VESTA software (version 3.4.8) [32].

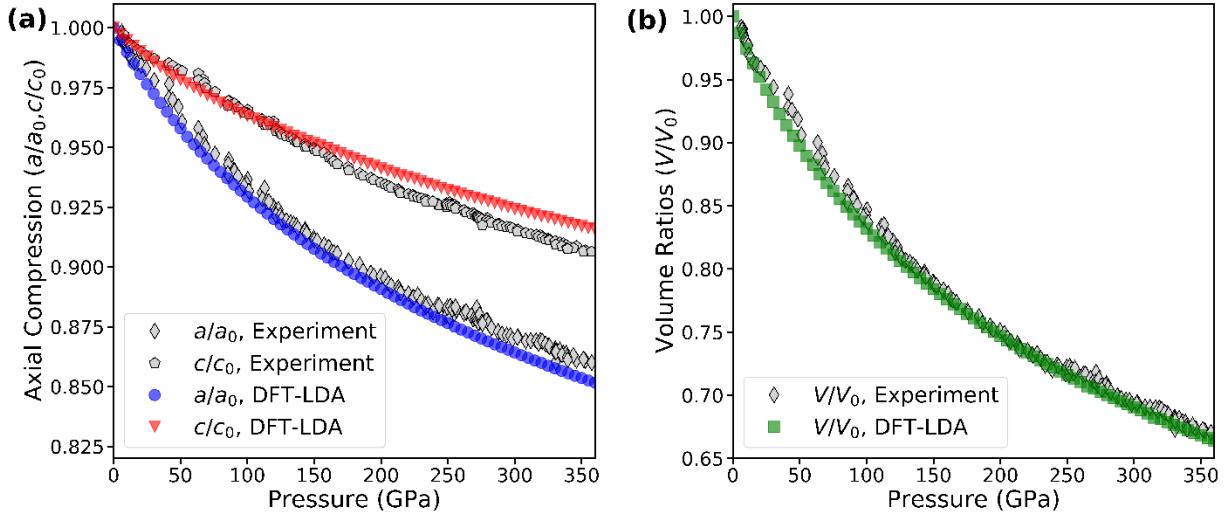
142 **3. Results**


143 Figure 2 shows the integrated XRD pattern with Lebail fit to the XRD data at the maximum
144 pressure of 358 ± 7 GPa. The dotted curve shown below the XRD peaks is the difference curve
145 between the sample data and the Lebail fit to the data. Strong Os_2B_3 hkl peaks are labeled and
146 coexist with weaker OsB_2 impurity peaks labeled with asterisks. Platinum peaks used for pressure
147 calibration are labeled in red in Figure 2.


148
149 **Figure 2.** Integrated x-ray diffraction profile along with Lebail fit for the weak orthorhombic OsB_2 (marked
150 by an asterisk) and the hexagonal Os_2B_3 phases at the highest pressure of 358 ± 7.04 GPa. The platinum
151 pressure marker peaks are indicated in red. The dotted curve at the bottom is the difference curve between
152 the observed intensities and the Lebail fit.

153 Figure 3(a) displays the relative axial compression of lattice parameters for the hexagonal
154 phase of Os_2B_3 . The lattice a parameter was shown to be the most compressible, while the lattice

