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Abstract—This paper concerns the dynamic spectrum access
problem for femtocell networks, where traffic loads are different
among cells. We model the interference relationship of the
femtocell networks with conflict graphs, and a graphical game
is employed as the channel access coordination mechanism. A
graph neural network based architecture is proposed, which
directly maps traffic loads to the channel access scheme for
each femtocell. With our method, each femtocell first estimates
the qualities of all available channels based on the information
from its neighbors, and then the channels of the highest quality
are accessed. A multiagent reinforcement learning framework is
designed to train the proposed architecture to make accurate
estimations of channel quality.

I. INTRODUCTION

In recent years, the number of wireless devices have a
great increase which makes it is necessary to upgrade our
wireless communication networks to meet the unprecedented
traffic demands from these wireless devices. Under this
circumstance, femtocell network is proposed as a promising
cost-effective solution to provide sufficient traffic capacity
[1]-[3]. A significant property of femtocell networks is that
the transmitting power of APs is low, such that it is possible
to boost the spectrum efficiency via spectrum spatial reuse
[4]. Moreover, the traffic loads of femtocells can be varied
both temporally and spatially [5]. Consequently, dynamic
spectrum access (DSA) [6] for femtocell network attracts
the interests of numerous researchers in the community.
Substantial DSA methods have been proposed to improve
the spectrum efficiency from different perspectives [7]-[9].
Most of these approaches generate the solutions in an iterative
searching style. However, as spectrum demands of femtocells
can vary dynamically over time, the iterative searching
approaches need to be reimplemented for each encountered
states. Accordingly, it is desirable to have a generalized
spectrum access policy that directly reveals the solution for
each specific traffic state. Machine learning techniques have
shown great potentials in various decision-making problem of
many other disciplines [10]-[12] as well as in solving complex
problems for large-scale communication networks [13]-[16].
This article aims to develop an autonomous machine learning
based approach to discover a spectrum access policy that

directly maps the traffic loads of femtocell network to an
efficient channel access scheme.

In this paper, we investigate the DSA for femtocell network,
where femtocells experience different channel demands. Each
femtocell is served by one AP and the corresponding
AP selects a certain amount of channels based on its
traffic load. The interference relationship of the femtocell
network is modeled by a distance-based conflict graph. A
channel access graphical game is employed to coordinate
the interference among the neighboring femtocells. In the
game, each AP aims to select the channels that can maximize
its expected throughput. We formulate a reinforcement
learning framework for the DSA of femtocell networks.
With this approach, a desired spectrum access policy can
be automatically discovered. The learned policy can instruct
each AP to find the channels which will lead to low
interference. Moreover, we design a graph neural network
based deep learning architecture to implement the proposed
reinforcement learning. In this way, the learned policy is
embedded in the deep architecture and possesses excellent
generalization capability, which can be directly applied to the
each encountered traffic state.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a femtocell network containing N femtocells
with each cell served by one AP. And there are M wireless
channels of the same transmission rate, which compose the
set C = {C4, ..., Crr}. The n-the AP selects D,, channels
from C to transmit data for its users. D,, is jointly determined
by the user number and their traffic demands [9]. Following
the previous works [9], [17], the interference relationship of
the APs is described by a distance based model, where if the
distance between two APs is less than a threshold dy, they can
interfere with each other. Fig.1 illustrates an example of the
considered femtocell network. According to this interference
model, we can obtain a conflict graph G = {V, £}, where
V=A{1, 2, ..., N} is the vertex set, and £ C V x V is the
edge set. In the graph, each vertex represents an AP, and an
edge between two vertices indicates that the corresponding
APs can interfere with each other. The collection of all
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Fig. 1. An example of the femtocell network. Each femtocell serves several
users. The number in each femtocell is its index. Two APs can interfere with
each other if their distance is less than the threshold.

neighbors of n-th vertex are denoted by J,. When multiple
neighboring APs access one channel simultaneously, CSMA
is applied to coordinate transmission collisions [17], [18]. In
such a femtocell network, the throughput of each cell depends
not only on its own channel selection but also on the actions of
all its neighbors. Therefore, it is essential to design a channel
access policy to improve transmission efficiency. Game theory
has been widely utilized to obtain efficient channel access
policies for communication networks [9], [15], [19], [20]. In
our work, we use a graphical game to coordinate the channel
access of the APs.

