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Abstract

Inspired by the spread of discontent as in the 2016 presidential election, we consider
a voter model in which 0’s are ordinary voters and 1’s are zealots. Thinking of a social
network, but desiring the simplicity of an infinite object that can have a nontrivial
stationary distribution, space is represented by a tree. The dynamics are a variant of
the biased voter: if x has degree d(x) then at rate d(x)pk the individual at x consults
k ≥ 1 neighbors. If at least one neighbor is 1, they adopt state 1, otherwise they
become 0. In addition at rate p0 individuals with opinion 1 change to 0. As in the
contact process on trees, we are interested in determining when the zealots survive and
when they will survive locally.

1 Introduction

In the standard (linear) voter model, which was introduced by Holley and Liggett [11], a
site flips at a rate equal to the fraction of neighbors that have the other opinion. Cox and
Durrett [4] began the study of voter models with non-linear flip rates. One of the most
successful ideas from that paper is the threshold-θ voter model in which sites flip at rate 1 if
at least θ neighbors have the opposite opinion. Liggett [14] obtained results for coexistence
of opinions when θ = 1, while Chatterjee and Durrett [2] showed that the model with θ ≥ 2
had a discontinuous phase transition on the random r-regular graph when r ≥ 3. Lambiotte
and Redner [13] studied the “vacillating voter model” in which a voter looks at the opinions
of two randomly chosen neighbors and flips if at least one disagrees. At about the same time,
Sturm and Swart considered “rebellious voter models” in one dimension. In the one-sided
case ξt(i) canges its opinion at rate α if ξt(i + 1) 6= ξt(i)) and at an additional rate 1 − α
if ξt(i + 1) 6= ξt(i + 2)). They also considered a spatially symmetric version. In all these
variants of the voter model, the process is symmetric under interchange of 0’s and 1’s. Our
zealot voter model does not have that symmetry.

In our process, space is represented by a tree T in which the degree of each vertex x
satisfies 3 ≤ dmin ≤ d(x) ≤M . This guarantees that our trees are infinite. Voters can be in
state 0 (ordinary voter) or 1 (zealot). Given a probability distribution pk on {0, 1, 2, . . . dmin},
if k ≥ 1 then at rate d(x)pk the voter x picks k neighbors without replacement. As in the
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vacillating voter model the voter becomes 1 if at least one of the chosen neighbors is a 1,
otherwise it becomes 0. In addition at rate p0, voters change their opinion from 1 to 0.

If p0 = 0 then this model is a variant of the biased voter model. In that system, a 0 at
x changes to 1 at rate λ times n1(x) the number of neighbors of x that are in state 1, and
a 1 at x changes to 0 at rate n0(x) the number of neighbors of x that are in state 0. If the
degree is constant then the behavior of the process is easy to understand. If we start from
finitely many 1’s then the number of 1’s at time t, N1

t decreases by 1 at a rate equal to Dt

the number of (1, 0) edges, and increases by 1 at rate λDt. Thus N1
t is a time change of a

simple random walk that increases by 1 with probability λ/(λ+ 1) and decreases by 1 with
probability 1/(λ + 1). Using this observation it is easy to show that the critical value for
the survival of 1’s λc = 1. In our setting sites do not have constant degree and we have
a different type of bias. This makes things more complicated, and it is hard to get precise
results on the location of phase transitions.

Our process is additive in the sense of Harris [10] and hence can be constructed on a
graphical representation with independent Poisson processes T x,in , n ≥ 1, 0 ≤ i ≤ dmin.

• The T x,0n have rate p0. At these times we write a δ at x that will kill a 1 at the site.

• The T x,in have rate d(x)pi. At time T x,iN we write a δ at x that will kill a 1 at the site.
In addition we draw oriented arrows to x from i neighbors y1, . . . yi chosen at random
without replacement from the set of neighbors. If any of the yi are in state 1, then x
will be in state 1. Otherwise it will be in state 0.

We will often use coordinate notation for the process, i.e., ξt(x) gives the state of x at
time t. However it is also convenient to use the set-valued approach with ξAt giving the set
of sites occupied by zealots at time t when the initial set of zealots is A. Intuitively, the
process ξAt can be defined by introducing fluid at the sites in A. The fluid flows up the
graphical representation, being blocked by δ’s, and flowing across edges in the direction of
their orientations. The state at time t, ξAt is the set of points that can be reached by fluid
at time t starting from some site in A at time 0.

A nice feature of this construction is that it allows us to define a dual process in which
fluid flows down the graphical representation, is blocked by δ’s and flows across edges in
a direction opposite their orientations. We let ζB,ts be the points reachable at time t − s
starting from B at time t. It is immediate from the construction that

{ξAt ∩B 6= ∅} = {A ∩ ζB,tt 6= ∅} (1)

It should be clear from the construction that the distribution of ζB,ts for 0 ≤ s ≤ t does not
depend on t, so we drop the t and write the duality as

P (ξAt ∩B 6= ∅) = P (A ∩ ζBt 6= ∅) (2)

The dual ζBt is a coalescing branching random walk (COBRA) with the following rules. A
particle at x dies at rate p0 and at rate d(x)pk it dies after giving birth to offspring that
occupy k of the neighboring sites chosen at random without replacement. For more details
see Griffeath [9].
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In the case p0 = 0 this pair of dual processes has been studied by Cooper, Radzik,
and Rivera [3]. In their situation the zealot voter model is called a biased infection with
a persistent source (BIPS). The phrase persistent source refers to the fact that the BIPS
model has one individual that stays infected forever. Their main interest is in the cover time
for COBRA, i.e., the time for the process to visit all of the sites. By duality this is related
to time for the BIPS to reach all 1’s.

In this paper, when we say that a process survives we mean that with positive probability
it avoids becoming ∅. We say a process survives locally if with positive probability the root
0 is occupied infinitely many times.

When A = B = {0}, (2) implies

P (0 ∈ ξ0t ) = P (0 ∈ ζ0t ) (3)

so local survival of one process implies local survival of the other. Taking one of the sets
= T and the other = {0} we get

P (ξ0t 6= ∅) = P (0 ∈ ζTt ) P (ζ0t 6= ∅) = P (0 ∈ ξTt )

so survival of one process implies that the other has a nontrivial stationary distribution
obtained by letting t→∞ in ζTt or ξTt . Our first result is very general.

Theorem 1. On any tree with degrees 3 ≤ d(x) ≤M , the zealot voter model survives if∑
k≥2

(k − 1)pk − p0 > 0.

