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Abstract
This paper presents the development and validation of the 17-item mathematics
Graduate Student Instructor Observation Protocol (GSIOP) at two universities. The
development of this instrument attended to some unique needs of novice undergrad-
uate mathematics instructors while building on an existing instrument that focused
on classroom interactions particularly relevant for students’ development of concep-
tual understanding, called the Mathematical Classroom Observation Protocol for
Practices (MCOP2). Instrument validation involved content input from mathematics
education researchers and upper-level mathematics graduate student instructors at
two universities, internal consistency analysis, interrater reliability analysis, and
structure analyses via scree plot analysis and exploratory factor analysis. A
Cronbach-Alpha level of 0.868 illustrated a viable level for internal consistency.
Crosstabulation and correlations illustrate high level of interrater reliability for all
but one item, and high levels across all subsections. Collaborating a scree plot with
the exploratory factor analysis illustrated three critical groupings aligning with the
factors from the MCOP2 (student engagement and teacher facilitation) while adding
a third factor, lesson design practices. Taken collectively, these results indicate that
the GSIOP measures the degree to which instructors’ and students’ actions in
undergraduate mathematics classrooms align with practices recommended by the
Mathematical Association of America (MAA) using a three-factor structure of
teacher facilitation, student engagement, and design practices.

Keywords Graduate teaching assistants . Mathematics teaching practices . Observation
protocol . Student engagement . Teacher facilitation
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Almost all undergraduate students take at least one mathematics course in college,
and, for many, mathematics course requirements have a strong influence on their
choice of majors and, ultimately, their careers. Science, Technology, Engineering,
and Mathematics (STEM) disciplines continue to experience a “pipeline prob-
lem”: less than 40% of US students who enter university with an interest in STEM
finish with a STEM-related degree (President’s Council of Advisors on Science
and Technology 2012). Since success in mathematics courses often plays a
decisive role in admission to STEM majors, improving the quality of undergrad-
uate mathematics instruction is a key ingredient to address the pipeline problem
(Bressoud et al. 2015).

Instructors’ selection of mathematical concepts, as well as the methods they use
to teach students about these concepts, can significantly affect student learning
(Bergqvist and Lithner 2012; Nardi et al. 2005). Although there is a general call in
education for data-driven-decisions, there is a critical need for reliable measures of
classroom practice with robust validity arguments in order to produce the data
needed to make such decisions about classroom teaching. Therefore, robust
measures for observing and improving undergraduate mathematics teaching are
incredibly important (Belnap and Allred 2009). Observations of mathematics
instruction have been common in K-12 settings (Bostic et al. 2018; Boston et al.
2015), but corresponding techniques in collegiate contexts are rare (e.g., Beisiegel
et al. 2016; Hayward et al. 2018).

To address the need for high-quality observation data to inform undergraduate
mathematics teaching, we have developed an observation protocol that focuses on
instructors’ and students’ actions and interactions during undergraduate mathematics
instruction that provide opportunities for students to engage inmathematical meaning
making. Specifically, we present an analysis of data collected using this observation
protocol on novice graduate student instructors at two universities in their first aca-
demic year as instructors of record.

Aligned with the Standards for Educational and Psychological Testing (American
Educational Research Association (AERA), American Psychological Association
(APA), & National Council on Measurement in Education (NCME) 2014), we include
validity evidence based on content and internal structure of the Graduate Student
Instructor Observation Protocol (GSIOP, Appendix). First, we describe existing
STEM- or mathematics-focused observation protocols and discuss the need for our
instrument focused on novice mathematics instructors’ use of lesson design practices
that engage students in mathematical meaning making. Then, we describe the process
for developing the GSIOP, methods of collecting and analyzing the data, and results
from the validation and reliability study. We conclude the paper by discussing appro-
priate uses for the GSIOP.

Theoretical Background

Because the mathematics instructors in this study were novices in their first semester of
teaching undergraduate mathematics courses, we first describe what, if anything,
existing literature discusses about typical professional development practices for work-
ing with this population of instructors. In relation to this population of instructors and

International Journal of Research in Undergraduate Mathematics Education



the need for robust measures of classroom instruction, we include our definition of
effective mathematics teaching in relation to the Mathematical Association of
America’s (MAA) Instructional Practices Guide (MAA 2018). Finally, we explain
how the GSIOP is situated in relation to other observation protocols, especially
STEM- or mathematics-focused protocols.

Background on Systems of Support for Novice Mathematics Graduate Student
Instructors

We observed undergraduate mathematics classroom teaching when it was being taught
by mathematics graduate student instructors (GSIs).1 This population of instructors,
GSIs, teach hundreds of thousands of undergraduate mathematics students each semes-
ter, yet often lack guidance and support to teach undergraduate students effectively
(Rogers and Steele 2016; Speer and Murphy 2009). GSIs’ initial teaching experiences
often set the stage for how they will teach in the short term in graduate school and in the
long term as future faculty members (Lortie 1975). Moreover, GSIs often participate in
professional development (PD) concurrent with their first semesters as instructors of
record. Thus, GSIs are uniquely positioned as a population of instructors who are
simultaneously receiving and applying strategies and theories learned in PD seminars,
courses, and other such opportunities. As researchers have documented (Belnap and
Allred 2009; Bressoud et al. 2015; Ellis et al. 2016a, b), PD opportunities and teaching
assignments for GSIs vary significantly in mathematics departments and universities
across the US. GSI PD ranges from help with mundane teaching tasks to teaching skills
and techniques. The extent and depth of GSI PD also ranges from a few workshops to
semester-long seminars. This current variance makes it challenging to determine what
and how GSI PD can be the most impactful and effective for improving student
learning outcomes in undergraduate mathematics courses. Therefore, there is a critical
need for consistent, research-based, GSI PD that incorporates basic teaching techniques
and also prepares GSIs to develop into effective, student-focused mathematics instruc-
tors while they are in graduate school and for their potential future faculty careers.

Our Conception of Effective Teaching: Facilitating Undergraduate Mathematics
Students’ Opportunities to Engage in Meaning Making

Drawing from the MAA’s Instructional Practices Guide (2018), we focus on lesson
design practices, teacher facilitation, and classroom practices that promote student
engagement when conceptualizing effective mathematics instructional practices that we
aim to help GSIs develop. First, “we define design practices to be the plans and choices
instructors make before they teach and what they do after they teach to modify and
revise for the future. Design practices inform the construction of the learning environ-
ment and curriculum and support instructors in implementing pedagogies that maxi-
mize student learning” (MAA 2018, p. 118). To help GSIs focus on ways to plan and
structure their lessons to engage students in high-level thinking and reasoning, we

1 GSI was used instead of TA (Teaching Assistant) because GSI targets the specific set of graduate students
who are instructors of record, meaning that they are responsible for the day-to-day interactions, content
delivery, assessment, and grading in undergraduate mathematics classrooms.
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specifically consider some basic lesson design practices including, lesson planning
around explicit, measurable, learning goals; designing mathematical activities aligned
with the learning goals; and communicating instructional decisions and mathematical
connections effectively to students. Second, when GSIs have created lessons with
activities intended to engage students in mathematical meaning making, they also
need to effectively implement the lesson, which involves teacher facilitation. We
agree with Gleason et al.(2017, p. 114) when they explain that

current research and reform efforts call for a teacher who can facilitate high-
quality tasks, interactions, and student reasoning (Barker et al. 2004; NCTM
1991, 2006, 2011; NGACBP and CCSSO 2010; NRC 2002; Stein et al. 2008,
2009). Key elements to consider with teacher facilitation of a task include the
amount of scaffolding (Anghileri 2006), productive struggle (Hiebert and Grouws
2007), the level of questioning (Reys et al. 2015; Schoenfeld 1998; Winne 1979),
and peer-to-peer discourse (Cobb et al. 1993; Nathan and Knuth 2003) that occur
with a mathematical task, while keeping in mind the complexity that occurs
between teachers’ decisions and students’ responses (Brophy and Good 1986).

