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ABSTRACT: We study the phenomenology of a hypercharge-zero SU(2) triplet scalar whose
existence is motivated by two-step electroweak symmetry-breaking. We consider both the
possibility that the triplets are stable and contribute to the dark matter density, or that
they decay via mixing with the standard model Higgs boson. The former is constrained
by disappearing charged track searches at the LHC and by dark matter direct detection
experiments, while the latter is constrained by existing multilepton collider searches. We
find that a two-step electroweak phase transition involving a stable triplet with a negative
quadratic term is ruled out by direct detection searches, while an unstable triplet with a
mass less than 230 GeV is excluded at 95% confidence level.

KeEYwoORDS: Beyond Standard Model, Higgs Physics

ARX1v EPRINT: 2001.05335

OPEN AccEss, (© The Authors.

Asticle funded by SCOAP®, https://doi.org/10.1007/JHEP05(2020)050



Contents

1 Introduction 1
2 Model 3
2.1 Zs symmetric model 4
2.2 Zo broken model )
2.3 Perturbative unitarity and perturbativity 6
2.4 RGEs and running constraints 7
2.5 Phase transition requirements 8
2.6 Higgs diphoton rate 9
3 Stable triplet phenomenology 11
3.1 Disappearing tracks 11
3.2 Dark matter direct detection 13
4 Unstable triplet phenomenology 16
4.1 Production processes 16
4.2 Decay channels 18
4.3 Collider searches 20
4.4 Collider constraints 20
5 Conclusion 23

1 Introduction

The origin of the baryon asymmetry of the universe is a major open problem in parti-
cle physics and cosmology. Successful baryogenesis mechanisms require extensions to the
standard model (SM), as it has neither enough charge-parity (CP) violation nor does it
provide the necessary out-of-equilibrium conditions. Electroweak baryogenesis provides
one possible solution, and is particularly attractive as its association with new electroweak
scale physics means it is testable experimentally via collider searches [1] and electric dipole
moment (EDM) measurements (for a review, see, e.g. [2]).

There has been recent interest in the possibility of multi-step electroweak phase tran-
sitions [3-8]. In such scenarios the electroweak phase transition consists of multiple tran-
sitions, where initially an exotic scalar charged under SU(2) gains a vacuum expectation
value (VEV) before a second transition to the SM Higgs phase takes place. This scenario
is attractive because the extended scalar sector has enough freedom to support a strongly
first order transition, and the new CP violating interactions can be partially hidden in the
new scalar sector in order to avoid tight EDM constraints. Two step phase transitions have



been examined for a range of extended scalar sectors, including SU(2) triplet scalar exten-
sions [3, 8], two Higgs doublet models [5] and coloured scalar extensions [4, 7]. Two-step
transitions have also been studied in the context of scalar sector extensions containing real
or complex singlets [9-15]. In these scenarios, electroweak symmetry breaking occurs only
once — during the final transition to the present Higgs phase.

The simplest! model that can feature the desired two step electroweak symmetry break-
ing transition is the real SU(2) triplet scalar ¥ ~ (1,3,0) extension to the SM (the ¥SM).
Such an electroweak scale triplet may arise from the breaking of a high-scale GUT, e.g.,
the 210 of SO(10) [16]. The phase transition structure of the 3SM has been examined by
refs. [3, 8, 17]. While [3, 17] focused on phase transitions rather than collider physics, [8]
has studied the impact on collider phenomenology in more detail. However, they consider
a dimension-5 effective operator involving the triplet that significantly modifies the phe-
nomenology relative to the minimal triplet model that we study. The general phenomenol-
ogy of minimal hypercharge-zero SU(2) triplet scalar extensions has been studied exten-
sively [18-21], with a significant focus on the prospects of having the neutral component of
the triplet be stable and thus provide some or all of the dark matter (DM) density [22-28].

Ref. [18] examines the prospect of constraining triplet scalars via measurements of the
Higgs diphoton decay rate, disappearing track searches, and collider production searches.
However, as ref. [18] was published prior to first collisions at the LHC, no lower bounds on
the triplet mass were set beyond those following from searches at the LEP collider. The
more recent studies [20, 21] consider corrections to SM Higgs production rates and decay
processes, and do not obtain a lower bound on the triplet arising from the production
and decay of the triplets at the LHC. In the scenario where the neutral component of
the triplet is stable, existing DM direct detection constraints severely restrict the size of
the triplet’s coupling to the SM Higgs. However, in order for the neutral component of
the triplet make up a significant fraction of the DM density it is required to have a mass
~ 2TeV. In contrast, acquiring a multi-step electroweak phase transition requires the
mass to be electroweak-scale < 1TeV. Thus the parameter-space relevant to multi-step
phase transitions will only ever result in the triplet contributing a small fraction of the DM
density and is generally not thoroughly explored in triplet scalar DM studies.