The result is proved by comparing the growth of the process at the “frontier” with a branching
process. For the definition of frontier, see the text before Lemma 2.1. Note that the degree
distribution does not appear in the condition.

1.1 Results for d−regular Trees

Let β = 1−(d−1)−2 be the probability that two independent random walks on the d-regular
tree that start at distance two never hit. See Lemma 3.1 for a proof of this.

Theorem 2. On a d-regular tree the COBRA dies out if

dβ
∑
k≥2

(k − 1)pk − p0 < 0. (4)

When this holds the zealot voter model does not have a nontrivial stationary distribution.

To explain the condition, note that in the dual, a particle dies at rate p0 and gives birth
to k particles at rate dpk. To get an upper bound on the growth of the dual (i) we ignore
coalescence between individuals that are not siblings, and (ii) if k particles are born we
number them 1, 2, . . . k and ignore coalescence between particles i > 1 and j > 1. This gives
an upper bound on the dual COBRA.
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Theorem 3. If (4) holds then the zealot voter model dies out on a d-regular tree.

Proof. Theorem 2 is proved by showing the expected number of particles in the COBRA,
denoted as E|ζ0t |, converges to 0 as t→∞. By symmetry,

E|ζ0t | =
∑
x

P (x ∈ ζ0t ) =
∑
x

P (0 ∈ ζxt ) ≥ P (0 ∈ ζ1t )

where ζ1t is the COBRA starting with all sites occupied. The last property follows from the
additivity of processes constructed on a graphical representation, i.e., if A = ∪iAi, a finite
or infinite union, then

ξAt = ∪iξAi
t

This implies that if (4) holds then COBRA has no stationary distribution, and by duality
the zealot voter model dies out.

To study the local survival of our voter model, we use (3) to change the problem to
studying the local survival of the COBRA. Let µ =

∑
k kpk is the mean number of offspring

in the dual process

Theorem 4. Given a d-regular tree T , the zealot voter model dies out locally if

µ <
d(1− p0) + p0

2
√
d− 1

.

If p0 = 0 this is µ < d/(2
√
d− 1).

This result is proved by comparing COBRA with a branching random walk by ignoring
coalescence. The second bound is sharp for the branching random walk with no death.
That is, the corresponding branching random walk visits the root with positive probability
if µ > d/(2

√
d− 1) and that the root is visited finitely many times if µ < d/(2

√
d− 1).

This result can be found in Pemantle and Stacey [17]. There they studied the branching
random walk on trees where each particle gives birth at a rate λ independently onto each
neighbor, and dies at rate 1. Since our branching process has simultaneous births and deaths
we modify their proof to cover our situation and give the proof in Lemma 4.1.

To give sufficient conditions for local survival, we follow a tagged particle in the COBRA.
If there is a particle produced on the site closer to the root, we follow this particle; otherwise
we follow a new particle chosen uniformly at random from the offspring and ignore the rest.
The recurrence of the tagged particle implies the local survival of COBRA. Using this idea
leads to a simple proof of a condition for local survival, but the result is not very accurate.

Theorem 5. On a d-regular tree the zealot voter model survives locally if p0 = 0 and µ > d/2.

Proof. Note that if i is the number of particles produced in a branching event and qi is the
probability all of them going further from to the root then

qi =

(
d−1
k

)(
d
k

) =
(d− 1)!

k!(d− 1− k)!
· k!(d− k)!

k!
=
d− k
d

4



Thus if we follow the particle that gets closer to the root then it jumps by −1 with probability∑
k

pk
k

d
=
µ

d

and the tagged particle will be positive recurrent if µ > d/2.

Our next Theorem, which uses some ideas from the proof of Lemma 4.57 in Liggett’s
1999 book [15], gives a more precise result.

Theorem 6. On a d-regular tree the zealot voter model survives locally if p0 = 0 and

µ >
d√

d− 1 + 1
.

Combining this with Theorem 4, we notice that when p0 = 0 the phase transition of local
survival µl satisfies

µl ∈
[

d

2
√
d− 1

,
d

1 +
√
d− 1

]
1.2 Results for Galton-Watson Trees

In a Galton-Watson process with Z0 = 1 each individual in generation n has an independent
and identically distributed number of children, which are members of generation n+ 1. The
Galton-Watson tree is the genealogy of this process. The one member of generation 0 is the
root. Edges are drawn from each individual in generation n to their children. Let pk be the
probability of k children. We have assumed pk = 0 unless 3 ≤ dmin ≤ k ≤ M , so the tree is
infinite with probability 1, and all vertices have at most M children.

To prove an analogue of Theorem 2, we formulate our model as a voter model perturba-
tion: let p̄i = εpi when i 6= 1 and choose p̄1 to make the p̄i sum to 1. A random walk that
jumps to each neighbor at rate 1 has a reversible stationary distribution that is uniform on
the graph. Let πm be the fraction of vertices in the tree with degree m, and let µm,k be the
expected number of surviving particles in the dual when we pick k neighbors of a vertex of
degree m at random and run the coalescing random walk to time ∞.

Theorem 7. Let δ > 0. If ε is small then the COBRA dies out if∑
m

πm
∑
k

kpk(µm,k − 1)− p0 < −δ

and survives if the last quantity is > δ.

This result can be easily proved using the techniques in [12]. The key idea is that when ε is
small most of the steps in the dual are random walk steps, and the random walk is transient,
so any coalescence occurs soon after branching, and the dual is essentially a coalescing
branching random walk. These ideas go back to [6], where they were used on Zd with d ≥ 3.
More recent applications include [5, 12, 16]. The zealot voter model has an additive dual,
so things are simpler, and we can use the approach of [8]. In Section 4 we will provide more
details about the method.
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Remark. The last result concerns the survival of the dual, which is the same as the existence
of a nontrivial stationary distribution for the zealot voter model.

Our next result concerns local survival. Given any Galton-Watson tree T GW , let M
denote its maximal degree, and let T M be the tree in which each vertex has M children. Let
µl(G) denote the threshold for local survival of the COBRA on graph G. Note the expected
number of new born particles at each time are the same on both trees. Since particles on
tree T M have more tendency to move further away from the root, a simple comparison leads
to

µl
(
T GW (ηt)

)
≤ µl

(
T M(ηt)

)
where ηt is the BRW without coalescence. The comments under Theorem 4 says for p0 = 0,

µl
(
T M(ηt)

)
= M/(2

√
M − 1)

It follows immediately that

Theorem 8. If p0 = 0 and µ < M/(2
√
M − 1) then COBRA and the zealot voter model

both die out locally.

