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Abstract—This paper concerns the energy efficiency
optimization for distributed cooperative spectrum sensing. In
the considered distributed spectrum sensing system, each sensor
measures the local test statistic for the target spectrum bands
and these measurements will be combined together through a
weighted consensus protocol. In this way, all the sensors are
able to make contributions to the improvement of the spectrum
sensing performance. However, the significance of a sensor’s
contribution depends on its local signal to noise ratio. From
energy efficiency perspective, it is not reasonable to invest
energy on the sensors that bring little benefits. In this paper,
we formulate an energy efficiency optimization framework for
distributed spectrum sensing. Our objective is to achieve the
target spectrum sensing performance with as few sensors as
possible. Accordingly, a genetic algorithm based approach and
a particle swarm optimization based approach are proposed for
this problem.

I. INTRODUCTION

In contrast to the traditional static spectrum management
policy, a cognitive radio system is able to dynamically allocate
the available spectrum resource [1]. Generally, in a cognitive
radio system, spectrum bands are continuously detected and
once a spectrum band is left idle, it will be assigned to the
user in need. It is evident that an accurate detection procedure,
also known as spectrum sensing, is essential for a cognitive
radio system [2]. When implementing spectrum sensing with
a single sensor, the performance can be critically degraded
in shadowing or multipath fading environments. Accordingly,
cooperative spectrum sensing is proposed to improve the
sensing accuracy by exploiting the spatial diversity of multiple
distributed sensors [3]. In a cooperative spectrum sensing
system, the measurements from multiple sensors will be
combined together to make the final detection decision. The
data combination can be achieved in either a centralized
or a distributed way. With centralized cooperative spectrum
sensing, all the sensors deliver the data to a common fusion
center, where the data will be combined for the detection.
Instead, the data fusion of distributed cooperative spectrum
sensing is accomplished locally by utilizing a distributed
consensus algorithm [4], [5].

In a cognitive radio system, spectrum sensing should be
implemented continuously to provide a real-time spectrum
map. Thus, the energy consumption can be significant,

especially for cooperative spectrum sensing methods, which
involve a number of sensors. Therefore, energy efficiency
optimization deserves serious consideration for a cooperative
spectrum sensing system. The energy efficiency optimization
for cooperative spectrum sensing can be formulated by a
combinatorial optimization problem [6]-[8], which aims to
achieve the target spectrum sensing performance by activating
as few sensors as possible. Several algorithms have been
proposed for the fusion center based cooperative sensing
schemes. However, due to the difference of collaboration
mechanism, these methods can not be applied to the
distributed counterpart.

In our previous work, an energy efficiency optimization
framework for distributed cooperative spectrum sensing has
been proposed [9]. The considered cooperative sensors are
identical and experience different signal to noise ratios
(SNRs). Our objective is to find an effective sensor set with
minimum size, which not only has an effective topology
for the distributed sensing algorithm but also satisfies the
target detection performance. We obtain the effective sensor
set through a sequential sensor selection process, and a
deep reinforcement learning based sensor selection policy is
proposed [9]. However, the deep learning approach requires
a large amount of training samples as well as a compute-
intensive training process. Therefore, for the case where
the training resources are not enough, alternative approaches
are necessary. In this paper, two evolutionary algorithm
based optimization methods, i.e., generic algorithm(GA) [10]
and particle swarm optimization (PSO) [11], are proposed
to directly search the energy-efficient distributed spectrum
sensing scheme. These two methods do not need a training
process as their reinforcement learning counterpart.

II. PROBLEM FORMULATION

We consider a sensor-aided cognitive radio network which
is depicted in Fig.1. Spectrum bands are assigned to the
primary users (PUs) while the secondary users (SUs) are also
allowed to access the spectrum bands only if they are not
occupied by the PUs. A spectrum sensing network with N
sensors is built to detect the states of the spectrum bands and
to allocate the available spectrum to the SUs. For the spectrum

97 8ulnd28 8RR W33 Q0EER PR ER B hiet. Downloade®& Dune 07,2020 at 16:08:06 UTC from IEEE Xplore. Restrictions apply.



