Poisson percolation on the oriented square lattice

Irina Cristali, Matthew Junge, and Rick Durrett*

June 9, 2020

Abstract

In Poisson percolation each edge becomes open after an independent exponentially
distributed time with rate that decreases in the distance from the origin. As a sequel
to our work on the square lattice, we describe the limiting shape of the component
containing the origin in the oriented case. We show that the density of occupied sites
at height y in the cluster is close to the percolation probability in the corresponding
homogeneous percolation process, and we study the fluctuations of the boundary.

1 Introduction

Percolation was introduced by Broadbent and Hammersley a little over 60 years ago to
model a porous medium [3]. The model goes by including each edge of the integer lattice
Z% independently with probability p. One of the most fundamental questions is whether
the subgraph contains an infinite component. There is known to be a critical value p.(d)
such that for p > p.(d) such a component exists almost surely. A vast amount of literature
is devoted to understanding the geometry of this component for different values of p. See
Grimmett’s book [11] for a thorough introduction or the article by Beffara and Sidoravicius
[1] for a briefer overview.

The subgraph obtained via homogeneous percolation is static. In [4] we introduced Pois-
son percolation, which has a stochastically growing set of open edges. This could potentially
model a medium that becomes more porous over time. Each edge in the unoriented square
lattice Z2 with midpoint x € Z? becomes open at rate ||z||Z”. Thus, the probability an edge
is open at time ¢ is equal to p(x,t) = 1 — exp(—t|jz||#). We studied three aspects of the
structure of Cy, the connected component containing 0. See Figure 1 for a simulation.

Size and shape of the cluster. For fixed ¢, the probability an edge beyond distance
N = t'/%(log 2)~'/# is open is smaller than p.(2) = 1/2. Accordingly, we show [4, Theorem
1] that with high probability Cq C (1 + €)[—N, N]? for all € > 0.

Cluster density. Fix 1/2 < a < 1 and tile (1 — €)[—N, N]* with boxes R;; with side-
length N*. In [4, Theorem 2] we proved that with high probability the density in each box
|Co N R, ;|/N?* is close to the density of the giant component in homogeneous percolation
with parameter p(z; ;,1).

*Rick Durrett was partially supported by NSF grant 1505215.



Figure 1: Cy on the unoriented square lattice for 5 = 1 and ¢ = 104. The gray box has
radius N = 150.

Fluctuations of the boundary. The fluctuations of Cy in the e; direction are defined as
|IN —max{z: (z,0) € Cy(t)}|. Our understanding of this quantity comes from work of Nolin
[15] on gradient percolation, in which the probability p that a bond (or site) is open decreases
linearly from 1 to 0 as the height is increased from 0 to N. Rather than edge percolation
on a square lattice, he considered site percolation on the triangular lattice in order to take
advantage of the rigorous computation of critical exponents by Smirnov and Werner [18].
In this setting, he studied the shape of the boundary of the cluster containing the base of
a trapezoidal region of length /5 and height N. He found that the edge stays in a strip of
width N*/7+° centered at N/2, and the length of the front is £,y N3/7#9  These results are
expected to hold on the square lattice. In our system, the change in the density is nonlinear
but differentiable. Since the position of the front is dictated by bonds that are open with
probabilities that have non-zero derivative close to p., the boundary behavior should be the
same. See also the work of Nolin on the geometry of diffusion fronts [16].



In this article we study Poisson percolation on oriented lattice £ = {(m,n) € Z*: m +
n is even} with oriented edges from (m,n) — (m +1,n+ 1) and (m,n) - (m —1,n +1).
This is Z? rotated 45°. We will again study the size and shape of the cluster, its density,
and edge fluctuations. We think of m as space and of n as time. To avoid conflict with the
parameter t, we think of it as giving the age of the cluter.

