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ABSTRACT

Deep learning has achieved remarkable break-
throughs in the past decade across a wide range of
application domains, such as computer games, nat-
ural language processing, pattern recognition, and
medical diagnosis, to name a few. In this article, we
investigate the application of deep learning tech-
niques for wireless communication systems with a
focus on energy efficiency optimization for distrib-
uted cooperative spectrum sensing. With the con-
tinuous development of today’s technologies and
user demands, wireless communication systems
have become larger and more complex than ever,
which introduces many critical challenges that the
traditional approaches can no longer handle. We
envision that deep learning based approaches will
play a pivotal role in addressing many such chal-
lenges in the next-generation wireless communica-
tion systems. In this article, we focus on cognitive
radio, a promising technology to improve spec-
trum efficiency, and develop deep learning tech-
niques to optimize its spectrum sensing process.
Specifically, we investigate the energy efficiency
of distributed cooperative sensing by formulating
it as a combinatorial optimization problem. Based
on this formulation, we develop a deep learning
framework by integrating graph neural network
and reinforcement learning to improve the overall
system energy efficiency. Simulation studies under
different network scales demonstrate the effective-
ness of our proposed approach.

INTRODUCTION

Over the past decade, we have witnessed tre-
mendous technology development and societal
benefits for various wireless devices, such as smart-
phones, smart wearable devices, and the Inter-
net of Things (1oT), among others. To meet the
traffic demands from these devices and provide
a higher quality of experience (QoE) for users,
wireless communication systems have exploited
more and more radio spectrum. Although the
capacity of the radio spectrum is fairly large, the
shortage problem is imminent due to the dra-
matic proliferation of wireless devices. Currently,
most spectrum resources are statically allocated
to licensed users. However, it has been witnessed
that a considerable part of the spectrum bands is
underutilized, which is a big extravagance of this
scarce natural resource. In this case, an efficient

spectrum management policy is essential for the
next-generation wireless communication network.

Cognitive radio is one of the most promising
solutions to boost the radio spectrum efficien-
cy [1]. In a cognitive radio network, the spec-
trum bands are allowed to be accessed by both
licensed and unlicensed users, which are also
called primary users (PUs) and secondary users
(SUs), respectively. The PUs are empowered with
priority to use the spectrum, whereas the SUs are
permitted to access the spectrum only if the PUs
are inactive. Under this regulation, spectrum sens-
ing plays a crucial role as the detection procedure
for the PUs’ activities. Inherently, spectrum sens-
ing belongs to the signal detection realm. Various
classic detection techniques can be applied to
identify the presence of the PUs. However, the
performance of a single detector can be severely
degraded in the real-world environment because
of shadowing, multipath fading, and hidden termi-
nal issues [2]. In this case, cooperative spectrum
sensing is proposed to improve the detection per-
formance by taking advantage of the spatial diver-
sity of the distributed sensors. According to the
communication topology, the cooperative sensing
paradigms fall into three categories: centralized,
relay-assisted, and distributed [2]. For the first two
categories, a fusion center is necessary to collect
the sensing data from the sensors and make the
detection decision with a fusion rule. In this way,
the fusion center can suffer from severe traffic
overload. In contrast, distributed cooperative
sensing accomplishes the collaboration through
a local iterative consensus algorithm, where each
sensor only processes the data from its neighbors
[3, 41.

Regardless of which cooperative sensing par-
adigm is used, the signal detection devices are
indispensable to collect and process the sensing
data. Traditionally, the spectrum sensing module
is integrated with every SU, which will increase
the manufacturing cost of wireless devices. As a
result, several researchers advocate separating
this functionality from the SUs and constructing
a specialized sensor network to provide the sens-
ing service [5]. The sensor network is supposed
to operate continuously to provide a real-time
spectrum map for SUs. Consequently, the ener-
gy consumption can be considerable over time.
This issue could be more severe for a distributed
cooperative sensing system since it relies on an
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FIGURE 1. A sensor-aided cognitive radio network with energy detection based distributed cooperative
sensing: a) sensor-aided cognitive radio network; b) energy detection based distributed cooperative
sensing. In the energy detection illustration, the node color indicates the local SNR level of the sensor
measurement. Each node recursively communicates with its neighbor to fuse these measurements with
a consensus protocol until convergence. The converged result is then compared to a pre-set threshold
to infer whether the target spectrum band is idle or occupied.