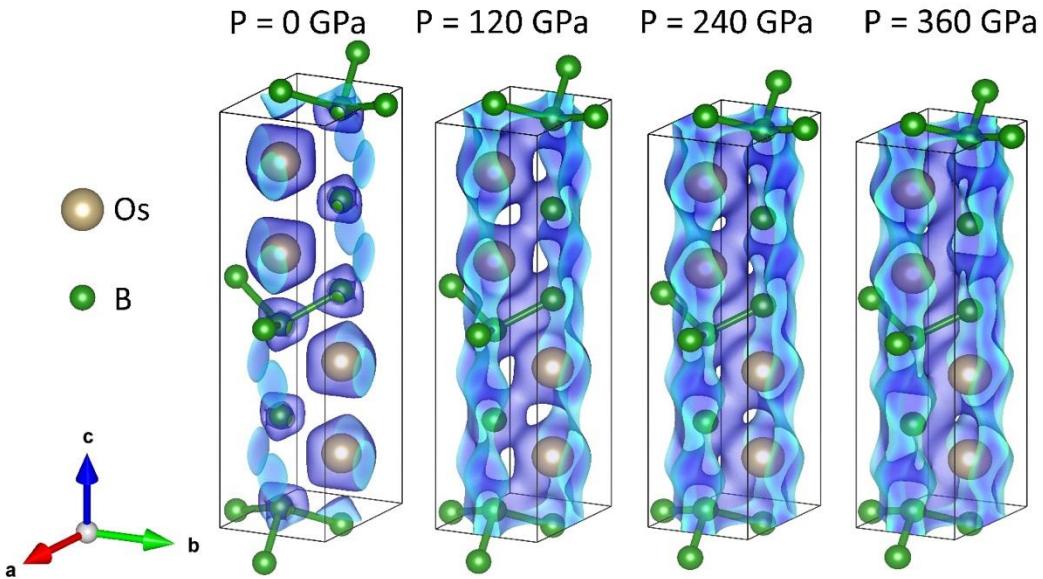
155 c parameter is the least compressible, with the values of $a = 2.507 \pm 0.004 \text{ \AA}$ and $c = 11.71 \pm 0.021$
 156 \AA at the maximum pressure. It is to be noted that the anisotropy between compression of the a -
 157 axis and c -axis increases with pressure to the highest pressure of $358 \pm 7 \text{ GPa}$. The non-hydrostatic
 158 component of pressure may impact the observed anisotropy at low pressures, however, at higher
 159 pressures when pressure is much greater than the shear strength of material we expect these effects
 160 to be minimal. The effects of anisotropy also can be seen in the compression ratio of c and a lattice
 161 parameters in Figure 4. The a -axis is compressed more rapidly, resulting in an increasing c/a ratio
 162 to the maximum value of $c/a = 4.672 \pm 0.008$. The ratio begins to flatten out with higher pressure
 163 as the axes are compressed more equally. Due to enhanced interatomic interactions with increasing
 164 pressure, the material becomes stiffer. At higher enough pressure, the a and c lattice parameters
 165 will eventually tend to saturate and become weakly pressure-dependent, resulting in a slower
 166 increase of the c/a ratio. Figure 3(b) is the corresponding volumetric compression data fitted with
 167 the 3rd-order Birch-Murnaghan EOS. No phase change was observed, and the hexagonal Os_2B_3
 168 phase remained stable to 358 GPa , with a maximum volume compression $V/V_0 = 0.670 \pm 0.009$.
 169 As mentioned above, the ambient bulk modulus $K_0 = 397 \text{ GPa}$ and pressure derivative $K_0' = 4.0$
 170 were obtained by fitting with equation (1).


171
 172 **Figure 3.** (a) Axial compression of Os_2B_3 as a function of pressure up to $358 \pm 7.04 \text{ GPa}$. (b) Volumetric
 173 compression of Os_2B_3 fitted to the 3rd-Order Birch Murnaghan equation of state. Sample compression
 174 remains stable and no phase change was observed.

175

176 **Figure 4.** Compression ratio of the lattice c and a parameters as a function of pressure up to 358 ± 7 GPa.
 177 The c/a ratio is seen to increase and flatten with increasing pressure.

