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Abstract

Inspired by the spread of discontent as in the 2016 presidential election, we consider
a voter model in which 0’s are ordinary voters and 1’s are zealots. Thinking of a social
network, but desiring the simplicity of an infinite object that can have a nontrivial
stationary distribution, space is represented by a tree. The dynamics are a variant of
the biased voter: if = has degree d(z) then at rate d(z)py the individual at x consults
k > 1 neighbors. If at least one neighbor is 1, they adopt state 1, otherwise they
become 0. In addition at rate pg individuals with opinion 1 change to 0. As in the
contact process on trees, we are interested in determining when the zealots survive and
when they will survive locally.

1 Introduction

In the standard (linear) voter model, which was introduced by Holley and Liggett [11], a
site flips at a rate equal to the fraction of neighbors that have the other opinion. Cox and
Durrett [4] began the study of voter models with non-linear flip rates. One of the most
successful ideas from that paper is the threshold-0 voter model in which sites flip at rate 1 if
at least 6 neighbors have the opposite opinion. Liggett [14] obtained results for coexistence
of opinions when 6 = 1, while Chatterjee and Durrett [2] showed that the model with 6 > 2
had a discontinuous phase transition on the random r-regular graph when r > 3. Lambiotte
and Redner [13] studied the “vacillating voter model” in which a voter looks at the opinions
of two randomly chosen neighbors and flips if at least one disagrees. At about the same time,
Sturm and Swart considered “rebellious voter models” in one dimension. In the one-sided
case &(i) canges its opinion at rate « if &(i + 1) # &(i)) and at an additional rate 1 — «
if &(1+1) # &+ 2)). They also considered a spatially symmetric version. In all these
variants of the voter model, the process is symmetric under interchange of 0’s and 1’s. Our
zealot voter model does not have that symmetry.

In our process, space is represented by a tree 7 in which the degree of each vertex x
satisfies 3 < d,n < d(2) < M. This guarantees that our trees are infinite. Voters can be in
state 0 (ordinary voter) or 1 (zealot). Given a probability distribution py on {0, 1,2, ... dyin},
if & > 1 then at rate d(x)px the voter x picks k neighbors without replacement. As in the



vacillating voter model the voter becomes 1 if at least one of the chosen neighbors is a 1,
otherwise it becomes 0. In addition at rate pg, voters change their opinion from 1 to 0.

If po = 0 then this model is a variant of the biased voter model. In that system, a 0 at
x changes to 1 at rate A times nq(z) the number of neighbors of x that are in state 1, and
a 1 at = changes to 0 at rate ng(z) the number of neighbors of x that are in state 0. If the
degree is constant then the behavior of the process is easy to understand. If we start from
finitely many 1’s then the number of 1’s at time ¢, N! decreases by 1 at a rate equal to D;
the number of (1,0) edges, and increases by 1 at rate AD,. Thus N} is a time change of a
simple random walk that increases by 1 with probability A/(A + 1) and decreases by 1 with
probability 1/(A + 1). Using this observation it is easy to show that the critical value for
the survival of 1’s A\, = 1. In our setting sites do not have constant degree and we have
a different type of bias. This makes things more complicated, and it is hard to get precise
results on the location of phase transitions.

Our process is additive in the sense of Harris [10] and hence can be constructed on a
graphical representation with independent Poisson processes 7%, n > 1, 0 < i < dppin-

e The T have rate pp. At these times we write a § at x that will kill a 1 at the site.

e The T have rate d(z)p;. At time T%' we write a & at o that will kill a 1 at the site.
In addition we draw oriented arrows to x from 7 neighbors ¥, ...y; chosen at random
without replacement from the set of neighbors. If any of the y; are in state 1, then x
will be in state 1. Otherwise it will be in state 0.

We will often use coordinate notation for the process, i.e., {(x) gives the state of x at
time t. However it is also convenient to use the set-valued approach with £ giving the set
of sites occupied by zealots at time ¢ when the initial set of zealots is A. Intuitively, the
process & can be defined by introducing fluid at the sites in A. The fluid flows up the
graphical representation, being blocked by ¢’s, and flowing across edges in the direction of
their orientations. The state at time t, £ is the set of points that can be reached by fluid
at time ¢ starting from some site in A at time 0.

A nice feature of this construction is that it allows us to define a dual process in which
fluid flows down the graphical representation, is blocked by d’s and flows across edges in
a direction opposite their orientations. We let (®* be the points reachable at time ¢t — s
starting from B at time ¢t. It is immediate from the construction that

(N B #£0}y={ANn¢"" £ 0} (1)

It should be clear from the construction that the distribution of (f’t for 0 < s < ¢ does not
depend on t, so we drop the t and write the duality as

P(&' N B #0) = P(ANGS #0) (2)

The dual (P is a coalescing branching random walk (COBRA) with the following rules. A
particle at x dies at rate pg and at rate d(z)py it dies after giving birth to offspring that

occupy k of the neighboring sites chosen at random without replacement. For more details
see Griffeath [9].



In the case py = 0 this pair of dual processes has been studied by Cooper, Radzik,
and Rivera [3]. In their situation the zealot voter model is called a biased infection with
a persistent source (BIPS). The phrase persistent source refers to the fact that the BIPS
model has one individual that stays infected forever. Their main interest is in the cover time
for COBRA, i.e., the time for the process to visit all of the sites. By duality this is related
to time for the BIPS to reach all 1’s.

In this paper, when we say that a process survives we mean that with positive probability
it avoids becoming (). We say a process survives locally if with positive probability the root
0 is occupied infinitely many times.

When A = B = {0}, (2) implies
P0eg)=POeg) (3)

so local survival of one process implies local survival of the other. Taking one of the sets
= T and the other = {0} we get

P #0)=POed/) PG #0)=P0eg])

so survival of one process implies that the other has a nontrivial stationary distribution
obtained by letting t — oo in ¢/ or &/ . Our first result is very general.