iterative algorithm. Therefore, energy efficiency is
of great importance for the sensor network. The
research community has extensively explored the
energy efficiency problem for fusion center based
cooperative sensing [5], while to the best of our
knowledge, limited research has been conducted
on distributed paradigms. Moreover, due to the
difference of the collaboration mechanism, the
methodologies proposed for fusion center based
cooperative sensing are not applicable to the dis-
tributed counterpart. Under this circumstance, we
specifically develop an optimization framework
to search the energy-efficient distributed sensing
scheme. We consider the case where the coop-
erative sensors are identical and experience dif-
ferent signal-to-noise ratio (SNR). Our objective
is to find a minimum subset of sensors that not
only has an effective topology for the distributed
sensing algorithm but also satisfies the detection
performance requirement.

It is clear that searching the optimal solution
is a combinatorial optimization problem, and the
exact optimal solution of such a problem, espe-
cially for a large-scale network, is almost impos-
sible to obtain as the state space of the solution
grows exponentially with the sensor quantity.
Fortunately, the recent development of artificial
intelligence (Al) methodologies have brought sig-
nificant breakthroughs for such complex problems
in many areas. Several combinatorial optimization
problems have been studied through Al-based
approaches, achieving state-of-the-art performance
[6]. Recently, deep reinforcement learning (DRL)
and federated learning techniques have been inte-
grated to manage the resource of the mobile edge
computing system [7]. In another related work, an
Al embedded cognitive network architecture is
proposed to safeguard the stability and efficiency
of the communications in a heterogeneous 0T sys-
tem [8]. We note that there is a significant amount

of effort on Al related techniques for the next-gen-
eration wireless communication system, which we
are not able to elaborate due to limited space.
Interested readers can refer to [9] for a compre-
hensive survey on this topic.

Inspired by the latest research and technology
development in the community, in this article we
propose a deep learning framework to address
the critical challenges for energy-efficient distribut-
ed cooperative spectrum sensing application. Our
architecture is built based on two learning tech-
niques: graph neural network and reinforcement
learning. The graph neural network is employed
to embed the graph-structured data of the sensor
network to a feature vector of a fixed length. The
neural network weights of our architecture are ran-
domly initialized, and then trained through an itera-
tive learning process to improve the performance.
Because the optimal solutions are not available
for training, reinforcement learning is an essential
component for our method. As a widely used rein-
forcement learning methodology, Q-learning has
shown its success in training deep architectures
including both the traditional convolutional neural
network [10] and the graph convolutional neural
network [6]. Therefore, we leverage Q-learning as
a training tool to instruct our deep architecture to
learn a sensor selection policy for improved energy
efficiency.

SENSOR-AIDED COGNITVE RAIDO NETWORK WITH
DISTRIBUTED COOPERATIVE SPECTRUM SENSING

The considered sensor-aided cognitive radio net-
work is depicted in Fig. 1. This sort of cognitive
radio network consists of PUs, SUs, and spectrum
sensors. The sensors collaborate with each other
through a consensus algorithm to detect the activ-
ities of the PUs. The detection results are reported
to the spectrum policy server via nearby nodes.
Then the spectrum policy server will build a real-
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It is essential for the
sensor network to per-
form spectrum sensing
continuously because
the SUs must vacate
the spectrum band if
the PU reclaims the
band. As a result, the
sensor network can
consume tremendous
energy over time. In
this case, energy effi-
ciency is an imperative
consideration for the
sensor network.
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FIGURE 2. Sequential sensor selection process for distributed cooperative sensing. In this process, we pick
one node a time until the summation of all the performance gains (G) of the selected nodes surpass a
pre-set threshold (0). In each selection step, the legitimate candidate nodes for selection are those con-

nected to one of the previously selected nodes.