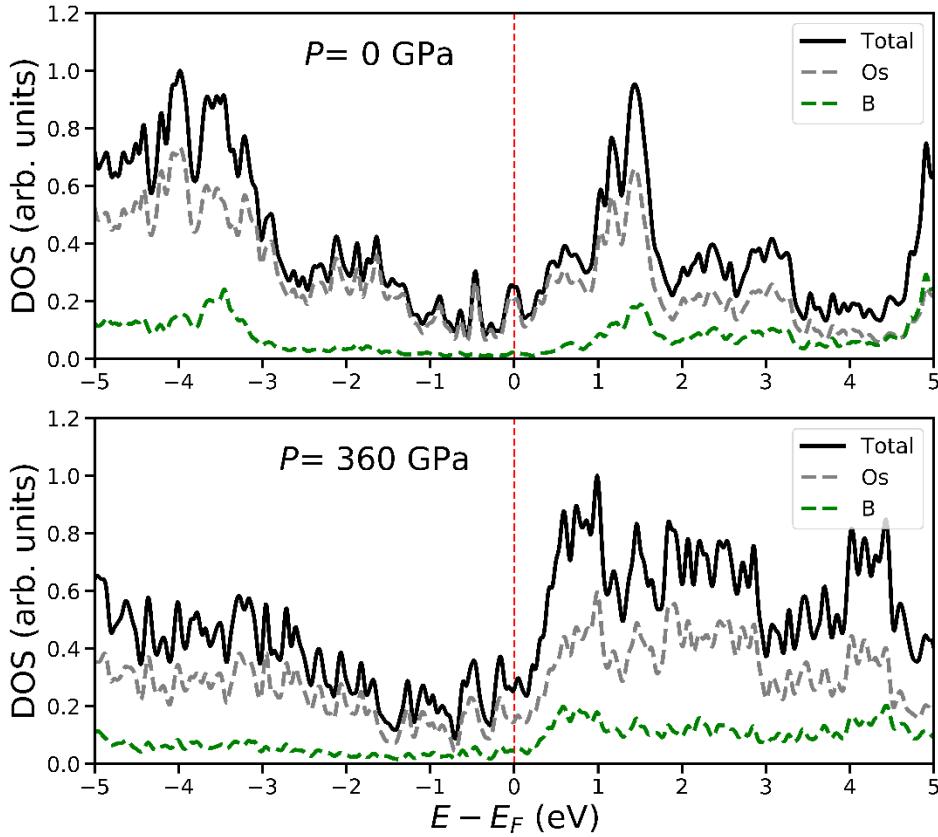
178 Figure 5 shows our DFT calculations of lattice parameters with the LDA functional for
 179 hexagonal Os_2B_3 under hydrostatic compression up to 360 GPa. The DFT-LDA ambient lattice
 180 parameters $a_0 = 2.906 \text{ \AA}$ and $c_0 = 12.814 \text{ \AA}$ are within an error margin of 1% compared to the
 181 experiments. At the highest pressure of 360 GPa, the DFT-LDA value of $a/a_0 = 0.852$ slightly
 182 underestimates the experimental value of 0.860, while the DFT-LDA value of $c/c_0 = 0.916$ slightly
 183 overestimates the experimental value of 0.906. On the other hand, the DFT-LDA value of $V/V_0 =$
 184 0.664 agree well with the experimental value of 0.670 at maximum compression. As mentioned in
 185 the previous section, the computed DFT-LDA bulk modulus value of $K_0 = 391.7$ GPa also matches
 186 well with the experimental fitted value of $K_0 = 397$ GPa. Therefore, for hexagonal Os_2B_3 , DFT
 187 calculations utilizing the LDA functional have led to good theory-experiment agreements. We note
 188 that our theoretical volume versus pressure curve is a concave up function, which suggests that the
 189 curve protrusion observed experimentally between the pressure range 40 – 70 GPa in Figure 3 is
 190 potentially caused by a non-hydrostatic condition. The theoretical results also indicated a distinct
 191 anisotropic behavior, with the c -axis being more incompressible than the a -axis. Below we will
 192 discuss the anisotropic behavior in more detail by further examining the electronic structures and
 193 pressure evolutions of elastic constants.



194

195 **Figure 5.** (a) Theoretical hydrostatic pressure dependence of the axial compression for lattice parameters
 196 a/a_0 and c/c_0 up to 360 GPa for hexagonal Os_2B_3 . The density functional theory (DFT) calculations were
 197 performed with the local density approximation (LDA) functional. (b) Corresponding ratio of unit-cell
 198 volume V/V_0 versus pressure curve. The experimental values are plotted accordingly.

199 **4. Discussion**


200 Figure 6 shows the Os_2B_3 hexagonal structures (with space group P6₃/mmc) and iso-
 201 surfaces of charge density under different external pressures. The crystal structure of Os_2B_3 can be
 202 depicted as stackings of Os and B layers along the c -direction. The B - B bond length is near 1.9 Å.
 203 There is an offset between the B and Os atoms in the a -axis, suggesting that their electrostatic
 204 repulsive forces do not directly push each other. On the other hand, the B and Os atoms are directly
 205 aligned along the c -axis, which leads to highly oriented repulsive electron–electron interactions.
 206 When the applied pressure increases, in addition to B - B covalent bonds, a substantial amount of
 207 electron density is centered along the Os - B bond direction, indicating strong directional bonding
 208 behavior along the c -axis. Since materials with a large hardness are likely to have highly directional
 209 bonds [7, 8, 33], our theoretical results suggest that the highest hardness of Os_2B_3 should occur
 210 along the c -axis.

