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Abstract—We propose a novel cooperative spectrum sensing
(CSS) framework for cognitive radio networks based on imbal-
anced learning techniques, which aims to resolve the skewed
category distribution problems of signal data. For a radio channel
shared by primary users (PUs) and secondary users (SUs), the
signal data composed of energy vectors, in which each energy
level is estimated by SU, can be used to detect the channel
availability via a classifier. However, due to the nature of this
application, the existing category-imbalance problem hinders the
detection performance since the trained classifier has a better
effect on the dominated category. To enhance the performance,
sampling (e.g., oversampling, under-sampling, and combination)
algorithms are employed to balance the training data set based
on the imbalance degree metric of imbalance-ratio. The balanced
training set then can be used to train classifiers with initial
parameters, and the validation set can be utilized to tune as well
as evaluate the classifiers. In the testing phase, the actual desired
performance on unseen signal data can be determined based on
the testing set, i.e., whether the channel is available or not. The
performance of each sampling algorithm is measured in terms
of receiver operating characteristic (ROC) curve and area under
the ROC curve (AUC). The simulation results demonstrate the
effectiveness of our proposed framework compared to traditional
CSS methods.

Index Terms—Cognitive radio, cooperative spectrum sensing,
imbalanced learning, sampling algorithms, detection performance

I. INTRODUCTION

Cognitive radio (CR), as a promising technology in wireless
communications, has emerged to enhance spectrum utilization
such that the scarcity problem caused by limited radio spec-
trum can be alleviated [1]. Generally, a primary task of CR is
to sense radio frequency (RF) environment and autonomously
adjust transmission parameters, which provides new paths
for spectrum access. In CR networks, primary users (PUs)
have higher priorities to access the licensed spectrum, while
secondary users (SUs) with lower priorities could access this
spectrum only when the PUs are inactive. In order to maximize
the performance of CR networks without interfering the PUs’
usage, SUs need to have the ability of spectrum sensing, which
is to identify and utilize the available spectrum that is not being
used by any PU.

However, in practice, the issues of shadowing, multipath
fading, and receiver uncertainty would result in the degradation
of sensing performance. In this case, cooperative spectrum
sensing (CSS) can be adopted, where SUs distributed in differ-
ent locations cooperate to achieve higher sensing accuracy and

reliability than individual SU does [2]. This cooperation can
be implemented via a fusion center, combining shared sens-
ing information and making decisions. There are two fusion
schemes: hard fusion and soft fusion. With hard fusion scheme,
only one-bit information is exchanged to determine whether
the received energy exceeds a given threshold such as OR,
AND, and the counting rules. With soft fusion scheme, specific
energy levels estimated by SUs are transmitted, contributing
to better decision-making for the fusion center [3].

Considering the learning, adaptive, and decision-making
abilities [4]–[6], machine learning techniques enjoy the ad-
vantages compared to traditional CSS methods. Based on
them, many approaches are proposed. In [7], a fusion center
algorithm based on machine learning is designed to train
the model per frame in real time and provide decision.
Especially in [8], supervised learning methods (support vector
machine and K-nearest neighbor) as well as unsupervised
learning methods (K-means and Gaussian mixture model)
are used to identify available and unavailable spectrum. Al-
though the decision region could be discovered efficiently,
most machine learning techniques are proposed to address
classification problems based on an assumption of balanced
category distributions. Whereas, it is not always true for a
biased category distribution problem existing in many dynamic
CR networks. For example, in the case of high active degree
of PUs, the channel unavailable category (i.e., the majority)
may be over-represented by a large number of energy vectors
corresponding to the case that at least one PU is active, while
the channel availability category (i.e., the minority) is under-
represented by only a few energy vectors corresponding to the
case that all PUs are inactive. The solutions for this problem
using traditional learning methods bias the dominant category
leading to poor detection performance of available spectrum
and vice versa [9]–[11]. Thus the category-imbalance problem
can be considered as a significant impediment to the success
of CSS.

To overcome this impediment, we propose a novel CSS
scheme based on binary imbalanced learning. In the context
of CSS, an energy vector is considered as a feature vector,
whose each component is an energy level estimated by each
SU. What we need to do first is to measure the category-
imbalance degree of the given energy vectors using imbalance-
ratio (IR) [12], [13]. Then sampling approaches are used to
achieve a balance between these binary categories. According

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 07,2020 at 01:48:37 UTC from IEEE Xplore.  Restrictions apply. 



to oversampling strategy, new minority energy vectors can be
created by replicating original ones or generating synthetic
ones. For the undersampling strategy, a subset of majority
energy vectors can be removed to balance the vectors. Ad-
ditionally, ensemble methods combined by over- and under-
sampling strategies concurrently are used to generate minority
vectors and remove majority vectors. The balanced vectors can
be used to train classifiers and make decisions about channel
availability.