time spectrum map and allocate the available
spectrum bands to the SUs [11]. In our work, we
assume that the sensor network is built to a reg-
ular grid with variations. In this case, each sensor
does not have too many neighbors. The variations
are introduced to simulate the real-world environ-
ment since a sensor’s installation position may be
affected by other constraints in reality. The coop-
erative sensors typically use a common detection
technique, such as matched filter, cyclostationary
feature detection, or energy detection, to detect
the spectrum utilization status. Among these
detection methods, energy detection is one of the
most popular approaches due to its simplicity and
independence from the specific form of the PUs’
signal. Therefore, in this article, we adopt energy
detection as the basic detection technique.

With energy detection, the distributed coop-
erative sensing procedure can be illustrated
by the right part of Fig. 1. The graph topology
describes the communication relationship of the
sensors, in which the nodes and the edges rep-
resent the sensors and the duplex communica-
tion link, respectively. Because the sensors are
spatially distributed, the channel gains from the
PU signal transmitter to different sensors are dis-
tinct as well as the local noise level. To manifest
this property, we depict the nodes with different
colors, which represent their own local SNR lev-
els. In the sensing procedure, all the sensors first
measure the signal energy on the target spec-
trum band. Then they recursively communicate
with their neighbors to fuse these measurements
with a consensus protocol until convergence.
Finally, the converged result is compared to a
predefined threshold to assert whether the spec-
trum band is occupied or not. In this process, we
can see that the final converged value is decided
by both the initial measurement and the adopted
consensus protocol. In general, there are two
major consensus protocols in the community:
average consensus protocol [3] and weighted
average consensus protocol [4]. In the case of
average consensus protocol [3], the final con-
verged value will be the average of all the initial
energy measurements. In this way, all the nodes
are deemed equally important in deciding the
final converged result without considering their
SNR differences. On the other hand, for weight-
ed average consensus protocol [4], each node

is weighted proportionally according to its local
SNR, meaning the sensors under high SNR play
a more important role for the final converged
result. In this article, we adopt the weighted
average consensus protocol.

It is essential for the sensor network to perform
spectrum sensing continuously because the SUs
must vacate the spectrum band if the PU reclaims
the band. As a result, the sensor network can con-
sume tremendous energy over time. In this case,
energy efficiency is an imperative consideration
for the sensor network. While the energy efficien-
cy problem has been substantially investigated for
fusion center based sensor networks, limited under-
standing and techniques are available for distribut-
ed cooperative sensor networks given their unique
characteristics. To this end, in the following section,
we develop an optimization paradigm for the ener-
gy efficiency problem of the distributed collabora-
tive sensor network.

ENERGY-EFFICIENT
DISTRIBUTED COOPERATIVE SPECTRUM SENSING

A cognitive radio network usually has a target
detection performance for a spectrum band. To
achieve this desired performance, the cooperative
sensing scheme must include sufficient distributed
sensors. Traditionally, the cooperative nodes in
one sensor network are usually identical, which
means the energy consumption of different sen-
sors are the same. Hence, from the energy effi-
ciency perspective, it is wise to use the smallest
number of sensors.

With the weighted average consensus protocol,
although all sensors can contribute to the improve-
ment of the detection performance, the coopera-
tive gain can be very distinct from different nodes
[4]. The nodes experiencing high SNR can substan-
tially enhance the detection performance, while
the contributions from the sensors under low SNR
can even be neglected. It is easy to infer that for a
specific target detection performance, fewer nodes
will be needed if their cooperation gains are high.
Hence, the desired scheme should pick the sensors
with high SNR to perform the collaborative sensing
for this spectrum band. Although this objective is
intelligible, one cannot simply pick the sensors one
by one based on their local SNR. This is because,
besides the SNR, the topology of the nodes is also
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an important consideration for a distributed coop-
erative sensing system. To be specific, the com-
munication graph of the selected nodes must be
connected to guarantee the topology requirement
of the distributed cooperative sensing algorithm
[3, 41.