2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Networks

Spectrum

Base
policy server station

Fig. 1. A sensor-aided cognitive radio network
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sensing purpose, sensor ¢ collects data on the target spectrum
band, which is

zi(k) = {his(k)ﬂi(k) Hf (1)

In this equation, Hy and H; respectively represent the
hypotheses of PU signal being absent or present; s(k)
is the signal of the PU; h; is the channel gain from
the PU transmitter to sensor 4; and v;(k) is the zero-
mean additive white Gaussian noise with variance being o?.
The sensors are spatially distributed, and each sensor can
exchange information with its neighbors. The communication
relationship of the sensor network can be described by a
undirected graph G = {V,£}. V = {v;}¥, is the vertex set
with v; representing the i-th sensor. £ € V xV is the edge set,
and the edge (v;,v;) exists only if sensor ¢ and sensor j can
communicate with each other. The neighboring vertices of v;
compose the set 7; in which (v;, v;) exists for Vv; € 7;. We
assume that the energy detection based distributed spectrum
sensing algorithm [5] is applied for this sensor network. With
this algorithm, the sensor network obtain a sensing result
through three steps. First, each sensor ¢ measures the test
statistic over M consecutive samples on the target spectrum
band, which is y; = 22/[:61 |; (k)|2. Then, the sensors update
their measurements iteratively with the following weighted
consensus protocol [5]:
o
pt+)=ul+5 > wH) -w), @
¢ v EN;

where ¢ is the iteration number; « is the iteration step size;
and ¢; is the weighting ratio. §; is designed according to the
channel condition of the sensor, which will be elaborated
later. It has been proved that the test statistic of each
sensor will converge to a common value, which is y. =
Zi\[:l 0;9:(0)/ Zf\; 0;. Clearly, y. is the weighted average of
the initial measurements of all sensors with w; = ;/ vazl 0;
being the weight of the i-th sensor. Finally, y. is delivered to
the spectrum server by the neighboring sensors, and the target
spectrum band will be claimed to be idle if y,. is less than a
predetermined threshold ~; otherwise, the spectrum band is
deemed as occupied.

According to the central limit theorem, y; asymptotically
follows the normal distribution if M is large enough. Defining
the transmitted signal energy of the PU and the local SNR of

sensor i by Ey = Yot |s(k)|? and n; = Ey|hi|?/o?, the
mean and the variance of y; can be expressed by

N Mo? Hy
N _ J2Mo} H,
Var(yl) o {2(M + 27]1)0';1 Hl. (4)

Since {y;}X, are independent normal random variables, y.
are also normally distibuted with mean

_ MO'TW HO

and variance

T
w Xgw Hp
Var(y,) = 0 6
ar(ye) {WTZle H,y ©
where o = [0, 03, ..., o%]T, w = [w1,wa, ..., wy]|T,
g = [[m% [kl ..., |hw|]T, 2, = 2Mdiag*(o), and

Yy, = 2Mdiag® (o) + 4E,diag(g)diag(o). With this y., the
performance of the sensor network can be analytically solved

by
—1
Pd — Q (Q (Pfa)

T T
wiXpgw— Eg w>’ 7
VWIS g w
where ((-) is the complementary cumulative distribution
function of a variable that follows the normal distribution with
zero mean and unit variance. For a certain Py, the optimal
weights design can be found by maximizing P;. However, the
accurate analytic solution is of high mathematical complexity.
By defining the deflection coefficient as

dQ(W) _ [E(ye|H1) — E(yC|HO)]2 _ (Engw)Q (8)

Var(y.|Ho) wixg w’

an alternative near optimal weights design is discovered
by maximizing d?(w) [5], [12]. The rationale behind this
approach is that for a given Pj,, a large d*(w) will
lead to a high P; when the sensors are under a low
SNR channel condition. By maximizing d?(w) over w, the
obtained near optimal weights can be concisely expressed
by wopr = Eﬁlg/lTEl_Jig The i-th component of W,

ie, (mi/o?)) > i_i(ni/o?), is the weight of sensor i.
Consequently, the weighting ratio of the consensus protocol
of (2) can be easily derived by &; = 1;/0?. Applying W, to
(8), we have

B2 L pd
=ow D1 ©)

We can see that in terms of improving d?(w), the contributions
from the sensors are independent, which is h$/o} for the ith
sensor. And it is clear that a sensor under a high local SNR
is able to increase d?(w) substantially while the contribution
from a sensor experiencing low SNR can be negligible.
Therefore, it is not reasonable to invest energy on a sensor
of low SNR to pursue a slightly increase of d?(w).