Therefore, we believe that an observation protocol designed to support GSIs’ facilita-
tion of mathematics tasks should document these aspects of teacher facilitation that
Gleason et al. (2017) described. Third, GSIs can help students retain information by
engaging students in meaning making during class. Specifically,

student engagement can be enhanced by activities that require sense-making,
analysis, or synthesis of ideas during class. These strategies may be ‘anything
course-related that all students in a class session are called upon to do other than
simply watching, listening, and taking notes’ (Felder and Brent 2009, p. 2). . . .
Students need to actively engage in the process of learning mathematical ideas,
developing strong conceptual understanding, and using these ideas to develop
procedural fluency. (MAA 2018, pp. 10 & 63)

Thus, when observing GSIs teaching students in undergraduate mathematics class-
rooms, we consider student engagement by focusing on whether or not students engage
with mathematical ideas, different strategies, their peers, and formative assessment
strategies. We endeavor to both facilitate the development of GSIs’ abilities to effec-
tively design and implement mathematics lessons in order to provide opportunities for
undergraduate students to engage in, and with, mathematics, and to develop a method
for observing and documenting this growth.

Situating Our Observation Protocol in Relation to Other Instruments and Theory

Within this context, where we are observing GSIs teaching in order to help them
develop into more effective instructors who focus on student-engagement, we designed
the GSIOP. To unpack the features and purposes of the GSIOP, we describe the need for
observation protocols in general, some important considerations when measuring the
quality of mathematics instruction, and how the GSIOP relates to other existing STEM-
or mathematics-focused protocols.
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Classroom Observations and Student Learning To connect teachers’ perception of
learning outcomes and the student’s actual learning outcomes, it is vital to measure
classroom practices. The quality of teaching and learning cannot be determined solely
with checklists or student grades—contexts matter (e.g., Smith 2012), as do issues of
equity (e.g., Gutiérrez and Gutiérrez 2012). Teachers’ instructional practices are directly
linked with student outcomes in a wide variety of research studies (e.g., Allen et al. 2011;
Blazar 2015; Bressoud et al. 2015; Bressoud and Rasmussen 2015; Freeman et al. 2014;
Kersting et al. 2012; Koellner and Jacobs 2015; Rasmussen et al. 2014). Although the
connections between teaching and learning are not disputed, the improvement of under-
graduate student outcomes via improved instructional practices is not as clearly under-
stood (Ellis et al. 2016b). Many researchers depend on self-reported instructional practices
(e.g., Desimone et al. 2013; Garet et al. 2011), yet even the most well-intentioned teachers
tend to overestimate their teaching effectiveness and their uses of evidence-based instruc-
tional practices (National Research Council 2012). For instance, Desimone et al. (2010)
used National Assessment of Education Progress (NAEP) data and found very low
correlations between K-12 student and teacher perceptions of classroom activities. The
National Center for Educational Statistics (NCES) conducted a careful validity and
reliability study comparing data from K-12 observations, self-reported survey data, and
self-reported daily teaching logs (US Department of Education, NCES 1999). On one
hand, items about specific content and instructional structures (e.g., amount of time
students spent copying notes) showed fairly high agreement, meaning that the frequency
to which observers noted classroom practices occurring closely matched the self-reported
data. Items about the quality of instruction (e.g., the extent to which a whole class
discussion engaged all students in mathematical reasoning and communicating), on the
other hand, had very low agreement where teachers consistently rated themselves much
higher than observers did. Therefore, the aforementioned need to measure classroom
practices to align the teacher’s perception and student learning suggests the use of a
recorded observation and an observation protocol that identifies concrete interactions and
engagement of students. Since the “design for student-centered learning must be in sync
with evidence-based practices,” (MAA 2018, p. 90), we designed the GSIOP with this in
mind. And a systematic examination of student performance as related to GSIOP data is
an area for future investigation.

Considerations for Measuring Quality of Instruction A key aspect of the validation
argument for a measure of instruction is the alignment of the protocol’s purpose with the
purpose of the data collection (AERA, APA, and NCME 2014; Kane 2012). One compo-
nent of the purpose of a protocol iswhether its authors intend it to be used as a descriptive or
evaluative instrument. A descriptive protocol’s principal aim is to capture and describe
what is happening in a class, whereas evaluative protocols measure (with ordinal, cardinal,
or scalar measurements) the quality of a class against a theory of instructional quality.

Moreover, observation protocols may also be holistic (encompassing the whole
lesson) or segmented (separately rating shorter segments of the lesson). Segmented
protocols usually capture structure, while holistic views can be more appropriate for
capturing quality (Tatto et al. 2018a, b). For example, a lengthy whole-class discussion
may span several segments that are treated separately. A holistic protocol, on the other
hand, might focus on how an error made early in a lesson is featured in the lesson
closing, clearing up students’ misconceptions.
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Additionally, protocols may focus on the instructor or students, may or may not take
subject matter into account, may require high or low inference by the observer, and may
vary in the degree of structure. Although much can be learned from a content-general
observation protocol (e.g., Classroom Assessment Scoring System, Mikami et al.
2011), specific indicators of mathematics teaching and learning are important for
capturing quality of mathematics instruction. Both the National Council of Teachers
of Mathematics (NCTM 2014) and the Mathematical Association of America (MAA
2018) cite numerous indicators of quality in mathematics lessons which are particular
to mathematics, including precise language and addressing mathematical errors. Thus,
the GSIOP is a mathematics-specific observation protocol that is based on another
mathematics-specific protocol (Mathematical Classroom Observation Protocol for
Practices (MCOP2), Gleason et al. 2017, pp. 113–119) focused on the extent to
which an instructor facilitates active-learning and student engagement during teaching.

Measures of Instruction For K-12 measures of instruction, multiple research projects
(e.g., Joe et al. 2013; Mihaly et al. 2013) and reviews (Bostic et al. in press, 2015)
synthesize the major mathematics observation protocols. This provides the field with
syntheses of measures for K-12 mathematics teaching, but currently there are no
overarching synthesis of protocols for measuring the quality of undergraduate mathe-
matics instruction. To explain the way the GSIOP developed from a particular K-16
mathematics-focused observation protocol, therefore, we first characterize the main
features of several existing STEM-related observation protocols at both the K-12 and
undergraduate levels (Table 1). The purpose of this categorization, which builds off of
existing characterizations (Hayward et al. 2018), is to recognize that the existing STEM-
related observation protocols used in collegiate settings are diverse and that this diversity
is not always made explicit. Moreover, individual items within a protocol may fall into
another category. For example, some individual items on theMCOP2 (and, by extension,
the GSIOP) are more descriptive than evaluative. Therefore, in Table 1 we used the term
“mostly” to indicate the type of items that made up the majority of that listed protocol.