The rest of this paper is organized as follows. Section
II introduces the models for CSS. The imbalanced learning
based CSS framework is presented in Section III. Experimental
results and discussions are provided in Section IV followed by
conclusions drawn in Section V.

II. SYSTEM MODEL

A. Cognitive Radio Network Model
In order to compare the efficiency of our proposed frame-

work with that in [8], we use the same CR network model.
In a CR network, a frequency channel is shared by Ns SUs
and Np PUs. Let ciSU indicate the coordinate of SUi in a 2-
dimensional space, and cjPU indicate the coordinate of PUj in
the same space, where i = 1, 2, . . . , Ns and j = 1, 2, . . . , Np.
In this paper, we assume that Np PUs can alternate between
active and inactive states. S = (S1, S2, . . . , SNp

)T denotes
the states of PUs, in which Sj is the state of PUj and T is
transpose operation. If PUj is transmitting a signal (i.e., PUj

is active), we have Sj = 1. Similarly, if PUj is in inactive
state, we have Sj = 0.

Given a state vector S′ = (S′1, S
′
2, . . . , S

′
Np

)T for all PUs,
the probability of S = S′ can be represented as P (S′) =
Pr[S = S′]. If Sj = 0, ∀j (i.e., no PU is in the activate state),
the channel can be considered as available for SUs to access.
If Sj = 1 for some j (i.e., at least one PU is in activate
state), the channel is unavailable such that SUs have no right
to access. The channel availability Y can be denoted by

Y =

{
1, if Sj = 0, ∀j
0, if Sj = 1, ∃j (1)

For CSS, to detect the channel availability, each SU es-
timates the energy level of the channel and then reports it
to the fusion center. According to the reported energy levels
from all SUs, the fusion center decides whether the channel
is available or not.

B. Energy Vector Model
The energy detector is widely used due to its simplicity

when the specific form is unknown in CR networks. At a time
interval of τ , the energy levels can be estimated by SUs. If we
have the bandwidth of ω, there would be ωτ baseband signal
samples captured by the energy detector. The signal samples
are composed of the collection of that from thermal noise and
all active PUs. Zi(k) indicates the kth signal sample captured
by SUi.

Zi(k) =

Np∑
j=1

hj,iSjXj(k) + Vi(k), k = 1, 2, . . . , ωτ (2)

where hj,i represents the channel gain from PUj to SUi; Sj
denotes the state of PUj ; Xj(k) is the signal transmitted by
PUj during the kth detection;
Vi(k) indicates the thermal noise at SUi during the kth

detection. We assume that the transmission power of PUj is
fixed to dj .

dj =
1

τ

ωτ∑
k=1

E[|Xj(k)|2] (3)

The thermal noise spectral density is also fixed and given by
pv = E[|Vi(k)|2]. Thus, the estimated energy level through the
energy detector of SUi after being normalized by pv can be
obtained

fi =
2

pv

ωτ∑
k=1

|Zi(k)|2, i = 1, 2, . . . , Ns (4)

During each detection, the fusion center receives Ns re-
ported energy levels estimated by all SUs, and then it gen-
erates one energy vector for this detection, which is W =
(f1, f2, . . . , fNs

)T . We assume that PUs and SUs are immo-
bile, the consumer premise equipment, and the TV station in
IEEE 802.22-based wireless regional area network. The multi-
path fading and shadow fading components are quasi-static
during the time of interest.

According to the central limit theorem, the distribution of
the energy vector given S = S′ can be approximated by a
Gaussian distribution if the value of ωτ is large enough. The
mean value can be shown as follows.

µfi|S=S′ = E[fi|S = S′] = 2ωτ +
2τ

pv

Np∑
j=1

ξj,i Sj dj (5)

where ξj,i = (||cNp

PU − cNs

SU ||−ε)ϕj,iζj,i; ε is the path-loss
exponent; ϕj,i represents shadow fading component from PUj

to SUi; ζj,i indicates multi-path fading component from PUj

to SUi. We can also have the variance.

