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ABSTRACT: We revisit the theory and phenomenology of scalar electroweak multiplet ther-
mal dark matter. We derive the most general, renormalizable scalar potential, assuming
the presence of the Standard Model Higgs doublet, H, and an electroweak multiplet ® of
arbitrary SU(2), rank and hypercharge, Y. We show that, in general, the ®-H Higgs portal
interactions depend on three, rather than two independent couplings as has been previously
considered in the literature. For the phenomenologically viable case of Y = 0 multiplets,
we focus on the septuplet and quintuplet cases, and consider the interplay of relic density
and spin-independent direct detection cross section. We show that both the relic density
and direct detection cross sections depend on a single linear combination of Higgs por-
tal couplings, Aeg. For Aeg ~ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant
fraction of the observed DM relic density.
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1 Introduction

Determining the identity of the dark matter and the nature of its interactions is a forefront
challenge for astroparticle physics. A plethora of scenarios have been proposed over the
years, and it remains to be seen whether any of these ideas is realized in nature. One hopes
that results from ongoing and future dark matter direct and indirect detection experiments,
in tandem with searches for dark matter signatures at the Large Hadron Collider and
possible future colliders, will eventually reveal the identity of dark matter and the character
of its interactions.

A widely studied possibility of continuing interest is that dark matter consists of weakly
interacting massive particles (WIMPs). An array of realizations of the WIMP paradigm
have been considered, ranging from ultraviolet complete theories such as the Minimal
Supersymmetric Standard Model to simplified models containing a relatively small number
of degrees of freedom and new interactions. In the latter context, one may classify WIMP
dark matter candidates according to their spin and electroweak gauge quantum numbers.
The simplest possibility involves SU(2)7,xU(1)y gauge singlets. Null results from direct



detection (DD) experiments and LHC searches place severe constraints on this possibility,
though some room remains depending on the specific model realization.

An alternative possibility is that the dark matter consists of the neutral component of
an electroweak multiplet, x’. A classification of these possibilities is given in [1]. Those
favored by the absence of DD signals carry zero hypercharge (Y'), thereby preventing overly-
large WIMP-nucleus cross sections mediated by Z° exchange. Tree-level stability of the x°
requires imposition of a discrete Zs symmetry unless the representation of the electroweak
multiplet is of sufficiently high dimension: d=5 for fermions and d=7 for scalars. These
scenarios with sufficiently high dimension representation go under the heading “minimal
dark matter”.

In this work, we consider features of scalar electroweak multiplet dark matter ®, in-
cluding but not restricting our attention to minimal dark matter (as conventionally de-
fined). The phenomenology of scalar triplet dark matter, involving a multiplet transform-
ing as (1, 3,0) under SU(3)¢c and electroweak symmetries, has been considered previously
in refs. [2-9]. Extensive studies for other electroweak multiplets of dimension n have been
reported in refs. [10-35]. The authors of ref. [34] considered the Inert Doublet model and
the n = 3,5,7 scalar electroweak multiplets and discussed the impact of non-vanishing
Higgs portal interactions on the relic density, spin-independent dark matter-nucleus cross
section, gy, and indirect detection (ID) signals. Ref. [35] also considered the impact of
Higgs portal interactions on the relic density and og; but did not analyze the implications
for indirect detection. The latter study also focused on a relatively light mass for the dark
matter candidate, for which it would appear to undersaturate the relic density.

In what follows, we revisit the topic of these earlier studies, taking into account several
new features that may require modifying some of the conclusions in refs. [34, 35]:

e We find that the scalar potentials V(H,®) given in refs. [34, 35] are not the
most general renormalizable potentials and that, depending on the representation
of SU(2).,xU(1)y there exist one or more additional interactions that should be in-
cluded. For the Y = 0 representations, the ®-H interaction relevant for both the
relic density and DD cross section involves an effective coupling Aeg that is linear
combination of two of the three possible Higgs portal couplings. The specific linear
combination is representation dependent.

e We update the computation of og; taking into account the nucleon matrix elements
of twist-two operators generated by gauge boson-mediated box graph contributions
as outlined in refs. [36-39]. We note that ref. [35] considered only the Higgs portal
contribution to ogr and did not include the effect of electroweak gauge bosons. We
find that the gauge boson-mediated box graph contributions are smaller in magnitude
that given in ref. [34], which used the expressions given in ref. [1]. In general, the
Higgs portal contribution dominates the DD detection cross section except for very
small values of A.g.

e The presence of a non-vanishing Aeg can allow for a larger maximum dark matter
mass, M, to be consistent with the observed relic density than one would infer when



considering only gauge interactions. For the cases we consider below, this maximum
mass be as larger as O(20) TeV for perturbative values of Aeg.

e For moderate values of the Higgs portal couplings, the spin-independent cross section,
scaled by the fraction of the relic density comprised by ®°, is a function Aeg and M.
The present DD bounds on ogp generally require M < 5TeV for perturbative values
of Aeg — well below the maximum mass consistent with the observed relic density.

In what follows, we provide the detailed analysis leading to these conclusions. For
the structure of V(H, ®) we consider ® to be a general representation of SU(2)z,xU(1)y.
Previous studies have considered in detail electroweak singlets (n = 1), doublets (n = 2),
and triplets (n = 3). In all three cases, stability of the DM particle requires that one impose
a discrete symmetry on the Lagrangian. Going to higher dimension representations, it has
been shown in ref. [1] that for n = 4, stability of the neutral component also requires
imposition of a discrete symmetry, while for n = 5, the neutral component can only decay
through a non-renormalizable dimension five operator with coefficient suppressed by one
power of a heavy mass scale A. In the latter case, it is possible to ensure DM stability
on cosmological time scales by either imposing a discrete symmetry or by choosing A to
be well above the Planck scale. At n = 7, the first non-renormalizable, decay-inducing
operator appears at higher dimension, and DM stability at tree-level may be ensured even
without imposition of a discrete symmetry by choosing A below the Planck scale. It was
subsequently noted in refs. [40, 41], however, that there exists a dimension five operator
leading decay of the neutral component of the septuplet at one-loop level. For a A at the
Planck scale and septuplet mass of O(10) TeV, the septuplet would not be sufficiently stable
on cosmological time scales to provide for a viable DM candidate. Consequently, one must
again either choose a trans Planckian cutoff or impose a stabilizing discrete symmetry.