Theorem 1. On any tree with degrees 3 < d(x) < M, the zealot voter model survives if

Z(k’ —1)px —po > 0.

k>2

The result is proved by comparing the growth of the process at the “frontier” with a branching
process. For the definition of frontier, see the text before Lemma 2.1. Note that the degree
distribution does not appear in the condition.

1.1 Results for d—regular Trees

Let 8 =1—(d—1)"2 be the probability that two independent random walks on the d-regular
tree that start at distance two never hit. See Lemma 3.1 for a proof of this.

Theorem 2. On a d-regular tree the COBRA dies out if

dB > (k= 1)px —po < 0. (4)

k>2
When this holds the zealot voter model does not have a nontrivial stationary distribution.

To explain the condition, note that in the dual, a particle dies at rate py and gives birth
to k particles at rate dpg. To get an upper bound on the growth of the dual (i) we ignore
coalescence between individuals that are not siblings, and (ii) if k& particles are born we
number them 1,2, ...k and ignore coalescence between particles + > 1 and 7 > 1. This gives
an upper bound on the dual COBRA.



Theorem 3. If (4) holds then the zealot voter model dies out on a d-reqular tree.

Proof. Theorem 2 is proved by showing the expected number of particles in the COBRA,
denoted as E|(?|, converges to 0 as t — oo. By symmetry,

Elf|=) Pee)=) POe)=P0e()

where ¢} is the COBRA starting with all sites occupied. The last property follows from the
additivity of processes constructed on a graphical representation, i.e., if A = U;A;, a finite

or infinite union, then
A cA
t U'Lft

This implies that if (4) holds then COBRA has no stationary distribution, and by duality
the zealot voter model dies out. O

To study the local survival of our voter model, we use (3) to change the problem to
studying the local survival of the COBRA. Let u = ), kpj, is the mean number of offspring
in the dual process

Theorem 4. Given a d-reqular tree T, the zealot voter model dies out locally if

d(1l —
1< ( PO)‘FPO.
2vVd — 1

If po = 0 this is p < d/(2v/d — 1).

This result is proved by comparing COBRA with a branching random walk by ignoring
coalescence. The second bound is sharp for the branching random walk with no death.
That is, the corresponding branching random walk visits the root with positive probability
if u > d/(2v/d—1) and that the root is visited finitely many times if p < d/(2v/d —1).
This result can be found in Pemantle and Stacey [17]. There they studied the branching
random walk on trees where each particle gives birth at a rate A independently onto each
neighbor, and dies at rate 1. Since our branching process has simultaneous births and deaths
we modify their proof to cover our situation and give the proof in Lemma 4.1.

To give sufficient conditions for local survival, we follow a tagged particle in the COBRA.
If there is a particle produced on the site closer to the root, we follow this particle; otherwise
we follow a new particle chosen uniformly at random from the offspring and ignore the rest.
The recurrence of the tagged particle implies the local survival of COBRA. Using this idea
leads to a simple proof of a condition for local survival, but the result is not very accurate.

Theorem 5. On a d-regular tree the zealot voter model survives locally if po = 0 and > d /2.

Proof. Note that if ¢ is the number of particles produced in a branching event and ¢; is the
probability all of them going further from to the root then

(d;l) o (d-1) . kl(d — k) _ d—k
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Thus if we follow the particle that gets closer to the root then it jumps by —1 with probability
S gk =
Y d
k

and the tagged particle will be positive recurrent if p > d/2. O]

Our next Theorem, which uses some ideas from the proof of Lemma 4.57 in Liggett’s
1999 book [15], gives a more precise result.

Theorem 6. On a d-reqular tree the zealot voter model survives locally if po = 0 and

d
> .
e Ja—1+1

Combining this with Theorem 4, we notice that when py = 0 the phase transition of local

survival y; satisfies
d

d
M a1 1+ vd 1
1.2 Results for Galton-Watson Trees

In a Galton-Watson process with Z; = 1 each individual in generation n has an independent
and identically distributed number of children, which are members of generation n+ 1. The
Galton-Watson tree is the genealogy of this process. The one member of generation 0 is the
root. Edges are drawn from each individual in generation n to their children. Let py be the
probability of £ children. We have assumed p, = 0 unless 3 < d,,;n, < k < M, so the tree is
infinite with probability 1, and all vertices have at most M children.

To prove an analogue of Theorem 2, we formulate our model as a voter model perturba-
tion: let p; = ep; when ¢ # 1 and choose p; to make the p; sum to 1. A random walk that
jumps to each neighbor at rate 1 has a reversible stationary distribution that is uniform on
the graph. Let m,, be the fraction of vertices in the tree with degree m, and let p,, s be the
expected number of surviving particles in the dual when we pick k£ neighbors of a vertex of
degree m at random and run the coalescing random walk to time oo.

Theorem 7. Let § > 0. If € is small then the COBRA dies out if
Zwm Z kpk(,um,k - 1) —Po < —0
m k

and survives if the last quantity is > 0.

This result can be easily proved using the techniques in [12]. The key idea is that when ¢ is
small most of the steps in the dual are random walk steps, and the random walk is transient,
so any coalescence occurs soon after branching, and the dual is essentially a coalescing
branching random walk. These ideas go back to [6], where they were used on Z? with d > 3.
More recent applications include [5, 12, 16]. The zealot voter model has an additive dual,
so things are simpler, and we can use the approach of [8]. In Section 4 we will provide more
details about the method.



Remark. The last result concerns the survival of the dual, which is the same as the existence
of a nontrivial stationary distribution for the zealot voter model.