Next we look for conditions implying local survival. On a tree we define the level `x of
a vertex x to be its distance to the root. As on d−regular trees, our strategy is to follow a
tagged particle and seek conditions guaranteeing its recurrence. Let Xt be the level of the
tagged particle at time t. If φ is a harmonic function for the tagged particle process Xt, i.e.
φ(Xt) is a martingale, then it follows from the optional stopping theorem that If T0 is the
time to hit the root and TN is the first time the walk hits a site at level N

φ(1) ≥
(

min
x: lx=N

φ(x)

)
P1 (TN < T0) (5)

where the subscript 1 on P indicates that X0 is at level 1. From (5) we see that if φ(x) goes
to ∞ along all paths to ∞ in the tree, then the tagged particles is recurrent. In order for φ
to be a harmonic function

φ(x+ 1)− φ(x) =
px

1− px
[φ(x)− φ(x− 1)] =

µ

d(x)− µ
[φ(x)− φ(x− 1)]

where px = µ/d(x) is the probability the tagged particle moves closer to the root. Taking
logarithms, then this is

log [φ(x+ 1)− φ(x)] = log [φ(x)− φ(x− 1)] + log

[
µ

d(x)− µ

]
As we will now explain, there is a natural mapping from the log-increments of the har-

monic function to a branching random walk on R. If we consider a particle at level x to be
at log [φ(x)− φ(x− 1)] on R then d(x)− 1 new particles will be dispersed to

log [φ(x)− φ(x− 1)] + log

[
µ

d(x)− µ

]
.
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As a result along any genealogical path, the distance between two consecutive generations
is i.i.d with law the same as log[µ/(d(x)− µ)].

This process just described is different from the usual branching random walk in which
children are dispersed independently from their parent. However Biggins [1] has proved
results for more general branching random walks that contain ours as a special case. Let
F (t) = E(ζ(−∞, t]) be the expected number of children that lie in (−∞, t] and define the
Laplace transform of the mean measure by

m(θ) =

∫
e−θt dF (t)

Theorem 9. If minθ≥0m(θ) < 1 then the leftmost particle in the branching random walk
goes to ∞. This implies φ goes to ∞ along all paths to ∞ in the tree and we have local
survival.

To apply this result to our examples, we begin by noting that

m(θ) =
∑
j≥3

qj(j − 1)

(
j − µ
µ

)θ
It is not easy to use this formula with Theorem 9 to get explicit predictions, so we focus on
Galton-Watson tree with degrees only 3 and 4. Let µ = 3q3 + 4q4 and

ν(0) = min
θ≥0

m(θ).

We have computed the threshold for various µ in Section 4.3. See also Figure 1.
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Figure 1: ν(0) as a function of q3. Local survival occurs when q3 ≥ 0.996 for µ = 1.6;
q3 ≥ 0.97 for µ = 1.7; q3 ≥ 0.91 for µ = 1.8; and q3 ≥ 0.82 for µ = 1.9.
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2 Proof of Theorem 1

There are four steps in the proof.

• We begin by deriving a differential equation for the expected number of occupied sites.

• We define the frontier and the external boundary of a set of occupied sites and prove
lower bounds on their sizes.

• Combining the first two steps we obtain differential equations that lower bound the
number of occu[pied sites and the size of the frontier.

• We prove Theorem 1 by showing that the set of occupied sites dominates a supercritical
branching walk.

2.1 Step 1: Derivation of the ODE

Let dk(x) = (d(x)− 1) · · · (d(x)− (k− 1)). Note that dk(x) is the number of ways of picking
k−1 things out of d(x)−1 when the order of the choices is important. Using x∗ (k−1) 6= yk
to indicate that we sum over all ordered choices of k − 1 different neighbors y1, ..., yk−1 of x
that are not 6= yk.

d

dt

∑
x

P (ξt(x) = 1) = −p0
∑
x

P (ξt(x) = 1)

+
∑
k>1

∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1)6=yk

[P (ξt(x) = 1, ξt(yk) = 0)− P (ξt(x) = 1, all ξt(yi) = 0)] (6)

+
∑
k>1

∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1)6=yk

P (ξt(x) = ξt(yk) = 0, ξt(yi) = 1 for some i < k)

Note that the second and third terms are ≥ 0.

Proof. Breaking things down according to the value of k, treating births and deaths sepa-
rately, and noting that in the last four terms jumps occur at rate d(x)

d

dt
P (ξt(x) = 1) = −p0P (ξt(x) = 1)

− p1
∑
y∼x

P (ξt(x) = 1, ξt(y) = 0)

+ p1
∑
y∼x

P (ξt(x) = 0, ξt(y) = 1) (7)

−
∑
k>1

∑
x

pk
dk(x)

∑
x∗k

P (ξt(x) = 1, ξt(yi) = 0 for all 1 ≤ i ≤ k)

+
∑
k>1

∑
x

pk
dk(x)

∑
x∗k

P (ξt(x) = 0, ξt(yi) = 1 for some 1 ≤ i ≤ k)
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If we sum over x then the second and third terms cancel. We now fix k and split the last
term into two

= −
∑
x

pk
dk(x)

∑
x∗k

P (ξt(x) = 1, all ξt(yi) = 0)

+
∑
x

pk
dk(x)

∑
x∗k

P (ξt(x) = 0, ξt(yk) = 1) (8)

+
∑
x

pk
dk(x)

∑
x∗k

P (ξt(x) = ξt(yk) = 0, ξt(yi) = 1 for some 1 ≤ i < k)

Recalling the definition of dk(x), the first sum can be written as∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1)6=yk

P (ξt(x) = 0, ξt(yk) = 1)

=
∑
x,yk∼x

pkP (ξt(x) = 0, ξt(yk) = 1)

=
∑

yk,x∼yk

pkP (ξt(x) = 0, ξt(yk) = 1)

=
∑

yk,x∼yk

pk
dk(yk)

∑
yk∗(k−1) 6=x

P (ξt(x) = 0, ξt(yk) = 1)

Interchanging the role of x and yk, the above

=
∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1)6=yk

P (ξt(x) = 1, ξt(yk) = 0)

Then (8) can be reformulated as

= −
∑
x

pk
dk(x)

∑
x∗k

P (ξt(x) = 1, ξt(yi) = 0 for all 1 ≤ i ≤ k)

+
∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1) 6=yk

P (ξt(x) = 1, ξt(yk) = 0)

+
∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1) 6=yk

P (ξt(x) = ξt(yk) = 0, ξt(yi) = 1 for some i < k)

Combining the first two summations and summing over k > 1 gives the desired result.