The Mathematical Classroom Observation Protocol for Practices (MCOP2) Because it is
important to help novice collegiate mathematics instructors consistently engage under-
graduate students in their mathematics learning, we chose to modify an existing
protocol (the MCOP2, Gleason et al. 2015) that was mathematics-specific and attended
to strategies for engaging students (i.e., active learning techniques). Gleason et al.’s
(2017) validation study indicated that the MCOP2 is a reliable protocol for assessing
K-16 mathematics classrooms, explicitly explaining,

MCOP2 . . . measures the actions of both the teacher and students. By capturing
both sets of actions, the MCOP2 differentiates between teacher implementation of
a lesson and the students’ engagement. This makes the MCOP2 a holistic
assessment of the classroom environment not found in [other well-known]
observation protocols . . . . Another benefit of this instrument for research, in
comparison to other observation tools, is that the MCOP2 is more manageable.
Extensive training or professional development is not necessarily required,
beyond reviewing the detailed user guide (Gleason et al. 2015) with the assump-
tion that the user understands the terminology in the rubrics. (pp. 118-119)
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When using observation protocols, two crucial considerations are training observers
and calibrating observations (e.g., Ho and Kane 2013; Tatto et al. 2018b). For obser-
vations to help improve teachers’ practices and student outcomes, observers need to be
trained in the uses and applications of the protocol selected. Further, observers need to
interpret the protocol in the same ways, so that scores are reliable. Therefore, since the
GSIOP builds on the MCOP2 extensive training is also not required, but that does not
mean there is no training involved. Currently, training for using the GSIOP takes place
during two-three 90 min seminar meetings where we rate and discuss GSIOP scores of
training videos to help GSIs understand the GSIOP.2

Ultimately, we focused on modifying the MCOP2 because it measures how
mathematics instructors use practices “for teaching lessons that are goal-oriented
toward conceptual understanding as described by standards documents put forth by
national organizations” (Gleason et al. 2017, p. 113). Because we wanted novice GSIs
to learn to design and facilitate lessons that focus on student engagement, we began

2 We do not intend this manuscript to be used for training purposes; this work focuses on the validation study
of the GSIOP.

Table 1 Structure and purposes of some existing STEM-related protocols

Name Structure Purpose

Focused on Collegiate
Mathematics Instruction

Graduate Student Instructor Observation
Protocol (GSIOP; this manuscript)

Holistic Mostly
Evaluative

Toolkit for Assessing Mathematics Instruction
(TAMI; Hayward et al. 2018)

Segmented Mostly
Descriptive

Teaching for Robust Understanding Math
(TRU-Math; Schoenfeld and the Teaching
for Robust Understanding Project 2016)

Holistic Can Be
Both

Focused on K-12 Mathematics
Education & Applied in
Collegiate Math

Instructional Quality Assessment (IQA;
Matsumura et al. 2006)

Holistic Mostly
Evaluative

Mathematical Classroom Observation
Protocol for Practices (MCOP2; Gleason
et al. 2017)

Holistic Mostly
Evaluative

Classroom Assessment Scoring Systems
(CLASS; Mikami et al. 2011; Pianta et al.
2008).

Holistic Mostly
Evaluative

Mathematical Quality of Instruction (MQI;
Learning Mathematics for Teaching Project
2010)

Mostly
Segmented

Mostly
Evaluative

Focused on STEM Instruction College Observation Protocol for
Undergraduate STEM (COPUS; Smith
et al. 2013)

Segmented Mostly
Descriptive

Postsecondary Instructional Practices Survey
(PIPS; Walter et al. 2016)

Holistic Mostly
Evaluative

Reformed Teaching Observation Protocol
(RTOP; Sawada et al. 2002)

Holistic Mostly
Evaluative

Simple Protocol for Observing Undergraduate
Teaching (SPrOUT; Reimer et al. 2016)

Holistic Mostly
Descriptive
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pilot testing the use of the MCOP2 by having upper-level graduate students use the
MCOP2 when observing other GSIs as they taught undergraduate courses at two public
universities in the US. Based on these pilot tests, we modified the MCOP2 to
incorporate basic lesson design practices, explicit formative assessment strategies,
and a further emphasis promoting undergraduate student engagement.

Method: Graduate Student Instructor Observation Protocol
Development and Theory

The MCOP2 provided a foundation for our project, which was to develop an
observation protocol to inform quality feedback given to GSIs that could then
positively affect their growth and development as instructors who regularly engage
students in mathematical meaning making. Our intention was to develop an observation
protocol that could be used by experienced GSIs or by faculty members to provide
meaningful, critical feedback to novices about their teaching practices. We wanted to
use the protocol to generate observation data that would provide useful feedback about
the kinds of challenges faced by first-time instructors while also encouraging them to
reflect on and incorporate student-centered strategies into their classroom practices.

To develop the GSIOP, we used pilot tests where experienced graduate students
were first trained to use the MCOP2 to observe GSIs teaching undergraduate courses at
two US public universities. Based on these pilot tests, two of the authors on this paper
(Author 1 & Author 3) created the GSIOP to: (1) better align terminology for
mathematics graduate students; (2) restructure it for ease of use according to student-
focused, teacher-focused, and lesson-focused items; (3) incorporate lesson design
practice items of specific concern to GSIs (including international GSIs); and (4)
collapse some items together while expanding others to streamline the observation
process and help the observer focus on student engagement.

Pilot Tests and Graduate Student Instructor Observation Protocol Creation

As Gleason et al. (2017) noted, terminology used in the rubrics could be a barrier to
some observers’ use, and there were a few rubric items that could be reworded to clarify
what the language/practices meant to allow GSIs (esp., those who are less familiar with
National Standards documents) to more easily apply the protocol. For instance, we
reworded the rubric descriptions for the sixth item on the MCOP2 (The lesson involved
fundamental concepts of the subject to promote relational/conceptual understanding,
IV.B in the GSIOP, Appendix) because it mentioned “as described by the appropriate
standards.” This clause in the rubric was confusing to GSIs where national standards
for undergraduate-level instruction are either non-existent or not well-known. Similarly,
the seventh item stated the lesson promoted modeling with mathematics with a score of
3 indicating “students engaged in the modeling cycle (as described in the Common
Core Standards).” This was reworded to describe modeling in a fashion that was clearer
to GSIs who had never heard of the Common Core Standards (NGSA 2010). Also, the
tenth item was worded as the lesson promoted precision of mathematical language but
the language in the rubric focused on things the teacher did or did not do, and
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occasionally mentioned the students as well. We worded the overarching phrase to
focus on “The teacher promoted…” rather than the lesson.

Next, the MCOP2 includes 16 items that we reordered based on the primary focus of
the items. We noted that eight of the items were primarily student-focused, four were
primarily teacher-focused, and four were focused on the lesson design or structure.
Since the GSIs had never used an observation protocol before, we reordered the items
so they could pay attention to the student, teacher, or lesson for the related items,
thereby reducing the observers’ cognitive load when filling out the protocol. Ten GSIs
and two mathematics education researchers practiced using this reordered, slightly
reworded version of the MCOP2 by observing one or more class sessions taught by
mathematics graduate student instructors. Then, they discussed any additional
modifications or areas needing clarification.