211

212 **Figure 6.** Os_2B_3 hexagonal crystal structures and iso-surfaces of charge density at different pressures. The
 213 iso-surface levels were set to be $0.1 a_0^{-3}$ (with a_0 being the Bohr radius). The input data for the VESTA
 214 plotting software are based on the VASP output file CHGCAR, which contains the lattice vectors, atomic
 215 coordinates, the total charge density multiplied by the volume on the fine fast Fourier transform-grid, and
 216 the projector augmented wave one-center occupancies.

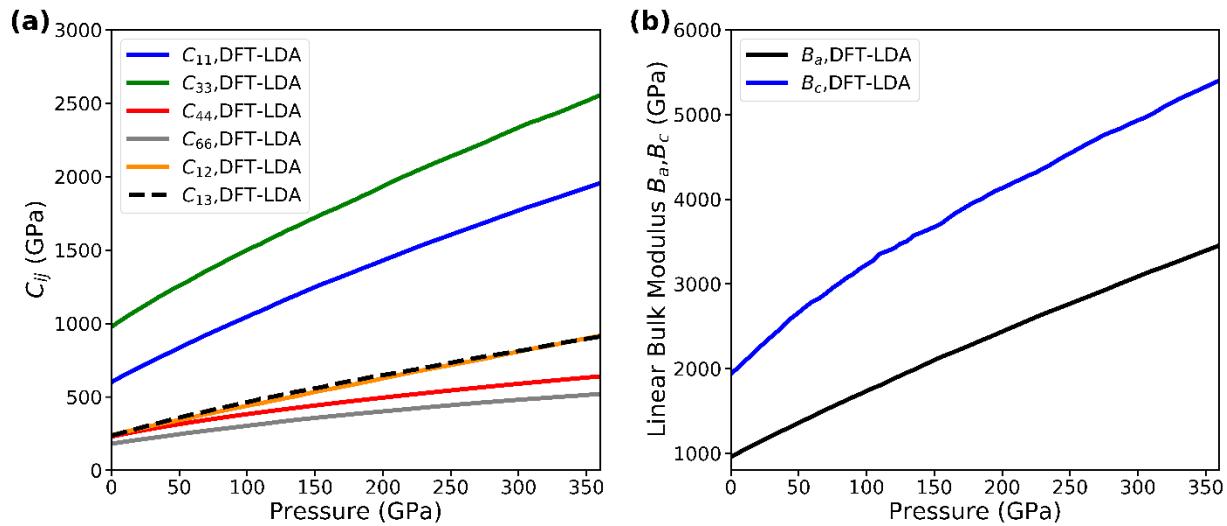
217 In addition to charge density, we have studied the electronic density of states (DOS) of
 218 Os_2B_3 . Figure 7 shows the computed DOS at 0 GPa (top) and 360 GPa (bottom), respectively. We
 219 have adjusted the Wigner-Seitz radius for each atom type at different pressure point, in order to
 220 reduce the overlap between atomic spheres when integrating the DOS. At 0 GPa, the DOS has a
 221 predominant *Os* character at the Fermi level (E_F). At high pressure, the partial DOS at E_F from *Os*
 222 and *B* atoms both increase, implying that metallic bonding is increased or covalent bonding is
 223 reduced. The behavior is consistent with the iso-surface charge density plot in Figure 6 and the
 224 pressure-enhanced ductility to be discussed later in Figure 9. On the other hand, pressure also
 225 causes a stronger hybridization between *Os* and *B* atoms, as well as between *B* atoms themselves.
 226 Therefore, strong covalent *Os-B* and *B-B* bonds are still present. The strong *Os-B* bonding is also
 227 responsible for the *c*-axis incompressibility of Os_2B_3 at high pressure.

228

229 **Figure 7.** Theoretical Os_2B_3 density of states (DOS) calculated by density functional theory (DFT) using
 230 the local density approximation (LDA) functional at pressure $P = 0$ GPa (top) and $P = 360$ GPa (bottom).
 231 The vertical dashed line indicates the Fermi level (E_F).