2.2 Step 2: Frontier lower bounds

Pick a vertex from the tree to be the root and call it x0. Given a vertex x in the tree we say
that x′ is a child of x if it is a neighbor of x and further away from the root than x is. We
define the subtree generated by x′, S(x′), to be all of the vertices that can be reached
from x′ without going through x. By definition, x′ ∈ S(x′). For any finite set on the tree A,
define its frontier F (A) as the set of sites x ∈ A that have a child x′ such that the subtree
S(x′) ∩ A = ∅ and define the exterior boundary of A, H(A) to be the set of all such
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children x′. That is, x′ ∈ H(A) if and only if S(x′) ∩A = ∅ and the parent of x′ is in F (A).
to help visualize the definitions, see Figure 2.2. Our next step is to lower bound the sizes of
the sets we just defined.

Lemma 2.1. |H(A)| ≥ |A| and |F (A)| ≥ |A|/(M − 1).

Proof. We prove the first result by induction on the cardinality of |A|. If |A| = 1, the result
is trivial as |H(A)| ≥ d(x) − 1 ≥ 2. Suppose now that the result is true for all B with
|B| ≤ n − 1 and let |A| = n. Let x ∈ A be the point with the largest distance to the root
and let B = A \ {x}. Then by induction |H(B)| ≥ n− 1. Since none of the descendents of
x are in A, but x might be in H(B).

|H(A)| ≥ |H(B)| − 1 + d(x)− 1 ≥ (n− 1)− 1 + 2 = n

The second result follows from the first since |H(A)| ≤ (M − 1)|F (A)|.
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Figure 2: For simplicity we have only drawn the edges from vertices within distance 3 of
the root that are relevant to the definitions. • indicates sites in A. All the •s are in F (A)r
except for x1. ∗s mark the points in H(A).

2.3 ODE lower bounds

Let At = {x : ξt(x) = 1} Our next step is

Lemma 2.2. Let γ = −p0 +
∑

k pk(k − 1) (which is > 0 by assumption).

d

dt
E|At| ≥ γE|At|
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Proof. Let lx be the distance of x from the root. The expression on the second line in (6) is
≥ 0. The third line is

=
∑
x,yk∼x

pk
dk(x)

∑
x∗(k−1) 6=yk

P (ξt(x) = ξt(yk) = 0, some ξt(yi) = 1)

≥ E
∑

x∈H(At),lyk>lx

pk
dk(x)

∑
yi∈F (At) for some 1≤i≤k−1

1

= E
∑

x∈H(At),lyk>lx

pk
dk(x)

· (d(x)− 1) · (k − 1) ·
(
d(x)− 2

k − 1

)
= (k − 1)pkE|H(At)| ≥ (k − 1)pk|At|

In the third line, d(x) − 1 gives the choices for yk. k − 1 is because we have k − 1 choices
from y1, ..., yk−1 to be on the frontier. Suppose y1 is chosen to be in the frontier, then the
number of choices for y2, . . . yk−1 is

(
d(x)−2
k−1

)
. The final inequality comes from Lemma 2.1

Choose a neighbor x1 of the root x0. (See Figure 2.2 for a picture.) Set all the sites outside
of S(x1)∪{x0} to be always equal to 0. Let ξ̄t be the process restricted to S1 ≡ S(x1)∪{x0}.
Let

Āt = {x : ξ̄t(x) = 1} A∗t = Āt ∩ S(x1)

H∗(Āt) = H(Āt) ∩ S(x1) F ∗(Āt) = F (Āt) ∩ S(x1)

Lemma 2.3.
d

dt
E|Āt| ≥ γE|Āt| − (γ + 1)(M − 1)

Proof. We repeat the proof of Lemma 2.2. The differential equation in (7) remains valid but
when we make the transition to (8) there is a term with k = 1 that does not cancel:

−p1[d(x0)− 1]P (ξ̄t(x0) = 1)

Note that if x0 ∈ Āt, then x2, . . . , xd(x0) ∈ H(Āt) so

|H∗(Āt)| ≥ |H(Āt)| − [d(x0)− 1] ≥ |Āt| − (d(x0)− 1)

where the last inequality follows from Lemma 2.1. Using d(x0) ≤ M the desired result
follows.

Let L = 2(γ+1)(M−1)/γ. Lemma 2.3 implies that once E|Āt| ≥ L it grows exponentially
with rate ≥ α = (γ + 1)(M − 1).

Lemma 2.4. There exists ε0 > 0 such that

P (|Ā1| ≥ L) ≥ ε0 (9)

for all trees T with 3 ≤ dmin ≤ d(x) ≤M
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Proof. Let GL be the event that at time 1 there is an occupied path from the root x0 to
distance L− 1. It is easy to see that there exists ε0 > 0 such that P (GL) ≥ ε0 for all trees T
with 3 ≤ dmin ≤ d(x) ≤ M . To see this note that the worst case occurs when all sties have
degree 3 but offspring are sent across an edge with probability 1/M .

Lemma 2.5. There exists t0 > 0 such that

E|F ∗(Āt0)| ≥ 2 (10)

for all trees with 3 ≤ dmin ≤ d(x) ≤M

Proof. Conditioning on {|Āt| ≥ L} it follows that for all trees with 3 ≤ dmin ≤ d(x) ≤M .

E|Āt| ≥ ε0e
α(t−1)]

Now |F ∗(Āt)| ≥ |F (Āt)| − 1 with equality if x0 is in state 1, so by Lemma 2.1

|F ∗(Āt)| ≥ |F (Āt)| − 1 ≥ 1

M − 1
|Āt| − 1

and the desired result follows.