We extend the previous examinations of SU(2) triplet scalar phenomenology in a num-
ber of ways. Firstly, we show that if the neutral triplet is stable or very long lived, then
existing disappearing track searches constrain the mass of the triplet to be larger than
~ 250 GeV. Secondly, we examine the scenario where the neutral component of the triplet
is both stable and hypothetically constitutes a portion of the dark matter. We show that
the parameter-space favourable for a multi-step electroweak phase transition is ruled out
by dark matter direct detection experiments. Finally, we demonstrate that if the triplet
is unstable, existing LHC multilepton searches place a lower bound on its mass of around
230 GeV. Utilising multilepton searches to constrain triplets has previously been examined
by refs. [29] and [30-32] in the context of a triplet extended super-symmetric standard
model, and a type-II seesaw model, respectively.

1Simplest in the sense that it has the fewest additional physical particles, and the fewest new parameters
present without imposing additional symmetries.



The above dark matter direct detection constraint implies that the neutral member of
the triplet must be allowed to decay if it is to be relevant for 2-step EWSB. The stability of
the neutral triplet in the XSM arises from the imposition of a ¥ — —X discrete Zs symmetry
on the model. This symmetry can be broken explicitly by a term in the Lagrangian, so
that the neutral triplet can decay and the dark matter constraints are avoided. However,
the collider production constraints remain relevant. The advent of additional LHC data
will increase the reach in both mass and coupling, thereby providing a powerful probe of
this scenario.

2 Model

We extend the Standard Model by adding a real scalar field ¥ transforming as (1, 3,0) under
the SU(3) x SU(2) x U(1)y SM gauge group. We consider the most general renormalisable
scalar potential,
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where H is the SM scalar Higgs doublet, and we use the notation
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For real triplets, terms in the potential proportional to Tr %4 OIand H"$2H can be absorbed
into the [Tr(X?)]? and Tr(X2)H *H terms and simply redefine by and ay. We only consider
negative quadratic coefficients for the triplet and the Higgs doublet. To ensure that the
potential is bounded from below we require
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A >0, by >0, ag > —2 Agby. (2.3)

Additionally, the vacuum at zero temperature must approximate the SM Higgs-phase
within errors, so that
mpy ~ 125 GeV, vy =~ 246 GeV. (2.4)

The VEV of the triplet vy is constrained by precision electroweak measurements as it
contributes to the p parameter. At tree level the correction to the p parameter is
2
5p:,0—1z4v—22. (2.5)
Yu
The current measurement of p = 1.00039 4 0.00019 [33] requires vy < 3GeV.

We consider two scenarios: a model where we impose a > — —> discrete Zg symmetry
on the theory, which eliminates the a; coupling, and a model with no such symmetry, where
a1 # 0. In the remainder of this section we discuss the notation and selection of parameters
in each scenario before moving on to discuss perturbativity constraints, electroweak phase
transition requirements, and corrections to the SM Higgs diphoton rate.



2.1 Zmgsymmetric model

With the ¥ — —X symmetry imposed on the theory, the potential has four permissible
types of extrema [18]:
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Only the latter two can yield SM-like minima, since vy # 0. However, the fourth possibility
results in a physical charged scalar that is massless at tree-level. This is due to the fact
that the Zy symmetric potential features only Tr(X?) terms, leading to an accidental SO(3)
global symmetry which rotates the components of 3 amongst themselves but under which
H is a singlet. This symmetry is spontaneously broken when the triplet gains a VEV,
yielding a charged pseudo-Goldstone scalar boson.