232 To further study the mechanical properties, we resort to the elastic constants C_{ij} obtained
 233 directly in our DFT calculations. Due to the hexagonal symmetry of Os_2B_3 (with a space group
 234 $P6_3/mmc$), there are only five independent elastic coefficients: C_{11} , C_{12} , C_{13} , C_{33} , C_{44} . These five
 235 elastic coefficients together with $C_{66} = (C_{11} - C_{12})/2$ are shown in Figure 8(a). C_{11} and C_{33} represent
 236 resistances to compression along the a -axis and c -axis, respectively. It is noted that C_{11} and C_{33} are
 237 largely increased under pressure, indicating a strong incompressibility along both axes.
 238 Furthermore, C_{33} is larger than C_{11} , which suggests that the c -axis is the least compressible. As
 239 discussed before, this strong c -axis incompressibility is related to the strong electron charge
 240 density and repulsion in the Os - B bonds along the c -direction. C_{44} and C_{66} are the parameters that
 241 directly determine the indentation hardness of a solid [34]. The large C_{44} and C_{66} indicate a strong
 242 resistance to uniaxial shear strain in the (100) and (001) planes, respectively. Here, $C_{66} < C_{44}$, hence
 243 shear distortion along the (100) plan is more difficult. Moreover, C_{11} and C_{33} are higher than C_{44}

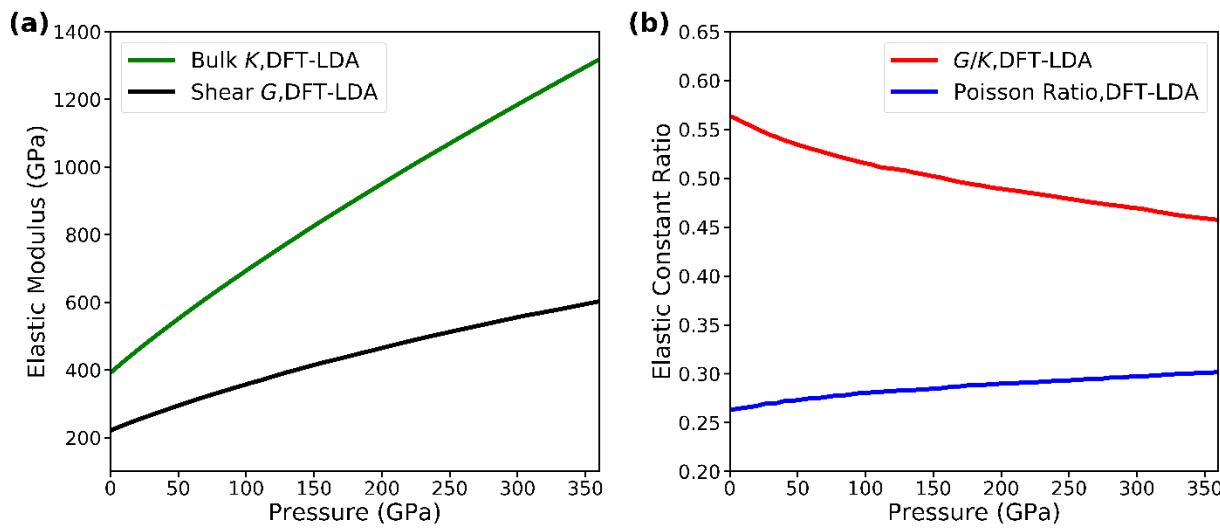
244 and C_{66} , which indicate that unidirectional compression resistances along the main crystal axes are
 245 higher than the shear deformation resistances.


246 We next consider the axial bulk moduli along the a -axis (B_a) and c -axis (B_c) [35] to describe
 247 the anisotropic elasticity of Os_2B_3 :

248 $B_a = \alpha/(2 + \beta) \quad , B_c = B_a/\beta, \quad (7)$

249 $\alpha = 2(C_{11} + C_{12}) + 4C_{13}\alpha + C_{33}\alpha^2, \quad (8)$

250 $\beta = (C_{11} + C_{12} - 2C_{13})/(C_{33} - C_{13}). \quad (9)$


251 The pressure evolutions of B_a and B_c are given in Figure 8(b). It is noted that B_c is always larger
 252 than B_a in the pressure range under study, suggesting a strong anisotropy of the elasticity in the
 253 hexagonal phase of Os_2B_3 . This result is consistent with the behaviors of C_{11} and C_{33} as a function
 254 of pressure, showing that compression along the c -axis is more difficult.