Our next result concerns local survival. Given any Galton-Watson tree 7¢W | let M
denote its maximal degree, and let 7™ be the tree in which each vertex has M children. Let
w1 (G) denote the threshold for local survival of the COBRA on graph G. Note the expected
number of new born particles at each time are the same on both trees. Since particles on
tree 7™ have more tendency to move further away from the root, a simple comparison leads
to

s (T () < g (T (me)

where 7; is the BRW without coalescence. The comments under Theorem 4 says for pg = 0,
pu (T () = M/(2VM 1)
It follows immediately that

Theorem 8. If po = 0 and pu < M/(2v/M — 1) then COBRA and the zealot voter model
both die out locally.

Next we look for conditions implying local survival. On a tree we define the level ¢, of
a vertex x to be its distance to the root. As on d—regular trees, our strategy is to follow a
tagged particle and seek conditions guaranteeing its recurrence. Let X; be the level of the
tagged particle at time ¢. If ¢ is a harmonic function for the tagged particle process X;, i.e.
¢(X;) is a martingale, then it follows from the optional stopping theorem that If T is the
time to hit the root and T is the first time the walk hits a site at level N

(1) > ( min ¢(3:)> P (Ty < Tp) (5)

x: lz=N
where the subscript 1 on P indicates that X is at level 1. From (5) we see that if ¢(z) goes
to oo along all paths to oo in the tree, then the tagged particles is recurrent. In order for ¢
to be a harmonic function

bz +1) — d(x) = —2— [¢(x) — ¢z — 1)] = —— [$(z) — d(x — 1))

T 1-p, d(z) — p

where p, = p/d(z) is the probability the tagged particle moves closer to the root. Taking
logarithms, then this is

1
log |p(x + 1) — o(z)| = log |p(x) — ¢p(x — 1)| + log [—]
6 + 1) = 0(a)) = log [9(x) = b — 1] + log | 75—
As we will now explain, there is a natural mapping from the log-increments of the har-

monic function to a branching random walk on R. If we consider a particle at level x to be
at log[¢(z) — ¢(x — 1)] on R then d(x) — 1 new particles will be dispersed to

log [6(z) — é(z — 1)] + log {d(f—_u] |

6



As a result along any genealogical path, the distance between two consecutive generations
is i.i.d with law the same as log[u/(d(x) — p)].

This process just described is different from the usual branching random walk in which
children are dispersed independently from their parent. However Biggins [1| has proved
results for more general branching random walks that contain ours as a special case. Let
F(t) = E({(—o0,t]) be the expected number of children that lie in (—oo,t] and define the
Laplace transform of the mean measure by

m(0) = /e_et dF(t)

Theorem 9. If ming>om(0) < 1 then the leftmost particle in the branching random walk
goes to co. This implies ¢ goes to oo along all paths to oo in the tree and we have local
survival.

To apply this result to our examples, we begin by noting that
i—nm\’
mt) =St - 1) (1)
j=3 a

It is not easy to use this formula with Theorem 9 to get explicit predictions, so we focus on
Galton-Watson tree with degrees only 3 and 4. Let u = 3q3 + 4q4 and

v(0) = renzigl m(0).

We have computed the threshold for various p in Section 4.3. See also Figure 1.

v(0) for various values of p
3.5
3
2.5
2
—1.6
1.5 --17
1 —1.8
---1.9
0.5
0 \
0 0.2 0.4 0.6 0.8 1

Figure 1: v(0) as a function of ¢3. Local survival occurs when ¢3 > 0.996 for p = 1.6;
qs3 > 0.97 for = 1.7; g3 > 0.91 for ;4 = 1.8; and g3 > 0.82 for = 1.9.



2 Proof of Theorem 1

There are four steps in the proof.

e We begin by deriving a differential equation for the expected number of occupied sites.

e We define the frontier and the external boundary of a set of occupied sites and prove
lower bounds on their sizes.

Combining the first two steps we obtain differential equations that lower bound the
number of occu[pied sites and the size of the frontier.

We prove Theorem 1 by showing that the set of occupied sites dominates a supercritical
branching walk.

2.1 Step 1: Derivation of the ODE

Let di(x) = (d(z) —1)---(d(z) — (k —1)). Note that di(z) is the number of ways of picking
k —1 things out of d(z) — 1 when the order of the choices is important. Using % (k—1) # yy
to indicate that we sum over all ordered choices of k£ — 1 different neighbors vy, ...,yx_1 of
that are not # y.

. ZP &(z) =1) —pozp(ft(ﬂf) =1)
+Z Z pk > [P (&) =1,4(m) =0) — P(&(z) = 1,all &(yi) = 0)] (6)

k>1 ykw$ x*(kfl)#yk
+ Z Z pk Z P(&(x) = &(yk) = 0,&(yi) = 1 for some i < k)
k>1x ykNIB ac*(k—l);éyk

Note that the second and third terms are > 0.

Proof. Breaking things down according to the value of k, treating births and deaths sepa-
rately, and noting that in the last four terms jumps occur at rate d(x)

9 P(e(r) = 1) = —mPlE(x) = 1)
—p1 Yy Pl&(r) =1,&(y) = 0)
S P =0.66) =1 .
—Zy% L ZP (€(2) = 1,&(y;) =0 for all 1 < i < k)
+§Z o ZP §(x) = 0,&(y;) =1 for some 1 <i < k)



If we sum over x then the second and third terms cancel. We now fix £ and split the last

term into two
ZP &(x) =1, all &(y;) = 0)

xxk
P
+Z il : ZP &(x) =0,&(yk) = 1) (8)
1 ; 3
Recalling the definition of di(x), the first sum can be written as

pk Z P (&(x) =0,&(yr) = 1)

@) Z (&(x) = &(yr) = 0,&(y;) = 1 for some 1 < i < k)

