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Abstract
Deep learning has achieved remarkable break-

throughs in the past decade across a wide range of 
application domains, such as computer games, nat-
ural language processing, pattern recognition, and 
medical diagnosis, to name a few. In this article, we 
investigate the application of deep learning tech-
niques for wireless communication systems with a 
focus on energy efficiency optimization for distrib-
uted cooperative spectrum sensing. With the con-
tinuous development of today’s technologies and 
user demands, wireless communication systems 
have become larger and more complex than ever, 
which introduces many critical challenges that the 
traditional approaches can no longer handle. We 
envision that deep learning based approaches will 
play a pivotal role in addressing many such chal-
lenges in the next-generation wireless communica-
tion systems. In this article, we focus on cognitive 
radio, a promising technology to improve spec-
trum efficiency, and develop deep learning tech-
niques to optimize its spectrum sensing process. 
Specifically, we investigate the energy efficiency 
of distributed cooperative sensing by formulating 
it as a combinatorial optimization problem. Based 
on this formulation, we develop a deep learning 
framework by integrating graph neural network 
and reinforcement learning to improve the overall 
system energy efficiency. Simulation studies under 
different network scales demonstrate the effective-
ness of our proposed approach.

Introduction
Over the past decade, we have witnessed tre-
mendous technology development and societal 
benefits for various wireless devices, such as smart-
phones, smart wearable devices, and the Inter-
net of Things (IoT), among others. To meet the 
traffic demands from these devices and provide 
a higher quality of experience (QoE) for users, 
wireless communication systems have exploited 
more and more radio spectrum. Although the 
capacity of the radio spectrum is fairly large, the 
shortage problem is imminent due to the dra-
matic proliferation of wireless devices. Currently, 
most spectrum resources are statically allocated 
to licensed users. However, it has been witnessed 
that a considerable part of the spectrum bands is 
underutilized, which is a big extravagance of this 
scarce natural resource. In this case, an efficient 

spectrum management policy is essential for the 
next-generation wireless communication network.

Cognitive radio is one of the most promising 
solutions to boost the radio spectrum efficien-
cy [1]. In a cognitive radio network, the spec-
trum bands are allowed to be accessed by both 
licensed and unlicensed users, which are also 
called primary users (PUs) and secondary users 
(SUs), respectively. The PUs are empowered with 
priority to use the spectrum, whereas the SUs are 
permitted to access the spectrum only if the PUs 
are inactive. Under this regulation, spectrum sens-
ing plays a crucial role as the detection procedure 
for the PUs’ activities. Inherently, spectrum sens-
ing belongs to the signal detection realm. Various 
classic detection techniques can be applied to 
identify the presence of the PUs. However, the 
performance of a single detector can be severely 
degraded in the real-world environment because 
of shadowing, multipath fading, and hidden termi-
nal issues [2]. In this case, cooperative spectrum 
sensing is proposed to improve the detection per-
formance by taking advantage of the spatial diver-
sity of the distributed sensors. According to the 
communication topology, the cooperative sensing 
paradigms fall into three categories: centralized, 
relay-assisted, and distributed [2]. For the first two 
categories, a fusion center is necessary to collect 
the sensing data from the sensors and make the 
detection decision with a fusion rule. In this way, 
the fusion center can suffer from severe traffic 
overload. In contrast, distributed cooperative 
sensing accomplishes the collaboration through 
a local iterative consensus algorithm, where each 
sensor only processes the data from its neighbors 
[3, 4].

Regardless of which cooperative sensing par-
adigm is used, the signal detection devices are 
indispensable to collect and process the sensing 
data. Traditionally, the spectrum sensing module 
is integrated with every SU, which will increase 
the manufacturing cost of wireless devices. As a 
result, several researchers advocate separating 
this functionality from the SUs and constructing 
a specialized sensor network to provide the sens-
ing service [5]. The sensor network is supposed 
to operate continuously to provide a real-time 
spectrum map for SUs. Consequently, the ener-
gy consumption can be considerable over time. 
This issue could be more severe for a distributed 
cooperative sensing system since it relies on an 
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iterative algorithm. Therefore, energy effi  ciency is 
of great importance for the sensor network. The 
research community has extensively explored the 
energy effi  ciency problem for fusion center based 
cooperative sensing [5], while to the best of our 
knowledge, limited research has been conducted 
on distributed paradigms. Moreover, due to the 
difference of the collaboration mechanism, the 
methodologies proposed for fusion center based 
cooperative sensing are not applicable to the dis-
tributed counterpart. Under this circumstance, we 
specifically develop an optimization framework 
to search the energy-effi  cient distributed sensing 
scheme. We consider the case where the coop-
erative sensors are identical and experience dif-
ferent signal-to-noise ratio (SNR). Our objective 
is to find a minimum subset of sensors that not 
only has an eff ective topology for the distributed 
sensing algorithm but also satisfi es the detection 
performance requirement.