255
 256 **Figure 8.** (a) Selected elastic constants versus pressure for hexagonal Os_2B_3 . The density functional theory
 257 (DFT) calculations were performed with the local density approximation (LDA) functional. (b) Axial bulk
 258 moduli (defined in the main text) along the a -axis (B_a) and c -axis (B_c) as a function of pressure. The
 259 calculations were based on the elastic constants in (a).

260 Finally, it is noted that the shear modulus (G) and bulk modulus (K) can help predict a
 261 material's brittle or ductile behavior, which is related to its reversible compressive deformation
 262 and fracture ability. In particular, according Pugh's criterion [36], a material behaves in a ductile

263 manner if $G/K < 0.571$, or otherwise it should be brittle in nature. Figure 9(a) shows the calculated
 264 values of G and K as a function of pressure. While both G and K are increased by compression, K
 265 grows faster than G . This indicates that G/K is decreased with pressure, as shown in Figure 9(b).
 266 The computed G/K ratio at 0 GPa is 0.564, and at 360 GPa is 0.457. Since a low (high) G/K value
 267 is associate with ductility (brittleness), the ductile behavior of Os_2B_3 is enhanced with pressure.
 268 Poisson's ratio is another good indicator of the brittle or ductile behavior, and it can be obtained
 269 by $(3K - 2G)/[2(3K + G)]$. According to Frantsevich's rule [37], a material with a larger Poisson's
 270 ratio ($>1/3$) is ductile, or otherwise it is brittle. Figure 9(b) shows that the Poisson's ratio of Os_2B_3
 271 is increased under compression, again implying a pressure-enhanced ductility.

272 **Figure 9.** (a) Theoretical bulk (K) and shear (G) moduli of Os_2B_3 as a function of pressure. The density
 273 functional theory (DFT) calculations were performed with the local density approximation (LDA)
 274 functional. G and K were obtained by using the Voigt–Reuss–Hill approximation [Equations (2) – (6)] and
 275 the DFT-LDA elastic constants. (b) The G/K and Poisson ratios as a function of pressure.

277 The study on transition-metal boride under high pressure can offer unique insights in the
 278 changes in electronic structure induced by compression. Three dimensional covalent sp^3 bonds of
 279 carbon atoms gives diamond its ultra-hardness and incompressibility, indicating the necessary role
 280 of covalent bonds if one wishes to replicate diamond's supreme physical properties. As discussed
 281 above, the pressure-enhanced Os - B covalent bonds in Os_2B_3 can cause a strong resistance to
 282 compression and a highly anisotropic behavior. Although the bulk modulus value of Os_2B_3 is
 283 shown to be comparable to that of diamond, this alone does not necessarily guarantee a high
 284 strength, as the latter corresponds to resistance to plastic deformation. There are also Os - Os

285 metallic bonds that would indicate weak resistance to deformation along certain axis. In addition,
286 Os_2B_3 has a similar hexagonal structure to ReB_2 but differs by having alternating planar boron
287 layers with puckered boron layers [8]. This puckering of boron atoms may act as a potential shield
288 to atomic dislocation under applied loads. Ref. [9] has shown a micro-hardness value of 15 GPa
289 for Os_2B_3 , which is thereby not a super-hard material. However, this does not rule out practical
290 mechanical applications to utilize Os_2B_3 or other transition metal borides, because of their
291 impressive bulk modulus values and stability at high temperatures.

292 **5. Conclusion**

293 Isothermal and non-hydrostatic compression experiments utilizing toroidal diamond anvil
294 cell technology has allowed for the first-time a unique look at Os_2B_3 under pressure conditions
295 replicating planetary interiors, with a maximum volume compression value of $V/V_0 = 0.670 \pm 0.009$
296 for Os_2B_3 at 358 ± 7.04 GPa. Increasing anisotropy between the lattice c and a parameters was also
297 shown to persist to the highest pressure. Bulk modulus and its first pressure derivatives were
298 calculated from a fit to the 3rd-order Birch Murnaghan equation of state for Os_2B_3 , with $K_0 = 397$
299 GPa and $K_0' = 4.0$, which are comparable to the values in other ultra-hard materials. The results
300 from density functional theory simulations were in good agreement with the experiments. The high
301 bulk modulus, anisotropic behavior, and ultra-incompressible features of Os_2B_3 thereby make it a
302 potential material for extreme-environment applications.