B. Graphical Channel Access Game

Denote the set of the channels accessed by AP n by
={Ch,, ..., Cpnp }. With CSMA, an AP can succefully
use one channel only if all other neighboring APs on the same
channel keep silent. Following the definition of [17], the MAC
layer interference on C,, is I,, = Zkej Z "1 0(Chy, Ch;),
where §(C,,,, Cx;) = 1if Cp, = Cy;; else 5(Cni,ij) =0
For AP n, the probability of successfully accessing C,, is
1/(1 4+ I,,,); and the expected achievable transmission rate
on C,, can be estimated by E[r,,] = S¢,/(1 + I,,). The
quantity S¢,, = is the transmission rate of C),,, which is assume
to be identical for all channels. Accordingly, the expected
throughput of AP n can be calculated as R,, = Zi:l Elrp,].
The graphical channel access game is denoted by F =
(G, A,U), where G is the conflict graph defined in the previous
subsection; A = A1 @ A3 Q... An; ® represents Cartesian
product; U = {u,})_,. For vertex n, A, is the set of all
feasible actions, and the quantity u,, is the utility function,
which is defined as u,, = R,,. Under this definition, an AP
can achieve the maximum expected throughput by maximizing
its own utility function. Consequently, the optimal policy can
be written as a) = argmax,, {u,(an,az,)}, where azy,
is the action profile of all its neighbors. This problem and
many of its variants have been studied in [9], [19], [21],
[22]. In the following section, we will propose a graph neural
network based multiagent Q-learning algorithm that learns a
generalized policy that directly gives out the actions based on
the information of the local traffic loads.

III. GRAPH NEURAL NETWORK BASED LEARNING
SOLUTION
A. Dynamic Channel Access via Reinforcement Learning

From I,,; and Elr,;] , it can be observed that the expected
throughput of each AP depends on the MAC layer interference

of its selected channels. Therefore, a low interference level
naturally indicates a high channel quality. For AP n, define
the Q value of the channels as

Qn = [n1:an2s - Gl (1)

where ¢y, represents the Q value of C,, and ¢, ,, =

=2 ke, ZD’“ 0(Cm,Cy;). Based on this definition, a
reasonable pohcy T, should select D,, channels of the highest
quality. However, estimating the accurate value of (),, can be
difficult since this quantity is jointly decided by the actions
of all adjacent APs. Thus, we design a multiagent Q learning
algorithm to improve the estimation accuracy and to get a near
optimal action for each AP, which is shown in Table 1. In our

TABLE I
MULTIAGENT Q LEARNING FOR THE CHANNEL ACCESS GAME

Initialization:
Set t = 0 and randomly initialize Q%, for Vn € {1, 2, ..., N}.

for ¢t < T do:
1. For Vn, generate a,, with e-greedy policy according to QY.

2. Implement the actions and calculate the corresponding
{In1 PRERE] [nM}s for Vn;
3. For Vn and Vm, update gn,m with
Gl = arn,m + (1= Q)ap,m @

4. t=t+1

algorithm, all APs will select channels according to their own
Q value with an e-greedy policy. After the channel selection
being implemented, the APs will exchange the information
of their action among the neighbors and get the channel
interference levels based on the received information. Then,
Q value is updated by (2) for all channels. In (2), « is the
learning rate; 7y, 1S Tom = Zkejn ZD’“ (Crm, Ck;)s
which counts how many neighboring APs access C,

This Q learning algorithm can be easily implemented
via a Q table. However, as the system state space grows
exponentially with the number of AP, the table size can be
extremely large. Moreover, the generalization capability is
quite limited since the table will not contain the Q value
of a state that is not encountered in the training process. To
overcome these disadvantages, we developed a graph neural
network based implementation scheme in the next subsection.