“ ykNx wx(k=1)7yr
- Z peP (&(x) = 0,&(ye) = 1)
= Y nP (&) = 0.&(m) = 1)
Yk s T~Yk
Dk
- P t = 07 t =1
yk;yk i () yk*(;)7ém (&) & (ur) )

Interchanging the role of x and y;, the above

Dk
di () Z P& (x) =1, &(yr) = 0)

Tk w(k—1)7yx

Then (8) can be reformulated as
p .
:_Zd ' ZP &(x) =1,&(y;) =0 forall 1 <i<k)
p
+ 2 A Z P(&(x) = 1, &(y) = 0)

T yka‘f zx(k—1)Fyy
pk Z P(&(x) = &(yr) = 0,&(y;) = 1 for some @ < k)
z ykN” zx(k—1)#yk

Combining the first two summations and summing over k£ > 1 gives the desired result. [

2.2 Step 2: Frontier lower bounds

Pick a vertex from the tree to be the root and call it x5. Given a vertex x in the tree we say
that 2’ is a child of x if it is a neighbor of x and further away from the root than z is. We
define the subtree generated by 2/, S(z'), to be all of the vertices that can be reached
from 2’ without going through x. By definition, 2’ € S(2’). For any finite set on the tree A,
define its frontier F'(A) as the set of sites x € A that have a child 2’ such that the subtree
S(z’)N A = () and define the exterior boundary of A, H(A) to be the set of all such

9



children /. That is, 2’ € H(A) if and only if S(z’) N A = () and the parent of 2’ is in F'(A).
to help visualize the definitions, see Figure 2.2. Our next step is to lower bound the sizes of
the sets we just defined.

Lemma 2.1. |H(A)| > |A| and |F(A)| > |A|/(M —1).

Proof. We prove the first result by induction on the cardinality of |A|. If |A| = 1, the result
is trivial as |H(A)| > d(x) — 1 > 2. Suppose now that the result is true for all B with
|B| < n—1and let |A| = n. Let z € A be the point with the largest distance to the root
and let B = A\ {z}. Then by induction |H(B)| > n — 1. Since none of the descendents of
x are in A, but x might be in H(B).

|H(A)| > |HB)|—1+dz)—1>(n—-1)—1+2=n

The second result follows from the first since |H(A)| < (M — 1)|F(A)|. O

T2 T3 Ty

Zo
T
Yo
* * x ok % %Y1
* * * * *

Figure 2: For simplicity we have only drawn the edges from vertices within distance 3 of
the root that are relevant to the definitions. e indicates sites in A. All the es are in F/(A)r
except for x1. *s mark the points in H(A).

2.3 ODE lower bounds
Let Ay = {z : &(z) = 1} Our next step is

Lemma 2.2. Let v = —po+ >, pr(k — 1) (which is > 0 by assumption).

d
%E|At| > VE| A

10



Proof. Let [, be the distance of x from the root. The expression on the second line in (6) is
> 0. The third line is

Pk
> F E g 1
o dk(l' )
TE€H (At),ly;, >la yi€F(A¢) for some 1<i<k—1

DI ~HUCERUE N (i

zC€H (A¢),ly, >la

= (k= DprE[H(Ay)| > (k — 1)pg| Al

In the third line, d(z) — 1 gives the choices for y,. k — 1 is because we have k — 1 choices
from 1, ...,yx_1 to be on the frontier. Suppose y; is chosen to be in the frontier, then the
number of choices for ys, ... y,_1 is (d(,flf). The final inequality comes from Lemma 2.1 [J

Choose a neighbor z; of the root xo. (See Figure 2.2 for a picture.) Set all the sites outside
of S(x1)U{zo} to be always equal to 0. Let & be the process restricted to Sy = S(z1)U{xo}.
Let

Ay ={x: &) =1} A = AN S(x)
H*(A) = H(A) N S(z1) F*(A) = F(A) N S(xy)
Lemma 2.3.

d _ _
£E|At| > ’)/E|At| - (/7 + 1)(M — 1)

Proof. We repeat the proof of Lemma 2.2. The differential equation in (7) remains valid but
when we make the transition to (8) there is a term with k£ = 1 that does not cancel:

—pild(zo) — 1]P(&(z0) = 1)
Note that if xg € Ay, then o, ..., T4y € H(A) so
|H*(Ap)| > [H(Ay)| — [d(zo) — 1] > [As] = (d(0) — 1)

where the last inequality follows from Lemma 2.1. Using d(xg) < M the desired result
follows. O

Let L = 2(y+1)(M—1)/v. Lemma 2.3 implies that once E|A;| > L it grows exponentially
with rate > a = (y+1)(M —1).

Lemma 2.4. There exists g > 0 such that
P(|A4| > L) > g (9)

for all trees T with 3 < dpin < d(x) < M

11



Proof. Let G, be the event that at time 1 there is an occupied path from the root zy to
distance L — 1. It is easy to see that there exists 9 > 0 such that P(GL) > g, for all trees T
with 3 < dpin < d(x) < M. To see this note that the worst case occurs when all sties have
degree 3 but offspring are sent across an edge with probability 1/M. O

Lemma 2.5. There exists to > 0 such that
E|F*(Ay)| > 2 (10)
for all trees with 3 < dppin < d(x) < M
Proof. Conditioning on {|A;| > L} it follows that for all trees with 3 < dpi, < d(z) < M.
E|A;| > goett V)
Now |F*(A;)| > |F(A;)| — 1 with equality if xg is in state 1, so by Lemma 2.1