Therefore we focus on the scenario where the zero temperature potential has a global
minimum of the third type. This extremum is a local minimum when the parameters satisfy
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The Higgs couplings then take their SM values, Ay = ;l)—% and ,u%{ = —. The potential
has three free parameters as, u%, and by. We swap as for the triplet mass using the relation

1
mEo = —u% + 5@21}%{. (2.8)

The form of the Zs-symmetric potential has the triplet components being degenerate
at tree-level. However, radiative corrections lead to a small mass splitting between the
neutral and charged components [22],
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where ¢y is the cosine of the weak mixing angle and,
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The mass splitting decreases with increasing triplet mass, and in the limit THEO > 1 the

mass splitting approaches Amy = 166 MeV. While the neutral component remains stable,



this small splitting allows the charged component to decay via an off shell W *'into the
neutral component and either a low energy pion or a light charged lepton and neutrino.
The widths of the associated decays are given by [22, 34]
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2.2 Zwbroken model

Turning on the Zo-breaking a; term changes the results of the previous subsection. In
particular, for the third type of extremum the triplet gains a small induced VEV from the
H?Y. term, with the potential now minimised by
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where msypo is the mass of the triplet in the Zy symmetric case, eq. (2.8), and the approxi-
mations hold when the triplet VEV is small.
Additionally the a; term in the potential and the triplet’s non-zero VEV result in new

mass terms leading to mixing between the neutral component of the triplet and SM Higgs,
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where we have introduced the neutral scalar mass matrix,
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The neutral scalar mixing angle 6y is defined such that hy is the particle that consists
primarily of H?. As we require vs < 3GeV, and as the off-diagonal term is directly
proportional to vy, the mixing term is necessarily small. Hence, unless the scalars are
nearly degenerate the mixing angle will also be small. It is then sufficient to use the
SM values for pp and Ay in order to produce a SM-like Higgs with mj, ~ 125GeV and
vy ~ 246 GeV. The potential then has four free parameters: MQE, asz, a1, and by. We will
fix as and a; by requiring that we get values for my, and vy, as given by diagonalising
M and solving eq. (2.13), respectively.
There will also be mixing in the charged scalar sector,
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The field G is the massless charged unphysical Goldstone boson and h™ is a physical
charged scalar that consists primarily of the charged triplet component 7.

In the limit vy — 0 we re-obtain the Zs symmetric model and the masses of the
scalars approach the values they would have had in the absence of mixing, my, — mgq,
mp, — Myo, and my+ — my+. For simplicity, we will use the notation of the Zs broken
model to identify particles and masses throughout the remainder of the paper, even if there
is no mixing. Note that this limiting behaviour means that the radiative mass splitting
discussed in the previous subsection will become important for very small vs;. However,
unless vy, < 10" GeV [18] the charged scalar will primarily decay via its mixing with the
charged Goldstone boson into pairs of fermions or W 473 and not via the decays discussed
in the previous section. Hence, unless vy, is very small the decays will not be sensitive to

the radiative mass splitting. We discuss the unstable triplet decays in detail in section 4.2.

2.3 Perturbative unitarity and perturbativity

Requiring that our couplings satisfy perturbative unitarity, i.e. that the tree-level high
energy 2 — 2 scattering amplitudes remain unitary, leads to the constraints [20, 21],

|as| < 87, (2.19a)
e [Anl, [ba] < 4, (2.19b)
|6A + 50y = (6Ag — 5()4)2 + 12a9| < 167, (2.19¢)

where we have utilised the unitarity constraint with [Re(ag)| < 4. Combining these con-
straints with the requirement that the potential be bounded from below, eq. (2.3), the



constraints on the couplings become,

4
0< A < 57, (2.20a)
8
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While well defined, the perturbative unitarity requirement is separate from the re-
quirement that the scalar couplings be perturbative. The definition of perturbativity is
somewhat subjective. One method of defining a perturbativity bound is via the renormal-
ization group equations (RGEs). In the SM at one-loop level, the Higgs quartic coupling
features a Laundau pole at high energy. On the other hand, the two-loop RGEs instead
have the quartic coupling approaching a fixed point Ay (p) — AP ~ 12 [35, 36]. When
Ag = )\II“}P the two-loop contributions to the RGEs cancel the one-loop terms, therefore
the fixed point provides a value of the coupling at which perturbativity begins to break
down. This same behaviour is present in the real triplet scalar extended standard model.
Therefore, following refs. [35-38], we impose the requirement,

)\FP
A< T , AE {AH,b4,a2}, (2.21)

where AF is the fixed point of each of the scalar couplings. We utilise the SARAH 4.14.3 [39]
package, which has an implementation of the real triplet extension, to evaluate the two-loop
RGEs. We find that for a wide range of initial conditions, the scalar couplings approach
the fixed points,

MP~12, P ~6, aff ~23. (2.22)

Thus, our perturbativity requirement is,
A <4, by<2, ay<T7.7. (2.23)

With the exception of the Higgs quartic coupling, this perturbativity condition is signifi-
cantly more restrictive than the perturbative unitarity requirement from eq. (2.20).