Fix > 0. An edge with midpoint (z,y) and y > 0 is open with probability

p(y,t) =1 —exp(—ty ). (1)

Let n(p,t) = max{y: p(y,t) > p} be the largest height at which edges are open with proba-
bility > p. A little algebra shows that

n(p,t) ~ c,5t"? where ¢,z = (—log(l —p))~"~. (2)
We write (x,m) — (y,n) if there is a path of open edges from (x,m) to (y,n). Let
Co(t) = {(z,n): (0,0) — (z,n)},
and let
Fly) = plyt"?, ) =1 — exp(—y 7). (3)
Define y. by f(y.) = pe, where p. ~ .64470019 (see page 5242 of [13]) is the critical value
inf{p: P(|Cy| = oo} where Cy is the cluster containing the origin. Note that Cy is the cluster
containing 0 in homogeneous oriented percolation, whereas C, is for Poisson percolation.

The oriented case has fewer symmetries so the shape is more interesting than a square (see
Figure 2).

1.1 Size and shape of the cluster

To define the limiting shape of Cy we need to introduce the right-edge speed in homogeneous
percolation. Consider homogeneous percolation with parameter p on oriented L. Following
5], we let
rr, = sup{x: Jy < 0 with (y,0) — (x,k)}
be the right most site at height & that can be reached from a site in (—oo, 0] x {0}. The
subadditive ergodic theorem guarantees the existence of a limiting speed r/k — «(p) for
p > pe. Obviously a(1) = 1. Tt is known that a(p.) = 0. When p < p. the system dies out
exponentially fast so a(p) = —oc.
Letting ¢(0) = 0 and ¢'(y) = a(f(y)) for 0 < y < y. we define our limiting shape

D ={(z.y): e <g(y),0 <y <y} SR
Intuitively the shape result is
Co(t)/t'P = T,
To prove the result it is convenient to work on the unscaled lattice. Let r¥(k) =
max{x: (z,k) € Cy(t)} be the right edge of Cy(t) at height k, and let £9(k) = min{z: (z,k) €
Co(t)} be the left edge at height k. It is convenient to have g defined for all y > 0 so we let

9(y) = g(y.) for y > y.. Let
Tu(y) = t"%q(y /7).

Throughout the paper we will let N = n(p,,t).
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Figure 2: Cy on the oriented lattice with § = 1/2 and ¢t = 30. The blue line is at height
N =~ 839.



Theorem 1. For anyn > 0, ast — oo,
(i) P(Co(t) C R x [0,(1+n)N]) = 1, and
(ii) P(=(L+m)T(k) < G(K), ri(k) < (L+n)Tu(k) for all b < (1+7)N ) = 1.

Proving Theorem 1 (i) is easy because our percolation process is subcritical when y > N.
To prove Theorem 1 (ii) we fix m (it does not grow with ¢) and decompose Z X [0, (1 + 1) N]
into m strips, Z X [z;, zi41), so that o; = a(p(z;,t)) = 1 —i/m for i < m. We dominate the
process in each strip by using homogeneous percolation with probability p; = p(z;,t). Large
deviation estimates on the distance of the right edge from « from [6] allow us to prove that
Cy lies to the left of a piecewise linear function whose slope is a; in each strip.

The next result gives a corresponding lower bound.

Theorem 2. For anyn >0, ast — oo
P(2(k) < —(1 —n)[y(k) and (1 —n)Ty(k) < r(k) for allk < (1 —n)N ) — 1.

Again we divide space into strips Z X [z;, z;4+1), but now we lower bound the process by
using homogeneous percolation with probability p;i1 = p(zi41,t). In each strip we use a
block construction to relate our process to a l1-dependent oriented bond percolation on Z?
with parameter p = 1 — e. On the renormalized lattice the right edge has speed close to 1.
When we map the path of the right edge back to the Poisson percolation process we get a
piecewise linear function that serves as a lower bound on the location of r¥(k).