According to (9), we define the performance gain for sensor
1 as
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pi = hi/a}. (10)
An effective distributed cooperative spectrum sensing scheme
involves a set of sensors {v;, } 2, that can not only implement
the distributed spectrum sensing algorithm, but also guarantee
the condition of ZzL:1 Dn, > O, ie, where © is a
predetermined threshold. From energy efficiency prospective,
it is desirable to have a {v;, }~ , with minimum L.

Remark 1: The threshold © is determined by the target
spectrum sensing performance. If we request a high sensing
performance, we can set © to a large value, such that the
sensor set can generate a large d?(w) and correspondingly, a
high sensing performance. Moreover, the upper limit of © is
determined by (9), which is © = 2Nd?(w,,;)/E?. This value
corresponds to the situation where all the sensors are included
for the cooperative spectrum sensing.

Remark 2: If we only consider the condition of O,
the optimal sensor set can be found by selecting sensors
one by one according to the descending order of their
performance gains until © is surpassed. However, the applied
distributed spectrum sensing algorithm requires the topology
of the cooperative sensors being connected, which makes this
optimization problem no longer straightforward.

III. PROPOSED METHODS

For the energy efficiency optimization of distributed
cooperative spectrum sensing, an essential component is
a sensor selection mechanism to discover sensor sets that
can successfully implement the distributed spectrum sensing
algorithm while satisfying the desired performance. For this
purpose, we design the following sequential sensor selection
process, which is illustrated in Fig. 2. This process starts
with an empty sensor set and adds one sensor a time until
the threshold (©) is reached. At the first step, a sensor that
is connected to the spectrum policy server will be selected
to ensure the sensing results can be delivered to it. In the
succeeding steps, feasible selections are restricted to the
sensors that have connections to the previously selected ones.
In order to improve energy efficiency, we want to find a sensor
set containing as fewer entries as possible. We propose two
evolutionary algorithms, i.e., GA and PSO, are proposed to
improve the energy efficiency.

Basically, with both GA and PSO, there is a population of
random initialized candidate solutions that iteratively evolve
towards a better fitness. For these two algorithms, it is pivotal
to have an effective representation of each candidate solution
as well as a proper fitness evaluation that is compatible with
our optimization objective. Consequently, the following two
methods are applied.

First, for the solution representation, we apply the priority
based encoding method, which is proposed in [13]. With this
method, each solution is represented by a set of priority values
that are assigned to the sensors. Supposing a solution assigns
the sensors in Fig. 2 with the priority values of {1;}>_;, this
solution can be illustrated by Fig. 3. For the GA, this solution
representation is known as a chromosome with each priority

value being a gene. However, for the PSO, it is called a particle
with the position specified by the priority values. Furthermore,
in the sensor selection process, the feasible sensor with the
highest priority value will be selected. Supposing we have
Py > 3 > Pe > s > 1y, the corresponding sensor
selection order will be vo — v4 — v3 — v — vs. Then,
for an valid fitness evaluation mechanism, it should yield a
high fitness score for the solution that is able to discover
an effective sensor set of small size. Considering this fact,
we evaluate the fitness of a solution through the following
two steps:1) apply the priority-encoded solution S; to the
sequential sensor process, and get the corresponding sensor
set {vj}‘f;“l 2) calculate the fitness by Fg, = f(]S;]). In
these two steps, |S;| denotes the volume of the sensor set
obtained by solution S;; Fg, is the fitness score of S;; and f(-)
is a monotonically decreasing function, such that a solution
generating small valid sensor set will get a high fitness score.
In this paper, we apply f(x) = 1/z for both GA and PSO.
Based on this solution representation and fitness evaluation
method, the employed GA and PSO will improve the solution
quality through different update rules. The flow charts of these
two algorithms are shown in Fig. 4, which will be specifically
described in the following two subsections.