It is clear that searching the optimal solution 
is a combinatorial optimization problem, and the 
exact optimal solution of such a problem, espe-
cially for a large-scale network, is almost impos-
sible to obtain as the state space of the solution 
grows exponentially with the sensor quantity. 
Fortunately, the recent development of artificial 
intelligence (AI) methodologies have brought sig-
nifi cant breakthroughs for such complex problems 
in many areas. Several combinatorial optimization 
problems have been studied through AI-based 
approaches, achieving state-of-the-art performance 
[6]. Recently, deep reinforcement learning (DRL) 
and federated learning techniques have been inte-
grated to manage the resource of the mobile edge 
computing system [7]. In another related work, an 
AI embedded cognitive network architecture is 
proposed to safeguard the stability and effi  ciency 
of the communications in a heterogeneous IoT sys-
tem [8]. We note that there is a signifi cant amount 

of eff ort on AI related techniques for the next-gen-
eration wireless communication system, which we 
are not able to elaborate due to limited space. 
Interested readers can refer to [9] for a compre-
hensive survey on this topic.

Inspired by the latest research and technology 
development in the community, in this article we 
propose a deep learning framework to address 
the critical challenges for energy-effi  cient distribut-
ed cooperative spectrum sensing application. Our 
architecture is built based on two learning tech-
niques: graph neural network and reinforcement 
learning. The graph neural network is employed 
to embed the graph-structured data of the sensor 
network to a feature vector of a fi xed length. The 
neural network weights of our architecture are ran-
domly initialized, and then trained through an itera-
tive learning process to improve the performance. 
Because the optimal solutions are not available 
for training, reinforcement learning is an essential 
component for our method. As a widely used rein-
forcement learning methodology, Q-learning has 
shown its success in training deep architectures 
including both the traditional convolutional neural 
network [10] and the graph convolutional neural 
network [6]. Therefore, we leverage Q-learning as 
a training tool to instruct our deep architecture to 
learn a sensor selection policy for improved energy 
effi  ciency. 

sensor-AIded cognItve rAIdo networK wIth 
dIstrIbuted cooPerAtIve sPectrum sensIng

The considered sensor-aided cognitive radio net-
work is depicted in Fig. 1. This sort of cognitive 
radio network consists of PUs, SUs, and spectrum 
sensors. The sensors collaborate with each other 
through a consensus algorithm to detect the activ-
ities of the PUs. The detection results are reported 
to the spectrum policy server via nearby nodes. 
Then the spectrum policy server will build a real-
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FIGURE 1. A sensor-aided cognitive radio network with energy detection based distributed cooperative 
sensing: a) sensor-aided cognitive radio network; b) energy detection based distributed cooperative 
sensing. In the energy detection illustration, the node color indicates the local SNR level of the sensor 
measurement. Each node recursively communicates with its neighbor to fuse these measurements with 
a consensus protocol until convergence. The converged result is then compared to a pre-set threshold 
to infer whether the target spectrum band is idle or occupied.
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time spectrum map and allocate the available 
spectrum bands to the SUs [11]. In our work, we 
assume that the sensor network is built to a reg-
ular grid with variations. In this case, each sensor 
does not have too many neighbors. The variations 
are introduced to simulate the real-world environ-
ment since a sensor’s installation position may be 
aff ected by other constraints in reality. The coop-
erative sensors typically use a common detection 
technique, such as matched fi lter, cyclostationary 
feature detection, or energy detection, to detect 
the spectrum utilization status. Among these 
detection methods, energy detection is one of the 
most popular approaches due to its simplicity and 
independence from the specifi c form of the PUs’ 
signal. Therefore, in this article, we adopt energy 
detection as the basic detection technique.