Following a second round of pilot testing, we realized that GSI observers were also
overwhelmed with the number of student-focused items, considered some items to be
consistently less applicable in foundational undergraduate mathematics courses, and
suggested adding other items that clarified the nature of student-centered instruction
being observed and attended more directly to this population of instructors. More
specifically, we pared the number of student-focused items down to four, we removed
two lesson-focused items while adding one new one, and we added a teacher-focused
item about the use of formative assessments, since that was an area of emphasis in our
work with GSIs that we wanted to capture. This restructuring was done carefully to
reduce the cognitive load for the GSI observers while maintaining the focus on basic
lesson design practices, teacher facilitation, and student engagement. First, for the
student-focused items there were subtle differences among the eight original items that
allowed us to often collapse two or three items from the MCOP2 into a single item in
the GSIOP. Second, the two lesson-focused items we removed were about “modeling
with mathematics” and “tasks that have multiple paths…or multiple solutions”. Since
the student-focused items still include one that addresses whether or not students
evaluated solution strategies, and there are still two items on the GSIOP about multiple
representations being used, we removed these two lesson-focused items to allow some
space for new items.

Finally, through this process, we added new items to the instrument: a lesson-
focused item, a teacher-focused item, and a Cover Page. The lesson-focused item
added to the GSIOP focuses the observer’s attention on the learning goals of the lesson
and provides a subjective summary of the observation and the perceived effectiveness
at meeting learning goals. This item serves two primary purposes: (1) to help highlight
whether the instructor made the learning goals explicit for an observer (and students) to
understand and be able to answer such an item; and (2) to provide a holistic category
for the observer to fill out where they consider all the earlier aspects of the GSIOP and
what evidence they observed to answer this last item. The teacher-focused item that we
added specifically asks the observer to note whether or not the instructor incorporated
formative assessments into the lesson (and if so, to note what they were). Adding this
item allows observers tangible things to highlight and recommend an instructor con-
tinue doing or consider trying to incorporate in their future lessons. Finally, in response
to GSI observers’ comments about the need to add explicit categories that address
general, basic teaching mechanics that are especially important for novices to quickly
address fundamental issues early in their teaching, we added a Cover Page to the entire
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instrument. These basic teaching mechanics related to the basic lesson design practices
we described in Our Conception of Effective Teaching section, focusing on aspects of
planning and communicating the lesson content effectively. Furthermore, the MCOP2

did not explicitly ask observers to record some basic information about the class and
instructor that could inform feedback. Hence, the Cover Page was added that addressed
these two concerns (Appendix). In addition to the initial textbox-entry items, such as
who and what was being observed, we added five design practice items to the cover
page, specifically, Preparation and Organization, Verbal Articulation, General Presen-
tation Clarity, Enthusiasm, and Clearly Communicated Lesson Context. Especially
when working with novices who have never taught before, the experienced GSIs
considered these five items to be important principles that would likely need to be
addressed prior to discussing changes that might relate to teacher facilitation or student
engagement more directly. After adding this cover page, the GSI observers conducted
another round of observations, ultimately resulting in the current form of the GSIOP,
which is included in the Appendix.

These changes to the MCOP2 resulted in the GSIOP that is structured around
components that relate basic lesson design practices, teacher facilitation, and
classroom practices focused on student engagement, related to national undergraduate
mathematics teaching and learning recommendations (MAA 2018; National Research
Council 2002). Thus, we investigated the following research question: Does the GSIOP
demonstrate validity and reliability across its 17 items?

Data Collection

The GSIOP was used for two years in a project which implemented a peer-mentoring
process at two universities (Yee and Rogers 2017a; Rogers and Yee 2018). During that
time, 291 observations were completed by thirteen peer-mentors who had been trained
to use the GSIOP during semester-long PD seminars. This training incorporated the use
of the GSIOP by watching multiple videos and live observations. In Table 2 we
describe the courses that the mentors observed, the number of GSIOP scores recorded,
and some notable features of the GSIOP scores from these observations.

Since Gleason et al. (2017) suggested that the MCOP2 should be used to capture
more than one classroom episode for the same instructor, most novices were observed
by their mentor three times during a single semester. In some cases, only one or two
observations could be arranged. Overall, 79 classes were observed three times, 23 were
observed twice, and 8 were observed only once (Table 2). The novices taught a variety
of courses, based on the needs of the department and course schedules. The number of
undergraduates enrolled in these courses taught by novices ranged from 14 to 40. When
observing a novice, mentors collected video data, took observation notes, took digital
images of any handouts or major assignments from the lesson, completed the GSIOP,
and then conducted a follow up, one-on-one conversation with the novice to provide
focused feedback regarding areas where the novice was and was not effectively
supporting student engagement. Our analysis focused on the mentor’s GSIOP data as
well as the video observation data for interrater reliability analysis.
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Prototypical Examples from the Data

To familiarize the reader with some of the 17 items on the GSIOP, we provide a set of
prototypical examples from the data. To select which items to provide examples of within
the manuscript, we refer back to our focus on class design practices, teacher facilitation,
and classroom practices that promote student engagement as key aspects of effective
teaching (seeOurConceptionofEffectiveTeaching section).Alignedwith this background,
GSIOP items are either primarily lesson-focused, teacher-focused, or student-focused.

Specifically, we consider a GSIOP item to be lesson-focused if the subject of the
item is the lesson structure, goals, or mathematical content. GSIOP items that are
teacher-focused attend to the teacher’s classroom actions, decisions, utterances, and
movements. GSIOP items that are student-focused guide the observer to look for
evidence in student(s) actions, talk, or interactions with one another. We provide
prototypical scenarios of classroom observations for one or two items within each of
these foci in Table 3.

In the hyperlink to the entire GSIOP (see footnote in the Appendix) one can refer to
the rubric descriptions for each item, but we also detail prototypical situations for four
different items from the GSIOP (Table 3). That is, for the Lesson-focused item, one
could imagine an instructor was being observed when they wanted students to complete
word problems whose solutions required them to calculate derivatives, and Table 3
includes classroom scenario in which an observer would select a 0, 1, 2, or 3 rating in
that context. Similarly, Table 3 contains four rating scenarios in a different Calc I
context for the Teacher-focused item, an Introduction to Statistics context for one

Table 2 Participant data from two years of GSIOP data collection during peer mentoring

Name of unde rg radua t e
mathematics course taught
by Novice GSI

Number
of Novices
observed

Number
of GSIOPs
completed

Sets of
observations a

Summation of GSIOP
scores recorded b

Single Double Triple Min Max Mean

Introductory statistics 27 104 3 7 29 7 48 31.25

College algebra 10 29 4 7 19 40 32.76

Precalculus 22 71 2 9 17 16 50 36.01

Business calculus 16 46 2 14 19 46 33.46

Calculus I 10 32 2 10 23 48 35.00

Other Math c 4 9 1 1 2 31 49 40.22

67 d 291

a During a single semester, a set of observations consisted of the total number of times an individual novice
was observed by their peer mentor. Therefore, in each row you will find s + 2d + 3t = G, where s represents the
number of single observations, d represents the number of double observations, t represents the number of
triple observations, and G represents the number of GSIOPs completed
bWith 17 items that can receive a 0, 1, 2, or 3, the possible maximum total sum for a GSIOP is 51
cOther Math Courses included three sections of Finite Mathematics and one section of a Calculus-based
course specifically for Construction and Architecture majors

d This number is the total number of unique novices involved in the study. Since some novices taught more
than one type of course during the two years of data collection they are included in the number of novices for
more than one row. So, this number is smaller than the sum of the rows
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Table 3 Scenarios where an observer would select 0, 1, 2, or 3 ratings for some GSIOP items

GSIOP
Rating

Prototypical Situations

Prototypical Situations from a Lesson-Focused Item: 5. Clearly communicated lesson context

0 Three distinct application problems (applying the derivative in word problems) were the focus of this
lesson. There was no clear, explicit communication about the connections across these problems
or solution methods, or from this context to prior or future course content.