σ2
fi|S=S′ = E[(fi − µfi|S=S′)2|S = S′]

= 4ωτ +
8τ

pv

Np∑
j=1

ξj,i Sj dj
(6)

Hence, the distribution of W can be considered as a multi-
variate Gaussian distribution. The mean vector and covariance
matrix are respectively denoted by

µW|S=S′ = (µf1|S=S′ , . . . , µfNs |S=S′)T (7)

CW|S=S′ = diag(σ2
f1|S=S′ , . . . , σ2

fNs |S=S′) (8)

where CW|S=S′ is a diagonal matrix, indicating that the
components in W are independent.

III. IMBALANCED LEARNING BASED COOPERATIVE
SPECTRUM SENSING FRAMEWORK

A. Overview of Proposed CSS Framework

Given a data set W (i.e., combination of energy vectors) and
the corresponding channel availability Y , our proposed CSS
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Fig. 1. The architecture of the proposed CSS framework

framework aims to efficiently detect whether the channel is
available or not. With machine learning techniques, we need
to build a classifier trained by labeled W and utilize it to
project the input vectors to the channel availability Y .

Specifically, in this paper, there are two separated modules
in our proposed framework: training module and testing mod-
ule. In the first module, W can be split into three groups: 1)
training set, which is used to train the classifier with initial
learning parameters; 2) validation set, which is iteratively
used to obtain the optimal parameters enabling the classifier
to get best validation accuracy (i.e., cross-validation test); 3)
testing data, which is used to get the test accuracy indicating
the actual expected performance on unseen data. Therefore,
the training energy vectors can be used to train a classifier,
and the validation energy vectors contribute to tuning and
evaluating the classifier. Finally, the testing energy vectors are
classified by the trained classifier and we can have the channel
availability results.

While the category-imbalance problem existing in energy
vectors greatly hinders the detection performance of the chan-
nel availability. Thus, before training the classifier, what we
should do is to determine the imbalance degree between
the channel available category and the channel unavailable
category in the training set (shown in Fig. 1). The imbalance-
ratio (IR) is the most widely used metric of category imbalance
for its simplicity. IR refers to the ratio of the number of
energy vectors from the majority category to that from the
minority category, indicating the category imbalance degree
in size. The category with a larger number of vectors can be
considered as the majority category, and that with a smaller
number of vectors can be viewed as the minority category. IR
= 1 when the training data is balanced. It can be known that
the larger the value of IR, the more imbalanced the training
data is. Consequently, the trained classifier would have a good

effect on the detection of the majority category and have poor
detection performance of the minority category.

When we get IR > 1, the training data is imbalanced. Then
we can use oversampling methods to generate minority sam-
ples or under-sampling methods to remove majority samples
or even the combination of over- and under-sampling methods
such that the balanced data can be obtained. After balancing
the data, we could use them for training the classifier. If IR =
1, we can directly build the model. The validation data as a
data set held back from training the classifier can be used
to estimate its performance and tune its parameters before
utilizing. In the second module, the detection performance of
trained classifier can be tested by the testing data.

In a word, the training module shown in the blue part of Fig.
1 attempts to balance the training energy vectors via sampling
methods when given data are imbalanced. Then it is used to
train a classifier based on the balanced energy vectors, and
offers the trained classifier to classification module shown in
pink part. In the CR network, we can activate the training
module at first deployment and when RF environment changes.
Moreover, it would be activated periodically to adapt to the
variety of environment, or even run in the background when
we operate the classification module under normal use. Based
on this mechanism, the time required to train the model is not
a big issue.

For clear presentation, some notations are described here.
Given a data set W with M energy level samples, W can be
split into the training set Wr = {(wir, yir)}, i = 1, 2, . . . ,Mr,
the validation set Wv = {(wjv, yjv)}, j = 1, 2, . . . ,Mv , and
the testing set We = {(wle, yle)}, l = 1, 2, . . . ,Me, where
each w ∈ W is a sample in the Ns-dimensional feature
space W = {f1, f2, . . . , fNs

}, and y ∈ Y = {0, 1} is a
category identity label corresponding to sample w. Moreover,
the training subsets W+

r ,W
−
r ⊂Wr are defined, respectively,

in which W+
r is the training set of majority category samples

in Wr and W−r is the training set of minority category samples
in Wr such that W+

r ∪W−r = {Wr} and W+
r ∩W−r = {Φ}.

The generated minority set can be denoted as G− and the
removed majority set can be denoted as G+.