With the foregoing considerations in mind, we focus on the n = 5 and 7 cases for
purposes of illustrating the dark matter phenomenology. Since the group theory relevant to
construction of V (H, ®) is rather involved, we provide a detailed discussion in appendices A
and B. In section 2, we start with a general formulation, followed by treatment of specific
model cases. Section 3 gives the calculation of the relic density, including the effects of
co-annihilation and the Sommerfeld enhancement. We compute og; in section 4. We
summarize in section 5. Along the way, we point out where we find differences with
earlier studies.

2 Models

We consider the renormalizable Higgs portal interactions involving H and ® for two illus-
trative cases. We restrict our attention to ® being a complex scalar with Y = 0. The form
of the potential for ® being a real representation of SU(2)r with Y = 0 is relatively simple.
The corresponding features have been illustrated in previous studies wherein @ is either an
SU(2), singlet or real triplet. Consequently, we focus on complex representations, using
the n = 5 and n = 7 examples, to illustrate the new features not considered in earlier work.



To proceed, we first introduce some notation. It is convenient to consider both ® and
the associated conjugate ®, whose components are related to those of ® as

Pjm = (—1))7 "] (2.1)

J,—m>

where j refers to the isospin of the scalar multiplet ®. As we discuss in appendix A, ®
and ® transform in the same way under SU(2). The scalar multiplet ® of integer isospin
can be either real or complex. If ® is a real multiplet, there is a redundancy ® = ® such
that the constraint ¢;,, = (—1)7 ~M¢3 _,, should be fulfilled. For complex multiplet, each
component represents a unique field, and it can be decomposed into two real multiplets
as follows

1 - i
A=5(@+®),  B-—

It is easy to verify that both A and B fulfill the realness condition A = A and B = B.
Therefore a general model with a complex multiplet ® is equivalent to a model of two

(@ —@) . (2.2)

interacting real multiplets A and B. Notice that a scalar multiplet ® of half integer isospin
is always complex since the realness condition ® = ® can not be fulfilled anymore. As we
note below, under certain assumptions about the model parameters, the complex scalar
multiplets may reduce to a pair of degenerate real multiplets, allowing for a two-component
DM scenario. Since the case of the real triplet and singlet DM as singlet component DM
have been analyzed elsewhere, we do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody
two-component real multiplet DM scenarios.

One may then proceed to build SU(2), invariants by first coupling ®, ®, H, and H
pairwise into irreducible representations and finally into SU(2), invariants. For example,

(2®), = D TP (2.3)
VTR
which in general is a distinct invariant from (®®), except in special cases when @ is a
real scalar multiplet satisfying ® = ®. We shall denote with (...); a contraction into the
irreducible representation with isospin J throughout this paper. Note that for j = 1/2,
(®®),, vanishes, so that there is only one quadratic invariant in this case as well. Quartic
interactions can be constructed in a variety of ways, such as

((@@)J(EE)J)O, J=0,1,...,2j (2.4)

for ® self-interactions or
(HH), (2®),), (2.5)

with L = 0,1 for the Higgs portal interactions. Note that there exists a third such inter-
action

(FH)() (@), (2.6)

that is distinct from the L = 0 operator in eq. (2.5) for ® being a complex integer represen-
tation. We note that previous studies have not in generally included all three of the possible
Higgs portal interactions. The classification of the ® self-interactions is more involved, and
it is most illuminating to consider them on a case-by-case basis.



2.1 Septuplet

The interactions can be written as

V = +M3(®'®) + {ME(®®), + hc.} — p2H'H + N(H'H)? + X\ (H'H)(®'®)  (2.7)
+ X ((H )1(‘1)‘1))1)0 + [N3(HH)o(®®), + h.c],

where H is the Higgs doublet and ® is a complex electroweak septuplet with

3
3_
7 Z m¢3,m¢3,—m
m=

7 (2¢3,303,—3—2¢3203,—2 + 2®3 103, _1—P3,0P30) (2.8)
(BH), = \}5 (B H* + (H)* H] (2.9)
and
(H°)*H*
(HH), = 7 [(H®)*H® — (H")*H™] (2.10)
—(H*)*HY
1
=A
(D), = | —vIv3 - met ¢ (2.11)
1 14 £em=-3 3,m¥3,m .
LB
with

A= +\/ﬁ¢§7—3¢3,—2 + \/5%@,—2(?3,—1 + \/‘E¢§,—1¢3,0 + \/‘E¢§,0¢3,1

+ \/?T5¢§,1¢3,2 + \/ﬁ¢§,2¢3,3 (2.12)
= V215 35— V355 _13_o — VA25 0ds 1 — V4285 183
— V3565 9051 — V2105 303 (2.13)

After electroweak symmetry breaking, wherein
Re H® — (v+h) /V?2 (2.14)

one obtains the ® mass term

o (05, 45, M3+ 30?4 dokage? (-0 {omd 4 T (g,
mass 3,k ¥3,—k 4(_1)k+1 {QM%* L)‘S } M,?l+%)‘1”2 4\ﬁ]€)\211 ¢3,—k

V2
(2.15)

By setting ¢30 = (¢3;(0,4) +i¢3;(0,_))/\/§, the neutral scalar mass matrix can be written as

M3 + 500% — FRe(ME) — =Re(Ag)v? FIm(ME) + =Im(A)v?
%Im(Mg) + ﬁlm(/\?))vz M3+ I ?+ }Re(MQ) \/lﬁRe()\?))
(2.16)



in the basis (¢3;0,1), ®3;(0

. Then we have the mass eigenvalues

20M3 ) 2|2 k2204
2 _ 3 2
- = M3 + )\111 + \/‘ \f \F 579 (2.17)
1 QM2 w2
M? = M2+ A 02+ |8 3 2.18
$3,(0,+) ATt 2 1v \ﬁ + /14 ( )

where for each isospin projection k, the “+” denotes the upper or lower sign in egs. (2.17),
(2.18) and where the notation ¢3 11 indicates the mass eigenstate.
From these expressions we conclude that

e If Ay is nonzero, there will be no dark matter as one may have Mi < M? for

3 —k Qgs;(o,—)
k # 0. One needs g ~ 0, otherwise there may exist long-lived charged scalars.
e For Ay = 0, we have two septuplet mass eigenstates that are linear combinations of
the real multiplets A and B introduced above:

¢33 ¢33
i?§,—2 Z‘(ng
1 93,1 1 P31
$1= 75 | 0s00 | S8= 5| a0 (2.19)
93,-1 P31
i3~ 939
$3,-3 %5
The corresponding mass eigenvalues are
1 2 1
2 = 2 2 12 2
Mg, s, fMA+§Alv + Nei \/ﬁ)\?’v 7

where the lower (upper) sign corresponds to S4 (SB).

e In general, the lightest of the neutral fields ¢3 0,+) and qb3 ) denoted here as the real
scalar y — will be the DM particle. Radlatlve correctlons Wlll give rise to the mass
splitting between the neutral and charged components. In the limit M, > MW 75
~ Q*AM, with AM = (166 & 1) MeV [1] being the mass splitting

between the Q=1 and 0 components. Note also that for vanishing Mp and A3 (as

one has Mg —

well as vanishing \y), S4 and Sp will be degenerate. In this case, one may choose
the mass eigenstates to be the real fields A and B introduced above, corresponding
to a two-component electroweak multiplet DM scenario.

From the full scalar potential, one may obtain dark matter self interactions

L = N x* (2.20)

which may be important in solving the core-cusp problem [42, 43]. The relevant terms are

2J

2J
Sk (90), (3 D)) +Z{/{k (BD), (D)), +n%((5q>)k(q>¢)k)o+h.0.} (2.21)
J=0



Note that each component of (®#®); (j =0,...,6) is determined by

((I)(I))jJn = Z C§1z1;3,m2¢3,m1¢3m@ . (222)

mi,ma2

From the property of Clebsch-Gordan coefficients:

Cji%l?]’?»mQ - (_1)j7]17JQCJ]':::n2;j1,m1 ) (2'23)
If j — j1 — j2 is an odd (even) integer, the corresponding contraction of two ® fields
is antisymmetric (symmetric). Consequently, (®#®),, (#®); and (®P), vanish. For the
most general case leading to the mass-squared matrix in eq. (2.16), the expression for
the DM quartic self interaction is rather involved and not particularly enlightening. For
completeness, in appendix C we give an expression for the quartic interactions in terms of
$3,(0,4), from which one can determine the DM self interaction by expressing the ¢z, +)
in terms of the mass eigenstates. To illustrate, we give here the result for the special case
of real M% and A3 with 2\/§M123 + \30? < 0:

< 1 4
A\ = + (ko + 2Re(kg) + 2Re(kg)] + YN [k2 + 2Re(kh) + 2Re(ky )]
100

23113

where the factor 4 comes from the fact that ¢30 = (¢3,0,4) + i¢3;(07_))/\/§. In general,

6
+ — [K4 + 2Re(r}) + 2Re(x])] +

77 (k6 + 2Re(kf) + 2Re(k)] ,  (2.24)

Aself depends on 12 free parameters in eq. (2.21). We defer an exploration of the possible
additional physical consequences of these independent interactions to future work.

2.2  Quintuplet

The analysis for the electroweak scalar quintuplet dark matter is similar to the septuplet
case. For purposes of completeness, we include some of the important features below. The
complex quintuplet scalar field with 7 =2 and Y = 0 is denoted by

$2,2
®2,1
b = 2,0 . (2.25)
2,1
$2,-2

The mass term and interactions of quintuplet are the same as those of the septuplet given
in eq. (6), where we set A2 = 0 to ensure the presence of a stable neutral component. To
derive the mass eigenvalues we consider the contractions of the two scalar multiplets ®®.
According to general decomposition rule, one has

G50 — 209, 1021 + 2¢2 2622

((I)(I))O = NG

(2.26)



By setting ¢20 = (o’ +i')/V/2, the mass matrix of the neutral scalars can be written as

}<o/ ﬁ) MA—i— A v? +\[ReM{3 \ﬁ ()\3) —I%Im(]\g%)—l—\/%lmg)%)ﬁ o
2 \/glm(MB)+\/EIm()\3) Mi—i—i)\lz}Q—ﬁReMé—i-\/T—oRe()%)vQ e
(2.27)
The mass eigenvalues are
2 2 1 2 2 2 1 2
MO/,B/ - MA + §A1’U + %MB — \/TT)A?’U (228)

The self-coupling can be derived following the same strategy of the septuplet case, and
we give the results in appendix C.

3 Relic density

In this work, we assume that dark matter in the early Universe was in the local ther-
modynamic equilibrium. Decoupling occurred when its interaction rate drops below the
expansion rate of the Universe. The corresponding evolution of the dark matter number
density n, is governed by the Boltzmann equation:

n+3Hn = —<O"UM¢Her>(n2 — H%Q) , (3.1)

where H is the Hubble constant, TUMgller 18 the total annihilation cross section multiplied
by the Mgller velocity, vnigier = (Jv1 —v2|* — |v1 X v2|2)1/2, brackets denote thermal average
and ngq is the number density at thermal equilibrium. It has been shown that

(oUMgller) = (OVIab) = %[1 + K7 (2)/ K3 ()] (0 vem) » (3.2)

where © = m/T, K; are the modified Bessel functions of order i.