[F (A = |[F(A)] -1 = Ay -1

M—-1
and the desired result follows. O

2.4 Step 4: Lower bounding BRW

Now define a lower bounding branching random walk Z,. Let Zy = {x¢}, where z is the
root. Let 7y = F*(A;,) = F(A;,) N S(z1). Inductively, given Z,,, note that for any x € Z,,
x has a child 2’ such that S(z) N Amo = (). Let F*(A{") be the children of z, where the
superscript 0 means that to obtain A , we enforce O-boundary condition on sites above .
Hence all the neighbors of x except for 2’ are in state 0 during [nty, (n + 1)ty]. Therefore
all A7’ Y € Z, are independent and E|F*(A7°)| > 1 Va € Z, by Lemma 2.4. Define the
n + 1 th generation by

Zny1 = U F (A"

©€Zy,
Lemma 2.6. There exists C, > 0 such that for all trees T with 3 < d(x) < M for all x
E|Z,1|2,] > 27, (11)
Var(Zun|Z2) < CuZ (12)
Proof. Given any tree T, note that Z,.1 = U,c, F*(Af) and F*(A7) N F*(AY) = 0 if
x # y. Then
E(Zui|Z0, TI = ) E|F(A)Z0, T] > (1+6)Zy (13)

©€Zn
To prove (12), let 1, be a branching process where 79 = 1 and every particle gives a birth at
rate M without death. Then given any tree, |A;| is stochastically bounded by |7:]. So now,
let 7% denote the subtree consisting of x and its descendents. By independence

var (Zn+1|Zn7T> - Z var (|Atx(;0|’Tx)

CEGZn

<> CE[ARPITT] <) Elnl’ = CoZn

$6Zn CUEZTL

Since T' is arbitrary, we have completed the proof. O

12



The next Lemma completes the proof of Theorem 1.

Lemma 2.7. With positive probability

Ln
hgr_l}gjlf G2 > 1. (14)

Proof. First by Lemma 2.6 and Chebyshev’s Inequality,

P (Zu < (3/2)"|Z, = (3/2)")
< P(|Zus1 = EZnii Zal| > Z0/2120 = (3/2)")

<FE < <ZJ/ZQ”>2 Zy > (3/2)”) <40, - (2/3)" =4

Pick ng large enough so that 6,, < 1. It follows from the proof of Lemma 2.4 that P(Z,, >
(3/2)™) > 0. Since ¢, is decreasing, we have

o Zn

n=ng

which proves the desired result. O]

3 Results for d-regular trees

3.1 Extinction

The first result is elementary but a proof is cincluded for completeness.

Lemma 3.1. Let h(z) be the probability two continuous time random walks separated by x

on a d-reqular tree will hit.
1 X
h(x) = ——=
@ =(77)

Proof. 1f the two particles are at distance z > 0 then the probability they are at distance
x + 1 after the first jump is (d — 1)/d, while they are at distance  — 1 with probability 1/d.

1 T B d—1 1 z+1 N 1 1 z—1
d—1)  d \d-1 d\d-1
1 I \" n d—1 I \" B 1 \"
S d\d-1 d \d-1) \d-1
i.e., if X; is the distance between two coalescing random walks on a d-regular tree then

((d—1)~** is a martingale. Since h(0) =1, h(x) <1 for x > 0 and h(x) — 0 as z — oo the
desired result follows from the optional stopping theorem. O
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Let 8 be the probability two newborn particles in the dual do not coalesce. Since two
newborn particles are at distance two from each other

1
ST

Theorem 2 On a d-reqular tree the COBRA dies out if

dﬁZ(k’ — D)pr —po <0

k>2

Proof. In COBRA, a particle dies at rate py and gives birth to k particles at rate dpy. To
make the dual process more like a branching random walk, when a particle dies and gives
birth to a positive number of particles, we declare that the particle did not die but jumped
to the location of particle 1. If no offspring were produced then the particle dies. To get an
upper bound on the growth of the dual (i) we ignore coalescence between the lineages that
are not siblings, and (ii) if k£ particles are born we ignore coalescence between particles i > 1
and j > 1. Note that particles 2,...k each have probability > [ of not coalescing with 1.
Thus the expected number of the particles that do not coalesce with 1is (k—1)3. If we use
nY to denote the resulting system starting from a single particle then

d

2B = |—po+dy_pe(k— 18| Bnf
k

It is immediate that if 3, -, (k — 1)pr — po < 0 then E|()| < Elnf| — 0. O

3.2 Local Survival
Recall that o =), kpy is the mean number of offspring in the dual.
Theorem 4 Given a d-reqular tree T, the zealot voter model dies out locally if

(1 = po) +po

2vd—1 (15)

<
If po =0 this is p < d/(2/d — 1).

Proof. Using a superscript 0 to denote the process starting with only the root occupied, we

need to show
PE)N{0}#0) — 0 ast— oo. (16)

By duality,
P&/ n {0} #0) = P(¢f N {0} #0) (17)

Let Y D ¢ be the BRW in which particles die at rate py and at rate dpj, die and give birth
onto k neighbors chosen without replacement.

14



Lemma 3.2. Let m(t,x) = En?(x) be the expected number of particles on site x at time t.
Then m(t,z) satisfies the equation

d
Em(t, x) = —am(t,z) + Zm(t, y)u  where a = d(1 — pg) + po

y~zx

The solution is given by
m(t,x) = e VUP(SY = 1) (18)

where SY is the random walk on tree T starting from the root that jumps at rate du to a
netghbor chosen uniformly at random.