2.4 Step 4: Lower bounding BRW

Now define a lower bounding branching random walk Zn. Let Z0 = {x0}, where x0 is the
root. Let Z1 = F ∗(Āt0) = F (Āt0) ∩ S(x1). Inductively, given Zn, note that for any x ∈ Zn,
x has a child x′ such that S(x′) ∩ Ānt0 = ∅. Let F ∗(Āx,0t0 ) be the children of x, where the

superscript 0 means that to obtain Āx,0t , we enforce 0-boundary condition on sites above x.
Hence all the neighbors of x except for x′ are in state 0 during [nt0, (n + 1)t0]. Therefore
all Āx,0t ∀x ∈ Zn are independent and E|F ∗(Āx,0t0 )| > 1 ∀x ∈ Zn by Lemma 2.4. Define the
n+ 1 th generation by

Zn+1 =
⋃
x∈Zn

F ∗(Āx,0t0 )

Lemma 2.6. There exists Cv > 0 such that for all trees T with 3 ≤ d(x) ≤M for all x

E[Zn+1|Zn] ≥ 2Zn (11)

V ar(Zn+1|Zn) ≤ CvZn (12)

Proof. Given any tree T , note that Zn+1 =
⋃
x∈Zn

F ∗(Āxt0) and F ∗(Āxt0) ∩ F
∗(Āyt0) = ∅ if

x 6= y. Then

E[Zn+1|Zn, T ] =
∑
x∈Zn

E
[
|F ∗(Āxt0)||Zn, T

]
> (1 + ε)Zn (13)

To prove (12), let ηt be a branching process where η0 = 1 and every particle gives a birth at
rate M without death. Then given any tree, |Āt| is stochastically bounded by |ηt|. So now,
let T x denote the subtree consisting of x and its descendents. By independence

var (Zn+1|Zn, T ) =
∑
x∈Zn

var
(
|Āx,0t0 ||T

x
)

≤
∑
x∈Zn

E
[
|Āx,0t0 |

2 |T x
]
≤
∑
x∈Zn

E|ηt0|2 = CvZn

Since T is arbitrary, we have completed the proof.
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The next Lemma completes the proof of Theorem 1.

Lemma 2.7. With positive probability

lim inf
n→∞

Zn
(3/2)n

≥ 1. (14)

Proof. First by Lemma 2.6 and Chebyshev’s Inequality,

P
(
Zn+1 < (3/2)n+1|Zn ≥ (3/2)n

)
≤ P (|Zn+1 − E[Zn+1|Zn]| > Zn/2|Zn ≥ (3/2)n)

≤ E

(
CvZn

(Zn/2)2

∣∣∣∣Zn ≥ (3/2)n
)
≤ 4Cv · (2/3)n ≡ δn

Pick n0 large enough so that δn0 < 1. It follows from the proof of Lemma 2.4 that P (Zn0 ≥
(3/2)n0) > 0. Since δn is decreasing, we have

P

(
lim inf
n→∞

Zn
(3/2)n

≥ 1

∣∣∣∣Zn0 ≥ (3/2)n0

)
≥

∞∏
n=n0

(1− δn) > 0

which proves the desired result.

3 Results for d-regular trees

3.1 Extinction

The first result is elementary but a proof is cincluded for completeness.

Lemma 3.1. Let h(x) be the probability two continuous time random walks separated by x
on a d-regular tree will hit.

h(x) =

(
1

d− 1

)x
Proof. If the two particles are at distance x > 0 then the probability they are at distance
x+ 1 after the first jump is (d− 1)/d, while they are at distance x− 1 with probability 1/d.(

1

d− 1

)x
=
d− 1

d

(
1

d− 1

)x+1

+
1

d

(
1

d− 1

)x−1
=

1

d

(
1

d− 1

)x
+
d− 1

d

(
1

d− 1

)x
=

(
1

d− 1

)x
i.e., if Xt is the distance between two coalescing random walks on a d-regular tree then
((d− 1)−Xt is a martingale. Since h(0) = 1, h(x) ≤ 1 for x ≥ 0 and h(x)→ 0 as x→∞ the
desired result follows from the optional stopping theorem.
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Let β be the probability two newborn particles in the dual do not coalesce. Since two
newborn particles are at distance two from each other

β = 1− 1

(d− 1)2
.

Theorem 2 On a d-regular tree the COBRA dies out if

dβ
∑
k≥2

(k − 1)pk − p0 < 0

Proof. In COBRA, a particle dies at rate p0 and gives birth to k particles at rate dpk. To
make the dual process more like a branching random walk, when a particle dies and gives
birth to a positive number of particles, we declare that the particle did not die but jumped
to the location of particle 1. If no offspring were produced then the particle dies. To get an
upper bound on the growth of the dual (i) we ignore coalescence between the lineages that
are not siblings, and (ii) if k particles are born we ignore coalescence between particles i > 1
and j > 1. Note that particles 2, . . . k each have probability ≥ β of not coalescing with 1.
Thus the expected number of the particles that do not coalesce with 1 is (k− 1)β. If we use
η0t to denote the resulting system starting from a single particle then

d

dt
Eη0t =

[
−p0 + d

∑
k

pk(k − 1)β

]
Eη0t

It is immediate that if dβ
∑

k≥2(k − 1)pk − p0 < 0 then E|ζ0t | ≤ E|η0t | → 0.

3.2 Local Survival

Recall that µ =
∑

k kpk is the mean number of offspring in the dual.

Theorem 4 Given a d-regular tree T , the zealot voter model dies out locally if

µ <
d(1− p0) + p0

2
√
d− 1

. (15)

If p0 = 0 this is µ < d/(2
√
d− 1).

Proof. Using a superscript 0 to denote the process starting with only the root occupied, we
need to show

P (ξ0t ∩ {0} 6= ∅) −→ 0 as t→∞. (16)

By duality,
P (ξ0t ∩ {0} 6= ∅) = P (ζ0t ∩ {0} 6= ∅) (17)

Let η0t ⊃ ζ0t be the BRW in which particles die at rate p0 and at rate dpk die and give birth
onto k neighbors chosen without replacement.
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Lemma 3.2. Let m(t, x) = Eη0t (x) be the expected number of particles on site x at time t.
Then m(t, x) satisfies the equation

d

dt
m(t, x) = −αm(t, x) +

∑
y∼x

m(t, y)µ where α = d(1− p0) + p0

The solution is given by
m(t, x) = e(µ−α)dtP (S0

t = x) (18)

where S0
t is the random walk on tree T starting from the root that jumps at rate dµ to a

neighbor chosen uniformly at random.

Proof. To check (18), note that using RHS for the right-hand side of the equation

d

dt
RHS = (µ− α)de(µ−α)dtP (S0

t = x) + e(µ−α)dt

[
−dµP (S0

t = x) +
∑
y∼x

dµ× 1

d
P (S0

t = y)

]
= −αde(µ−α)dtP (S0

t = x) +
∑
y∼x

µe(µ−α)dtP (S0
t = y)

= −αm(t, x) +
∑
y∼x

m(t, y)µ

which gives the desired result.