In a general framework that includes co-annihilation, the dynamics depend on a set
of species {x;} with masses {m;} and number densities {n;}. It has been shown that the
total number density of all species taking part in the co-annihilation process, n = >, n;,
obeys eq. (3.1). In this case (cumgler) can be written as [44, 45]

f dSSS/QK ( ) Zz] ’szg;gj 017( )

A [0 2150 ()|

lgm2

(oUMgller) = (3.3)

where g; is the number of degrees of freedom, s is the Mandelstam variable, o;; = o(xix; —
all), and the kinematic factor B¢(s,m;,m;) is given by

By = \/[1 _ (mi+my)® mj)T [1 - (mi = my)” _Smj)Q] . (3.4)

The number density of the dark matter at the end will be n,, = n. The relic density of the
dark matter today can be written as

1.66T3\/gx (T \> [ [*f -1
Qxh2 = Wgcm <T:> |:/O dx<0'UM¢ller>(x)j| (35)




where peit = 1.05 % 10_5(h2) GeV/ em? is the critical density, M, denotes the Planck mass,
T, and T, are the present temperatures of photon and dark matter, respectively. According
to entropy conservation in a comoving volume, the suppression factor (7} /T)3 ~ 1/20 [46].

3.1 The single species case

We first calculate the dark matter relic density assuming only a single species, i.e., including
no co-annihilation. To show the interplay between the Higgs portal and gauge interactions
in the annihilation dynamics, we compute the relic density analytically. For completeness,
we show the thermal average of various annihilation cross sections:

\/mQ—m2 —4m? + 5m2
"y M O 2y (3.6)

<Uv>hh = Agﬂf

32wm? 2567Tm3 4 /m?2 — m,2Z
m2(m2 _ m2)3/2
(o) = N { s + M(0)() (3.7)

8mm3(4m? — m3)?

V/m2 —m2 (4m* — 4m>m2, + 3m2) n AQ(W)<Q]2>}

(00) 17 = Mo { Vm? = mi(dm” — dmm; + 3ms) A2<Z><v2>} (3.

12
<O’U>WW = /\ei'f { 87Tm3(4m2 — m}%)g

99%v° cng’t

A
e 16mm?2(4m? —m32)  4rm?

(3.9)

where Ao is an effective coupling given by a linear combination of the independent Higgs
portal couplings. Assuming real M?B and A3 one has

At \/g)\g, septuplet

) (3.10)
AL F \/g)\g, quintuplet

)\eff =

where we have set A2 = 0 as above; where the upper (lower) signs correspond to 2\/§Mé +
A3v? being negative (positive); where the parameter

(n? —1)2
= 7 A1
Cn 64 (3 )
accounts for the effective couplings of the dark matter with the W boson; and where
mZ\/m2 — m2(—24m* — 5m?m7 + 2m2(m3 + 18m7))
Ay (t) = (3.12)

32wm3(4m? — m3)3
—64m8 + 176m°m?2 — 15m2mS — 4m*(3mIm2 + 52m2) + 12m?(2m2m + 9Im9)

647m?(4m? — m3)3/m2 — m?

AQ (U) =

(3.13)
The present relic density of the DM is simply given by p, = Mmn,. The relic density

can finally be expressed in terms of the critical density
107 x10°GeV ™ 'zp
Mypi\/9+(a + 3b/zp)

Qh? (3.14)
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Figure 1. Dark matter relic density as a function of the dark matter mass. The solid (red), dashed
(blue), and dot-dashed (green) curves correspond to Aeg = 0,2, 5, respectively. The horizontal line
is the observed relic density.

where @ and b, which are given in egs. (3.6)—(3.9), are expressed in GeV~2 and g, is the
effective degrees of freedom at the freeze-out temperature Tp, xp = M/Tr, which can be
estimated through the iterative solution of the equation

145 g MMpl(a +6b/zR)

.’L‘FZIII

where ¢ is a constant of order one determined by matching the late-time and early-time
solutions. It is conventional to write the relic density in terms of the Hubble parameter,
h = Hp/100km s~! Mpc~!. Observationally, the DM relic abundance is determined to be
Qh? = 0.1186 4 0.0031 [47].

We plot in figure 1 the dark matter relic density as the function of dark matter mass.
The red, blue and green lines correspond, respectively, to Aeg = 0, 2, and 5. The top (bot-
tom) panel gives the septuplet (quintuplet) case. To obtain the correct relic density, one has
M = 9.17 TeV for the septuplet and M = 4.60 TeV for the quintuplet by taking Aeg = 0.

3.2 Co-annihilation

The mass splittings between the neutral and charged components of the septuplet is about
166 MeV [1], so the effect of co-annihilation should be considered. The relevant processes
are listed in table. 1.

The eq. (3.3) can be simplified as [44]

A. .
(oUMglter) = Z = (3.16)

n
ij e

~10 -
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Figure 2. Contours of the dark matter relic density (222 = 0.1186) in the M — A plane. The solid
line (red) corresponds to the co-annihilation case, the long-dashed line (blue) represents the one-
species scenario. The short-dashed (black) line includes the Sommerfeld enhancement effect (see
section 3.3 below). The top (bottom) panel describes the septuplet (quintuplet) dark matter case.

Process Mediator
s — channel | t — channel | u-channel | 4P
sTRs™Q — WHWw— h, Z,~ sQ~1 s7@FL | 4P
stRs=Q+ W+ Z(y) w+ sQ-1 5@ 4P
sTRs @ — ZZ(vy, Z7v) h 5@ 5@ 4P
sT@s=Q — ff h W, Z,~
sTRs=Q — hh h sTQ 5@ 4P
sTRs@ — hZ(y) Z sT@ 5@
$Qg= Q@+l 5 pwvt 1%7%4 s@ g—@+1

Table 1. A complete set of process relevant to the co-annihilation of the scalar multiplet dark
matter. Here, 4P represents four point interactions, while, s? denotes the component of the DM
mutliplet having charge Q.

where neq in the denominator is

T mg
Mg = 53 > gim? Ko (%) , (3.17)
(2

and A;; in the numerator can be written as

/ds\[ﬁwgzng”Kl (‘E) , (3.18)

T
Aij = o T

with W;; being a dimensionless Lorentz invariant, defined as W;; = 4E¢Eja,'jv,'j.1

Lo, is defined by vij = +/(ps - p;)? — mZm?/E; E; [48], where E; and p; are the Energy of four-momentum

of particle 1.