Based on all these discussions, it can be inferred
that for a spectrum band, an energy-efficient
spectrum sensing scheme is a minimum subset of
connected sensors that can achieve the target spec-
trum sensing performance. Researchers have point-
ed out that the spectrum sensing performance can
be measured by the modified deflection coefficient
(MDC) [12], which means for the desired detec-
tion performance, there is a corresponding MDC
value. With the weight design scheme introduced
in [12], the MDC is proportional to the weighted
summation of the squared amplitudes of the chan-
nel gains. Therefore, if we define a new metric for
each sensor by multiplying the original weight with
the squared channel gain, the summation of the
new metrics will be linearly related to the MDC.
We call this metric performance gain (g) in this arti-
cle. Thus, a legitimate set of the sensors that can
achieve the desired detection performance can
be found by sequentially selecting the sensor until
the summation of the performance gains reaches
a certain threshold (0). This sensor selection proce-
dure can be naturally illustrated as in Fig. 2. In this
process, we begin with an empty solution and add
one node a time until the threshold (0) is reached.
At the first step, we select a node that is connected
to the spectrum policy server to ensure the sensing
results can be delivered to it. In the following steps,
the feasible selections are restricted to the nodes
that have connections to the previously selected
ones. The optimal solution is characterized by
the minimum number of sensors, which can be
obtained through an exhaustive search. Howev-
er, due to the large computational complexity, an
exhaustive search is not practical, especially for the
large-scale sensor network. Recently, deep learn-
ing has been successfully applied to some of the
combinatorial optimization problems [6]. Inspired
by this prior research, in this article, we develop a
deep learning based approach to energy-efficient
distributed cooperative sensing.

DEEP REINFORCEMENT LEARNING BASED SOLUTION

When solving a sequential decision making prob-
lem via deep learning, a deep architecture will
be trained to predict the quality or the Q value
of all actions at each step and execute the action
of the highest quality. Most of the classic deep
architectures are designed to handle the data of
regular shape and output the Q values of a fixed
set of actions. For example, the deep Q network
(DQN) for Atari games requires the inputs to
be the video images and generates the action
values of all buttons on the controller [10]. In
contrast, the data of the sensor network is
graph-structured, which is irregular, and the legit-
imate actions vary at different steps. Moreover,
the topologies of different sensor networks can
be vastly distinct. To overcome these difficulties,
we design the following DRL framework, which
is depicted in Fig. 3. It takes graph-structured
data as input and is trained to make the decision
that can benefit the long-term performance at
each step. This architecture relies on two learn-
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FIGURE 3. The proposed DRL framework. The upper part depicts the decision
making and training procedure. The lower part illustrates the specific struc-

ture of the graph value network, where Structure2Vec is the graph neural

network used to generate the graph feature, and the fully connected neural

network is used to calculate the action value.

ing techniques: the graph neural network and
reinforcement learning, which are used for fea-
ture extraction and weight tuning, respectively.
We elaborate the details of our method center-
ing on these two aspects.

SENSOR SELECTION VIA THE PROPOSED ARCHITECTURE

Our proposed deep learning framework is obli-
gated to make decisions for the sensor selec-
tion process presented in the above section. At
each step, the input is the communication graph
with each node carrying a two-dimensional tag,
where the first component is the performance
gain of the node normalized by the target thresh-
old, and the second component denotes wheth-
er the sensor has been selected or not with 1
or 0. Our method estimates the Q values of all
legitimate actions based on this graph-structured
data. As the legitimate actions vary at different
steps, designing a consistent action representa-
tion is not forthright. Considering the fact that
the state transition is deterministic in the sensor
selection process, we first use the future graph
states to represent the corresponding actions.
Then these action representations are input to a
value network separately to estimate the corre-
sponding Q value. Finally, the selection is made
with a greedy policy.