B. Sampling Methods

The traditional sampling methods include random over-
sampling (ROS) and random under-sampling (RUS) meth-
ods. To achieve a balance, the former method replicates the
original minority samples by |G−|, where generally 0 ≤
|G−| ≤ |W+

r | − |W−r |. It provides a scheme for altering
the imbalance degree of data to an expected level. The latter
method is to randomly select |G+| original majority samples
and remove them, in which 0 ≤ |G+| ≤ |W+

r | − |W−r |.
However, this strategy by introducing its own set not by
changing its distribution would hinder learning. Therefore, a
large number of methods are proposed. In this section, some
imbalanced learning algorithms are presented, i.e., synthetic
minority oversampling technique (SMOTE) [14], adaptive
synthetic (ADASYN) sampling approach [15], EasyEnsemble
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[16], BalanceCascade methods [16], SMOTEENN [17], and
SMOTETomek [18] for the proposed CSS framework.

1) SMOTE: The SMOTE, as one of the widely used
synthetic-based sampling approaches, has achieved some suc-
cess in many applications. It generates synthetic samples based
on the distances between minority samples in the feature
space. Specifically, the K-nearest neighbors of each sample
wir in subset W−r can be obtained for a given K, which
have the top K smallest euclidian distances with wir in the
Ns-dimensional feature space. Then one of the K-nearest
neighbors can be randomly selected, multiplied by a random
vector with each element from 0 to 1, and then added to wir.
Thus a synthetic minority sample w

′

r can be created using the
following formula:

w
′

r = wir + (ŵir − wir). ∗ λ (9)

where ŵir ∈ W−r is one of the K-nearest neighbors of
wir, and λ is a random vector indicating the feature vector
difference. Hence, w

′

r is definitely a minority sample along
the line between wir and ŵir. Finally, the generated set G− are
composed of w

′

rs.
2) ADASYN: Compared to SMOTE, ADASYN can mea-

sure the distributions of samples, i.e., determine the difficulty
levels for learning minority samples. Then different numbers
of synthetic samples can be adaptively generated around those
identified minority ones with high levels. First of all, the
required amount of synthetic samples for the minority category
should be computed by n = (|W+

r | − |W−r |) × δ, where
|W+

r | indicates the number of samples in subset W+
r ; |W−r |

represents the number of samples in subset W−r ; δ is a random
number between 0 and 1, which represents the expected bal-
ance degree after generation procedure of synthetic samples.
In the second step, unlike SMOTE, the K-nearest neighbors
of each sample wir in the entire training set Wr can be found
using the euclidean distance metric, which are used to get the
ratio γi

γi =
Θi

KC
, i = 1, 2, . . . , |W−r | (10)

where Θi indicates the number of majority samples in the
K-nearest neighbors of wir, which belongs to the minority
category;

∑
γi = 1, since C as a normalization constant

allows γi in [0,1]. Next, for each minority sample wir, the
amount of synthetic samples that require to create can be
given by gir = n × γi. Thus, we can create gir synthetic
samples using the Equation (12) to obtain G−. The ADASYN
method mainly focuses on the metric of density distribution
γ to determine how many synthetic samples can be generated
for each sample in minority category, enabling the weights of
them to adaptively alter.

3) EasyEnsemble and BalanceCascade: Random under-
sampling method may raise the problem of information loss,
since the removed majority samples are randomly selected. To
overcome this deficiency, EasyEnsemble and BalanceCascade
approaches are proposed. EasyEnsemble uses an ensemble
learning scheme: first several subsets with |W−r | (not |W+

r |)
samples in majority category are produced according to the

rule of independent and random sampling, and then they
are combined with the entire minority samples, which are
considered as the training set of multiple classifiers. To make
a final decision, all the trained classifiers are combined by

H(wr) = sgn(
A∑
a=1

Ba∑
b=1

πa,bha,b(wr)−
A∑
a=1

θa) (11)

where H(wr) is the ensemble classifier; A indicates the num-
ber of produced subsets; Ba is the iteration number to train
weak classifiers ha,b(wr); πa,b are the corresponding weights
of ha,b(wr); θa represents the threshold of the ensemble.

Unlike EasyEnsemble, which can be viewed as an unsu-
pervised learning method, BalanceCascade explores the im-
portance of each majority sample. Specially, we get trained
classifier H1 at the first iteration. Then at the second iteration,
the sample wir ∈ W+

r can be considered as a redundant one
in W+

r if H1 classifies it correctly. Hence, wir would be
removed from the majority category. This procedure will to
be continued until the termination conditions are reached. The
output of BalanceCascade is the same with EasyEnsemble but
has a different training strategy.