Let Xt = |S0
t | be the distance from the root. We couple Xt to a simple random walk X̂t

on Z that jumps to the left at rate µ and to the right at rate (d− 1)µ by using the following
recipe: X̂t follows the move of Xt if Xt 6= 0; when Xt jumps from 0 to 1, X̂t jumps to the
left with probability 1/d. Clearly,

X̂t ≤ Xt ∀t ≥ 0

and hence
P (S0

t = 0) = P (Xt = 0) ≤ P (X̂t ≤ 0) (19)

Note that if θ ≤ 0 then

P (X̂t ≤ 0) ≤ EeθX̂t =
∞∑
k=0

e−dµt · (dµt)k

k!

(
1

d
e−θ +

d− 1

d
eθ
)k

= exp

{
−dµt

[
1−

(
1

d
e−θ +

d− 1

d
eθ
)]}

= exp
{
−µt[d− (e−θ + (d− 1)eθ)]

}
To optimize this bound we maximize the term in square brackets. To do this, we set

0 =
d

dθ
[d− (e−θ + (d− 1)eθ)] = e−θ − (d− 1)eθ

Solving we have e2θ = 1/(d− 1) or eθ = 1/
√
d− 1, which leads to the bound

P (X̂t ≤ 0) ≤ exp
{
−(d− 2

√
d− 1)µt

}
15



Using this with (18) and (19) we have

m(t, 0) = e(µ−α)dtP (S0
t = 0)

≤ exp
{[(

d− (d− 2
√
d− 1)

)
µ− dα

]
t
}

= exp
{(

2
√
d− 1µ− dα

)
t
}

Since α = p0 + d(1 − p0) our assumption (15) implies the exponent is negative. We have
completed the proof.

Theorem 6. On a d-regular tree the zealot voter model survives locally if

p0 = 0 and µ >
d√

d− 1 + 1
.

Proof. Choose a self-avoiding path {en,−∞ < n < ∞} in T d such that e0 = 0 is the root
and |en − en+1| = 1. This gives an embedding of Z into T d. Now define

u(n) = P (en ∈ ζt for some t)

for n ≥ 0. By the strong Markov property, for all n.m ≥ 0

u(n+m) ≥ u(n)u(m)

i.e., the sequence is supermultiplicative. This implies that

β(µ) ≡ lim
n→∞

[u(n)]1/n = sup
m≥1

[u(m)]1/m.

Let S(e0) denote the subtree starting from e0 that does not include e−1. Consider a lower
bound ζ̄t on the dual COBRA where we birth are only allowed in S(e0). Our next step is to
state a result from the contact process. This is Lemma 4.53 in [15] but the proof also works
for our COBRA.

Lemma 3.3.

lim
n→∞

[
sup
t
P (en ∈ ζ̄t)

]1/n
= β(µ) (20)

Since ζ̄t ⊂ ζt, the desired result follows from the next two Lemmas.

Lemma 3.4. If β(µ) > 1/
√
d− 1, then inf

t
P
(
e0 ∈ ζ̄t

)
> 0.

Lemma 3.5. If µ > d/(
√
d− 1 + 1), then β(µ) > 1/

√
d− 1.
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Proof of Lemma 3.4. The proof here is almost identical to the one on pages 99-100 of Liggestt
[15]. According to Lemma 3.3 and our assumption, we can fix constants a > 1/

√
d− 1, n ≥ 1

and s > 0 such that
P
(
en ∈ ζ̄s

)
= an (21)

We now follow the proof of Proposition 4.57 in Liggett [15] to construct an embedded branch-
ing process. Let B0 = {e} and B1 = {x ∈ ζ̄s : |x− e| = n}. We ignore all the births outside
S(x) and apply the same rules leading from B0 to B1 to obtain a random subset B(x) of
{y ∈ S(x)∩ ζ̄2s : |y−e| = 2n}. Let B2 = ∪x∈B1B(x). We repeat the same rule to construct a
branching process Bj. Note Bj ⊂ ζ̄js. Moreover Bj is supercritical since by (21) the offspring
distribution has mean (d− 1)nan > 1. Then

lim
j→∞

|Bj|
((d− 1)nan)j

exists and is positive with positive probability. As a result, we can find an ε such that for
all sufficiently large j,

P
(
|Bj| > ε ((d− 1)a)nj

)
> ε

We will show particles from the subchain {Bji}∞i=0’s are sufficient to make the process survive
locally. Since it takes time ijs to get to Bji, we let

ri = P (0 ∈ ζ̄2ijs) (22)

It follows from the strong Markov property that

ri+1 ≥ P (x ∈ ζ̄2(i+1)js for some x ∈ Bj)P (enj ∈ ζ̄js) (23)

Let byc be the largest integer ≤ y and let N = bε((d− 1)a)njc. This is

≥ P (|Bj| > N)[1− (1− ri)N ]P (enj ∈ ζ̄js)
≥ ε[1− (1− ri)N ]P (enj ∈ ζ̄js) (24)

Using the strong Markov property on the last probability gives

P (enj ∈ ζ̄js) ≥
[
P (en ∈ ζ̄s)

]j
= anj (25)

Let f(r) = ε[1− (1− r)N ]anj. Combining (24), (25) and (23) gives

ri+1 ≥ f(ri)

Note f(r) is increasing over [0, 1] with f(0) = 0. Moreover, f ′(r) = εanjN(1 − r)N−1. So
using the definition of N ,

f ′(0) = εanjN

≥ εanj[ε((d− 1)a)nj − 1]

= ε2[a2(d− 1)]nj − εanj
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Since a > 1/
√
d− 1 this is > 1 if j is chosen large enough. Thus f(r) has a fixed point

r∗ ∈ (0, 1]. We will prove by induction that

ri ≥ r∗, ∀i (26)

When i = 0, the inequality is trivial since r0 = 1. Suppose ri ≥ r∗. By the monotonicity of

f(r), we have
ri+1 ≥ f(ri) ≥ f(r∗) = r∗

To generalize (26) to all time t. Note particles die at rate d. Precisely

P (e ∈ ζ̄t|e ∈ ζ̄2ijs) ≥ e−d(t−2ijs)

In particular
P (e ∈ ζ̄t) ≥ e−djsri, if 2ijs < t < 2(i+ 1)js

We have completed the proof.