2.4 RGEs and running constraints

We also require that the perturbativity and perturbative unitarity conditions continue
to be satisfied at higher energy scales, up to some cutoff energy A. In particular, if a
set of parameters lies near the non-perturbative region and one uses the RGEs to run
the couplings they may rapidly become non-perturbative even at relatively low energies
(~ 1TeV). The choice of cutoff energy significantly impacts the amount of parameter-space
available. Figure 1 shows how the available parameter-space depends on the energy cutoff.
Requiring that the perturbativity conditions are satisfied up to A = 10°GeV or higher
removes a large chunk of the available parameter-space. We consider the requirement that
the couplings continue to be perturbative up to at least A = myp,, my+ ~ 1 TeV to be the



Perturbativity is violated at energy A
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Figure 1. Contour plots showing the energies at which the perturbativity and perturbative uni-
tarity constraints are violated as a function of my,. and either p ;; (left) or am(right). The darkest
shade corresponds to the region of parameter-space where the conditions are not satisfied by the
initial choice of parameters, with no running necessary. Conversely, the lightest shade corresponds
to the region where the conditions are still satisfied after running the couplings up to very high
energies. For each point we have set vig)= 0, and bigto the minimal value allowed by eq. (2.7). This
choice of bigwas found to maximise the energy at which the conditions were first violated.

bare-minimum requirement that we will impose for the remainder of the paper, though we
will also consider more restrictive higher energy cut-offs. However, if there are additional
light particles (m < 10° GeV) that strongly couple to the SM Higgs or triplet, then they may
significantly modify the running. Hence, even requiring perturbativity and perturbative
unitarity only up to A = 10% GeV may be excessive if one expects such new physics.

2.5 Phase transition requirements

We study a model where, in the early universe, electroweak symmetry breaking occurs
via a transition from the electroweak symmetric minimum to a minimum where the scalar
triplet gains a VEV. A subsequent transition then takes us to the regular SM-like Higgs
phase at a lower temperature. Requiring such a multi-step electroweak phase transition
leads to constraints on the scalar potential parameters.

An important necessary condition is that the triplet should have a negative quadratic
coefficient: —,u% < 0. To see this, consider the opposite situation, that —,uQZ > 0, where
we deal with the Zo-symmetric model first. At finite temperature, the tendency is for a
quadratic coefficient to gain a positive contribution so that —u% = |u| — |pd|+aT?, where
a > 0.2 In isolation, this effect goes against our desire for ¥ to have a nonzero VEV at finite
temperature and thus participate in a two-step electroweak phase transition. The only way
out is for a sufficiently large negative quadratic coeflicient to be induced from a negative ao
coupling such that the effective quadratic coefficient is negative: | M%‘ +al? + %agv?{ < 0.
But if this were the case, then at zero temperature the large and negative as would induce a

2If there is a large negative % coupling it is possible for the thermal term to be negative, leading
to symmetry non-restoration. However, in our model this is incompatible with the requirement that the
potential be bounded from below, eq. (2.3).



large triplet VEV, which is ruled out from the p-parameter bound. Thus the opposite choice
of — M% < 0 is the only viable possibility, and we adopt it as a necessary though not sufficient
condition to have an acceptable two-step electroweak phase transition.® This is consistent
with the parameter space explored in previous multi-step phase transition models [4-7],
particularly refs. [3, 8, 17]. The Zs-broken case follows similarly, with the only change
being that the triplet gains a small induced VEV at zero temperature from the cubic a;
term. Requiring that the VEV be small necessitates that a; is small, such that it has no
significant impact on early universe phase transitions aside from breaking the Zo symmetry.