With energy detection, the distributed coop-
erative sensing procedure can be illustrated 
by the right part of Fig. 1. The graph topology 
describes the communication relationship of the 
sensors, in which the nodes and the edges rep-
resent the sensors and the duplex communica-
tion link, respectively. Because the sensors are 
spatially distributed, the channel gains from the 
PU signal transmitter to diff erent sensors are dis-
tinct as well as the local noise level. To manifest 
this property, we depict the nodes with diff erent 
colors, which represent their own local SNR lev-
els. In the sensing procedure, all the sensors fi rst 
measure the signal energy on the target spec-
trum band. Then they recursively communicate 
with their neighbors to fuse these measurements 
with a consensus protocol until convergence. 
Finally, the converged result is compared to a 
predefi ned threshold to assert whether the spec-
trum band is occupied or not. In this process, we 
can see that the fi nal converged value is decided 
by both the initial measurement and the adopted 
consensus protocol. In general, there are two 
major consensus protocols in the community: 
average consensus protocol [3] and weighted 
average consensus protocol [4]. In the case of 
average consensus protocol [3], the final con-
verged value will be the average of all the initial 
energy measurements. In this way, all the nodes 
are deemed equally important in deciding the 
fi nal converged result without considering their 
SNR diff erences. On the other hand, for weight-
ed average consensus protocol [4], each node 

is weighted proportionally according to its local 
SNR, meaning the sensors under high SNR play 
a more important role for the final converged 
result. In this article, we adopt the weighted 
average consensus protocol.

It is essential for the sensor network to perform 
spectrum sensing continuously because the SUs 
must vacate the spectrum band if the PU reclaims 
the band. As a result, the sensor network can con-
sume tremendous energy over time. In this case, 
energy efficiency is an imperative consideration 
for the sensor network. While the energy effi  cien-
cy problem has been substantially investigated for 
fusion center based sensor networks, limited under-
standing and techniques are available for distribut-
ed cooperative sensor networks given their unique 
characteristics. To this end, in the following section, 
we develop an optimization paradigm for the ener-
gy effi  ciency problem of the distributed collabora-
tive sensor network.

energY-effIcIent 
dIstrIbuted cooPerAtIve sPectrum sensIng

A cognitive radio network usually has a target 
detection performance for a spectrum band. To 
achieve this desired performance, the cooperative 
sensing scheme must include suffi  cient distributed 
sensors. Traditionally, the cooperative nodes in 
one sensor network are usually identical, which 
means the energy consumption of different sen-
sors are the same. Hence, from the energy effi-
ciency perspective, it is wise to use the smallest 
number of sensors.

With the weighted average consensus protocol, 
although all sensors can contribute to the improve-
ment of the detection performance, the coopera-
tive gain can be very distinct from diff erent nodes 
[4]. The nodes experiencing high SNR can substan-
tially enhance the detection performance, while 
the contributions from the sensors under low SNR 
can even be neglected. It is easy to infer that for a 
specifi c target detection performance, fewer nodes 
will be needed if their cooperation gains are high. 
Hence, the desired scheme should pick the sensors 
with high SNR to perform the collaborative sensing 
for this spectrum band. Although this objective is 
intelligible, one cannot simply pick the sensors one 
by one based on their local SNR. This is because, 
besides the SNR, the topology of the nodes is also 

FIGURE 2. Sequential sensor selection process for distributed cooperative sensing. In this process, we pick 
one node a time until the summation of all the performance gains (G) of the selected nodes surpass a 
pre-set threshold (). In each selection step, the legitimate candidate nodes for selection are those con-
nected to one of the previously selected nodes.
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an important consideration for a distributed coop-
erative sensing system. To be specific, the com-
munication graph of the selected nodes must be 
connected to guarantee the topology requirement 
of the distributed cooperative sensing algorithm 
[3, 4].