The specific procedure is depicted in the yel-
low box of Fig. 3. At each step, we first infer the
associated future states of all the feasible actions
by modifying the second component of the tags
for the corresponding nodes. Then these inferred
graph-structured data are deemed as the action
representations and input to the value network
independently. Since this procedure is equivalent
to employing multiple graph value networks with
shared weights, we draw one graph value net-
work for each action to facilitate visualization. The
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TABLE 1. Parameters of the considered sensor networks.

graph value network estimates the action values
through two steps: feature extraction and value
estimation. The feature extraction process aims
to embed graph-structured data to a distinctive
feature utilizing a particular graph neural network,
Structure2Vec [13]. Structure2Vec generates the
n-dimensional feature of each node via an itera-
tive feature propagation process. At each itera-
tion, the node feature is updated according to the
features of all the neighbors and its own tag. To
make it clear, we make an illustration with node
two. First, the two-dimensional tag of a node is
mapped to the feature space though the data-to-
feature mapping matrix, while its neighbors’ fea-
tures are mapped through the feature-to-feature
mapping matrix. Then the obtained mappings are
added together and input to a nonlinear function.
The output will be applied to update the feature
of node two. The n-dimensional initial feature vec-
tors of all nodes are set to zero. At each iteration,
all the node features are updated simultaneously.
This process stops after T iterations, and the iter-
ation number T is a hyperparameter that can be
set to a small value based on our experience. The
obtained features are then average pooled over
the whole graph to produce the representation of
this graph-structured data. After that, a fully con-
nected neural network estimates the correspond-
ing action value according to this representation.
Finally, comparing all actions, the one of the high-
est quality is executed.

TRAINING WITH REINFORCEMENT LEARNING

There is no doubt that the action evaluation
accuracy directly affects the quality of the gen-
erated solution. Therefore, a training process is
essential for our deep structure to learn the cor-
rect estimation. It is clear that our problem fulfills
the Markov property, which naturally leads us to
employ reinforcement learning as the training
method. Reinforcement learning is a powerful
tool that enables an agent to learn an optimal
policy for a Markov decision process through
interactions with the environment [14]. In rein-
forcement learning, the agent receives a reward
from the environment at each time step, and the
learning algorithm can guide the agent to discov-
er an optimal policy that maximizes the expected
rewards accumulated over time. Consequently,
when applying reinforcement learning to opti-
mization or planning problems, it is critical to
design a proper reward signal at each step that
is compatible with the final goal. In our problem,
since the optimal solution contains the fewest

sensors, we set the reward for each action to -1.
In this way, maximizing the accumulated rewards
is precisely equivalent to minimizing the number
of sensors in the solution.

In a traditional tabular reinforcement lean-
ing approach, the action values at each step are
stored in a table, and the learning refers to recur-
sively updating the action values based on the
related reward and the estimated future return.
With neural network based reinforcement lean-
ing, rather than adjusting the stored action value,
the learning process aims to tune the weights of
the neural network such that it can accurately
estimate the action qualities at all encountered
states. Q-learning is a widely used off-policy
algorithm for both tabular and neural network
based approaches. In this article, we train our
deep architecture via Q-learning. Since the pre-
cise action value under an optimal policy should
equal the maximum expected future return, a
Q-learning algorithm adapts the estimated action
value or the estimation functions with the maxi-
mum action value of the forthcoming state. We
present the Q-learning process of our architec-
ture in Fig. 3. At each step, the action values
are predicted via our architecture. Then the
e-greedy policy is applied to decide the action.
With e-greedy policy, there is a probability that
the action will be randomly selected. This ran-
domness is necessary because the action value
can be incorrectly estimated at the beginning,
and it is beneficial to implement explorations.
With the applied action, we can obtain a reward
and a corresponding future state. The actions
at this future state will also be evaluated by our
architecture. Then the summation of the maxi-
mum Q value of these actions and the reward
is used as the target of the predicted Q value of
the executed action. Finally, to make the predic-
tion close to the target, we utilize the gradient
descent algorithm to tune the mapping matri-
ces in Structure2Vec and the weights of the fully
connected neural network.