1.2 Cluster density

Let P, be the probability measure for oriented bond percolation on £, when edges are open
with probability p. Let Cy be the open cluster containing the origin, and let 8(p) = P,(|Co| =
00). Let

G(t,n) = UM (1 = m)Tu(y), (1 — n)Te(y)] x {y}.

Intuitively, our next result says that near (x,y) € G(t,n) the density of points in Cqy(t) will
be close to 0(p(y,t)). To state this precisely, fix 1/2 < a < 1 and tile the plane with boxes
of side length N¢:

Rij = [iN®, (i + L)N] x [jN®, (j + )N,

and let (z;;,v; ;) be the center of R; ;. Let D;; = |Co(t) N R;;|/N** be the fraction of points
in R; ; that belong to Cy(t) and let A(t,n) = {(4,j): R;; C G(t,n)} be the indices of boxes
that fit inside G(¢,n).

Theorem 3. For any n,d >0, ast — oo,

P sup |D11J<t> — 9(p(yi’j, t))| >0 —0.
(4,9)EA(t,m)



1.3 Boundary fluctuations

The first three results were laws of large numbers. We will now consider the fluctuations of

the right edge 7¢(k). When
Co(t) = Co(t) N(Z x {k}) # 0

we have r0(k) = ry(k). ri(k) has the advantage that it is well defined even if Ck(¢) = ). In
the homogeneous case, Galves and Presutti [10] were the first to prove such a central limit
theorem for the supercritical contact process. Letting r; be the rightmost occupied site at
time ¢ in the contact process with birth rate A when initially all points y < 0 are occupied,
they showed that

Tns — a(A)ns

o(A)vn

Here B, standard Brownian motion and = is weak convergence of stochastic processes. Their
proof also applies to oriented percolation. It implies that, if we start with the nonpositive
integers occupied, then there is a constant o(p) so that for all £ > 0 as n — oo

= B,

Ins) — @(p)ns

a(p)v/n

Two years later Kuczek [14] simplified the proof by introducing what he called break
points: times 7; at which the right-most particle starts an oriented percolation that does
not die out. In this case for ¢ > 1, the increments (rz,,, — rz,, Tiy1 — T;) are i.i.d. Using his
method we prove the analogue for Poisson percolation.

= B,.

Theorem 4. Ast — oo,
r([Nu]) = [, a(p(y, 1))dy
N1/2

where W,,0 < u < 1 is a Gaussian process with independent increments. It holds that
EW, =0 and

= W,

1 Nu
EW? = N/ o*(p(y,t)) dy.
0

Given the result for the homogeneous case this conclusion is what one would expect to hold;
if we divide the space into a large number of thin strips we have a sequence of homogeneous
oriented percolation processes

Very little is known rigorously about critical exponents for oriented percolation, so we
are not able to prove mathemtically an analogue of Nolin’s result. However, we can give a
physicist style derivation of the following;:

Conjecture 5. Fluctuations in the height of Co(t) are of order N°634.

First, recall that oriented percolation has two correlation lengths. The correlation length
in time, Lj can be defined simultaneously for the subcritical and supercritical cases by

1
Y(p) == lim —log P,(n < 7" <00)  Ly(p) = 1/%(p),
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where 7° is the extinction time of the process starting from only 0 occupied. The correlation
length in space L, has two different definitions for p < p. and p > p.. Let € be the the set
of occupied sites at time n, and define R = sup{x : (z,n) € £ for some n}. Also define

() = — lim “log Py(R* 2 n)  Li(p) = 1/7.(p)

t—oo N

: 1 —n,..n
v1(p) = — lim —logPp(T{ b o0) Li(p)=1/v.(p)-

t—oo N

where 7{""} is the extinction time of the process starting from {—n,...n} occupied. The
last two limits and the one that defines 7 when p < p. exist due to supermultiplicativity
(ie. P(R® > m+n) > P(R® > m)P(R® > n)). See [8] for more details, and some other
definitions.