Proof of Lemma 3.5. Consider a simple random walk on Z which takes steps{
+1 with probability d−µ

d

−1 with probability µ
d

Repeating the proof of Lemma 3.1 shows that φ(x) =
(

µ
d−µ

)x
is a martingale. The stopping

time theorem for martingales shows

Pn(T0 <∞) =

(
µ

d− µ

)n
Note

P (en ∈ ζt for some t > 0) ≥ Pen(Te <∞) ≥
(

µ

d− µ

)n
where the second one is the probability that the COBRA initiated at en ever visits the root.
Then

[u(n)]
1
n ≥ µ

d− µ
Since µ > d√

d−1+1
, by assumption we have

β(µ) = lim
n→∞

[µ(n)]1/n ≥ d

d− µ
− 1

>
d

d− d/(
√
d− 1 + 1)

− 1 =
1√
d− 1

which completes the proof of Lemma 3.5 and hence the proof of Theorem 6.
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4 Results for Galton-Watson Trees

4.1 Survival of COBRA

We will now prove Theorem 7. To lead up to that we will describe the proof of the main
result in [8] in dimensions d ≥ 3. The model under consideration there is a biased voter
model with small bias. Jumps at x from 0→ 1 occur st rate (1 + ε)f1(x), where fi(x) is the
fraction of neighbors in state i, while jumps from 1 → 0 occur at rate f0(x). Suppose for
concreteness that the neighborhood consists of the 2d nearest neighbors. As in the case of the
zealot voter model the process is additive in the sense of Harris [10] and can be constructed
from a graphical representation with independent Poisson processes, T x,in , n ≥ 1 for i = 1, 2.
Let e1, . . . , e2d be an enumeration of the nearest neighbors of 0.

• The T x,1n have rate 1 and have associated independent random variables Ux,1
n that are

uniform on {1, 2, . . . 2d}. At time T x,in we write a δ at x that will kill a 1 at x and
draw an arrow from x + e(Ux,i

n ) to x. By considering the four cases for the states of
x+ e(Ux,i

n ) and x we can easily check that this gadget causes x to imitate its neighbor.

• The T x,2n have rate ε and have associated independent random variables Ux,2
n that are

uniform on {1, 2, . . . 2d}. At time T x,in we draw an arrow from x + e(Ux,i
n ) to x which

will cause x to be 1 if x+ e(Ux,i
n ) is.

Since branching occurs at rate ε in dual, the suggests that we should run time at rate
1/ε and scale space by 1/

√
ε to mkae the dual process converge to a branching Brownian

motion. One complication is that new born particles will coalesce with their parent with a
probability γ which is the probability a random walk started at e1 returns to 0. It is not
hard to show that the probability such a coalescence will occur after time 1/

√
ε tends to

0. Thus in order for the sequence of processes to be tight, we do not add the newly born
particle until time 1/

√
ε has elapsed. Other estimates in the proof show that it is unlikely for

particle to coalesce with another particle that is not its parent, so the sequence of rescaled
processes converges to a branching random walk in which new particle are born at rate γ.

In [8] this observation is combined with a block construction to prove the existence of a
stationary distribution in a “hybrid zone” in which the process on x1 ≥ 0 is a biased voter
model that favors 1 and on x1 < 0 the process is a biased voter model favoring 0. Things
are simpler for the zeaalot voter model on trees. If we only want to prove survival of the
dual it is enough to prove that when time is run at rate 1/ε the size of the dual converges to
a supercritical branching process. Taking into account the fraction of time a random walk
spends at vertices of degree k we arrive at:

Theorem 7. Let δ > 0. If ε > 0 is small enough then the COBRA dies out if∑
k

pk(µm,k − 1)− p0 < −δ

and survives if the last quantity is > δ.
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4.2 Local Survival

4.2.1 Proof of Theorem 8

Since the branching random walk gives an upper bound for the COBRA, it suffices to show

Lemma 4.1. If p0 = 0, then on a d-regular tree, the threshold for the local survival of η0t
satisfies

µl(T d) = d/(2
√
d− 1)

where η0t is the branching random walk starting with 1 particle at the root

To prove this result, define M(v, n) to be the number of oriented loops of length n start-
ing from vertex v. It is well-known that the limit L = lim

n→∞
M(v, 2n)1/2n = sup

n→∞
M(v, 2n)1/2n

exists for all graphs, independent of the choice of vertex. This follows from a simple super-
multiplicativity argument. Furthermore, define an evolutionary walk from vertex u to vertex
v to be a sequence 0 ≤ T x0,i0n0

< T x1,i1n1
< · · · < T xm,imnm

<∞ with x0 = u, xm = v. Precisely,
this corresponds to a path in the graphical representation such that the fluid can flow from
u to v. By definition, for a fixed path of length n on the tree, the expected number of
evolutionary walks on this path is (µ/d)n. This is because when a branching event occurs,
the expected number of particles landing on a certain neighbor is µ/d. We will show

Lemma 4.2. Suppose L = lim
n→∞

M(v, 2n)1/2n. Then µl(T d) = d/L.

Proof. Let Xn be the number of evolutionary walks of length n starting and ending at the
root e0. Note {X2nk} dominates a branching process with offspring distribution given by
Xn. In particular,

EXn ≥ (µ/d)2nM(e0, 2n)

So if µ > d/L, this branching process is supercritical if n is sufficiently large. Choose n
so that the above expectation is > 1. Note ∀T > 0, the expected number evolutionary walks
of length n by time T is

≤ Γ(d, n) =
dn

(n− 1)!

∫ T

0

e−ssn−1ds ≤ (dT )n

n!

The Γ(d, n) comes from a sum of n exponential distributions with parameter d. Note this is
summable with respect to n. By Borel-Cantelli Lemma, the maximal length of evolutionary
walks within any finite time T is bounded and thus the root has to be visited infinitely
often. For the other direction, note the expected number of evolutionary walks traversing e0
is bounded by

∞∑
n=1

(µ/d)nM(e0, n) <∞, if µ < d/L

The proof is complete.
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Proof of Lemma 4.1. It remains to compute L. This is given by Pemantle and Stacey [17].
To summarize, note for an oriented loop of length 2n, n steps are up (i.e. closer to e0) n
steps are down. At each step, there are d− 1 choices to move farther away. Hence

M(0, 2n) =

(
2n

n

)
(d− 1)n

Use Stirling formula the desired result follows.

4.2.2 Condition for Local Survival

We will now prove Theorem 9. In what follows, assume p0 = 0. Let px = µ/d(x) be the
probability that the particle at x will be replaced by a child moving closer to the root. Define
a harmonic function depending on the distance to the root by

φ(x) = pxφ(x− 1) + (1− px)φ(x+ 1) (27)

Note (27) is equivalent to

φ(x+ 1)− φ(x) =
px

1− px
[φ(x)− φ(x− 1)]

=
µ

d(x)− µ
[φ(x)− φ(x− 1)]

Suppose 0 = x0, x1, . . . , xn = x is the path from the root to x. We have

φ(xn)− φ(xn−1) =
n−1∏
k=1

µ

d(xk)− µ
[φ(x1)− φ(0)] (28)

This recursion allows us to impose function φ(x) on each vertex x ∈ G(V,E). By Theorem
6.4.8 in [7] , if φ(x) → ∞ for all lx → ∞ then the dual survives locally. However, it is
more convenient to pursue conditions such that the log increment log[φ(x)− φ(x− 1)]→∞
instead as we will see later.