- 11 —



To illustrate the impact of including co-annihilation processes, we plot in figure 2
the value of M. needed to reproduce the observed relic density as a function of the DM
mass. The upper (lower) panel corresponds to the septuplet (quintuplet) case. The dashed
blue line gives the result for single species annihilation case, while the solid red curve
indicates the result including co-annihilation. We observe that the presence of more species
initially in equilibrium with the DM requires a larger effective interaction strength to avoid
over-saturating the observed relic density. The reason can be seen from eq. (3.16), for

2)2

which the denominator can be approximated as neq ~ (2j + 1) o,

with j and neq,s
being, respectively, the total isospin of the multiplet and the number density of a single
component in equilibrium. As j increases, so does neq. On the other hand, the numerator
factor, Zij A;; only accounts for the combinations of multiplet components that are able
to annihilate, and it does not grow as fast as neq with increasing j. Consequently, one
must (a) increase Aeg (for fixed M); (b) decrease M (for fixed Aeg); or (c) introduce some
combination of both in order to maintain the total cross section as compared to the single
species scenario. We refer the reader to ref. [49] for a similar discussion regarding the

n = 6, 8 scalar multiplet dark matter cases.

3.3 Sommerfeld enhancement

Now we investigate the effect of the non-perturbative electroweak Sommerfeld enhance-
ment [50-52], where the gauge bosons mediate an long-range effective force between the
annihilating DM particles. To that end, we first observe that in the SM, there is no true
phase transition between the electroweak symmetric phase and the broken phase, but the
cross over is located at T, = 159+ 1 GeV [53]. Above this temperature, which can be trans-
lated to a critical dark matter mass M, ~ 3.2 TeV (assuming a freeze out temperature set
by zp ~ 0.05 with Tp ~ T¢), electroweak symmetry is restored; W and Z bosons can be
taken as massless particles; and triple scalar couplings go to zero as they are proportional to
the vacuum expectation value (vev) of neutral component of the Higgs doublet. According
to the calculation performed in the last subsection, both the septuplet and the quintuplet
DM are heavier than M, for a sizable A 4, so we take the massless gauge boson limit and
vanishing triple scalar coupling to evaluate the Sommerfeld enhancement.

Note that we do not consider here the impact of DM-DM bound states, which can lead
to an additional enhancement of the annihilation cross section for certain values of M. In
general, the impact of a bound state on DM annihilation dynamics is most pronounced
when the temperature is < Ep, where Ep is the binding energy. As analyzed in detail in
ref. [54], however, the Sommerfeld enhancement is plays the most significant role in setting
the relic density at temperatures well above Ep. Thus, one would expect the presence of
the bound states to have a subdominant effect on the overall relic density. An exception
occurs in the case of the real scalar triplet, where the first bound state occurs for a triplet
mass near the value that leads to relic density saturation. For the higher dimensional
representations, the presence of bound states introduces some structure in the dependence
of 2, on M but does not affect the overall trend. Consequently, neglect of the bound state
effects appears to be reasonable in the present context, where we focus on the overall trends
as a function of M and A_;. We defer a detailed study of the bound state effect to future
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Figure 3. Sommerfeld enhancement factor for the quintuplet and septuplet as the function of

work, wherein we will also consider the effects of iterated di-Higgs exchange associated
with the quartic self-couplings in the presence of non-vanishing vevs.

To proceed, we consider the Coulomb potential associated with the electroweak gauge
bosons is given by [55]

1% = [(2N +1)2 +1 — 2n?] (3.19)

- 327

a g2
r

where N is the total isospin of the initial state containing two annihilating DM particles
and n is the dimension of the SU(2), irreducible representation of the DM. Since DM only
annihilates into SM final states, one has N = 0,1,2, depending on the specific process.
Of these possibilities, which there exist more N = 0 final SM final states that those with
N = 0,1, so we concentrate on the N = 0 case. Note that for n > 1, the corresponding
potential is attractive.

The Sommerfeld enhancement factor S = 0/0perturbative for the Coulomb potential

can be written as 1
a

TTBT—exp(%)

where [ is the relative velocity between the annihilating particles (note that a < 0 for

S = (3.20)

N =0 and n > 1). For a s-wave annihilation, one can use the Sommerfeld enhancement
averaged over the thermal distribution, defined as [56]

23/2
2y/m

where x = M /T with T the temperature.
In figure 3 we show the thermal average of the Sommerfeld enhancement as the func-

(S) = /562 exp (—mﬁ2/4) dg (3.21)

tion of z. A numerical calculation gives (S) ~ 3.4(septuplet), 2.1 (quintuplet) at x = zp,
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which will be used in the calculation of the dark matter relic density. As can be seen
from eq. (3.19), a higher dimensional representation for the multiplet gives rise to a larger
enhancement factor. The resulting impact of the Sommerfeld enhancement is shown in fig-
ure 2, where the dotted black line corresponds to the case of including both co-annihilation
and Sommerfeld enhancement effects. As expected, the presence of this enhancement coun-
teracts the effect of coannihilation, allowing for a smaller value of A (for fixed M) or larger
value of M (for fixed Acgr).

4 Direct detection

For conventional Higgs portal dark matter models, constraints from dark matter direct
detection are quite severe. The parameter space of these models is strongly constrained
by the limits obtained by the LUX [57], PandaX-II [58], and XenonlT [59] experiments.
In what follows, we consider how the presence of the Higgs portal interactions affects the
interpretation of these experimental results. To that end, we consider all the terms in the
effective Lagrangian for low-energy DM interactions with SM particles relevant to the scalar
DM scenario considered in this paper. In the limit Mpys > My > M,, one has [36-39)

1 1 _ Ir s o
‘Ceff = §Aeﬁm—%<b%’oqmqq + ﬁ%q)nyo(zﬁ“)(z@ )@“qOOZV
where . ,
Of, = 54 (Dwy + Dy — 2gp,ulp> q (4.1)

is the twist-two quark bilinear with coefficient function [60]

(4 — w)(2 + w) arctan 2b,, //w
b } (4.2)

o3 n?—(4Y?241)
8m12/v 4

and with w = m¥,/m3, b, = /1 —w/4.