1 When working through solutions to the three application problems, the instructor facilitated a
brainstorming of tools, ideas, and definitions the students already learned that could be useful for
solving these problems. Connections to prior knowledge were thus incorporated.

2 In addition to a brainstorming of prior knowledge students could use for solving these application
problems, the instructor initiated explicit conversations about ways the solution methods
compared and contrasted with one another.

3 To solve three application problems, there was explicit brainstorming of students’ prior knowledge
students, comparing & contrasting of solution methods, and comparing & contrasting with
students’ previous and future (e.g., homework) work.

Prototypical Situations from a Teacher-Focused Item

E. The teacher promoted precision of mathematical language

0 The instructor and students were imprecise in their language about average rate of change,
instantaneous rate of change, slope of a secant line, and slope of a tangent line.

1 When writing on the board and talking about examples, the instructor said some unclear phrases
including “this”, “these guys”, “the secant”, and “rate of change”. In these instances, it was
unclear to what mathematical concepts they were referring.

2 Although the instructor’s written and verbal use of terminology related to rates of change was
consistently accurate, students were not explicitly encouraged to correct their language and clarify
to what their statements referred.

3 The instructor was precise in their language about average rate of chance, instantaneous rate of
change, slope of a secant line, and slope of a tangent line. When students were imprecise in their
language about these terms they were consistently encouraged to clarify and refine their
statements.

Prototypical Situations from a Student-Focused Item:

B. Students used a variety of means (modeling, drawings, concrete materials, manipulatives, etc.) to
represent concepts

0 For a discussion of statistical hypothesis testing, the class time focused on algebraic calculations and
sometimes a related visual representation (of the normal curve in relation to the problem) that
were manipulated and explained by the instructor through direct instruction and some choral class
responses.

1 Students completed algebraic computations for a new hypothesis-testing problem after the instructor
modeled the process for the class. They compared their final answer and conclusion with what the
instructor explained at the end of the work time.

2 Students completed algebraic computations for a new hypothesis-testing problem and they also drew
an approximate representation of the area under a normal curve related to the alternative
hypothesis being tested. Students checked their work with what the instructor said the final
answers were, but there was no discussion of the representations or their relationship to the
underlying concepts.

3 During a whole-class discussion: One student explained how they decided what the alternative
hypothesis statement had to be based on its relationship to the problem statement. Another
student wrote out and explained their algebraic calculations for p on the board. A third student
used a computer program to project their visual representation of the normal curve related to the
problem and explained they decided whether they needed to use (1 −α) or α in relation to their
visual.
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Student-focused item (B) and a Calculus II context for another student-focused item
(C). By providing different situations for each of the four selected criteria, the reader
can compare how each rating may be observed for a single item in a class observation.

Data Analysis: The Validation Process

In his often-cited article on validity, Messick (1995) frames the concept of validity as a
study of the fitness of an instrument for a particular use: “Validity is not a property of
the test or assessment as such, but rather of the meaning of the test scores” (p. 741). In
the context of this study, we assessed the fitness of the GSIOP for use in the
undergraduate mathematics classroom, and in particular, for assessing teaching, and
helping mentors organize feedback for novices.

Gleason et al.’s (2017) validation study of the MCOP2 provided a helpful starting
point for the present analysis because the GSIOP is adapted from the MCOP2. Data
from 291 observations (Table 2) was used for the internal consistency and factor
analyses described in sections that follow. In addition, another trained graduate student
researcher watched video data from 39 of the observations and scored the GSIOP based
on the video. These 39 ratings were paired with the ratings the peer-mentors completed
when they observed the live teaching and used to assess interrater reliability; described
in the Interrater Reliability section.

Results of the Validation Study

This study addressed three aspects of the GSIOP’s fitness for use as an assessment of
undergraduate mathematics classroom practice. First, the internal consistency of the
instrument addressed how the items being measured contributed to the instrument’s
overall measurement of effective mathematics classrooms as we defined them. Second,

Table 3 (continued)

GSIOP
Rating

Prototypical Situations

Prototypical Situations from another Student-Centered Item: C. Students evaluated mathematical
strategies

0 Different techniques were used for solving three different Calc II problems (e.g., Monotonic
Convergent Theorem, L’Hôpital’s Rule, Squeeze Theorem) the discussion focused on one way to
solve each question. Students did not evaluate when to or not to use these techniques.

1 One student explained to the class why he chose to apply the theorem about a bounded monotonic
convergent sequence to a problem posed to the class rather than other techniques listed on the side
board.

2 More than one, but fewer than half the students in attendance considered why (or why not) to apply
different limit techniques to one problem during class time. As a whole class they also compared
“Method 1” to “Method 2”, but fewer than half the class voiced opinions and ideas.

3 More than half the students in attendance participated in a mathematical task that asked students to
evaluate three incorrect hypothetical student solutions. In small groups, students worked together
to determine what mistakes were made in the given solutions, provide alternative solutions, and
explain why their approach was more appropriate, efficient, or mathematically sound.
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interrater reliability addressed whether different raters obtained the same results.
Finally, a factor analysis addressed the question of what major underlying constructs
are measured by the instrument.

Internal Consistency

The internal consistency of an instrument is an indication of its items’ correlationswith one
another, and indicates the degree to which the itemsmeasure the same general construct. In
the present case, the GSIOP is intended to measure effective teaching within mathematics
classrooms, as defined by the Instructional Practices Guide (MAA 2018). Specifically, we
took into account lesson design practices, teacher facilitation practices, assessment prac-
tices, and classroom practices identifiable through classroom observations with an empha-
sis that “effective teaching and deep learning require student engagementwithmathematics
both inside and outside the classroom” (p. x). A lesson that accomplishes this should have
better scores on all items, compared to a lesson that is less successful in doing so.

Internal consistency is often measured using Cronbach’s alpha, which uses the pairwise
correlations between all items, and yields an alpha statistic that can range from negative
infinity to one. A rule of thumb is that an alpha of 0.7 to 0.8 or higher indicates adequate
internal consistency of the measured variables (Bland and Altman 1997). Using the 291
observations completed by thementors, a Cronbach’s alpha of 0.868was computed for the
17 GSIOP items. Tavakol and Dennick (2011) explain that if the instrument measures
more than one construct, alpha should be computed for each one. Consistent with Gleason
et al.’s (2017) findings in their analysis of the MCOP2, the factor analysis we report found
three such constructs, student engagement, lesson design practice, and teacher facilitation
and computed alphas of 0.824, 0.663, and 0.816 respectively.

Cronbach’s alphas in this range indicate that the internal consistency of the instru-
ment supports the assumption that its itemsmeasure the underlying constructs. Although
the alpha for lesson design practice was on the low end of the range (0.663), we assume
that this is due to the range of teacher behaviors beingmeasured. The development of the
instrument allows us to assume that its general construct is that the actions of teachers
and students in the classroom facilitate students’ conceptual understanding, and it
measures the factors of student engagement, design practice, and teacher facilitation.

Interrater Reliability

Interrater reliability measures the extent to which different trained raters using the
instrument to score the same observations yield similar scores. It is expected that a
reliable instrument producing ordinal or continuous data would have a high percentage
of ratings of the same observation that were the same or with only small differences.