303 **Acknowledgments**

304 This research is funded by the U.S. National Science Foundation under Metals and Metallic
305 Nanostructures Program Grant No. DMR-1904164. Any opinions, findings, and conclusions or
306 recommendations expressed in this material are those of the authors and do not necessarily reflect
307 the views of the National Science Foundation. Portions of this work were performed at HPCAT
308 (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations
309 are supported by DOE-NNSA's Office of Experimental Sciences. The Advanced Photon Source
310 is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office
311 of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The
312 calculations were performed on the Frontera computing system at the Texas Advanced Computing
313 Center. Frontera is made possible by National Science Foundation award OAC-1818253.

315 **References**

316 1. Friedrich, A., et al., *Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the*
317 *Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations.*
318 *Materials*, 2011. **4**: p. 1648-1692.

319 2. Yeung, M.T., R. Mohammadi, and R.B. Kaner, *Ultracompressible, Superhard Materials*. Annu.
320 *Rev. Mater. Res.*, 2016. **46**: p. 465-485.

321 3. Kvashnin, A.G., Z. Allahyari, and A.R. Oganov, *Computational discovery of hard and superhard*
322 *materials*. *J. Appl. Phys.*, 2019. **126**: p. 040901.

323 4. Aleksandrov, I., et al., *Diamond at high pressures: Raman scattering of light, equation of state,*
324 *and high pressure scale*. *Zh. Eksp. Teor. Fiz.*, 1987. **93**: p. 680-691.

325 5. Cumberland, R.W., et al., *Osmium diboride, an ultra-incompressible, hard material*. *Journal of*
326 *the American Chemical Society*, 2005. **127**(20): p. 7264-7265.

327 6. Hebbache, M., L. Stuparević, and D. Živković, *A new superhard material: Osmium diboride*
328 *OsB₂*. *Solid state communications*, 2006. **139**(5): p. 227-231.

329 7. Kaner, R.B., J.J. Gilman, and S.H. Tolbert, *Designing superhard materials*. *Science*, 2005.
330 **308**(5726): p. 1268-1269.

331 8. Burrage, K.C., et al., *Experimental and Computational Studies on Superhard Material Rhenium*
332 *Diboride under Ultrahigh Pressures*. *Materials*, 2020. **13**(7): p. 1657.

333 9. Gu, Q., G. Krauss, and W. Steurer, *Transition metal borides: superhard versus ultra-*
334 *incompressible*. *Advanced materials*, 2008. **20**(19): p. 3620-3626.

335 10. Frotscher, M., A. Senyshyn, and B. Albert, *Neutron diffraction at metal borides, Ru₂B₃ and*
336 *Os₂B₃*. *Zeitschrift für anorganische und allgemeine Chemie*, 2012. **638**(12-13): p. 2078-2080.

337 11. Dewaele, A., et al., *Toroidal diamond anvil cell for detailed measurements under extreme static*
338 *pressures*. *Nature communications*, 2018. **9**(1): p. 1-9.

339 12. Jenei, Z., et al., *Single crystal toroidal diamond anvils for high pressure experiments beyond 5*
340 *megabar*. *Nature communications*, 2018. **9**(1): p. 1-6.

341 13. Sakai, T., et al., *High pressure generation using double-stage diamond anvil technique: problems*
342 *and equations of state of rhenium*. *High Pressure Research*, 2018. **38**(2): p. 107-119.

343 14. Sakai, T., et al., *High-pressure generation using double stage micro-paired diamond anvils*
344 *shaped by focused ion beam*. *Review of Scientific Instruments*, 2015. **86**(3): p. 033905.

345 15. Park, C., et al., *New developments in micro-X-ray diffraction and X-ray absorption spectroscopy*
346 *for high-pressure research at 16-BM-D at the Advanced Photon Source*. *Review of Scientific*
347 *Instruments*, 2015. **86**(7): p. 072205.