We note that the interaction involving the twist two operator arises from the ex-

fr {wlnw+4+

change of two massive electroweak gauge bosons between the DM and quarks inside the
nucleus. We also observe that this contribution differs from what appears in ref. [1], which
did not include the effect of the twist-two operator. However, we have confirmed using ex-
plicit calculation that the same computation of the two-boson exchange diagrams involving
fermionic rather than scalar DM yields the same result as given in refs. [36, 37]. To our
understanding, the authors of ref. [34] utilized the expressions in ref. [1] when computing
the spin-independent direct detection cross section. Consequently, our numerical results
given below differ from those of ref. [34].
For DM-nucleon scattering, the matrix element can be written as

Aef 3
My = 2m3 <fN2 + 4fo11\DfDF> ) (4.3)
My,

where fy =~ 0.287(0.284) [61] for proton(neutron); where fiP¥ = 0.526 [62] is the second
moment of the nucleon (proton or neutron) parton distribution function (PDF) evaluated at
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Figure 4. DM-nucleus scattering cross section as a function of the dark matter mass for n = 7.
The solid (red), dotted (blue), and dashed (green) lines correspond to Aeg = 2, 1, 0 respectively.
The gray, purple and black long dashed lines give the exclusion limits of LUX, PandaX-II and
XENONIT respectively.

i = M,; and where we have taken a normalization appropriate to non-relativistic nuclear
states. We note that the expression (4.2) for fr is u-independent. Inclusion of NLO QCD
corrections in the DM-parton scattering amplitude will generate a u-dependence in fr that
must compensate for the scale dependence of the PDF. We defer a detailed discussion of
this feature to ref. [60]. The spin-independent cross section then can be written as

e M PRy
ST 16 (my +me)? 4n m2

I 3foEDF>2 (14)
my 4
where = myM/(my + M).

In figure 4, we plot as a function of M the cross section of the DM-proton cross
section, scaled by the fraction of the relic density corresponding to the value of M as
obtained in our computation of section 3. Taking the septuplet for illustration, the dashed
solid (red), dotted (blue), and dashed (green) lines correspond to Aegr = 2, 1, 0 respectively.
The gray, purple and black long-dashed lines give the exclusion limits of LUX, PandaX-
II and XENONIT respectively. We observe that the Higgs portal interactions dominate
the scaled spin-independent cross section for a sizable Agg. The contribution of twist-2
effective operator, indicated by the A.g = 0 curve, becomes relatively sizable only for
heavy DM, though its impact still lies well below the sensitivity of the present direct
detection experiments. The situation is different in the evaluation of the relic abundance,
where the gauge interactions dominate the annihilation. As a result, one can easily find
the parameter space that may give rise to an observed relic abundance and a small direct
detection cross section. Conversely, including the effects of both co-annihilation and the
Sommerfeld enhancement, we observe that saturating the observed relic density and evading
the present direct detection limits require a rather small value of |Aeg|. To illustrate,
consider the septuplet case. From figure 1 we see that obtaining the relic density requires
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M in the vicinity of 9 TeV for vanishing Aeg. On the other hand, for A\ = 1, the present
direct detection results constrain M to be no larger than about one TeV — a value for
which the fraction of the relic density would lie well below the observed value. Looking
ahead to next generation direct detection experiments and assuming that the only thermal
WIMP is the neutral component of the septuplet, we conclude that the observation of a
non-zero signal would likely require the presence of a significant, non-zero Aeg. In this case,
the septuplet would comprise at most only a modest fraction of the relic density, with the
remaining corresponding to a non-thermal and/or non-WIMP species.

5 Conclusions

In this paper we have revisited earlier analyses of scalar electroweak multiplet dark matter.
After presenting the most general, renormalizable potential for a electroweak multiplet
® that interacts with the SM Higgs doublet, we show that in general the Higgs portal
coupling depends on three independent parameters in the potential. In order to ensure
that the neutral component of ® yields the lowest mass state, ensuring its viability as a
DM candidate, one of these couplings must be vanishingly small. The resulting dynamics
of DM annihilation and DM-nucleus scattering then depend on a single effective coupling,
Aef- After evaluating the DM relic abundance by considering effects of both co-annihilation
and Sommerfeld enhancement, we calculated for the first time the spin-independent direct
detection cross section by taking into account the contribution of the twist-2 effective
operators, which turns out to be important for a heavy scalar DM. Focusing on the
electroweak quintuplet and septuplet for illustration, we find that for Aeg ~ O(1) present
DM direct detection limits imply that the electroweak multiplet mass scale M most be <
1TeV. In this case, the neutral electroweak multiplet scalar would comprise a subdominant
component of the DM relic density.
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A SU(2) group theory
The Lie algebra of the SU(2) group is specified by

[Ji7 J]] - ieijkjka iujvk = 17273 . (A]')
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SU(2) has only one Casimir operator
JE=Jt+ T3+ T3 (A.2)
We can define familiar raising and lowering operators:
Jr=J1xiJs. (A.3)
They satisfy the following commutation relation
[J3, Ju] = £J4 . (A.4)
The eigenstate |j,m) can be labelled by the eigenvalues of J? and Js:

J?|j,m) = j(j +1)[j,m),
J3lj,m) = mlj,m), (A.5)

where j can be any half integer, and m = —j,—j + 1,...,7 — 1,4. The different states
within a multiplet can be generated by acting with the raising and lowering operators,

Jelj,m) = /(G Fm)(j £m+1)|jm+1) (A.6)

Consequently we have

G| T lg,m) = /(G — m)(G +m+ 1) S st
<ja m/|J, |.]> m> = \/(J + m)(] —-—m+ 1) 5m’,mfl (A7)

We can form a 2j + 1 representation by choosing the following 25 4+ 1 orthogonal states as
base vectors:

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
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The representation matrices for the generators J,, J_ and J3 are

02 0 0o ... 0 0
0 0 V22j—1) 0 ... 0 0
0 0 0 6G_-1.. 0 0
Je=1 ... .. ], (A.9)
0 0 0 0 ...\ 202j-1) 0
0 0 0 0 0 VI
0 0 0 0 0 0
0 0 0 0 0 0
Vi 0 0 0 0 0
0 V22j-1) 0 0 0 0
=1 o 0 6(j — 1) 0 0o o0 |, (A.10)
0 0 0 22, —1) 0 0
0 0 0 V250
i 0 0 0 0
0 j—1 0 0 0
2
7 0 0 (A.11)
0 0 0 ... —j+1 0
0 0 0o ... 0 —j