In the case of the GSIOP, all observations were originally scored by the mentors who
carried out the observations during a live observation. In addition, a sample of 39 of the
observations completed in the first year (21 at one university, and 18 at the other) were
scored by a second rater who viewed the videos made at the time of the observation. To
select the sample, observations were first organized by instructor, mentor, and time in
the semester, then selected at random from within these categories to ensure that the
sample was broadly representative.

International Journal of Research in Undergraduate Mathematics Education



The 17 GSIOP items (see Appendix) are given scores ranging from 0 to 3, based on
rubric descriptions of performance at each of the four levels. The scores are ordered, in
the sense that higher scores indicate higher levels of performance. The individual item
data is ordinal, but not interval, since the “distance” from one score to the next is not
necessarily an equal measurement. In addition, summary variables on the four catego-
ries of variables (cover page, student-focused, teacher-focused, and lesson-focused
items) were computed by averaging the scores given on each of the related variables.
In this study, interrater reliability was measured in two ways: (1) ratings by two
independent raters were cross-tabulated to determine the percentages of ratings that
were the same (different by 1 position in the numerical rating, or different by more than
1 numerical position); and (2), correlation statistics for each variable’s paired observa-
tions were computed.

A consistently scored, reliable instrument would find few cases of large differences
in scores between the two raters. Therefore, there would be a large proportion of ratings
that were the same or close. We used Spearman-correlations and looked for Spearman
correlation with a confidence level of 95% (alpha = 5%).

Crosstabulations assess interrater reliability, and provide an immediate, intuitive
understanding of the data. We analyzed our dataset (N = 39) by creating
crosstabulations in which ratings by one rater were compared to the ratings by the
second rater. The first three data columns of Table 4 show the results of the crosstabs.
The first column shows the percentage of times the raters agreed exactly, and the
second shows the proportion of times the ratings were no more than 1 position apart
(e.g., rater 1 scored the item as 2 and rater 2 scored it 3). The third column shows the
percentage of cases in which the raters were farther apart than 1 position. To account for
crosstabular error (if the two raters’ scores were independent, the scores would be the
same about 25% of the time by chance alone), we also used a correlation analysis.

The Spearman’s rho and its p value were computed for each pair of variables (i.e.
rater one’s rating vs. rater two’s ratings for each of the 39 paired ratings). Spearman’s
was used because the individual variables’ values are ordinal. They are not interval data
because their four possible values are not quantitative measures equidistant from each
other. This also means that they do not meet the criterion of being normally distributed,
which would be necessary for Pearson’s r. However, Pearson’s rwas appropriate for the
summary variables, which met the requirements of being continuous and normally
distributed. Regarding both individual items and summary variables, we looked for a
confidence level of 95% (alpha = 5%), and only one variable failed to meet this
criterion. We display the results of these analyses in Table 4.

Each of the individual variables is assigned a rubric position (score) of 0, 1, 2, or 3.
For all variables, there was agreement within one rubric position in 85% or more of the
cases (e.g., if rater 1 scored the variable a 2, rater 2 would need to score the variable 1,
2, or 3 to meet this criterion), and for all but five variables the agreement was greater
than 95%. The other analyses were consistent with the expected results (i.e. a correla-
tion significance of less than .05) except in the case of variable E (rho = 0.26,
p = 0.055), which we interpret as indicating that this variable’s rubric level definitions
may need refinement. Overall, these crosstabulations and correlations indicate that
there is a high level of interrater reliability on all but one item when the raters are
trained to score classroom observations using this instrument.
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Table 4 Study of interrater reliability

Variablea (N = 39) Crosstabulation Correlation

Percent
Same

Percent
± 1c

Percent
> ± 1

Spearman’s
rho

Sig. (1 -
tailed)

Cover Page Items

1. Preparation and organization 79.49% 100.00% 0.00% 0.70 <.001

2. Verbal articulation 76.93% 100.00% 0.00% 0.67 <.001

3. Instructor's presented work 71.79% 100.00% 0.00% 0.63 <.001

4. Enthusiasm 69.23% 94.86% 5.12% 0.58 <.001

5. Communicated lesson context 58.98% 97.43% 2.56% 0.57 <.001

Student-Focused Items

A. Students engaged in exploration, etc. 66.67% 100.00% 0.00% 0.76 <.001

B. Students used a variety of means to represent
concepts

61.54% 97.43% 2.56% 0.68 <.001

C. Students evaluated mathematical strategies 64.10% 89.74% 10.25% 0.69 <.001

D. Students engaged in peer-to-peer discussion 48.73% 97.45% 2.56% 0.73 <.001

Teacher-Focused Items

E. Promoted precision of mathematical language. 43.59% 92.30% 7.69% 0.26b 0.055b

F. Questions encouraged student thinking. 66.66% 100.00% 0.00% 0.61 <. 001

G. In general, the teacher provided wait time. 58.97% 89.73% 10.25% 0.43 0.003

H. The teacher used student questions/comments to
enhance conceptual mathematical understanding.

58.97% 100.00% 0.00% 0.60 <.001

I. The teacher incorporated formative assessments to
gauge student understanding during the lesson.

51.29% 89.75% 10.26% 0.63 <.001

Lesson-Focused Items

J. The lesson included tasks that incorporate multiple
representations.

51.28% 89.73% 10.25% 0.34 0.017

K. The lesson promoted relational/conceptual
understanding.

58.97% 97.42% 2.56% 0.37 0.011

L. The lesson was taught to meet the learning goals. 58.98% 97.44% 2.56% 0.48 0.001

Summary Analysis Pearson’s r Sig. (1 -
tailed

All variables 61.54% 96.08% 3.92% 0.76 <.001

Cover page items 71.28% 98.46% 1.54% 0.70 <.001

Student items (A - D) 60.26% 96.15% 3.85% 0.85 <.001

Teacher items (E - I) 55.90% 94.36% 5.64% 0.63 <.001

Lesson items (J - L) 56.41% 94.87% 5.13% 0.50 0.001

a The variable descriptions have been shortened to fit the table format
b Highlighted cell indicates anomalous significance
c Percent ± shows the cumulative total of “Percent Same” and “Percent ± 1”
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Factor Analysis

Exploratory factor analysis (principal components analysis) is used to identify under-
lying components, usually referred to as factors, within a number of variables in a
dataset (Garson 2018). The process analyzes the variance in a correlation matrix of the
variables and yields a set of factor loadings that can be used to group statistically-
related variables together. The grouping indicates that the variables are likely to
measure an underlying construct that they have in common. The explanatory strength
of each factor is indicated by its eigenvalue, which is the ratio of the amount of variance
explained by the factor versus the total variance in the dataset. Results of the factor
analysis may be confirmed by running the procedure twice on two different random
subsets of the data.

Exploratory factor analysis assumes that the variables being examined are at least
interval-level and that they use the same distributions. In the case of this dataset, all
responses had integer values between 0 and 3. Although a number of different scholars
have proposed different rules of thumb regarding the required number of cases (Garson
2018), our dataset included 291 unique observations, and this meets most of the
recommended criteria in this regard. According to the Central Limit Theorem and the
number of groupings we looked at in our factor analysis, we meet the sample size
necessary to assume a normal distribution, which is necessary for this test. A final
criterion is Bartlett’s test of Sphericity, which determines whether the variables are
independent of one another, in which case there could not be any underlying factors.
Bartlett’s p value (N = 291) was less than 0.001, satisfying this assumption.