Proof. To check (18), note that using RHS for the right-hand side of the equation

d 1
%RHS = (u — a)de= VP89 = z) 4 = | _q,P(SY = z) + Z dpu X EP<S? =y)
Yy~x
= —ade" = pP(S0 = 1) 4 Z et~ Pp(SY = 4)
Yy~
Yy~
which gives the desired result. O

Let X; = |S?| be the distance from the root. We couple X; to a simple random walk X,
on Z that jumps to the left at rate u and to the right at rate (d — 1)u by using the following
recipe: X, follows the move of X, if X # 0; when X; jumps from 0 to 1, X, jumps to the
left with probability 1/d. Clearly,

and hence

Note that if § < 0 then

; ( dut)* (1 d—1 ,\"
P(Xt S O) S EeoXt — Zefd,ut . ( /’l’ ) (_69 + —69)
k=0

= exp {—dut {1 — (ée‘e + d%dleeﬂ }
— exp {—ptld — (e + (d— 1)e")]}

To optimize this bound we maximize the term in square brackets. To do this, we set

_d
~dh

Solving we have ¢* = 1/(d — 1) or ¢ = 1/y/d — 1, which leads to the bound

P(X, < 0) < exp {—(d - 2\/dT1),ut}

0 [d— (e +(d—1)e")] =e — (d—1)¢’

15



Using this with (18) and (19) we have
m(t,0) = e~ p(SY = ()
< exp { [(d— (d— Nﬁ)) - da] t}
= exp { (2vd—1p—da) t}

Since o = pg + d(1 — py) our assumption (15) implies the exponent is negative. We have
completed the proof. n

Theorem 6. On a d-reqular tree the zealot voter model survives locally if

po=0 and pu>

d
Vd—1+1

Proof. Choose a self-avoiding path {e,, —0o < n < oo} in T¢ such that ey = 0 is the root
and |e, — e,41| = 1. This gives an embedding of Z into T%. Now define

u(n) = P (e, € ¢, for some t)
for n > 0. By the strong Markov property, for all n.m >0
u(n +m) > u(n)u(m)
i.e., the sequence is supermultiplicative. This implies that

B(p) = lim [u(n)]" = sup[u(m)]"/™.

n—oo m>1

Let S(eg) denote the subtree starting from ey that does not include e_;. Consider a lower
bound ¢; on the dual COBRA where we birth are only allowed in S(ey). Our next step is to
state a result from the contact process. This is Lemma 4.53 in [15] but the proof also works
for our COBRA.

Lemma 3.3.

lim [sgp Ple @)] " b (20)

n—oo
Since ; C ¢, the desired result follows from the next two Lemmas.

Lemma 3.4. If f(u) > 1/v/d — 1, then irtlfP (eo € C}) > 0.

Lemma 3.5. If p > d/(v/d—1+1), then 5(p) > 1/v/d — 1.
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Proof of Lemma 3.4. The proof here is almost identical to the one on pages 99-100 of Liggestt
[15]. According to Lemma 3.3 and our assumption, we can fix constants a > 1/v/d —1,n > 1
and s > 0 such that

P (e, €¢) =a" (21)

We now follow the proof of Proposition 4.57 in Liggett [15] to construct an embedded branch-
ing process. Let By = {e} and B; = {x € {, : |x — ¢| = n}. We ignore all the births outside
S(x) and apply the same rules leading from Bj to B; to obtain a random subset B(z) of
{y € S(x)N(a : |y —e| = 2n}. Let By = Uyep, B(x). We repeat the same rule to construct a
branching process B;. Note B; C fjs. Moreover B; is supercritical since by (21) the offspring
distribution has mean (d — 1)"a™ > 1. Then

Bl
= ((d=1)a)

exists and is positive with positive probability. As a result, we can find an € such that for
all sufficiently large j,

POBﬂ>e«d—D@m>>e

We will show particles from the subchain {Bj;}:°,’s are sufficient to make the process survive
locally. Since it takes time 7js to get to Bj;, we let

ri = P(0 € Caijs) (22)
It follows from the strong Markov property that
riy1 > P(x € (y(is1))s for some x € B;)P(en; € (js) (23)
Let |y]| be the largest integer < y and let N = |e((d — 1)a)™|. This is

> P(|By| > N)[1 = (1 —7:)"]P(en; € Gjs)
> e[l = (1= 7))V P(en; € Gs) (24)

Using the strong Markov property on the last probability gives
Plen; € (i) > [Plen € C)] = a (25)
Let f(r) = €[l — (1 —r)]a™. Combining (24), (25) and (23) gives

Tiv1 = f(rz)

Note f(r) is increasing over [0, 1] with f(0) = 0. Moreover, f'(r) = ea™ N(1 —r)¥=1. So
using the definition of N,
f'(0) = ea™N
> eae((d — 1)a)™ — 1]

= *[a*(d — 1)]" — ea™

17



Since @ > 1/+/d —1 this is > 1 if j is chosen large enough. Thus f(r) has a fixed point
r* € (0,1]. We will prove by induction that

ri >t Vi (26)

When ¢ = 0, the inequality is trivial since ro = 1. Suppose r; > r*. By the monotonicity of
f(r), we have
rig1 > f(ri) > f(r*)=7r"

To generalize (26) to all time ¢. Note particles die at rate d. Precisely
P(e € (e € (ayjs) > e 1720

In particular B
Ple € ) > e Yy, if 2ijs <t < 2(i +1)js

We have completed the proof. O]

Proof of Lemma 3.5. Consider a simple random walk on Z which takes steps

. . d—
{—i—l with probability <#
—1 with probability &

Repeating the proof of Lemma 3.1 shows that ¢(z) = <dﬁ—ﬂ> is a martingale. The stopping

time theorem for martingales shows

Pu(Ty < o0) = (dL)n

—p

Note "
P(e, € ¢ for some t > 0) > P, (T, < 00) > (dL)
—p
where the second one is the probability that the COBRA initiated at e,, ever visits the root.
Then

1 H
w>
()] > 7
Since p > ﬁ, by assumption we have
Blu) = tim [u(m)]/" = —2— — 1
d 1
> —1=—
d—d/(vVd—1+1) d—1
which completes the proof of Lemma 3.5 and hence the proof of Theorem 6. O
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4 Results for Galton-Watson Trees
4.1 Survival of COBRA