The representation matrix for each group element of SU(2) can be expressed as

3
exp <z Z aka> ; (A.12)

k=1
where ai(k = 1,2, 3) are real parameters and
1 1
Ji = §(J+—|—J_), JQ:—§(J+—J_) . (A.13)
It is well-known that SU(2) has a unique irreducible representation for each spin j. Hence
each representation should be equivalent to its complex conjugate representation. We find

the unitary transformation relating representation and its complex conjugate is

0 0 .0 1
0 0 ~1 0

v=| .. NUREURE (A.14)
0 (-1)%-1 0 0
(—1)2% 0 0 0

which fulfills Vi, = (—1)i+15i+k,2j+2. Note that the unitary transformation V reduces to
the familiar form for j = %,

0 1 1
V_<—1 O)’ for =5 (A.15)
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One can easily check that
VIVt = U, VIV =3, (A.16)
which leads to
VLV =0, k=1,2,3. (A.17)

Consequently we have

3 * 3
\% <exp (iZaka>> VTl =exp (z’Zaka> , (A.18)
k=1 k=1

which implies each representation and its complex conjugate are really equivalent, and the
similarity transformation is indeed given by V. As a result, for a SU(2) multiplet ® in the
representation j with

i
®jj—1
®jj—2

o= : (A.19)

Oj—j+1
bj—j

where the subscript denotes the eigenvalues of J? and J3. The state ® would transform in

the same way as ® with

o
2=
_ Ak
J—3+1
*

O =V = ' : (A.20)

(12,
(126

Note that it is very convenient to construct SU(2) invariant from ® instead of ®*.

B The renormalizable scalar potential of Higgs and a scalar multiplet

If we extend the standard model by introducing a scalar electroweak multiplet ® of isospin
Jj, the one-loop beta function of SU(2) gauge coupling for the Standard Model would be

modified into
3 19

8lg) = 10 | =6+ iU+ D@+ 1)) (B.1)

We can see that 3(g) remains negative only for j < % For 57 > 2, it becomes positive and
hits the Landau pole. For instance adding a scalar multiplet with isospin j > 5 will bring
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the Landau pole of SU(2) gauge coupling at A < 10 TeV and it is even smaller A < 180 GeV
for j > 10. Therefore, perturbativity of gauge coupling at the TeV scale constraints the
isospin of the multiplet to be j < 5.

Another bound on the size of a electroweak multiplet is set by perturbative unitarity of
tree-level scattering amplitude. In refs. [63, 64], the 2 — 2 scattering amplitudes for scalar
pair annihilations into electroweak gauge bosons have been computed and by requiring
zeroth partial wave amplitude satisfying the unitarity bound, it was shown that maximum
allowed complex SU(2) multiplet would have isospin j < 7/2 and real multiplet would have
j < 4. In the following, we shall report the most general renormalizable scalar potential
V(@) for ® and the interaction potential V(®, H) between ® and H. The hypercharge of
® is denoted by Y.

B.1 Integer isospin j

The electroweak multiplet ® has 25 + 1 component fields, and the coupling of each com-
ponent of ® to the Z boson is proportional to T3 — @ sin? @y, with the electric charge
Q = T3+ Y/2. If the hypercharge is nonzero Y # 0, the neutral component of ® has
unsuppressed vector interaction with Z such that it can not be dark matter candidate
because of the constraints from direct detection. On the other hand, for Y = 0, the neutral
component of ® could be potential dark matter candidate. We shall present the concrete
form of the scalar potentials V(®) and V (H, ®) for different cases of Y =0 and Y # 0.

e Complex ® with Y 20 and YV # +2

2j
V(®) = M3OT0+ > Mg ((29)7(2 D)g), ,
J=0
V(H,®) = a(H'H)(®'®) + 8 (HH),(®®)1),,, (B.2)

where only the terms of even J lead to nonzero contribution, H = iogH* with 09 being
Pauli matrix. The contraction ((®®)7(® ®) j)o is given by

(22)7(@®)7)y =D Cohg—m (@) 7m(PP) 7, (B.3)

m

with

\77
((P@)jym = Z Cjzrn:'z;jylnl2 ¢j7m1 ¢j’m27

mi,ma2

BB gm= Y (1) mm20 G @y - (B.4)

my,m2

Consequently the contraction (®®)s vanishes for odd J. Notice that all the inde-
pendent self interactions of ® are included here while only two terms are considered
in [34, 35].
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e Complex ® with Y =2
2
V(®) = MzdT® + > Ay ((22)7(22)7), ,
J=0

V(H,®) = a(H'H)(®'®) + B ((HH)1(®®)1), + [ (HH)1®),0;1 +hc] . (B.S5)
We see that an additional term ((HH);®), and its hermitian conjugate are allowed if
® is a isospin triplet with 7 = 1 and Y = 2. This term would disappear if one adopts a
Zo symmetry under which all SM particles are Zs even and extra scalar ® is Zo odd.

e Complex ® with ¥ = -2
2j
V(@) = Mgalo + ) Ay (29)7(23)7), ,
J=0

V(H,®) = a(HH)(®'®) + 8 (HH)1(2®)1),, + [0 (HH), ®),6;1 +h.c] , (B.6)
e Complex & with ¥ =0
V(®) = M3OT® + [Mg(22)o+h.c.|
+ 00,5 (mod 2) 111 (B(DD) ;) + p2 (P(2P);), + h.c.]