Taking log of the recursion formula (28) gives

log [φ(xn)− φ(xn−1)] = log [φ(x1)− φ(0)] +
n−1∑
k=1

log
µ

d(xk)− µ

Suppose the Galton-Watson tree has degree distribution {qj}. Now consider a branching
random walk on R which has an initial particle at the origin. With probability qj, it gives
birth to j − 1 particles at log µ

j−µ and this forms a point process Z. The location of the first

generation is denoted as {z1r} where r is the index of each individual. For each particle x in
the first generation, it generates new particles in a similar way. The location of its children
has the same distribution as {z1r + x}. We obtain the second generation by taking all the
children of the first generation. Let {z2r} be the locations of the second generation. The
following generations are produced under the same manner. Denote {znr } as the location of
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the nth generation individuals. Let F (t) = E [Z(−∞, t]] be the expected number of points
in Z to the left of t. Define

m(θ) =

∫ ∞
−∞

e−θtdF (t) =
∑
j≥3

qj(j − 1)

(
j − µ
µ

)θ
To avoid notational confusion, we use ν(a) = inf{eθam(θ) : θ ≥ 0}. This is (2.1) defined in
[1]. It follows from Corollary (3.4) in [1] that ν(0) < 1 implies log[φ(x)− φ(x− 1)]→∞ for
all lx →∞. Hence ν(0) < 1 is a sufficient condition for local survival.
Remark. On the d−regular tree,

m(θ) = (d− 1)

(
d− µ
µ

)θ
Then v(0) < 1 iff µ > d/2, which gives another proof of Theorem 5.

4.3 Degree = 3 and 4

Our recursion is
φ(x+)− φ(x) =

µ

d(x)− µ
(φ(x)− φ(x−))

x− is neighbor closer to root. x+ is any neighbor further away

m(θ) = 2q3

(
3− µ
µ

)θ
+ 3q4

(
4− µ
µ

)θ
(29)

m′(θ) = 2q3

(
3− µ
µ

)θ
log

(
3− µ
µ

)
+ 3q4

(
4− µ
µ

)θ
log

(
4− µ
µ

)
(30)

Reacall ν(0) = min{m(θ) : θ ≥ 0}.

4.3.1 µ > 2

Since µ/(3 − µ) and µ/(4 − µ) are both > 1, φ(xn) → ∞ along any path xn → ∞, so the
process survives strongly.

4.3.2 µ ≤ 3/2

Since µ/(3− µ) and µ/(4− µ) are both < 1, φ(xn)→ 0 along any path xn →∞. However
this only tells us that the proof fails.

4.3.3 3/2 < µ ≤ 2

Case 1. Note that if 2q3 > 1 there is a path to ∞ (which may not start at the root) along
which we take the products of µ/(3− µ) and hence φ(xn)→ 0, so the proof fails.
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Figure 3: Local survival is possible only if µ′(0) < 0. This is q3 > 0.85 for µ = 1.6; q3 > 0.65
for µ = 1.7; q3 > 0.45 for µ = 1.8 and q3 > 0.25 for µ = 1.9.

Case 2. (4− µ)/µ > (3− µ)/µ so if

m′(0) = 2q3 log

(
3− µ
µ

)
+ 3q4 log

(
4− µ
µ

)
> 0

then m′(θ) > 0 for all θ > 0 and the minimum occurs at 0. m(0) = 2q3 + 3q4 ≥ 2, so again
the proof fails. let q3 = p and q4 = 1 − p. For fixed µ, m′(0) is linear in p so the condition
holds when

p < pc =
3 log((4− µ)/µ)

3 log((4− µ)/µ) + 2 log(µ/(3− µ))

See Figure 3 for various µ.

Case 3. If m′(0) < 0 then a minimum at θ̄ > 0 exists. Using (30) we want

2q3

(
3− µ
µ

)θ
log

(
µ

3− µ

)
= 3q4

(
4− µ
µ

)θ
log

(
4− µ
µ

)
Cross multiplying (

4− µ
3− µ

)θ
=

2q3 log(µ/(3− µ))

3q4 log((4− µ)/µ)

Let A be the numerator and B be the denominator of the fraction. m′(0) < 0 implies A > B.
The LHS is 1 at θ = 0 and increases →∞ as θ →∞ so a solution exists. Taking logs

θ log((4− µ)/(3− µ)) = log(A)− log(B)
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so we have

θ̄ =
log(A)− log(B)

log((4− µ)/(3− µ))
(31)

There does not seem to be a good formula for m(θ̄). To compute it numerically, we choose
µ = 1.6, 1.7, 1.8 and 1.9 for

ν(0) = m(θ̄) = 2q3 exp(θ̄ log((3− µ)/µ) + 3q4 exp(θ̄ log((4− µ)/µ)

It shows from the table that the phase transition occurs at q3 = 0.996, 0.97, 0.91 and 0.82
respectively.

q3 µ = 1.6 µ = 1.7 µ = 1.8 µ = 1.9
0.8 2.2 2.014149722 1.597069414 1.074539921
0.81 2.19 1.979137551 1.549560204 1.030929768
0.82 2.179999993 1.942042353 1.500601354 0.896331678
0.83 2.169035962 1.902724759 1.450116162 0.941977346
0.88 2.079229445 1.666138794 1.171184237 0.708137684
0.89 2.052259329 1.608953028 1.109102792 0.659079066
0.9 2.021286727 1.547575636 1.044453965 0.609119574
0.91 1.985646496 1.481425138 0.976943138 0.558174592
0.92 1.944464056 1.409753116 0.906197761 0.506138592
0.93 1.896552634 1.331568175 0.831734216 0.452876792
0.94 1.840236437 1.245508443 0.752903513 0.398211752
0.95 1.773023132 1.14961228 0.668796138 0.341900422
0.96 1.690934707 1.040865809 0.578059943 0.283591365
0.97 1.586938026 0.914185487 0.478505588 0.222735055
0.98 1.446391322 0.759622966 0.366073412 0.158358633
0.99 1.227510494 0.551306428 0.23102478 0.088284998
0.995 1.037752234
0.996 0.98268267
0.997 0.915774891
0.998 0.828879261
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