The corresponding critical exponents are defined by

Liip) = p—p™  Li(p)=|p—p .

Here ~ could be something as precise as ~ Cl|p — p.|™" or log L(p)/log|p — p.| — —7.
Numerically, see [13, equation (15)]

v = 1.733847 27y, = 2.193708.

Nolin gives the following “hand-waving” argument for his result [15, page 1756]. If we
are at distance N° behind the front then p — p. = O(N®71) and the correlation length is

[p—pe[ ™1 = O(NE2)

if b= (1-"0b)y, ie., b=r)/(1+vy), then the correlation length matches the distance behind
the front. In this case the physical interpretation of the correlation length implies that the
percolation process will look like the critical case. Nolin’s proof of the localization of the
front, see [15, Theorem 6], is not long, but it is based on properties of sponge crossing, which
will be difficult to generalize to the oriented case. However, there has been some recent work
in that direction by Duminil-Copin et. al. [9], as well as Sakai [17].

2 Oriented percolation toolbox

Here we state additional definitions and facts that we will need in the proofs of our theorems.
The first is a simple observation that percolation is monotonic in the parameter.

Fact 1. Let G, C ] be the random subgraph obtained in homogeneous oriented percolation
with parameter p. There exists a coupling such that if p < p', then G, C G, .

This follows by coupling the Bernoulli random variables on each each edge in the canonical
way. A similar statement holds in Poisson percolation.

Fact 2. Let G(t) be the set of all open edges at time t in Poisson percolation. Fiz a subset
of edges H in L and let

p- =min{p(x,t): x € H)}, p'=max{p(x,t): x € H}.
There exists a coupling such that G,- "N H C G(t) N H C Gp+ N H.
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The estimate in [6, (1) Section 7] bounds the probability that there is a path from 0 to
7 x {k}.

Fact 3. For any § > 0. there is a constant v = ~(d) > 0 so that

Py—s(&n #0) < e

We are also interested in the speed of the rightmost particle in supercritical homogeneous
percolation where we assume all edges in (—o0,0] x {0} are open. Recall that a(p) =
limy_,o0 7/ K is the limiting speed. [6, (3) Section 11 and Section 14| gives that

Fact 4. «a(-) is a continuous, strictly increasing function of p for p in [pe, 1). Moreover, for
any § > 0, the function 8(p) = P,(|Co| = 00) is Lipschitz continuous on [p. + 9, 1].

[6, (2) Section 7] also gives the following estimate.

Fact 5. If p > p. and § > a(p), then there are constants 0 < v,C < oo that depend on p,
and 3 so that
P,(r, > pn) < Ce™ ™.

Results in [6, Section 12] imply that
Fact 6. If p # p. there exists v > 0,C < oo such that P(n < 70 < 00) < Ce ™.

We will make use of the dual process to oriented homogeneous percolation when proving
Theorem 2. This is the process obtained by keeping the same edges open, but reversing the
orientation so that edges point southwest and southeast. Note that the dual process has the
same law as usual oriented percolation. Thus, Fact 6 also holds for the survival time of a
component started at w in the dual percolation.

Supercritical percolation almost surely contains an infinite component. Translation in-
variance of the lattice ensures that an individual edge has probability 8(p) of belonging to
this component. Let 77 denote the length of the longest surviving path started from a site
in H. This is proven in [6, Section 10].