A. Genetic algorithm based search

As shown by Fig. 4(a), the GA begins with initializing
population. In the initialized population, a solution assigns
each sensor with a distinct integer as the priority value.
Although the GA also works if the priority values are set
to continuous values, we still apply integers for the sake
of conciseness. The solutions are evaluated by the fitness
calculation process introduced before. Then, the termination
condition will be checked to make judgment about whether
to terminate the algorithm or not. In this paper, we set a
maximum generation number as the termination condition.
If the termination condition is not satisfied, elitist selection
will be implemented based on the fitness score to keep the
population size. The survived solutions go through crossover
and mutation operators to generate offspring. The procedures
of crossover and mutation can be illustrated in Fig. 5. With the
crossover, a group of the survived solutions will be randomly
selected based on the crossover rate, and paired as parents. A
pair of parents generate the child through the position-based
crossover operator that is illustrated in Fig. 5 (a). Generally,
this operator first randomly copies some genes from one parent
at the same positions for the child, and then complements
the vacuum positions with genes from the other parent by
a left-to-right scan. Then, with the probability of mutation
rate, the newly generated children will mutate through the
swap mutation operation, which is shown in Fig. 5(b). The
new population expended by the offspring will go back to the
fitness calculation step of the next generation.

B. PSO based search

The PSO also starts with population initialization. However,
the priority values should be fractional since the update
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Fig. 2. Sequential sensor selection process for distributed cooperative sensing [9]. In this process, we pick one node a time until the summation of all the
performance gains (G) of the selected nodes surpass a pre-set threshold (©). In each selection step, the legitimate candidate nodes for selection are those

connected to one of the previously selected nodes.

Sensor: Vi V2 V3 V4 Vs

Priority value:

Fig. 3. An illustration of the priority-based encoding of a candidate solution.
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Fig. 4. (a) Flowchart of the GA, (b) Flowchart of the PSO.

rule PSO involves continuous functions. In this papre, we
randomly smapled these initial value from the uniform
distribution: U(0, 1). In the initialization stage, each candidate
solution initializes its position with the priority value and
its velocity with a zero vector of length N. For the ith
candidate solution, we denote its position and velocity by
Vs, =8, ¥i, ..., Q/J?N]Tand@gi = [#F, dis-- s gb?N]T,
where n is the generation index of the PSO. The fitness score
of a candidate solution will be calculated by the two-step
fitness evaluation procedure introduced before. Then, based
on the fitness score, the global best solution and the local best
solution are searched for the update. Specifically, we denote
the position of the global best solution, which achieves the
highest fitness score at generation n, by ¥y'; and for solution
S;, its local best positon is \I/”i, which leads it to the highest
fitness score until generation n. With these two values, the
velocity and position of S; will be updated by

DU = wdL +ar (Up~! — UP) + Bro(Tp, — W) (11)

Vg = U, 0 (12)
where w is the inertia weight; o and S are two positive
constants; r; and re are random numbers sampled from
uniform distribution U (0, 1). The fitness score of the updated
candidate solutions will be calculated for the next generation.
In this paper, we also set a maximum generation number as
the termination condition for the PSO.

(@) (b)
Fig. 5. (a) The position-based crossover operator, (b) The swap mutation
operator [13].