Based on all these discussions, it can be inferred 
that for a spectrum band, an energy-efficient 
spectrum sensing scheme is a minimum subset of 
connected sensors that can achieve the target spec-
trum sensing performance. Researchers have point-
ed out that the spectrum sensing performance can 
be measured by the modifi ed defl ection coeffi  cient 
(MDC) [12], which means for the desired detec-
tion performance, there is a corresponding MDC 
value. With the weight design scheme introduced 
in [12], the MDC is proportional to the weighted 
summation of the squared amplitudes of the chan-
nel gains. Therefore, if we defi ne a new metric for 
each sensor by multiplying the original weight with 
the squared channel gain, the summation of the 
new metrics will be linearly related to the MDC. 
We call this metric performance gain (g) in this arti-
cle. Thus, a legitimate set of the sensors that can 
achieve the desired detection performance can 
be found by sequentially selecting the sensor until 
the summation of the performance gains reaches 
a certain threshold (Q). This sensor selection proce-
dure can be naturally illustrated as in Fig. 2. In this 
process, we begin with an empty solution and add 
one node a time until the threshold (Q) is reached. 
At the fi rst step, we select a node that is connected 
to the spectrum policy server to ensure the sensing 
results can be delivered to it. In the following steps, 
the feasible selections are restricted to the nodes 
that have connections to the previously selected 
ones. The optimal solution is characterized by 
the minimum number of sensors, which can be 
obtained through an exhaustive search. Howev-
er, due to the large computational complexity, an 
exhaustive search is not practical, especially for the  
large-scale sensor network. Recently, deep learn-
ing has been successfully applied to some of the 
combinatorial optimization problems [6]. Inspired 
by this prior research, in this article, we develop a 
deep learning based approach to energy-effi  cient 
distributed cooperative sensing.

deeP reInforcement LeArnIng bAsed soLutIon
When solving a sequential decision making prob-
lem via deep learning, a deep architecture will 
be trained to predict the quality or the Q value 
of all actions at each step and execute the action 
of the highest quality. Most of the classic deep 
architectures are designed to handle the data of 
regular shape and output the Q values of a fi xed 
set of actions. For example, the deep Q network 
(DQN) for Atari games requires the inputs to 
be the video images and generates the action 
values of all buttons on the controller [10]. In 
contrast, the data of the sensor network is 
graph-structured, which is irregular, and the legit-
imate actions vary at diff erent steps. Moreover, 
the topologies of diff erent sensor networks can 
be vastly distinct. To overcome these diffi  culties, 
we design the following DRL framework, which 
is depicted in Fig. 3. It takes graph-structured 
data as input and is trained to make the decision 
that can benefit the long-term performance at 
each step. This architecture relies on two learn-

ing techniques: the graph neural network and 
reinforcement learning, which are used for fea-
ture extraction and weight tuning, respectively. 
We elaborate the details of our method center-
ing on these two aspects.

sensor seLectIon vIA the ProPosed ArchItecture
Our proposed deep learning framework is obli-
gated to make decisions for the sensor selec-
tion process presented in the above section. At 
each step, the input is the communication graph 
with each node carrying a two-dimensional tag, 
where the first component is the performance 
gain of the node normalized by the target thresh-
old, and the second component denotes wheth-
er the sensor has been selected or not with 1 
or 0. Our method estimates the Q values of all 
legitimate actions based on this graph-structured 
data. As the legitimate actions vary at different 
steps, designing a consistent action representa-
tion is not forthright. Considering the fact that 
the state transition is deterministic in the sensor 
selection process, we first use the future graph 
states to represent the corresponding actions. 
Then these action representations are input to a 
value network separately to estimate the corre-
sponding Q value. Finally, the selection is made 
with a greedy policy.

The specifi c procedure is depicted in the yel-
low box of Fig. 3. At each step, we fi rst infer the 
associated future states of all the feasible actions 
by modifying the second component of the tags 
for the corresponding nodes. Then these inferred 
graph-structured data are deemed as the action 
representations and input to the value network 
independently. Since this procedure is equivalent 
to employing multiple graph value networks with 
shared weights, we draw one graph value net-
work for each action to facilitate visualization. The 