+3 A7 ((22)7(22)4),

2j
+ 3 Ok (@) (@D)0)y + X (@) (D)), + e | (B.7)
K=0
V(H,®) = [us(HH)o®dj0 + pa (HH)19), 051 + h.c.]
+a(HH)(®'0) + 8 (HH)1(29)1), + [y(HH)o(®®)o + hoc.] .  (B.8)

Notice that not all the interaction terms ((®®)x(®®P)x), for K = 0,2,...,25 are in-
dependent from each other. For j = 0,1,2, there is only one independent interaction
(@®)o(PP)o. We find two independent contractions (®®)o(®®)y and ((2P)2(PP)2),
for j = 3,4,5. However, there are four independent interaction terms (®®)y(PP)o,
(2D2)2(2P)2), ((PD)4(PP)4), and ((PP)s(PP)s), in the case of j = 10. For any
given isospin j, we can straightforwardly find all the independent contractions among
(@) (PP)ic), Wwith £ = 0,2,...,25. The same holds true for the contractions
(BD)c(0D)),.

e Real ® with Y =0

2j
V(@) = SMEBD 4 ur (2(0D);)g 0 s a2y + D M (BP)ic(@)c),
K=0
V(H, @) = po(TTH) o030 + i (H)1 ), 051 + a(HH)o#)o. (B9)

As regards the quartic self interaction terms ((®®)x(PP)x), with £ = 0,2,...,2,
there is only one independent contraction (®®)o(PP)y for j = 0,1,2. We find two
independent contractions (®®)g(PP)y and ((PP)2(PP)2), for the case of j = 3,4,5.
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B.2 Half integer isospin j

Similar to previous section, we shall give the scalar potential invariant under the SM gauge
symmetry in the following.

e Generic ® with Y #0, Y # +1 and Y # £3

2j
V(@) = MzdT® + > Ay ((22)7(22)7), ,
J=1
V(H,®) = a(H'H)(®'®) + B (HH)1(2®)1),, (B.10)

where J should be odd otherwise the contraction (®®) s is vanishing.

o ®withY =0

2j

V(@) =M@+ > Ay ((22)7(2D)y),
J=1

29
+ 3 Dk (@) (@)c)y + M (BD)x(@P)c), +hic. |,
K=1

V(H,®) = a(H'H)(®'®) + 8 (HH)1(®®)1), + [y (HH)1(®®)1), + hc.] . (B.11)

Both interaction terms ((®®)x(®®)i), and ((5@)@@@)@0 are vanishing for j = 1/2.
There is only one independent contraction ((®®);(®®)1), for j = 3/2,5/2,7/2. We
find only two independent terms ((®P);(PP);), and ((PP)3(PP)3), in case of j = 9/2.

e dwithY =1

2
V(@)= M3aT®+ > s ((29)7(2D)s), ,
J=1
V(H,®) = o(H'H)(®'®) + 8 (HH)1(2D)1),

+ {’71 ((H(I))j+%(66)j+l>o 50,j7%(m0d 2)

# ((E0),_yB8),_3) ooy +
+ {m (HH)(@P)1) g+ ro (HH)(H 1) 0,2

+ iy (HH)1(H®)1)g 6,5 + h.c.}. (B.12)
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e & withY =-1

2
V(@)= M3aTd+ > A7 ((29)5(2D)s), ,
J=1
V(H,®) = o(H'H)(®'®) + 8 (HH)1(22)1),

+ {71 ((HE)J-JF%(‘I’ (I))j+%>0 50,j7%(m0d 2)

+ 72 <(H6)j—%(q) (I))j—%)o 00,441 (mod 2) T h-C-}
+ {m (HH)(® ) 1)y + iz (HH)1 (H @)1), 0, 1
+ 1y (HH)1(H ®)1)g 8,5 + h.c.} (B.13)
o ®withY =3
2
V(@) = Mz @+ > Ay ((22)7(22)y), ,
J=1
V(H,®) = o(H'H)(®'®) + B (HH)1(2®)1),
+0;3 (v ((HH)1(H®)1), +h.c.] . (B.14)
e ®withY =-3
2
V(®) = Moo+ ) " A7 ((92)7(2®) 7)), ,
J=1
V(H,®) = o(H'H)(®'®) + 8 (HH)(3®)1),
+8;3 [y (HH) 1 (H®)1)g+hec] . (B.15)

C Self-interactions

Starting from eq. (2.21) a direct calculation yields the self interactions among the neutral
fields ¢3;(0’+) and ¢3;(0’_)

1 - ~
1 [F1 + 2Re(k2) + 2Re(k3)] ¢§;(07+)

— [2Im(R2) + Im(&3)] ¢§;(0,+)¢3;(0,—)

1 . -
+ = [R1 — 6Re(R2)] ¢;23;(0,+)¢§;(07—)

2
+ [2Im(F2) — Im(%3)] @3:(0,4) B30,
1 N N
+ 7 [F1 + 2Re(f2) — 2Re(f)] B30, (C.1)
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with

ol 4 6100

F1= Ko+ ——=Ko + —K4 + ————Kg ,

A N DT OV M

ol 4, 6 100

Ro = = — — —— Ky,

PO s T T T 93113 ¢

~ 1 12 4 1 6 " 100 "

Ry = ——Kpn — Ko — — Ky — Kea . C.2
3Ty 21v5 2 TT 23113 ¢ (C.2)

In the most general case, the dark matter is linear combination of ¢s. 1) and ¢3,,),
since the mass matrix for ¢s,(o 1) and @3, ) shown in eq. (2.16) is not diagonal, the dark
matter self interactions can be easily extracted from eq. (C.1). In the limit of both M3
and A3 are real, the lightest one of ¢3. ) and ¢3, _) is the DM candidate, accordingly
the self interaction can be read out straightforwardly.

For the electroweak scalar quintuplet ¢20 = (¢2;0,4) + i®2:(0,-))/ V2, the self interac-
tions among the neutral fields ¢y, 1) and ¢g,, ) read as

 [F1 -+ 2Re(a) + 2Re(Rs)] 6.
— [2Im(fa) + Im(%3)] 65,0 1) P20,
+ % [R1 — 6Re(k2)] ¢§;(0,+)¢§;(0ﬁ)
+ [2Im(R2) — Im(R3)] da;(0,4)93,(0,—)

1. N -
+ 1 [R1 4+ 2Re(R2) — 2Re(k3)] ¢§;(07_) , (C.3)
with
- 1 L 2 n
K1 = —-K —K K
1 5 0 7\/5 2 35 4,

Fo = ll-i/ + i,{,/ + E /

N 1 2 6

R3 = g/ﬂ)g + 77\/51‘42/ =+ £K)Z . (04)
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