Fact 7. There exists 0 < v,C < oo that depend on p such that for any A C Z? it holds that
P(t4 < 00) < Ce "M,

Some of our proofs involve comparison with one-dependent oriented percolation. One-
dependence means that the values on edges that share a common vertex are correlated, but
edges without a common vertex are independent. This type of percolation is analyzed in
[6]. Consider one-dependent oriented percolation in which the marginal distribution for each
edge is such that it is open with probability at least 1 —e. Let C = {w: for some x <
0,(x,0) — w}, and let s, = sup{x: (z, k) € C}. According to [6, Theorem 2; Section 11],

Fact 8. If0 < ¢ <1 and e < 373/0-9  then there are constants 0 < v,C < oo so that

P(sy < qgk) < Ce 7k,



3 Proof of the Theorem 1

We start by proving (i). Let ¢ > 0 be small. For i = 1,2, let y; = n(p. — d,t). On (y1,0)
we use Fact 1 to dominate Poisson percolation by homogeneous percolation in which bonds
are open with probability p. — . We have y; ~ ¢tV for constants ¢; < ¢s. Let k = Yo — Y1-
Note that at height y;, all the z-coordinates of points of Cy(t) are in [—yi,y1]. It follows
from Fact 3 that for large ¢

P(Co(t) N (Z x {y2}) # 0) < 21 exp(—y(ca — 1)tV*) — 0. (4)

If 0 is small, then y» < (14 n)N and we have the desired upper bound on the height.

Theorem 1 (ii) follows from the following two lemmas. We subdivide time by introducing
probabilities p;, 1 < i < m — 1 so that a(p;) =1 —i/m, and let py = 1, p,, = p. — 20. Note
that these values are well defined by Fact 4. We will choose the value of m appropriately
for n in just moment. Let zg = 0 and z; = n(p;,t) for ¢ > 1. The last interval (z,_1, z,,] is
longer so that z,, = yo. When z; < y < 2,11, we use Fact 2 to bound our system from above
by oriented percolation with probability p;, which has edge speed =1 —i/m.

We define sequences u;, v; for 0 < i < m — 1 inductively by ug = ¢

V; :ui+(1—i/m)(z,~+1—zi), Uj+1 :UZ—F(S
Now define a function h,(z) to be linear on [z;, z;41), with hy(z;) = u; and

lim ht(y> = ht(2i+1_) = ;.

y1zit1

U3
Z4
Ps3
V2
Z
us 3
P2
U1
Z
U9 2
Y41
Vo
21
U
Po
20

o

Figure 3: Region defined by h;(k) when m = 4. Notice that the slopes of the segments
(us,v;) are 1, 4/3, 2, and 4, i.e., 1 over the maximum edge speed in the interval.



Lemma 6. Ast — oo, P(r2(t) < hy(k) for all k < z,,) — 1.

Proof. Let 1 <1 < m. Suppose that 7"21_ (t) < v;—1. To prove the result it is enough to show
that as t — oo

P(ri(t) < hy(k) for z; <k < z41 ) — 1. (5)
When ¢ = 0, the dominating process has py = 1 so
P(r) < hy(k) for 20 <k <z )=1.

Now suppose @ > 0. When k € [z, 2 + u; — v;_1), it is impossible for the process to
reach h;(k) since the z-coordinate of the right-most particle can increase by at most 1 on
each step. In order to get from v;_; to v; in time z;;1 — z;, the right edge would have to
travel at an average speed of more than 1 — (i — 1)/m. Using Fact 5, and summing over
k € [z +u; — vi_1, zi11] proves (5). O

Lemma 7. Let n > 0. If we take m large enough and § small then hi(y) < (14 )i (y) for
ally € 0, (1 +n)N].

Proof. We begin by noting that Fact 4 implies that a(f(z)) is decreasing while f(z) > p..
If m is large enough then a(p;) — a(p;—1) < n/2 for 1 <i <m and a(p,-1) = 1/m < n/2.
To prove the result now note that if ¢ < m then

)~ Tuein) = [ alrw)dy
Mzi=) = h(zi1) = Oé(lJ_cl(Zifl))(Zi — zi-1).
So, by the choices we have made above,
h(zi—) = h(zi—1) < (1 +n/2)(Te(z) — Ti(zi-1)).
Now, if 6 is small enough h(y) < (1+ 7/2)Ty(y) for y < zm_1. ON [2m_1, 2],
hy) = h(zm-1) < (0/2)(y = 2m-1)-

If ¢ is small enough we have h(y) < (14 1)y (y) for y < (1 +n)N. O

4 Proof of Theorem 2

To get the cluster at 0 started, we observe that it with high probability contains all possible
sites within distance /% with 0 < b < 1.