348 16. Toby, B.H. and R.B. Von Dreele, *GSAS-II: the genesis of a modern open-source all purpose*
349 *crystallography software package*. *Journal of Applied Crystallography*, 2013. **46**: p. 544-549.

350 17. Hohenberg, P. and W. Kohn, *Density functional theory (DFT)*. *Phys. Rev.*, 1964. **136**: p. B864.

351 18. Kohn, W. and L.J. Sham, *Self-consistent equations including exchange and correlation effects*.
352 *Physical review*, 1965. **140**(4A): p. A1133.

353 19. Kresse, G. and J. Furthmüller, *Efficiency of ab-initio total energy calculations for metals and*
354 *semiconductors using a plane-wave basis set*. *Computational materials science*, 1996. **6**(1): p. 15-
355 50.

356 20. Kresse, G. and J. Furthmüller, "Efficient iterative schemes for *ab initio* total-energy calculations
357 using a plane-wave basis set," *Phys. Rev. B*, vol. 54, pp. 11169-11186. 1996.

358 21. Blöchl, P.E., *Projector augmented-wave method*. *Physical review B*, 1994. **50**(24): p. 17953.

359 22. Kresse, G. and D. Joubert, *From ultrasoft pseudopotentials to the projector augmented-wave*
360 *method*. *Physical review b*, 1999. **59**(3): p. 1758.

361 23. Ceperley, D.M. and B.J. Alder, *Ground state of the electron gas by a stochastic method*. *Physical*
362 *review letters*, 1980. **45**(7): p. 566.

363 24. Perdew, J.P., K. Burke, and M. Ernzerhof, *Generalized gradient approximation made simple*.
364 *Physical review letters*, 1996. **77**(18): p. 3865.

365 25. Monkhorst, H.J. and J.D. Pack, *Special points for Brillouin-zone integrations*. *Physical review B*,
366 1976. **13**(12): p. 5188.

367 26. Le Page, Y. and P. Saxe, *Symmetry-general least-squares extraction of elastic data for strained*
368 *materials from *ab initio* calculations of stress*. *Physical Review B*, 2002. **65**(10): p. 104104.

369 27. Wu, X., D. Vanderbilt, and D. Hamann, *Systematic treatment of displacements, strains, and*
370 *electric fields in density-functional perturbation theory*. *Physical Review B*, 2005. **72**(3): p.
371 035105.

372 28. Hill, R., *The elastic behaviour of a crystalline aggregate*. *Proceedings of the Physical Society.*
373 *Section A*, 1952. **65**(5): p. 349.

374 29. Reuß, A., *Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für*
375 *einkristalle*. *ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte*
376 *Mathematik und Mechanik*, 1929. **9**(1): p. 49-58.

377 30. Voigt, W., *Lehrbuch der kristallphysik*. Vol. 962. 1928: Teubner Leipzig.

378 31. Ozisik, H., et al., *Anisotropic elastic and vibrational properties of Ru₂B₃ and Os₂B₃: a first-*
379 *principles investigation*. *Materials Research Express*, 2016. **3**(7): p. 076501.

380 32. Momma, K. and F. Izumi, *VESTA 3 for three-dimensional visualization of crystal, volumetric and*
381 *morphology data*. *Journal of applied crystallography*, 2011. **44**(6): p. 1272-1276.

382 33. Chung, H.-Y., et al., *Synthesis of ultra-incompressible superhard rhenium diboride at ambient*
383 *pressure*. *Science*, 2007. **316**(5823): p. 436-439.

384 34. Connétable, D. and O. Thomas, *First-principles study of the structural, electronic, vibrational,*
385 *and elastic properties of orthorhombic NiSi*. *Physical review B*, 2009. **79**(9): p. 094101.

386 35. Islam, A., A. Sikder, and F. Islam, *NbB₂: a density functional study*. *Physics Letters A*, 2006.
387 **350**(3-4): p. 288-292.

388 36. Pugh, S., *XCII. Relations between the elastic moduli and the plastic properties of polycrystalline*
389 *pure metals*. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*,
390 1954. **45**(367): p. 823-843.

391 37. Frantsevich, I.N., ed. *Elastic Constants and Elastic Moduli of Metals and Insulators Handbook*.
392 1983, Naukova Dumka: Kiev, Ukraine.

393