The sensor-aided cognitive radio network
may be built at different areas to deal with
the local spectrum shortage problem. Hence,
we expect that our deep architecture can be
trained to learn a generalized policy, such that
it is able to find the energy-efficient cooperative
scheme for a class of sensor networks. Similar
to other reinforcement learning problems [6,
101, numerous training cases are essential for
achieving this goal. Obviously, it is not possi-
ble to construct sensor network entities for the

36

IEEE Wireless Communications « June 2019

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 10,2020 at 15:28:18 UTC from IEEE Xplore. Restrictions apply.



purpose of training. Instead, we assume that
the different sensor networks are the instanc-
es of a common model, and we can generate
the training cases with this model. The rationale
behind this assumption is that cognitive radio
networks are most likely to be built in the area
of high user density, such as some big cities. In
these areas, the environments are similar, such
that it is possible to find a generalized model. In
this article, since the modeling strategy is inde-
pendent of our proposed method, we will use
a simplified sensor network model to test the
effectiveness of our proposed method.

PERFORMANCE EVALUATIONS

In this section, we conduct numerical simula-
tions to verify the performance of our proposed
approach. We consider sensor networks of dif-
ferent scales, where the sensors are deployed
in a two-dimensional grid structure with certain
variations. The coordinate of each sensor is set
to the form of (x + o, y + cy), where the inte-
gers x and y are the coordinates of the vertex
in a regular quadrilateral grid; o, and o, are the
Gaussian noise with zero mean and variance of
0.1 to simulate the variations. In each sensor net-
work, the spectrum policy server is located in the
central area. The communication range of each
sensor is set to 1.35. We assume that the sensors
randomly experience three levels of SNR, and
accordingly, their performance gains are set to
three different values: 0.1, 0.3, and 0.9. In our
experiments, the thresholds are set to larger val-
ues as the networks scale up. The reason for this
setting is that building a large sensor network
usually aims to obtain high sensing performance.
Based on this model, we generate 1000 training
cases and 1000 testing cases for each network
scale. The parameters of the sensor networks are
summarized in Table 1.

We train our proposed deep architecture
with the training cases and apply it to select the
nodes for the testing cases. Good performance
is indicated by a low averaged number of the
selected nodes of all test networks since we
aim to use as few nodes as possible to improve
the energy efficiency. In our proposed deep
architecture, we adopt the Rectifier activation
function everywhere, and the fully connected
neural network for the action value calculation
is designed as a three-layered neural network
with 32 hidden neurons. In our architecture, the
feature embedding iteration number (7) and the
feature dimension (n) can be especially import-
ant since they may directly affect the quality of
the action representation. To find the values of
these two parameters that can lead us to rela-
tively high-quality results, we test different com-
binations on the 16-node sensor networks. First,
we build a group of the proposed deep archi-
tectures and set their feature dimensions and
embedding iterations to the values listed in Table
2. Then, with randomly initialized weights, we
train them with the same training settings and
test their performance on the testing cases. Since
the initial weights will affect the final perfor-
mance, we repeat these experiments 20 times.
The average number of the nodes in the solu-
tions are reported in Table. 2. Based on these
results, we set the embedding iteration number

Embedding iteration Average number of selected nodes under different feature dimension (1)

number (7) n=8 | n=16 | n=2 | n=3 | n=40 | n=48
T=1 1077 1020 966 994 992 1029
T=2 1010 977 967 9.41 926 953
T=3 1008 936 875 828 848 9.02
T=4 1037 1038 925 876 879 914
T=5 985 984 1001 9.82 924 933

TABLE 2. The average number of selected nodes by the proposed deep archi-

tectures with different feature dimensions and embedding iteration num-
ber. The highlighted underlined numbers represent the best performance
under each embedding iteration number.

to three and the feature dimension to 32, which
can generate the best performance.