B. Graph Neural Network Based Implementation

When implementing a Q learning algorithm with a neural
network, the neural network functions as a mapping from
state representations to the Q values of feasible actions.
Traditionally, the state representation is extracted from the
raw input through a deep neural network. However, in the
graphical channel access game studied in this article, the data
is graph-structured with each node carrying the local channel
demand, such that a traditional convolutional networks or fully
connected networks are no longer applicable. Fortunately,
graph neural networks have been proved to be powerful
tools for processing graph-structured data. Consequently, we
design the following graph neural network based architecture
to implement the proposed multiagent Q learning algorithm,
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Fig. 2. The proposed graph neural network based architecture for the estimation of channel quality.

which is illustrated in Fig. 2. This architecture takes the
graph data as input, where each vertex value is defined by
the corresponding channel demand. A graph convolutional
neural network (GCN) [23] is employed to extract the feature
for each vertex. At each layer of GCN, the node feature is
updated according to the features of all neighbors. Denoting
Z =1, 21, ..., 2%]", where 2, is the feature of the n-th
vertex, the feature aggregation procedure at the k-th iteration
can be written as

Zk _ fg(D*l/QAD*l/szflgk)’ (3)

where f, is a nonlinear function; ©F is a trainable matrix;
A =T+ A with A and T being the adjacency matrix and
identity matrix respectively; D is the diagonal node degree
matrix of A. It should be noted that the initial feature of
a vertex is set to the corresponding channel demands. To
make this process intelligible, we make an illustration on
vertex three in Fig. 2. First, the channel demands of vertex
three and all its neighbors are mapped to the feature space
though O!. Then, the obtained data are normalized via the
corresponding coefficients and added together. After that, the
summation will be normalized by d4, where d, = 1/ N
and input to the nonlinear function f,. Finally, the output
data is used to update the feature of vertex three. Based on the
obtained feature of each vertex, the corresponding Q value will
be estimated through a local fully connected neural network
which is designed as Q,, = W,, 2 f; (Wi 12,), where W, 1 is
the weight matrix connecting the input layer and the hidden
layer; W, 5 is the weight matrix connecting the hidden layer
and the output layer.

Since the Q value is directly related to the weights of both
GCN and the fully connected neural networks, to generate
an accurate estimation, we train this proposed architecture
through the multiagent Q learning algorithm of Table I. First,
we randomly initialize weights, and for a specific channel
demand state {D,,}_,, Q,, is calculated through our designed
network. Then, the actions of all vertices are generated based
on the e-greedy policy. With these actions, the training error
is calculated by

4)
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where ¥, m = arpm + (1 — @)gn,m. Finally, to minimize
this training error, all the weights are updated by the gradient
descent algorithm. The whole training process is summarized
in Table II.

TABLE II

THE TRAINING PROCESS OF THE PROPOSED ARCHITECTURE

Initialization:
Set ¢ = 0 and initialize {OF}X_ | {W; 1} |, {W; 2} ;.

for ¢t < T do:

1. Calculate Qf, for ¥n;

2. With e-greedy policy, generate ap, based on QY for Vn;

3. Implement the actions and calculate the rewards based ;

4. For Vn, calculate the training error e and update the parameters
with gradient descent algorithm.

5. t=t+1

IV. SIMULATIONS AND ANALYSIS

The femtocell networks we considered in the simulations
are generated based on the model used in [18], ie. a
certain number of APs randomly deployed in a fixed square
region. Our simulations involve six femtocell networks with
different femtocell numbers. The topologies of these generated
femtocell network are shown in Fig. 3. For all the six

Fig. 3. The communication topologlés of the six femtocell networks. The
red circles in each subfigure denote the APs and the edges represent the
interference relationship.

networks, we assume that there are total six channels available,
and the channel demands of the APs are randomly sampled
from the set {0, 1, 2, 3, 4}.

To begin with, we check the convergence capability of the
proposed multiagent Q learning algorithm with the femtocell
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network with 30 APs. The convergence capability is verified
from two aspects: 1) for a specific traffic state, whether
the multiagent Q learning algorithm can generate converged
channel quality estimations; 2) with multiple training cases,
whether the weights of proposed graph neural network based
architecture can be trained to converged value. To verify the
first point, we randomly generate a channel demand and assign
a random channel Q value for each of the 30 APs. The
multiagent Q learning algorithm of Table I is applied to update
the Q value for all APs. The evolution procedure of the Q
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Fig. 4. The evoll(ltgon of the Q values of the six availabg)channels. The sub-
figures (a)-(f) show the results of C'1-Cg correspondingly. In a sub-figure, x-
axis denotes the learning step, and the colored lines shows Q value evolution
of all APs with one line representing an AP.