A rigorous treatment of the finite temperature effective potential and early universe
phase transitions is non-trivial, with significant theoretical and technical issues remaining
to be addressed. In particular the typical phase transition treatments are gauge depen-
dent [40]. However, even one-loop gauge-independent treatments lead to results that differ
from current lattice simulations [40, 41]. Accordingly, it is difficult to make precise state-
ments about the requirements that should be placed on the scalar potential couplings to ob-
tain the desired phase transition. Therefore, we simply use the arguments presented and fo-
cus on triplets with negative quadratic terms — ;LQE < 0 and, as a consequence, positive Higgs
couplings as > 0. One potential caveat is that for models with further extensions to the
scalar sector, it is possible that some other particle (e.g. a scalar singlet) may have gained
a VEV that acts to destabilise the triplet in the early universe, or may have a VEV at zero-
temperature acting to increase the mass of the triplet [4]. This allows for the possibility that
— ;LQE > 0 while still letting the triplet gain a VEV in the early universe. Hence, we will also
examine the parameter space where — ,u% takes on small positive values — u% ~ (100 GeV)?,
despite the fact that such further extensions might significantly affect the phenomenology.

Combining the requirement that M% > (0 with the requirement that the scalar couplings
satisfy perturbativity and perturbative unitarity then directly leads to an upper bound on
the mass of the triplet. From figure 1, we see that requiring perturbativity up to A = 1 TeV
requires myp, < 415GeV. If we instead require perturbativity up to 10% GeV, this upper
bound decreases to myp, < 270 GeV.

~

2.6 Higgs diphoton rate

In the SM the Higgs can decay into two photons via a fermion or W*1oop. The introduction
of the triplet scalar will lead to a correction to the SM Higgs diphoton rate via the addition
of a new charged scalar loop. This correction is proportional to as and decreases with
increasing charged scalar mass. However, in our scenario a larger mass necessarily means
a larger as, and hence a precise measurement of the diphoton rate could in principle be
used to exclude triplets with negative quadratic coefficients altogether. The SM diphoton
rate is given by [42]
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3The feature of the third extremum that [& = 0 at zero temperature then requires that the 5&[34 induced
contribution be sufficiently large so that the effective quadratic coefficient —[# + % %1% is both positive
and large enough to produce phenomenologically-viable triplet scalar masses. In this situation, (%! must be
positive.



Neglecting the small charged scalar mixing angle ¢, the triplet modifies the diphoton rate
to [6],
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where the loop functions are,
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The Zy symmetric result can be obtained by setting 0 and vx, to zero. The scalar consisting

primarily of the triplet can also decay into two photons, with rate given by
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The signal strength of the SM Higgs to diphoton process is then given by

rZsy
figey = Fhl —iuly (2.28)

SM

HlShyy
We compare this with the most recent measurements by the ATLAS [43] and CMS [44]
collaborations,

ATLAS CMS 0.17
pATEAS — 0.99 £0.14, M = 1183017 (2.29)

We combine these measurements using a simple inverse variance weighted average. Taking
0.142 to be the variance of the CMS measurement this yields,

pSEPt = 1.085 £ 0.099 . (2.30)

Figure 2 shows the contour plots of the SM Higgs diphoton signal strength as a function
of mp, and either ,u% or ag in the Zy symmetric case. The Zo broken case only differs
significantly near my, ~ my,, where the triplet-Higgs mixing angles are large.
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Figure 2. SM Higgs diphoton rate as a function of the triplet-like neutral scalar mass mp, and
either p ¥ (left) or arg(right), with vg= 0 and bg= 1. The solid black line is the contour of the com-
bined CMS and ATLAS diphoton rate measurement, and the dashed lines give the one-, two- and
three-sigma contours. The solid grey region is the parameter-space where the scalar couplings be-
come non-perturbative at energies A < 1 TeV, and the solid grey line shows where this contour would
be if the cutoff energy is increased to A = 10%GeV. The red dotted line indicates the I E': 0 contour.

The future prospects for measuring the SM Higgs diphoton signal strength at the High-
Luminosity LHC indicate an expected error of ~ 10% with 3 ab ™! of data at 14 TeV [45, 46].
Assuming the measured value moves towards the SM prediction 1, = 1, this enhanced
accuracy will not result in constraints that are significantly more stringent than the current
ones, as the shift towards a SM value would offset the decrease in error.