4) SMOTETomek and SMOTEENN: Tomek link, as one of
the classic data cleaning approaches, can be applied to alleviate
the overlapping problem between categories, especially for the
majority category. It describes a special relationship between
two samples from different categories. Given any pair wir ∈
W+
r and wjr ∈W−r , d(wir, w

j
r) indicates the distance between

wir and wjr . Then (wir, w
j
r) can be considered as a Tomek link

if wqr ∈ Wr has no existence so that d(wir, w
q
r) < d(wir, w

j
r)

or d(wjr, w
q
r) < d(wir, w

j
r). Hence, it can be known that either

wir or wjr is noise or both of them are located near the border.
According to the principle of Tomek link, the overlapping
problem can be mitigated by removing all links until all pairs
belong to the same category. Based on this, SMOTETomek
combines the idea of SMOTE with Tomek to perform oversam-
pling and undersampling concurrently. In addition, SMOTE
also is combined with edited nearest neighbor (ENN) rule
to form SMOTEENN method, which removes samples that
distribute in different category with two of their three nearest
neighbors.

IV. SIMULATIONS

A. Setup

In this simulation of cooperative spectrum sensing, we first
present a 2-dimensional scenario, where there are 2 PUs and
2 SUs in a 5-by-5 grid topology within a 2000m × 1500m
area shown in Fig. 2. (a). Then in the next multi-dimensional
scenario, we fix the locations of 2 PUs with (0m, -500m) and
(500m, 0m) in the first scenario and increase the number of
SUs to 40 in a 4000m × 3500m area shown in Fig. 2. (b). The
key parameters are set as follows: the sensing time interval
τ = 100µs, the bandwidth ω = 10MHz, the transmission
power of each PU d = 200mW , the path-loss exponent
ε = 4, the thermal noise spectral density pv = −174dBm,
fixed shadow fading component ϕj,i = 1, fixed multi-path
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(a) topology with 2 SUs (b) topology with 40 SUs

Fig. 2. The CR network topology applied for simulations

fading component ζj,i = 1. The probabilities that either one
or both PUs are in the activate state result in different category-
imbalanced degrees. The states of 2 PUs are also independent.
In this paper, we assume the channel available category is the
majority and the channel unavailable category is the minority.
The reverse is also true.

Specially, the detection performance of our proposed frame-
work is compared with two hard fusion methods (i.e., AND
rule and OR rule), and several imbalance leaning methods, in-
cluding ROS, SMOTE, ADASYN, RUS, EasyEnsemble, Bal-
anceCascade, SMOTEENN, and SMOTETomek. With over-
sampling techniques, the minority samples are oversampled
until their number reaches the number of the majority samples.
With undersampling techniques, the majority samples are
undersampled until their number is decreased to the number
of the minority samples. Additionally, we select two common
used base classifiers including K-nearest neighbors (KNN) and
decision tree, in which K is set to 5. All the other parameters
of these methods are set as default.

Imbalanced learning techniques aim to enhance the detec-
tion performance for the minority category. In this paper, two
typical metrics for imbalanced learning are used to measure the
performance: AUC and ROC curve. Our proposed framework
and all the compared methods are implemented by Python 3.6
in a 64-bit computer with an Intel i7-6700 CPU.

B. 2-Dimensional Scenario

In this scenario, the 2 PUs in Fig. 2 (a) are activated based
on the probability ps((0, 0)T ) = 0.67, ps((0, 1)T ) = 0.11,
ps((1, 0)T ) = 0.11, and ps((1, 1)T ) = 0.11. 1200 energy
samples are generated for PUs in S = (0, 0)T , 200 ones
for PUs in S = (0, 1)T , 200 ones for PUs in S = (1, 0)T ,
and 200 ones for PUs in S = (1, 1)T . The IR for the
entire energy data can be calculated: IR = 1200/600 = 2,
where the channel available category as the majority has 1200
samples, and the channel unavailable category as the minority
involves 600=200+200+200 samples. For simplicity, the 1800
energy samples are randomly divided into the training set
with 1200 samples, the validation set with 300 samples, and
the testing set with 300 samples. To ensure consistency with
the entire data set, IR value in the training set can also be
set 2. The original training set and all the final synthetic
energy vectors are visualized with 2-dimensional scatter plots
to compare their performance as shown in Fig. 3. The pink and

(a) Original data (0.912) (b) ROS (0.957)

(c) SMOTE (0.973) (d) RUS (0.972)

(e) EasyEnsemble (0.983) (f) BalanceCascade (0.978)