FIGURE 3. The proposed DRL framework. The upper part depicts the decision 
making and training procedure. The lower part illustrates the specifi c struc-
ture of the graph value network, where Structure2Vec is the graph neural 
network used to generate the graph feature, and the fully connected neural 
network is used to calculate the action value.
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graph value network estimates the action values 
through two steps: feature extraction and value 
estimation. The feature extraction process aims 
to embed graph-structured data to a distinctive 
feature utilizing a particular graph neural network, 
Structure2Vec [13]. Structure2Vec generates the 
n-dimensional feature of each node via an itera-
tive feature propagation process. At each itera-
tion, the node feature is updated according to the 
features of all the neighbors and its own tag. To 
make it clear, we make an illustration with node 
two. First, the two-dimensional tag of a node is 
mapped to the feature space though the data-to-
feature mapping matrix, while its neighbors’ fea-
tures are mapped through the feature-to-feature 
mapping matrix. Then the obtained mappings are 
added together and input to a nonlinear function. 
The output will be applied to update the feature 
of node two. The n-dimensional initial feature vec-
tors of all nodes are set to zero. At each iteration, 
all the node features are updated simultaneously. 
This process stops after T iterations, and the iter-
ation number T is a hyperparameter that can be 
set to a small value based on our experience. The 
obtained features are then average pooled over 
the whole graph to produce the representation of 
this graph-structured data. After that, a fully con-
nected neural network estimates the correspond-
ing action value according to this representation. 
Finally, comparing all actions, the one of the high-
est quality is executed.

Training with Reinforcement Learning
There is no doubt that the action evaluation 
accuracy directly affects the quality of the gen-
erated solution. Therefore, a training process is 
essential for our deep structure to learn the cor-
rect estimation. It is clear that our problem fulfills 
the Markov property, which naturally leads us to 
employ reinforcement learning as the training 
method. Reinforcement learning is a powerful 
tool that enables an agent to learn an optimal 
policy for a Markov decision process through 
interactions with the environment [14]. In rein-
forcement learning, the agent receives a reward 
from the environment at each time step, and the 
learning algorithm can guide the agent to discov-
er an optimal policy that maximizes the expected 
rewards accumulated over time. Consequently, 
when applying reinforcement learning to opti-
mization or planning problems, it is critical to 
design a proper reward signal at each step that 
is compatible with the final goal. In our problem, 
since the optimal solution contains the fewest 

sensors, we set the reward for each action to –1. 
In this way, maximizing the accumulated rewards 
is precisely equivalent to minimizing the number 
of sensors in the solution.

In a traditional tabular reinforcement lean-
ing approach, the action values at each step are 
stored in a table, and the learning refers to recur-
sively updating the action values based on the 
related reward and the estimated future return. 
With neural network based reinforcement lean-
ing, rather than adjusting the stored action value, 
the learning process aims to tune the weights of 
the neural network such that it can accurately 
estimate the action qualities at all encountered 
states. Q-learning is a widely used off-policy 
algorithm for both tabular and neural network 
based approaches. In this article, we train our 
deep architecture via Q-learning. Since the pre-
cise action value under an optimal policy should 
equal the maximum expected future return, a 
Q-learning algorithm adapts the estimated action 
value or the estimation functions with the maxi-
mum action value of the forthcoming state. We 
present the Q-learning process of our architec-
ture in Fig. 3. At each step, the action values 
are predicted via our architecture. Then the 
e-greedy policy is applied to decide the action. 
With e-greedy policy, there is a probability  that 
the action will be randomly selected. This ran-
domness is necessary because the action value 
can be incorrectly estimated at the beginning, 
and it is beneficial to implement explorations. 
With the applied action, we can obtain a reward 
and a corresponding future state. The actions 
at this future state will also be evaluated by our 
architecture. Then the summation of the maxi-
mum Q value of these actions and the reward 
is used as the target of the predicted Q value of 
the executed action. Finally, to make the predic-
tion close to the target, we utilize the gradient 
descent algorithm to tune the mapping matri-
ces in Structure2Vec and the weights of the fully 
connected neural network.

The sensor-aided cognitive radio network 
may be built at different areas to deal with 
the local spectrum shortage problem. Hence, 
we expect that our deep architecture can be 
trained to learn a generalized policy, such that 
it is able to find the energy-efficient cooperative 
scheme for a class of sensor networks. Similar 
to other reinforcement learning problems [6, 
10], numerous training cases are essential for 
achieving this goal. Obviously, it is not possi-
ble to construct sensor network entities for the 

TABLE 1. Parameters of the considered sensor networks.