Lemma 8. Let K(n) = {(z,y): 0 <y <mn,and |x| <y}. Forany0<b<1, ast— oo
P(K(t"P) C Cy) — 1.

Proof. By (1), each edge in K(t*/?) is closed with probability < exp(—t'~*). Since there are
fewer than /8 edges, the result follows from a union bound. m
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4.1 Constructing the renormalized lattice

The next step is renormalizing the lattice to compare Poisson percolation with 1-dependent
oriented percolation with parameter 1 — €. As in the previous section, we introduce proba-
bilities p;, 1 <i < m — 1 so that a(p;) =1 —i/m. We let 2y = t/B and for 1 <i<m—1
let z; = n(p;,t). The key ingredient for describing the density is to show that the rightmost
edge of Cy stays to the right of (1 — 7). When 1 <i<m —1and z;_; <y < z;, we bound
our system from below by oriented percolation in which edges are open with probability p;,
and the edge speed is a; = 1 —i/m.

To lower bound the process in which each edge is open with probability p; we will use
a block construction. So that the lattices associated with different strips will fit together
nicely, the x coordinates of the sites in the renormalized lattice will always be at integer
multiples of some fixed constant L, and we will vary the heights of the blocks. In the ith
strip z;_1 <y < z;, we let Afw be the parallelogram with vertices

up = (—1.56L,0)  wy = ((1+ 1.56)L, (1 + 38)L/ ;)
vo = (—0.56L,0) v = ((1+2.56)L, (1+ 30L)/a)

and let B, = —Aj,,
To begin to define the renormalized lattice, we let T} = zy. In the ¢th strip, the points in
the renormalized lattice are

(ct . d') = (mL,T; +n(1+6)L /)

m?n

where m and n are integers so that m—+n is even, n > 0 and T;+n(1439)L/c; < z;. The last
condition is to guarantee that all the edges we consider in the 7th part of the construction
are open with probability at least p;. Note that in each strip the vertical index n begins at
0.

To continue the construction when 7 < m — 1 we let
Tiv1 =max{T; +n(l+ ) L/a; : Ty +n(1+30)L/a; < z}.

Let Al , = (ci,,d) + Ab g, let Bl = (c,,d}) + By and let I', = ¢, + (=0.56L,0.56L).

m? 'n m? 'n

The parallelograms are designed so that (see Figure 4)
(i) at height d,,, = d}, + (1 +0L)/a, A, fitsin I} .

(ii) at height di, + (14 30L)/c the x component of the left edge of A}, , is the same as that
of the right edge of B, ..

We say that the good event Gf, occurs if
(I) in A}, there is a path from the bottom edge to the top edge.

(I) in By, there is a path from the bottom edge to the top edge.

11



B A

% %
m+1,n+1 m+1,n+1

4+ (1+30L0)/a;

Figure 4: Picture of the block construction. Stars mark points of the renormalized lattice.

Note that the existence of the paths in (I) and (II) are determined by the edges in Af ; and
Bé’o respectively. The parallelograms are constructed to overlap in such a way (see Figure
4) that, if there is a path in A} , and there are pathsin B}, ., and A} ., ., then there
is a path from the bottom edge of A7, to the top edges of A}, ., and Bpi1 1.

We define G%,,, by translation. In [6, Section 9] it was shown that, given € > 0 , for
L > L; it holds that P(Gj,) > 1 —e. Let L = maxi<j<m_1 L;. Suppose § < 0.01, let
Ry = [—1.5L,1.5L] x [0, (1 +36)L/ey], and let

Ry = (€ €) + R

The existence of paths in parallelograms that do not overlap is independent. The box R(i),o
intersects Ry, R'5,, R, Riy Ry _;, and R", ,, so the construction is one dependent
(as described after Fact 7).