Factors with low eigenvalues are typically eliminated from consideration using a
combination of three common criteria: comprehensibility; the Kaiser criterion (K1
rule); and the Scree plot. Comprehensibility has been met by the appropriateness of
the factors. The Kaiser rule (which is the default setting in SPSS) indicates that factors
with eigenvalues less than 1 should be eliminated from consideration. Finally, the
Cattell scree test is a plot of the components resulting from the factor analysis in
descending order of eigenvalues. This plot usually begins with a steep decline ending
with a bend toward a lower rate of decline. According to this criterion, factors to the
right of this bend should be dropped (Garson 2018).

Using the 291 original observation scores, a factor analysis was performed. Using
the K1 rule to drop all factors with eigenvalues less than one, three factors were
identified, explaining a cumulative 51.1% of the variance in the data. Gleason et al.
(2017) identified two of these three factors, which they labeled student engagement
(SE) and teacher facilitation (TF). Our analysis added a third factor, which loaded
mostly on the basic classroom organization and presentation items we had added to the
cover page, and which we labeled design practice (DP). These results were consistent
with the comprehensibility, Kaiser, and scree plot (see Fig. 1) criteria.

We include the results of the three-factor solution in Table 5 as well as the
Cronbach’s alphas calculated for the factors. According to Garson (2018), ideally,
factor loadings shown in the rotated component matrix should be strong, in the range
of 0.7 and above. However, especially for exploratory factor analysis in the social
sciences, this is a very high bar, and loadings as moderate as 0.4 are often accepted; we
follow this approach.
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This factor matrix (Table 5) resulted in six items for the first factor (SE), five items
for the second factor (DP), and nine items for the third factor (TF). There was very little
overlap between the factors because only three items had loadings higher than 0.40 for
two different factors. The SE items, aligned with the first factor, were identified and
labeled as such since they all depend on the actions, interactions, and responses of
students. For instance, although the teacher is the one incorporating formative assess-
ments in item III.I, it is with a focus on eliciting student responses and it loaded onto
this SE factor. The DP items, associated with the second factor, focus on teachers’
actions that are related to the basic lesson design practices that we previously described,
including: planning and implementing student-learning-oriented mathematics lessons
(I.G.1 and III.G) and effectively communicating instructional decisions and mathemat-
ical connections to students (I.G.2, I.G.3, and I.G.4). The third factor contained TF
items where the items depend on teachers’ actions during class that facilitate or
encourage students to engage with the mathematics. When considering the three items
that had overlap between two factors, there are interactions between teachers’ and
students’ actions that are being highlighted. For III.F, there is an interaction between the
types of questions the teacher asks and the extent to which students’ thinking is made
visible, and this item loads slightly more strongly with the TF factor. Considering item
II.B, the primary focus is on how students use different means to represent concepts,
but a teacher’s facilitation may also encourage or discourage students from engaging in
those types of opportunities during the lesson. Finally, item I.G.1 focuses on a teacher’s
actions for planning and implementing a cohesive lesson, which falls more under the
DP factor but is still associated with the TF factor.

The factor analysis indicates that there is alignment between the two foci of the
MCOP2 instrument (SE and TF) underlying the variables of the GSIOP and how these
variables relate to the factors in this analysis (Table 5). The additional factor (DP)
measures items that are particularly important to consider when providing feedback for
novice instructors. We conclude that Gleason et al. (2017) identified two significant
constructs of the instrument on which the GSIOP was based, and that the GSIOP shares
those constructs while adding a third construct that measures lesson design practice
issues that “inform the construction of the learning environment and curriculum and
support instructors in implementing pedagogies that maximize student learning” (MAA
2018, p. 118).
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Fig. 1 Scree plot of factor analysis
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Discussion

When assessing validity of the GSIOP we built on Gleason et al.’s (2017) work and
their expert assessment of individual observation items. We looked at three kinds of
evidence to determine validity. First, we examined internal consistency of the instru-
ment’s items, addressing the question “did all of its items taken together measure a
particular construct?” The measure of internal consistency indicates whether the items
appear to measure an underlying construct, but not what that construct might be. In this

Table 5 Factor analysis rotated component matrix

3-component solution b

Factor a 1 (SE) 2 (DP) 3 (TF)

Eigenvalue 3.34 2.29 3.06

Percent of variance explained 33.18% 11.25% 6.64%

Cronbach’s Alpha of associated variables 0.824 0.663 0.816

Number of variables included in each component 6 5 9

Variables

I.G.1. Preparation and Organization 0.09 0.56 0.48

I.G.2. Verbal Articulation 0.09 0.70 −0.01
I.G.3. Instructor’s presented work (handouts and presented materials) −0.04 0.75 0.16

I.G.4. Enthusiasm for Teaching Students 0.23 0.51 0.28

I.G.5. Communicated Lesson Context 0.09 0.39 0.55

II.A. Students engaged in exploration/investigation/problem solving. 0.85 0.13 0.11

II.B. Students used a variety of means (modeling, drawings, concrete materials,
manipulatives, etc.) to represent concepts

0.61 −0.03 0.42

II.C. Students evaluated mathematical strategies 0.67 0.08 0.22

II.D. Students were involved in the communication of their ideas to others
(peer-to-peer)

0.79 0.00 0.05

III.E. The teacher promoted precision of mathematical language. −0.21 0.25 0.54

III.F. The teacher’s questions encouraged student thinking. 0.43 0.16 0.53

III.G. In general, the teacher provided wait time. 0.36 0.41 0.23

III.H. The teacher uses student questions/comments to enhance conceptual math-
ematical understanding.

0.27 0.19 0.64

III.I. The teacher incorporates formative assessments (e.g. polling class, exit slips,
quick check-in problems) to gauge student understanding during the lesson.

0.65 0.31 0.11

IV.J. The lesson included tasks that incorporate multiple representations
(graphical, symbolic, modeling, drawings, concrete materials, different solution
methods, etc.).

0.32 0.02 0.52

IV.K. The lesson involved fundamental concepts of the subject to promote
relational/conceptual understanding.

0.19 0.03 0.76

IV.L. Guided by your observations, in summary, the lesson was taught to meet the
learning goals.

0.33 0.31 0.54

a The component abbreviations stand for student engagement (SE), design practice (DP), and teacher
facilitation (TF)
b Variables in bold were included in the factor reliability analysis with a loading higher than 0.40
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instance, this piece of evidence indicated that the GSIOP appeared to measure an
underlying construct. Second, we considered interrater reliability, addressing the ques-
tion “does the instrument yield similar results when an observation is scored by more
than one trained rater?” We found that there was an acceptable (or better) level of
interrater reliability for all but one item (Teacher-Focused Item E), and modifications of
this item are currently being tested. We note with interest that this level of interrater
reliability was achieved despite the fact that the first ratings were based on in-person
observations, and the second used video recordings of the class sessions. Third, we
conducted a factor analysis identifying three components, or underlying constructs; two
of these constructs were consistent with those found in the MCOP2 study. Taken
together, these results provide strong support for our contention that the GSIOP
provides a useful and accurate measure of the conduct of an undergraduate
mathematics lesson. We also note that our results were based on both video and live
observations of classrooms, so we emphasize that the validity results are indicative of
the applicability of the protocol to both settings, providing opportunities for use in PD
programs and research settings that use either method for data collection.