Sensor 
network scale

Sensor coordinate
Spectrum server 

coordinate

Number of nodes under different performance gain (g)
Threshold (Q)

g = 0.1 g = 0.3 g = 0.9

16-node {(x + x, y + y) | 0 ≤ x, y ≤ 3} (1.5, 1.5) 11 4 1 2

24-node {(x + x, y + y) | 0 ≤ x, y ≤ 4, (x, y) ≠ (2,2)} (2, 2) 17 6 1 2.5

36-node {(x + x, y + y) | 0 ≤ x, y ≤ 5} (2.5, 2.5) 25 9 2 4.0

48-node {(x + x, y + y) | 0 ≤ x, y ≤ 6, (x, y) ≠ (3,3)} (3, 3) 33 12 3 5.7

64-node {(x + x, y + y) | 0 ≤ x, y ≤ 7} (3.5, 3.5) 44 15 4 7.6

80-node {(x + x, y + y) | 0 ≤ x, y ≤ 8, (x, y) ≠ (4,4)} (4, 4 ) 56 18 6 9.7
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purpose of training. Instead, we assume that 
the different sensor networks are the instanc-
es of a common model, and we can generate 
the training cases with this model. The rationale 
behind this assumption is that cognitive radio 
networks are most likely to be built in the area 
of high user density, such as some big cities. In 
these areas, the environments are similar, such 
that it is possible to find a generalized model. In 
this article, since the modeling strategy is inde-
pendent of our proposed method, we will use 
a simplified sensor network model to test the 
effectiveness of our proposed method.

Performance Evaluations
In this section, we conduct numerical simula-
tions to verify the performance of our proposed 
approach. We consider sensor networks of dif-
ferent scales, where the sensors are deployed 
in a two-dimensional grid structure with certain 
variations. The coordinate of each sensor is set 
to the form of (x + sx, y + sy), where the inte-
gers x and y are the coordinates of the vertex 
in a regular quadrilateral grid; sx and sy are the 
Gaussian noise with zero mean and variance of 
0.1 to simulate the variations. In each sensor net-
work, the spectrum policy server is located in the 
central area. The communication range of each 
sensor is set to 1.35. We assume that the sensors 
randomly experience three levels of SNR, and 
accordingly, their performance gains are set to 
three different values: 0.1, 0.3, and 0.9. In our 
experiments, the thresholds are set to larger val-
ues as the networks scale up. The reason for this 
setting is that building a large sensor network 
usually aims to obtain high sensing performance. 
Based on this model, we generate 1000 training 
cases and 1000 testing cases for each network 
scale. The parameters of the sensor networks are 
summarized in Table 1.

We train our proposed deep architecture 
with the training cases and apply it to select the 
nodes for the testing cases. Good performance 
is indicated by a low averaged number of the 
selected nodes of all test networks since we 
aim to use as few nodes as possible to improve 
the energy efficiency. In our proposed deep 
architecture, we adopt the Rectifier activation 
function everywhere, and the fully connected 
neural network for the action value calculation 
is designed as a three-layered neural network 
with 32 hidden neurons. In our architecture, the 
feature embedding iteration number (T) and the 
feature dimension (n) can be especially import-
ant since they may directly affect the quality of 
the action representation. To find the values of 
these two parameters that can lead us to rela-
tively high-quality results, we test different com-
binations on the 16-node sensor networks. First, 
we build a group of the proposed deep archi-
tectures and set their feature dimensions and 
embedding iterations to the values listed in Table 
2. Then, with randomly initialized weights, we 
train them with the same training settings and 
test their performance on the testing cases. Since 
the initial weights will affect the final perfor-
mance, we repeat these experiments 20 times. 
The average number of the nodes in the solu-
tions are reported in Table. 2. Based on these 
results, we set the embedding iteration number 

to three and the feature dimension to 32, which 
can generate the best performance.

To better evaluate our approach, we also solve 
the testing cases with a greedy heuristic (GH)-
based approach and a genetic algorithm (GA)-
based approach as comparisons. The idea of the 
applied greedy algorithm is straightforward, which 
always selects the sensor with maximum perfor-
mance gain at each step. The GA-based approach 
is designed based on the priority-based encod-
ing method [15]. In this approach, each sensor is 
assigned a priority value, and the priority values of 
all nodes compose the genetic representation of 
the solution. With this representation, we obtain 
the solution by selecting the legitimate node with 
the highest priority at each step. Accordingly, the 
fitness function is set to the accumulated rewards 
for this GA- based approach.