To better evaluate our approach, we also solve
the testing cases with a greedy heuristic (GH)-
based approach and a genetic algorithm (GA)-
based approach as comparisons. The idea of the
applied greedy algorithm is straightforward, which
always selects the sensor with maximum perfor-
mance gain at each step. The GA-based approach
is designed based on the priority-based encod-
ing method [15]. In this approach, each sensor is
assigned a priority value, and the priority values of
all nodes compose the genetic representation of
the solution. With this representation, we obtain
the solution by selecting the legitimate node with
the highest priority at each step. Accordingly, the
fitness function is set to the accumulated rewards
for this GA- based approach.

Figure 4a shows the performance of these
three approaches. Comparing our proposed
method to the GH-based approach, it is clear
that our proposed method always performs bet-
ter for each network scale. Furthermore, we find
a performance improvement increasing from 15
percent to 28 percent as the network gets larg-
er. On the other hand, the GA-based approach
achieves comparable performance. For the
16-node networks, it even performs slightly bet-
ter than our method. However, when we use
these two methods to solve the test cases, there
is a great difference in terms of the computa-
tion time, which is revealed in Fig. 4b. It should
be noted that the computation time of the
GH-based approach is not included because it
is almost invisible compared to the other two.
From Fig. 4b, we can observe that the time con-
sumption of our method is obviously less than
that of the GA-based approach. In addition, this
advantage enlarges as the network scales up.

The experiments show some interesting results.
For the small-scale networks, where the sensor
combinatorial problem is relatively simple, the
advantage of our DRL-based approach is not
very distinct. It is likely that with the GH-based
approach, we can find an adequate solution. More-
over, the GA-based approach can provide us an
equally good or even better result with acceptable
computation time. However, as the sensor net-
work scales up, the solution space experiences an
exponential increase. The probability of finding a
good solution with the GH-based approach can
be low in this case, while the GA-based approach
takes a long time to search in the huge solution
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Our deep learning
architecture leverages
a graph neural network
and reinforcement
learning to estimate the
action quality in the
sensor selection pro-
cess. Simulation results
under different network
scales demonstrate the
effectiveness of our
proposed approach.

space. On the other hand, our trained deep archi-
tecture achieves a good balance between solution
quality and computation time. These results clearly
demonstrate the superiority of deep learning in
solving the highly complex problem.

CONCLUSION AND FUTURE WORK

In this article, we develop a deep learning based
approach to improve the energy efficiency of dis-
tributed cooperative spectrum sensing for sen-
sor-aided cognitive radio network. A sequential
sensor selection method has been designed to
find a legitimate subset of sensors that can not
only fulfill the target sensing performance, but
also guarantee the topology requirement of the
distributed sensing algorithm. Our deep learning
architecture leverages a graph neural network
and reinforcement learning to estimate the action
quality in the sensor selection process. Simulation
results under different network scales demonstrate
the effectiveness of our proposed approach.

As a promising research topic, there are

many interesting future research directions that
can be considered. For instance, in our current
study, we consider the sensor network topology
to be a two-dimensional grid structure with cer-
tain variations. Therefore, it would be interesting
to investigate how the proposed method can be
generalized to other network topology structures.
Also, the proposed energy-efficient spectrum sens-
ing scheme is obtained through a globalized plan-
ning style, which requires the related parameters
of each sensor, such as channel gain, noise level,
and signal strength, to be known. However, these
parameters may be uncertain over time with the
change of the surrounding environment. Therefore,
distributed real-time learning will be critical for this
approach to be applicable to practical communica-
tion systems in reality.
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FIGURE 4. Performance comparison under different network scales. In a), the x-axis denotes the number
of nodes in the test network, and the y-axis shows the average number of nodes selected by the three
comparative approaches: GH, GA, and the proposed DRL. The performance for each network scale
is based on the average of 1000 testing cases. In b), the pie charts show the computation time (in sec-
onds) of the GA-based approach and the DRL-based approach.
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