Implications for Practice

Most college instructors, including GSIs, receive end-of-semester evaluations from
students. Although it is possible that these evaluations can provide helpful comments
about teaching, they are almost always seen by instructors after the course has ended
and grades have been submitted to the university, limiting an instructor’s ability to
implement any changes based on comments they received. Doing so, though, is almost
entirely dependent upon the instructor being motivated enough to seek out the infor-
mation from the evaluations, determine what changes to make, and remember to
implement such changes in subsequent courses. In addition, researchers consistently
find that student evaluations of instruction are biased (e.g. Basow and Silberg 1987;
Miller and Chamberlin 2000; Mitchell and Martin 2018) and unreliable measures of
effective teaching (see Uttl et al. 2017 for a meta-analysis review). However, recent
research suggests that student evaluations are still the primary way that mathematics
departments evaluate their GSIs and GSI PD programs (Speer et al. 2017).

Given our determination of reliability in measuring what is happening in GSIs’
undergraduate mathematics classrooms and the fact that mathematics GSIs are typically
required to participate in some form of PD at their institutions (Speer et al. 2017), we
see potential use of the GSIOP for practitioners interested in helping GSIs develop
student-centered classrooms earlier in their teaching careers and in finding more
meaningful ways to evaluate the instruction of GSI, and, more importantly, the growth
of GSIs as effective instructors.

The GSIOP provides a framework for providing feedback to novice instructors
about observations of their teaching. In fact, preparing peer-mentors to use the GSIOP
for this purpose is a significant part of the agenda of a semester-long mentor PD process
that experienced GSIs undergo before stepping into their roles as peer-mentors (Yee
and Rogers 2017b). The primary role of a peer-mentor (in our study, but potentially
applicable to any observer using this protocol) is to support their novices (the instruc-
tors they are observing) as they learn to teach undergraduate mathematics students, not
to evaluate the instructor.
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Although a few of the items in the GSIOP are normative, indicating that we take an
evaluative stance regarding what can be regarded as effective classroom practices for
promoting students’ conceptual understanding, these evaluative components are the
least emphasized aspect of the GSIOP. That is, we suggest using the GSIOP as a lens for
observing instructional practices (especially regarding student engagement and teacher
facilitation) and not as a means to rate or score classroom practices or performance.

Implications for Research

The field of research on novice college mathematics instructors is a relatively young
one but growing, partially due to the large numbers of undergraduate students that
interact with these instructors. Although other observation protocols (e.g., Table 1)
could be used when examining classrooms of GSIs, the GSIOP fills a need as a
mathematics-focused observation protocol capturing both instructional activities and
student engagement in the classroom but was also specifically developed for observing
mathematics GSIs. We developed the instrument (based on the MCOP2) with the
assistance of GSIs specifically taking into consideration (a) GSIs’ familiarity (or lack
thereof) with national standards for teaching mathematics put forth by US professional
societies, and (b) some basic teaching mechanics that must also be mastered by novice
instructors of collegiate mathematics. Given the findings in this study that the GSIOP is
useful and accurate in measuring student engagement and teaching practices in under-
graduate mathematics classrooms (taught by GSIs), we envision many applications of
the protocol in research settings. Such research settings can include evaluation re-
searchers examining mathematics GSI PD programs, educational researchers investi-
gating classroom practices, and educational researchers comparing student perceptions
to observed practices. The relatively small amount of time needed for training an
observer to use the GSIOP and the ability to use it in a live classroom or with video
recordings provide many opportunities for researchers to better collect accurate data on
mathematics GSI classroom practices.

Moreover, the authors of this manuscript have used the protocol as part of a
feedback cycle for novice GSIs. Through that research, we have found that the
information collected with the GSIOP combined with a structured feedback process
results in varying levels of changes in instructional practices (Yee et al. 2019a, b). We
found that among the novice GSIs, we saw more increases in student engagement and
student-centered instructional practices when the feedback provided by the mentor was
specific and accompanied by suggestions on how to improve it. Not all mentors were
proficient in providing this type of feedback, so in addition to providing research
results, we see potential for reforming feedback processes that can results in observable
improvement in teaching.

Limitations

A primary limitation of this instrument is its intentional focus. Specifically, the GSIOP
has been used for two years by dozens of more experienced GSIs who were trained to
observe novices in two mathematics departments in the US. Propagation of the
instrument to additional departments is ongoing and may lead to additional insight
into the instrument and its potential uses. We also note that the GSIOP has not been
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used in non-mathematics undergraduate classrooms nor has it been used to observe
instructors who are not graduate students, and these other populations could be a focus
of future studies. We conjecture, though, that this observation protocol could provide a
helpful lens for generating feedback for novice STEM instructors or experienced
mathematics instructors who may be teaching a course for the first or second time or
using different methods to teach a course that is familiar to them.

Conclusion

Teaching undergraduate mathematics students necessitates the instructor designing their
lesson with student-engagement strategies and teaching facilitation techniques that
encourage and invite student exploration and involvement (MAA 2018). This protocol
provides a way to guide an observer to note ways an individual lesson includes teaching
practices relevant to these aspects and has demonstrated viable fitness with respect to
internal consistency, interrater reliability, and factor analysis. The GSIOP offers a
consistent, reliable, and needed protocol for observing novice mathematics GSIs’
classroom practices.
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Appendix

Graduate Student Instructor Observation Protocol (GSIOP)3

I. COVER PAGE (The first six items {A-F} listed are text-entry items)

A. Instructor Name; Observer Name; Date
B. Classroom Location; Course
C. Primary Topic of Discussion
D. Teaching Medium; How was Technology Used?
E. Approximate Number of Students
F. What Does the Instructor Ask the Observer to Focus on or Pay Particular Attention

to?

3 A PDF of the GSIOP rubric is available online for others to use. Please use proper citations if you use the
instrument: GSIOP is copyrighted by Bowling Green State University (2018). All rights reserved. Rogers and
Yee (2018). GSIOP: Graduate Student Instructor Observation Protocol: Retrieved from https://www.bgsu.
edu/PeerMentoringProgram
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G. Basic Classroom Management and Organization of Lesson4

1. Effective Preparation and Organization
2. Effective Verbal Articulation
3. Clarity of Instructor’s Presented Work (Handouts and Presented Material)
4. Evident Enthusiasm for Teaching Students
5. Clearly Communicated Lesson Context

II. STUDENT-FOCUSED ITEMS 4

A. Students engaged in exploration/investigation/problem solving
B. Students used a variety of means (modeling, drawings, concrete materials, manip-

ulatives, etc.) to represent concepts
C. Students evaluated mathematical strategies
D. Students were involved in the communication of mathematical ideas to others

(peer-to-peer)

III. TEACHER-FOCUSED ITEMS 4

E. The teacher promoted precision of mathematical language
F. The teacher’s questions encouraged student thinking
G. In general, the teacher provided wait time
H. The teacher uses student questions/comments to enhance conceptual mathematical

understanding
I. The teacher incorporates formative assessments (e.g., polling class, exits slips,

quick check-in problems) to gauge student understanding during the lesson

IV. LESSON-FOCUSED ITEMS 4

J. The lesson included tasks that incorporate multiple representations (graphical,
symbolic, modeling, drawings, concrete materials, different solution methods, etc.)

K. The lesson involved fundamental concepts of the subject to promote relational/
conceptual understanding

L. Guided by your observations, in summary, the lesson was taught to meet the
learning goals.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

4 As one can see by accessing the provided link to the entire GSIOP, for each category that follows this
heading, the observer indicates a 0, 1, 2, or 3 based on provided descriptive text most relevant to the lesson
observed
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