3 Stable triplet phenomenology

3.1 Disappearing tracks

As discussed in section 2.1, in the Zy symmetric model the small radiative mass splitting
allows the charged triplet component to decay via an off-shell W'*¥into a neutral triplet
component and a low energy pion or lepton pair. As the triplet mass varies from 100 GeV
to 1 TeV, the lifetime varies between 0.1-0.18 ns (¢7 = 3-5 cm). Hence, as pointed out by
refs. [18, 22] charged triplets may result in disappearing charged tracks at the LHC. Recent
searches for disappearing tracks produced by decaying charginos were performed by the
CMS [47] and ATLAS [48] collaborations using 36 fb ®l of data. The ATLAS disappearing
track searches are more sensitive to small lifetimes than the CMS searches. As the triplets
will have small lifetimes, the ATLAS searches provide the most severe constraints. The
ATLAS analysis provides a model-independent 95% confidence upper bound on the visible
cross section, alongside efficiency times acceptance data for the production of charginos as
a function of their lifetime and mass [48, 49]. One of the production mechanisms consid-
ered in the ATLAS analysis is pair-production of charginos via charged or neutral current
Drell-Yan processes, with cuts applied to the initial state radiation jets and disappearing
charged tracks. Charged and neutral current Drell-Yan processes are also the dominant
pair production processes for the charged triplets. Hence, we directly take the chargino
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acceptance times efficiency data, linearly interpolate it, and apply it to the charged triplet
production cross section. Combining this with the model-independent 95% confidence up-
per bound on the visible cross section then yields an upper bound on the charged triplet
production cross section. Note that the production of the charged triplet components
(scalars) will lead to disappearing track pr and 7 distributions that differ from those in
chargino production (fermions). Similarly, the leading jet pr will also differ. However, the
charged scalar production distributions are skewed towards higher pr and lower |n| values,
such that the acceptance times efficiency for charged triplet production is likely higher
than for chargino production. Thus using the chargino acceptance times efficiency data
should result in a conservative estimate for the disappearing track bound. The triplets
may also be pair produced via an intermediate SM Higgs boson produced, increasing the
total production cross section. However this production process will likely have a different
jet distribution, such that the given acceptances and efficiencies likely do not apply. We
will set p? = —miz (a2 = 0), and ignore this production process in this section.

To interpret the interpolated disappearing track search results, we need the lifetime
and production cross section for the charged triplets. The lifetimes were calculated using
egs. (2.9) and (2.11). We utilise MadGraph5_aMC@NLO 2.6.5 [50] to evaluate the production
cross section at NLO, using an NLO compatible UFO [51] model file generated using
FeynRules 2.3.32 [52], FeynArts 3.9 [53, 54], and NLOCT 1.02 [55]. The charged triplet
lifetime and production cross sections are then only dependent on the mass of the triplet,
and the disappearing track searches can be used to place a lower bound on that mass.

The resulting cross sections, interpolated limit, and lifetimes are shown in figure 3. The
cross section drops below the interpolated limit for masses my, 2 250 GeV, and we take this
to be the lower bound on stable triplets arising from disappearing tracks. While LEP has
searched for displaced vertices in the context of SUSY searches for chargino pair-production,
due to the smaller cross-section for scalar production and threshold effects, the limits from
these searches for scalars are likely to be less than the 100 GeV usually stated [56, 57].

This bound is very sensitive to the lifetime of the charged triplet component, which
itself depends on the mass splitting of the charged and neutral components of the triplet.
The lifetime of fermionic multiplets decaying due to radiative mass splitting has been found
to change significantly when performing a two-loop mass splitting calculation [58, 59]. In
the fermionic case, the mass splitting decreases and the lifetime goes up, which is favourable
for the reach of disappearing track searches. Reliably excluding the triplet would require
a precise calculation of the scalar two-loop radiative mass splitting, which is beyond the
scope of our analysis. Additionally, note that the lifetime of the charged triplet decreases
with decreasing mass. This is a result of the fact that the one-loop radiative mass splitting,
eq. (2.9), is larger for smaller triplet masses.* Thus, for some mass less than 100 GeV the
lifetime will be too short to leave disappearing tracks, and will not be constrained by these
analyses. As the available ATLAS disappearing track data only goes down to chargino
masses of about 100 GeV, it is not clear at what mass the decrease in lifetime overpowers
the increasing production cross section.

4This is not the case for fermionic multiplets. The fermionic mass splitting is smaller for smaller masses,
such that the lifetime increases.
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Figure 3. Charged triplet production cross section (dashed blue line) and lifetime (solid red line),
along with the interpolated 95% confidence upper limit on the chargino production cross section
(dotted blue line) arising from disappearing tracks searches for charginos with the same mass and
lifetime. The charged triplet production cross section intersects the upper limit at my= =~ 250 GeV,
and we take this to be the lower bound imposed by disappearing track searches.