4.2 Lower bound for the right-most particle

To facilitate comparison with oriented percolation, we will renumber the rows of renormalized
sites with zg < y < z,,_1 by the nonnegative integers 0,1,2,... M and let 7o, 7,..., 7y =
inf{k: zx > (1 —n)N} be the corresponding heights in Poisson percolation on the usual
lattice. In our construction, we will pick L large and then let ¢ — 0o, so there are constants
C) and Cy so that C1t'/% < M < Cyt'/8. Also, fix 0 < b < 1 and let K = K(t,b) =
max{j: 7; < t*/} be the last parallelogram below height t*/%. Note also that K — oo since
L is fixed.
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Consider 1-dependent oriented percolation in which edges are open with probability 1 —e.
Fix two numbers 0 < ¢ < ¢’ < 1. Define the set of edges £k = [¢'K, K| x {0}, and

s, = max{x: there exists w € & with w — (z,k)}

to be the rightmost edge at height k accessible from k. By Lemma 8 we know that Ex will
have all edges open with probability going to 1. Moreover, we claim that as ¢ — oo,

P(s), > gk for all k > 0) — 1. (6)

Fact 7 guarantees that the probability £x contains a path to infinity goes to 1 as t — oc.
Since a path can displace at most one unit to the left at each height, the first time we could
have s) < ¢k is at height (¢’ — ¢)K/2. Applying the bound from Fact 8 to the rightmost
edge started from Ex, we then have

M
P(s), < gk for some k > 0) < Z Ce "% -0,
k=(¢'—q)K/2
since K — oo.
To get a lower bound on the right-edge in the Poisson percolation process, we consider
the mapping (s}, k) — (LS}, ) from the renormalized lattice back to the original lattice.

Because of (6), we consider the image of the line y = ¢k under this map. It is given by a
piecewise linear function with

e 1(0) =0, and h(t) = gk for k € [0, o], and
o h(k) = h(zi—1) + qoi(k — zi—1) for k € [z;_1, 2] with 1 <7 <m — 1.

The renormalized sites that make up the right edge will map to the right of this curve.
The paths that connect them will lie in the associated parallelogram from Section 4.1, so
they cannot go further than (1 + 36)L/«; to the left of h. It follows that

P(ri(k) > h(k) — (1 +30)L/a; for all z;_y <t <z) — 1.

On [z;_1, 2], h has slope qa; while I'; increases at rate < «;—1 = «o; + 1/m. If m is large
enough then o; > (1 —n/2)a;_q for 1 < i < M. It follows that if ¢ is chosen close enough
to 1 then h(k) — (1 +39)L/a; > (1 —n)I'y(k) for all 2,1 <k <z and 1 <i<m —1. The
proof for the left edge is similar.

5 Proof of Theorem 3

Consider the site w = (x,y) with z; <y < 2.1, so that it is in the ith strip of the unscaled
lattice. Fact 6 implies

(%) if n; = (1/;) log(C;N*) and the dual process started from w survives for n; units of time
then the probability w & Cy is < 1/N*.
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This says that Cy is closely approximated by the points whose dual survives for time n;. Let
Rjp = [GN® (j+ DN x [kN?, (k + 1) N

and suppose that all the points in R, are in the ¢th strip.
Let A, = {7" > k;}, and count the number of points in R;; with a long-surviving dual
with

Sie =Y 1{A,}.