(g) SMOTEENN (0.970) (h) SMOTETomek (0.975)

(i) ROC curves (j) Amplified ROC curves

Fig. 3. Scatter plots of the 2-D original energy data set in (a) and synthetic
energy data using ROS, SMOTE, RUS, EasyEnsemble, BalanceCascade, SMO-
TEENN, and SMOTETomek in (b)-(h). ROC curves and their amplified curves
in (i) and (j).

blue dots symbolize majority samples and minority samples,
respectively from class 1 and 0. Fig. 3 (a) shows the scatter
plot of original energy data, which is directly used to train
KNN. The green dots denote the samples generated by ROS
in Fig. 3 (b) and SMOTE in Fig. 3 (c). Then the obtained
training set can be as the input of the base classifier of KNN.
The performance is measured by AUC. From the AUC values,
it can be known that using sampling methods could achieve
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better detection performance than no use.

TABLE I
AVERAGE AUC VALUES FOR TRAINING SETS WITH MULTI-D AND

DIFFERENT IRS BY VARIOUS METHODS

Methods IR of Training Set
2 4 6 8 10

Hard
Fusion

AND Rule 0.667 0.674 0.638 0.642 0.680
OR Rule 0.666 0.650 0.668 0.704 0.675

Soft
Fusion
(KNN)

Baseline 0.908 0.913 0.898 0.897 0.864
ROS 0.956 0.930 0.916 0.917 0.875

SMOTE 0.972 0.978 0.972 0.976 0.962
ADASYN 0.968 0.963 0.970 0.978 0.960

RUS 0.965 0.967 0.975 0.973 0.960
EasyEnsemble 0.970 0.974 0.980 0.979 0.964

BalanceCascade 0.973 0.966 0.975 0.972 0.974
SMOTEENN 0.972 0.970 0.975 0.971 0.959

SMOTETomek 0.975 0.968 0.978 0.971 0.961

Soft
Fusion

(Decision
Tree)

Baseline 0.913 0.930 0.906 0.932 0.912
ROS 0.954 0.937 0.923 0.948 0.926

SMOTE 0.967 0.963 0.968 0.956 0.934
ADASYN 0.963 0.965 0.959 0.955 0.936

RUS 0.963 0.948 0.951 0.952 0.950
EasyEnsemble 0.962 0.958 0.958 0.938 0.965

BalanceCascade 0.969 0.956 0.950 0.953 0.962
SMOTEENN 0.967 0.946 0.956 0.948 0.943

SMOTETomek 0.964 0.947 0.951 0.941 0.955

C. Multi-Dimensional Scenario

In this scenario, we add the number of SUs to 40 for esti-
mating the energy vectors. The 2 PUs in Fig. 2 (b) are activated
based on varying probabilities. They also have 4 states. For
total of 12000 energy vectors that need to produce, to observe
the detection performance of these sampling methods, we set
different IR values for the entire energy vectors in line with
the training set. For an example, when IR = 4, there would
be 9600 energy samples for PUs in in S = (0, 0)T , 800 ones
for PUs in S = (0, 1)T , 800 ones for PUs in S = (1, 0)T ,
and 800 ones for PUs in S = (1, 1)T . We perform 6-fold
cross validation to get the average AUC values. In cross
validation procedure, each fold can be as the testing set; one
of the rest 5 folds can be as the validation set; 4 folds are
training set with corresponding given IR. The average AUC
values for different sampling methods with KNN and decision
tree classifiers are shown in Table I. From the results, all
machine learning methods perform better than the traditional
CSS methods. Moreover, classifiers with sampling methods
outperform the others. To further demonstrate the effectiveness
of our proposed framework, we plot the average ROC curve of
each detection method using the two base classifiers for IR=10
in Fig. 3. (i). Fig. 3. (j) represents the amplified of (i) for
clearly observing the performance of each sampling method.
It can be noticed that all sampling methods combined with
base classifiers achieve better detection performance than the
original classifiers and BalanceCascade performs best.

V. CONCLUSION

In this paper, we present a novel imbalanced learning based
CSS framework, aiming to solve the category-imbalanced
problem in CR networks. After splitting the given energy
vectors estimated by SUs into three groups, we first determine

the imbalance degree of the training set with imbalance-ratio,
and then balanced it using various sampling methods. The
balanced set can be applied to train the classifier and the
validation set can be used to tune the classifier. Finally, we
obtain the channel availability of the testing set by the trained
classifiers. Simulation results show the effectiveness of our
proposed CSS framework.
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