3.2 Dark matter direct detection

The real SU(2) triplet scalar thermal dark matter model has been studied extensively [22—
28]. The annihilation into weak gauge bosons requires that the triplet have a mass
mp, ~ 2TeV in order to obtain the right relic density. Inclusion of annihilation via the SM
Higgs necessitates an even larger mass. Hence a triplet with mj, S 500 GeV, as required
by our constraints, will only ever constitute a small fraction of the relic density. However,
if we require /422 > 0, the triplet will have a large coupling to the SM Higgs. This cou-
pling provides the dominant contribution to the nuclear scattering cross section, and thus
constrains the triplet even for very small relic abundances.

In order to investigate this bound in more detail we utilise MicrOMEGAS 5.0.8 [60] to
evaluate the triplet relic abundance. We normalise the relic abundance by the dark matter
density measured by the Planck collaboration [61], Qpyh? = 0.12. The MicrOMEGAS results
were verified by comparison with results obtained using MadDM 3.0 [62] and they were found
to be in good agreement. However, it is important to note that neither MicrOMEGAS nor
MadDM include the Sommerfeld enhancement. The Sommerfeld enhancement arises due
to the attractive potential between two DM particles resulting in an increase in the DM
annihilation rate, with a corresponding decrease in the relic density. The effect is suppressed
if the electroweak symmetry is broken and the weak gauge bosons gain masses comparable
to the DM mass. Given that freeze-out typically occurs at temperatures Ty ~ mpy /25 and
as we are interested in triplets with my, < 500 GeV, which implies T < 20 GeV, we expect
the electroweak symmetry to have been broken by the time the triplets freeze out. However,
even with massive gauge bosons, the Sommerfeld effect can still reduce the relic density by
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Figure 4. The log of triplet dark matter relic density as a function of my, and either u% (left) or arg
(right), normalised to the observed value from Planck. The solid grey region is the parameter-space

where the scalar couplings become non-perturbative at energies A < 1TeV, and the solid grey line

shows where this contour would be if the cutoff energy is increased to A = 10%GeV. As a function

of argl the relic density reaches a maximum at am= 0 (,uE: —m,f;\.,), such that the hshm— hhE
annihilation rate is zero. The red dotted line is the ,u%r: 0 contour.

15-30% for triplets with masses my, = 400-1000 GeV [23]. We will not perform a rigorous
calculation accounting for the Sommerfeld enhancement and will simply note that there is
a ~ 15% uncertainty on the relic density and resulting DM detection exclusion plots.

In addition to neglecting the Sommerfeld enhancement, we also ignore bound state
effects as they are negligible for the parameter-space that we consider. Furthermore, we
also utilise the zero-temperature mass for the triplet during the relic density calculation.
If the triplet’s mass at zero temperature arises primarily through the Higgs VEV, its mass
may change significantly in the early universe. However, as we expect freeze-out to occur
at Ty < 20GeV, we expect vy, mp,, and my, to be close to their zero temperature
values, such that this is a minor correction. This approximation is motivated by noting
that in the SM, there is a crossover transition at[#; ~ 160 GeV [63], with the SM Higgs
VEV approximately decreasing as vy (T) ~ vg(0) 1— % Thus at freeze-out one might
reasonably expect vy (Ty)/vi(0) = 0.99, such that usingkthe zero-temperature value for
the Higgs VEV at T' < 20 GeV is a reasonable approximation in the SM. We assume this
approximation remains reasonable despite changes to the electroweak phase transition due
the addition of the triplet. A precise determination of the relic density would require a
proper calculation for the phase transition for each parameter point in order to obtain the
correct temperature dependent masses.

The resulting relic densities are shown in figure 4 as a function of my, and either /ﬂz or
az. Unless my, 2> 500GeV and ag ~ 0 (% ~ —m,zlz), such that the annihilation rate into
two SM Higgs bosons is small, the neutral triplet makes up less than 10% of the total dark
matter density. The slight jump in relic density for mp, < 125 GeV occurs due to the kine-
matic suppression of the hohy — hihi annihilation channel, leading to a larger relic density.
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Figure 5. The region of parameter space consistent with the current XENONI1T direct detection
limit as a function of my,. and either p/# (left) or ag(right). The allowed parameter-space is shown
as a green band. The solid grey region is the parameter-space where the scalar couplings become
non-perturbative at energies A < 1TeV, and the solid grey line shows where this contour would
be if the cutoff energy is increased to A = 10*GeV. The black lines indicate the diphoton rate
contours as in figure 2. The hashed orange region is the lower bound on my from disappearing
tracks that was obtained in section 3.1. The red dotted line is the u# = 0 contour.