We will now prove Theorem 7. To lead up to that we will describe the proof of the main
result in [8] in dimensions d > 3. The model under consideration there is a biased voter
model with small bias. Jumps at z from 0 — 1 occur st rate (1+¢)fi(x), where f;(x) is the
fraction of neighbors in state ¢, while jumps from 1 — 0 occur at rate fy(z). Suppose for
concreteness that the neighborhood consists of the 2d nearest neighbors. As in the case of the
zealot voter model the process is additive in the sense of Harris [10] and can be constructed
from a graphical representation with independent Poisson processes, %! n > 1 for i = 1,2.
Let ey, ..., e2q be an enumeration of the nearest neighbors of 0.

e The 7! have rate 1 and have associated independent random variables U%! that are
uniform on {1,2,...2d}. At time T we write a § at x that will kill a 1 at z and
draw an arrow from x + e(U*") to x. By considering the four cases for the states of
z+e(U") and = we can easily check that this gadget causes x to imitate its neighbor.

e The T2 have rate € and have associated independent random variables U%? that are
uniform on {1,2,...2d}. At time 7" we draw an arrow from x + e(U*") to x which
will cause z to be 1 if z + e(U*") is.

Since branching occurs at rate € in dual, the suggests that we should run time at rate
1/e and scale space by 1/4/¢ to mkae the dual process converge to a branching Brownian
motion. One complication is that new born particles will coalesce with their parent with a
probability v which is the probability a random walk started at e; returns to 0. It is not
hard to show that the probability such a coalescence will occur after time 1/4/¢ tends to
0. Thus in order for the sequence of processes to be tight, we do not add the newly born
particle until time 1/4/¢ has elapsed. Other estimates in the proof show that it is unlikely for
particle to coalesce with another particle that is not its parent, so the sequence of rescaled
processes converges to a branching random walk in which new particle are born at rate ~.

In [8] this observation is combined with a block construction to prove the existence of a
stationary distribution in a “hybrid zone” in which the process on x; > 0 is a biased voter
model that favors 1 and on x; < 0 the process is a biased voter model favoring 0. Things
are simpler for the zeaalot voter model on trees. If we only want to prove survival of the
dual it is enough to prove that when time is run at rate 1/e the size of the dual converges to
a supercritical branching process. Taking into account the fraction of time a random walk
spends at vertices of degree k we arrive at:

Theorem 7. Let 6 > 0. If € > 0 is small enough then the COBRA dies out if

Zpk(,um,k —1)—po <=9
%

and survives if the last quantity is > 6.
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4.2 Local Survival

4.2.1 Proof of Theorem 8

Since the branching random walk gives an upper bound for the COBRA, it suffices to show

Lemma 4.1. If py = 0, then on a d-reqular tree, the threshold for the local survival of n?
satisfies

(T = d/(2Vd— 1)

where 1Y is the branching random walk starting with 1 particle at the root

To prove this result, define M (v, n) to be the number of oriented loops of length n start-

ing from vertex v. It is well-known that the limit L = lim M (v, 2n)?" = sup M(v, 2n)"/?"
n—o0 00

exists for all graphs, independent of the choice of vertex. This follows fro?n a simple super-
multiplicativity argument. Furthermore, define an evolutionary walk from vertex u to vertex
v to be a sequence 0 < T200 < TH0 < ... < TPmim < oo with 2o = u, @, = v. Precisely,
this corresponds to a path in the graphical representation such that the fluid can flow from
u to v. By definition, for a fixed path of length n on the tree, the expected number of
evolutionary walks on this path is (u/d)"™. This is because when a branching event occurs,
the expected number of particles landing on a certain neighbor is p/d. We will show
Lemma 4.2. Suppose L = nh_}rglo M (v, 2n)Y?". Then py(T%) = d/L.

Proof. Let X,, be the number of evolutionary walks of length n starting and ending at the
root eg. Note {Xs,,x} dominates a branching process with offspring distribution given by

X,,. In particular,
EX, > (u/d)* M eq,2n)

So if ;1 > d/L, this branching process is supercritical if n is sufficiently large. Choose n
so that the above expectation is > 1. Note V1" > 0, the expected number evolutionary walks
of length n by time T is

dr g dr)"
<TI'(d,n) = —)'/ e 5" ds < (dT)
Jo

(n—1 n!

The T'(d,n) comes from a sum of n exponential distributions with parameter d. Note this is
summable with respect to n. By Borel-Cantelli Lemma, the maximal length of evolutionary
walks within any finite time 7' is bounded and thus the root has to be visited infinitely
often. For the other direction, note the expected number of evolutionary walks traversing eq
is bounded by

oo

Z(,u/d)”M(eo,n) < oo, if p<d/L

n=1

The proof is complete. O
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Proof of Lemma 4.1. It remains to compute L. This is given by Pemantle and Stacey [17].
To summarize, note for an oriented loop of length 2n, n steps are up (i.e. closer to eg) n
steps are down. At each step, there are d — 1 choices to move farther away. Hence

2
M(0,2n) = ( ”) (d— 1)
n
Use Stirling formula the desired result follows. n

4.2.2 Condition for Local Survival

We will now prove Theorem 9. In what follows, assume pyg = 0. Let p, = p/d(x) be the
probability that the particle at x will be replaced by a child moving closer to the root. Define
a harmonic function depending on the distance to the root by

¢(x) = pad(x — 1) + (1 = pa)p(z + 1) (27)
Note (27) is equivalent to
B +1) = 6(r) = 12~ [9(2) = (e — 1)
— M @) - ¢z -
o P CORLCR)
Suppose 0 = zg, 21, ..., 2, = x is the path from the root to x. We have
o) = o) = [ =5 [6w1) = 6(0) (28)

This recursion allows us to impose function ¢(z) on each vertex z € G(V, E). By Theorem
6.4.8 in [7] , if ¢(xz) — oo for all [, — oo then the dual survives locally. However, it is
more convenient to pursue conditions such that the log increment log[¢(z) — ¢(z —1)] — oo
instead as we will see later.