Figure 4a shows the performance of these 
three approaches. Comparing our proposed 
method to the GH-based approach, it is clear 
that our proposed method always performs bet-
ter for each network scale. Furthermore, we find 
a performance improvement increasing from 15 
percent to 28 percent as the network gets larg-
er. On the other hand, the GA-based approach 
achieves comparable performance. For the 
16-node networks, it even performs slightly bet-
ter than our method. However, when we use 
these two methods to solve the test cases, there 
is a great difference in terms of the computa-
tion time, which is revealed in Fig. 4b. It should 
be noted that the computation time of the 
GH-based approach is not included because it 
is almost invisible compared to the other two. 
From Fig. 4b, we can observe that the time con-
sumption of our method is obviously less than 
that of the GA-based approach. In addition, this 
advantage enlarges as the network scales up.

The experiments show some interesting results. 
For the small-scale networks, where the sensor 
combinatorial problem is relatively simple, the 
advantage of our DRL-based approach is not 
very distinct. It is likely that with the GH-based 
approach, we can find an adequate solution. More-
over, the GA-based approach can provide us an 
equally good or even better result with acceptable 
computation time. However, as the sensor net-
work scales up, the solution space experiences an 
exponential increase. The probability of finding a 
good solution with the GH-based approach can 
be low in this case, while the GA-based approach 
takes a long time to search in the huge solution 

TABLE 2. The average number of selected nodes by the proposed deep archi-
tectures with different feature dimensions and embedding iteration num-
ber. The highlighted underlined numbers represent the best performance 
under each embedding iteration number.

Embedding iteration 
number (T)

Average number of selected nodes under different feature dimension (n)

n = 8 n = 16 n = 24 n = 32 n = 40 n = 48

T = 1 10.77 10.20 9.66 9.94 9.92 10.29

T = 2 10.10 9.77 9.67 9.41 9.26 9.53

T = 3 10.08 9.36 8.75 8.28 8.48 9.02

T = 4 10.37 10.38 9.25 8.76 8.79 9.14

T = 5 9.85 9.84 10.01 9.82 9.24 9.33
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space. On the other hand, our trained deep archi-
tecture achieves a good balance between solution 
quality and computation time. These results clearly 
demonstrate the superiority of deep learning in 
solving the highly complex problem.

concLusIon And future worK
In this article, we develop a deep learning based 
approach to improve the energy effi  ciency of dis-
tributed cooperative spectrum sensing for sen-
sor-aided cognitive radio network. A sequential 
sensor selection method has been designed to 
find a legitimate subset of sensors that can not 
only fulfill the target sensing performance, but 
also guarantee the topology requirement of the 
distributed sensing algorithm. Our deep learning 
architecture leverages a graph neural network 
and reinforcement learning to estimate the action 
quality in the sensor selection process. Simulation 
results under diff erent network scales demonstrate 
the eff ectiveness of our proposed approach.

As a promising research topic, there are 

many interesting future research directions that 
can be considered. For instance, in our current 
study, we consider the sensor network topology 
to be a two-dimensional grid structure with cer-
tain variations. Therefore, it would be interesting 
to investigate how the proposed method can be 
generalized to other network topology structures. 
Also, the proposed energy-effi  cient spectrum sens-
ing scheme is obtained through a globalized plan-
ning style, which requires the related parameters 
of each sensor, such as channel gain, noise level, 
and signal strength, to be known. However, these 
parameters may be uncertain over time with the 
change of the surrounding environment. Therefore, 
distributed real-time learning will be critical for this 
approach to be applicable to practical communica-
tion systems in reality.
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FIGURE 4. Performance comparison under diff erent network scales. In a), the x-axis denotes the number 
of nodes in the test network, and the y-axis shows the average number of nodes selected by the three 
comparative approaches: GH, GA, and the proposed DRL. The performance for each network scale 
is based on the average of 1000 testing cases. In b), the pie charts show the computation time (in sec-
onds) of the GA-based approach and the DRL-based approach.
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Our deep learning 
architecture leverages 
a graph neural network 
and reinforcement 
learning to estimate the 
action quality in the 
sensor selection pro-
cess. Simulation results 
under diff erent network 
scales demonstrate the 
eff ectiveness of our 
proposed approach.
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