values is shown in Fig. 4, where six sub-figures show the
Q values for the six channels. We can observe that through
the multiagent Q learning, each AP can obtain a converged
quality estimation for all channels. For the second point, we
randomly generate 1000 traffic states of the same femtocell
network for the training purpose and apply these training
cases to train the proposed architecture with the multiagent
Q learning algorithm of Table II. The applied GCN contains
four layers with 16 convolutional channels in each layer. For
each AP, the fully connected network that maps the vertex
feature to the Q value is set to a three-layer neural network
with 16 hidden neurons. Both f,(-) and f4(-) are set to the
leaky Rectifier function. To verify that this architecture can
be trained to converged weights, we plot the training error (e)
and the value of ©! in Fig.5, which converge during training.

Then, we evaluate the performance of our method on all
six femtocells. For each network, we randomly generate 1000
traffic states for training purpose and another 2000 traffic
states for testing. After training, these deep neural networks
are applied to solve the corresponding testing cases. Naturally,
a good performance is indicated by a low interference level
for each AP. Thus, we define a quantity that measures the
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Fig. 5. (a) The training error of the proposed network for the femtocell
network with 30 APs. (b) the weights evolution process of the first
convolutional layer of the applied GCN.

average interference level which is

1 L N 1
j=1n=1"_"J Chn;€an,j

In (5), the number L represents the total testing volume
which is 2000; j is the testing cases index. The optimal value
of I can be obtained by solving a mixed-integer quadratic
programming (MIQP) problem for every testing case j:

|

NoooM
Minimize Z 7Dn - xnm[ Z Th,m)]
n=1 Yom=1 keTn
M
Subject to Z Tn,m = Dpn, Tnm €{0,1},Yn,Vm.
m=1

In this formulation, z,, ,, is the binary decision variable of AP
n on channel m. To make a better evaluation, we also compare
our method with the autonomous best response algorithm
proposed in [9] as well as the the random selection policy.
The simulations results concerning the average interference
level of all these four methods are shown in Fig. 6 (a).
We can see that the average interference levels under both
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Fig. 6. Performance comparison under different femtocell networks. (a)
Average interference level of the solution generated by the corresponding
method. (b) The computation time (in seconds) of the autonomous
best response algorithm and the proposed graph neural network based
reinforcement learning approach.

the autonomous best response algorithm and our proposed
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methods are significantly lower than that achieved by the
random selection policy. Solving MIQP will lead us to the
best results in terms of I. However, the computation time
can be tremendous for the large femtocell networks, which
is the most critical disadvantage of this approach. In our
experiments, we solve the MIQP with CPLEX [24] and it will
take several days to get the converged results when N = 60.
Under this situation, we limit the maximum optimizing time
of CPLEX to two hours, and the corresponding results are
illustrated with the green bars in Fig. 6 (a). It can be observed
that the MIQP can achieve a certain advantage over our
method in terms of I. But, the advantage appears to be not
significant enough considering the huge computation time.
With the autonomous best response algorithm, we can obtain
a marginally lower average interference level comparing with
our proposed method. However, this slight improvement is
based on the cost of longer computation time. We depict the
computation time of these two methods for solving the 2000
testing cases in Fig. 6 (b). We can see that when the femtocell
network is small (N = 10), the computation time of our
method is a little longer than that of the autonomous best
response algorithm; however, for larger femtocell networks,
our method cost obviously shorter computation time. This is
because the autonomous best response algorithm needs more
iterations to converge as the AP number in a femtocell network
increase. These results evidently demonstrate the advantage of
our method on the DSA of large femtocell networks.

V. CONCLUSION

In this paper, we investigate the DSA problem for femtocell
networks. Traffic loads in each femtocell are assumed to be
different, which is characterized by different channel demands.
A graphical game is employed to coordinate the channel
access among the APs. We develop a graph neural network
based multiagent reinforcement learning approach for this
problem. With our method, each AP aggregates information
from its neighbors through a graph neural network and based
on this information, it estimates the channel quality via a
local fully connected neural network. Simulations on femtocell
networks of different scales demonstrate that comparing with
the existing autonomous best response algorithm, our method
can generate the solutions of nearly the same quality while
achieving advantages on the computation time, especially for
the femtocell network with a quantity of APs.
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