Taking log of the recursion formula (28) gives

n—1

log [6(z0) — 6(za1)] = log () = 9(0)] +3_ log - b—

k=1

Suppose the Galton-Watson tree has degree distribution {¢;}. Now consider a branching
random walk on R which has an initial particle at the origin. With probability g;, it gives
birth to j — 1 particles at log ﬁ and this forms a point process Z. The location of the first
generation is denoted as {z!} where r is the index of each individual. For each particle z in
the first generation, it generates new particles in a similar way. The location of its children
has the same distribution as {z! + 2}. We obtain the second generation by taking all the
children of the first generation. Let {22} be the locations of the second generation. The
following generations are produced under the same manner. Denote {z/'} as the location of
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the nth generation individuals. Let F(t) = E[Z(—o0,t]] be the expected number of points
in Z to the left of ¢. Define

00 AN
wo) = [ etare) = Yot -0 ()
—o0 >3 H
To avoid notational confusion, we use v(a) = inf{e?*m(0) : # > 0}. This is (2.1) defined in
[1]. It follows from Corollary (3.4) in [1] that v(0) < 1 implies log[¢(x) — ¢(x — 1)] — oo for
all I, — oo. Hence v(0) < 1 is a sufficient condition for local survival.
Remark. On the d—regular tree,
d— 1\
o) = (@~ (1)
0

Then v(0) < 1 iff p > d/2, which gives another proof of Theorem 5.

4.3 Degree = 3 and 4

Our recursion is

b(1+) — d(x) = —L—(d(x) — d(a—))

d(x) — p
x— is neighbor closer to root. z* is any neighbor further away
3—u\’ 4—u\°
m(0) = 2q; <—M) +3qu <—M> (29)
H H

(Y () (5 ()
Reacall v(0) = min{m(f) : § > 0}.

431 p>2

Since p/(3 — p) and p/(4 — p) are both > 1, ¢(x,) — oo along any path z,, — oo, so the
process survives strongly.

4.3.2 1 <3/2

Since p/(3 — p) and p/(4 — p) are both < 1, ¢(z,) — 0 along any path x,, — co. However
this only tells us that the proof fails.

4.3.3 3/2<pu<?

Case 1. Note that if 2¢3 > 1 there is a path to co (which may not start at the root) along
which we take the products of u/(3 — u) and hence ¢(z,,) — 0, so the proof fails.
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m'(0) as a function of p for various p

15
—16

\ --17
11T —18
R ---19

0.5

-0.5

-1.5

Figure 3: Local survival is possible only if 4/(0) < 0. This is g3 > 0.85 for u = 1.6; g3 > 0.65
for p = 1.7; q3 > 0.45 for p = 1.8 and ¢3 > 0.25 for = 1.9.

Case 2. (4—p)/pu> (3—p)/psoif
3 4—
m/(0) = 2¢3 log (—M 'u) + 3q4 log (—M M) >0

then m/(0) > 0 for all # > 0 and the minimum occurs at 0. m(0) = 2¢g3 + 3g4 > 2, so again
the proof fails. let g3 = p and ¢4 = 1 — p. For fixed p, m/(0) is linear in p so the condition

holds when
_ 3log((4 — p) /1)
3log((4 — p)/p) + 2log(p/(3 — 1))

D <Dec

See Figure 3 for various pu.

Case 3. If m’(0) < 0 then a minimum at § > 0 exists. Using (30) we want

3—u\’ 4—p\° 4-—
w (557) e (525) o (55 s (55
7 3—p 7 p

Cross multiplying

(4—_u)0 _ 2q3log(p/(3 — 1))

3—p 3qalog((4 — p)/n)

Let A be the numerator and B be the denominator of the fraction. m’(0) < 0 implies A > B.
The LHS is 1 at = 0 and increases — 0o as # — oo so a solution exists. Taking logs

0log((4 — p)/(3 — p)) = log(A) — log(B)
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so we have

log(A) — log(B)
log((4 —p)/(3 — p))

There does not seem to be a good formula for m(#). To compute it numerically, we choose
pw=16, 1.7, 1.8 and 1.9 for

0 = (31)

v(0) = m(0) = 23 exp(flog((3 — )/ 11) + 3qs exp(f log((4 — 1)/ 12)

It shows from the table that the phase transition occurs at ¢3 = 0.996, 0.97, 0.91 and 0.82

respectively.
qs pw=1.6 w=17 pw=138 nw=19
0.8 2.2 2.014149722 1.597069414 1.074539921
0.81 2.19 1.979137551  1.549560204 1.030929768
0.82 2.179999993  1.942042353  1.500601354 0.896331678
0.83 2169035962 1.902724759  1.450116162  0.941977346
0.88 2.079229445  1.666138794  1.171184237  0.708137684
0.89 2.052259329  1.608953028  1.109102792  0.659079066
0.9 2.021286727  1.547575636  1.044453965 0.609119574
0.91 1.985646496  1.481425138 0.976943138  0.558174592
0.92 1.944464056  1.409753116  0.906197761  0.506138592
0.93 1.896552634  1.331568175  0.831734216  0.452876792
0.94 1.840236437  1.245508443  0.752903513  0.398211752
0.95 1.773023132 1.14961228 0.668796138  0.341900422
0.96 1.690934707 1.040865809 0.578059943  0.283591365
0.97 1.586938026  0.914185487  0.478505588  0.222735055
0.98 1.446391322  0.759622966  0.366073412  0.158358633
0.99 1.227510494  0.551306428 0.23102478 0.088284998
0.995 1.037752234
0.996 0.98268267
0.997  0.915774891
0.998  0.828879261
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