’LUERjyk
Since |R; | = N?¥, (x) ensures that

Since there are no more than N272% boxes with high probability this holds for all of them.
So, it suffices to study S;x. We start by centering it. Let 6,, = P(A,), and define

Sik =ik — ESje =Y 1{A,} — b,
wERch

The advantage of considering A,, is that if w = (z,y) the event A, is determined by edges
in [ —n;,x +n] X [y —ng,yl soif lw— w'|| > 2n; the indicator random variables are
independent. Using the bound

11{A, N Ay} — P(A,)P(Ay)| <1
when [jw — w'|| < 2n;, we obtain
4

BES;, < N* 4n? <
I ryl

N?*log? C;N*. (7)

Using (7) with Chebyshev’s inequality gives for 6 > 0 and some C! > 0

C/{N*1log’ N

P(|Sjk| > 5N2a> < 52 N4a

O(N~2*log® N). (8)

Since there are O(N?72*) many different boxes R, it follows from (8) that
P sup  |Sjx| > ON?* | = O(N?*™*log”® N).
(k) €A (n.m)

The right term is o(1) since a > 1/2. To relate this back to Cy we note that f(y) defined in
(3) is Lipschitz continuous, and by Fact 4 so is 6(p) on [p. + 6, 1]. Thus,

sup{6(p(w,1) = B(p(w’, )]s w,w' € Ry} < CN* =0,

Using this and Fact 6, we can replace the P(A,) terms in S;; with a representative ;) =
O(p((xj,yx),t)), and Theorem 3 follows.
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6 Proof of Theorem 4

Recall N = n(p.,t). In our process, the right edge particle cannot be part of an infinite
cluster, so we define renewals to be times at which the rightmost particle lives for time
at least logZ N. This is motivated by the bound from Fact 6. To get started, if b < 1
then the state at time t”® is an interval and the rightmost particle survives for log? N
with probability — 1 by Lemma 8. Suppose t; is the time of the ith renewal and let p;
be the probability bonds are open at that time. On [t;,¢; + 2log® N] bonds are open with
probability > p; — c¢(log? N)/N. The 2 is to allow us to find the renewal point and then
verify it works. The bonds of interest are in a triangle with point at (r;, T;), sides with slope
1, and height 21log® N so we can by Fact 2 couple the inhomogenenous system with a system
with probabilities p; so that with high probability there are no errors.

Unfortunately the increments in the right-edge defined in this way are not independent.
If r; — r;_1 is large then the p for the next increment will be smaller. To fix this we will
again divide [0, N] into strips by choosing «a(p;) = 1 —i/m and z; = n(p;,t) but now we will
use m = N%6 strips. For renewals that begin in the strip z; < y < z;11 we will upper bound
the movement of the right edge by using p = p; and lower bound by using p = p;+1. The
large number of strips guarantees that the difference between the upper and lower bounds on
E(ry —ry—1) will be N7%6 50 when we sum N of these terms the result is O(N%*) = o( N°)

Kuczek [14] has shown that when p is fixed r; — r;_; has an exponential tail, so using
the Lindberg-Feller theorem, see e.g., Theorem 3.4.5 in [7], on the upper bound and on the

lower bound .
D ot Tk = 1) — E(ry, — 1)

V2 iy var (1 = 7i1)

where y is standard normal. To convert this to continuous time note that for homogeneous
percolation

= X (9)

E(r; —ri—1) = a(p)E,(t; —ti—1) because Er(t)/t — a(p),
var (r; — ri_1) = 0> (p) E,(t; — ti-1) because varr(t)/t — o%(p).

Let M(s) be the number of renewals needed to get to height s. Replacing n by M(s) in (9)
the result is .
re(s) = Jy alp(y. 1) dy
Jy 2 (p(y. 1)) dy

Taking s = Nu and replacing the denominator by v N we have convergence of the one
dimensional distributions to the desired limit. Since the increments of the limit process are
independent, convergence of finite dimensional distributions follows easily. Since

n

Z(Tk —qu) —E(?"k —qu)

k=1

is a square integrable martingale it is not hard to use the L? maximal inequality to check
that the tightness criteria that can be found for example in Section 8 of Billingsley [2].
Alternatively one can invoke Theorem 4.13 on page 322 of Jacod and Shiryaev [12].
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