IV. SIMULATIONS AND ANALYSIS

In this section, we evaluate the proposed GA and PSO based
methods with numerical simulations. The sensor networks we
considered in this section contain 64 sensors. For simplity,
we assume the transmitted primary signal is s(k) = 1, and
the local noise level of the sensor are identical to each other
which is v;(k) ~ N(0,1). The channel gains of the sensors
are independent to each other and we sample these values
from the Rayleigh distribution with the scale being 0.15 to
simulate the low SNR environment. The signal sampling
length M is set to 50. The distribtuted spectrum sensing
algorithm proposed in [5] is applied and the performance
gains of the sensors can be calculated based on (11). With
energy detection, spectrum sensing ROC curves of these 64
sensors are shown with the black lines in Fig. 6. Clearly, the
performance of each individual sensor is not good. However,
if all the sensors cooperate together through the weighted
consensus protocol of (3), the spectrum sensing performance
can be boosted to the red line of Fig. 6. Moreover, denoting
the total performance gain by ©, a subset of sensors is able
to achieve the performance specified by the blue lines if the
summation of their performance gains is equal to 0.70. It
should be noted that there are totally 10 blue lines which show
the performance of 10 sets of sensors whose total performance
gains are equal or approximately equal to 0.76. Each sensor
set is obtained by randomly selecting one sensor a time until
the total performance gain of the selected sensors surpasses
0.76. The spectrum sensing performance of different sensor
sets may slightly differ from each other even if their total
performance gains are the very close. However, this difference
can be neglected in the low SNR environment. This is also
the reason for the blue lines being close to each other. We
can see that the spectrum sensing performance of the sensors
with 70% of the total performance gain is already close to
the red line. Thus, in our simulations, we set the threshold by
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Fig. 6. Theoretical spectrum sensing performance. Each black line shows
the detection performance of an individual sensor. The red line shows the
performance under the cooperation of all 64 sensors. Each blue line shows
the spectrum sensing performance under the cooperation of a subset of sensors
in which the summation of their performance gain reachs the threshold (©).

© = (.76. Note that © can be set to other values based on
the specific requirement.

In our simulation, we assume that the sensors are
deployed to a regular grid structure with certain variations.
The variations are introduced to simulate the real-world
environment since the sensor’s installation position may be
affected by other constraints in reality. Our proposed GA
and PSO based methods are applied to the sensor network
to optimize the energy efficiency of the sensor network
through the sequential sensor selection process. For the GA,
the population size is set to 32; the crossover rate and the
mutation rate are set to 0.5 and 0.1, respectively; and the
total generation number is 1000. For the PSO, we have
w = 0.5, a = 0.9, p = 0.8; the population size is also
32; and the generation number is set to 200. We evaluate
our proposed method on 100 of such randomly generated
sensor networks rather than on only one sensor network to
avoid bias. Moreover, to better evaluate our methods, we also
apply a greedy algorithm as the baseline. With the greedy
algorithm, the feasible sensor with the largest performance
gain will be selected at each step in the sequential sensor
selection process. The results of all these three methods are
shown in Fig.7. It can be observed that, when selecting the

26 Greedy algorithm
Genetic algorithm
m= Particle swarm optimization

] | | | 1]
20 25 30 5
Number of selected sensors for the sensor networks

Fig. 7. The size distribution of the sensor sets obtained by the three
comparative approaches over the 100 sensor networks.

a5 50

sensors with greedy algorithm for the sensor networks, the
size of the obtained sensor sets has a relative large variation.
However, the variation is much smaller when using the GA
and PSO. With greedy algorithm, the average number of the
selected sensors over the 100 sensor networks is 29.41. With
the GA and PSO, this value will reduce to 23.08 and 19.09,
respectively. This result demonstrates that comparing with the

greedy algorithm, the proposed GA and PSO methods are
more likely to find a smaller sensor set to achieve the same
spectrum sensing performance. We can save about 22% or
35% more energy on average if we apply the corresponding
proposed methods to pick the cooperative sensors instead of
using the greedy algorithm. Statistically, PSO performs best
among these three methods.

V. CONCLUSION

In this paper, we study the energy efficiency optimization
for distributed cooperative spectrum sensing. The objective is
to achieve the predefined spectrum sensing performance with
as few sensors as possible. Two evolutionary search methods,
i.e., GA and PSO, are proposed. These two algorithms
improve the solution quality through different mechanism.
Simulation results demonstrate that both of these two methods
can achieve better performance than the baseline algorithm,
i.e., greedy algorithm. Moreover, comparing with GA, the
PSO is able to obtain solutions of higher quality even with a
smaller generation number.
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