The spin-independent (SI) nuclear scattering cross section ogy is then obtained using
the formulae given in ref. [64], which takes into account the one-loop scattering cross section
generated by W 2 box-diagrams. The cross section is then compared to the XENONIT [65]
90%-confidence upper bound on the SI scattering cross section agfn, after scaling to account
for the fraction of the density of DM that is made up of ho. Figure 5 shows the constraints
from the XENONIT experiment, along with the lower bound imposed by disappearing
track searches. A stable triplet with g% > 0 is ruled out by dark matter direct detection
constraints. The only region allowed is a strip where ,u% ~ —m%u, corresponding to |ag| <
0.5, where the triplet coupling to the SM Higgs is small. This is shown as a green band
in figure 5. As the rate for DM self-annihilation is proportional to the number density
squared, the annihilation rate is very low for these relic densities. Hence, there are no
constraints from dark matter indirect detection experiments. Inclusion of the Sommerfeld
enhancement would result in a slightly larger allowed region.

Higher representation SU(2) multiplets are also strongly constrained by dark matter
direct detection constraints, forcing the coupling between the SM Higgs and scalar elec-
troweak multiplet dark matter to be small [5, 64]. These direct detection constraints are
not always applied even when they rule out a significant region of the benchmark points
considered, as is the case for refs. [3, 6, 17]. These models then require either allowing
for u% < 0 and tuning the DM-Higgs coupling to be small, which is unfavourable for two
step phase transition models, or breaking the Zs which stabilises the DM, so that it is not
a DM candidate any more.> Breaking the symmetry is straightforward in the case of the
scalar triplet. No additional particle content is needed as allowing a non-zero a; coupling

5If the scalars are long lived but unstable, the disappearing track constraints will still apply.
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Figure 6. Feynman diagrams showing the primary production processes for the new scalars,
including Drell-Yan pair production (a), pair production via an intermediate off-shell hi(b), and
single higproduction via ggF (c).

breaks the symmetry. This Zy breaking coupling can be very small, such that it will not
significantly change the results of phase transition studies. However, one must then con-
tend with new constraints arising from other collider searches, and it is to this possibility
that we now turn our attention.

4 Unstable triplet phenomenology

4.1 Production processes

The primary production processes for the SM Higgs boson at the LHC are via gluon-gluon
fusion (ggF) and vector-boson fusion (VBF). However, neither of these processes will lead
to appreciable hy production. This is due to the fact that the coupling to the heavy
quarks involved in ggF is suppressed by a factor of sin 0, leading to a significantly smaller
production rate. Additionally, the WW he and Z Zho vertices necessary for VBF arise due
to neutral scalar mixing (suppressed by sinfy) or via the triplet’s VEV (suppressed by
vy /vgr). Other SM-Higgs production mechanisms are similarly suppressed. Hence, unless
h1 and hy are nearly degenerate, such that there is a sizeable mixing angle, single hy
production will be several orders of magnitude smaller than SM Higgs production cross
sections. Single h B production will similarly be suppressed by factors of sin f¢ and vs, /vg.
As aresult, the primary production mechanism for the new scalars is via neutral or charged
current Drell-Yan pair production. Additionally, pair production via an intermediate off-
shell SM Higgs may contribute significantly. In the SM, Higgs pair production is suppressed
due to the small cubic coupling Agvg, and due to the interference of the box and triangle
diagrams [66]. However, in our scenario the coupling asvy may be large and the interfering
box diagram is suppressed by a factor of sin? 8. Thus production via an off shell h; can
form a significant contribution for large as. We will therefore include pair production via
an off-shell intermediate h; produced through ggF. All hi-style production processes will
contribute in such a manner. However, as ggF is the dominant production process for
single h; and as Drell-Yan pair production dominates anyway, neglecting other off-shell hq
pair production diagrams will have no significant effect on the results. Feynman diagrams
for the dominant production processes are shown in figure 6.
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Figure 7. The total high 2 pair production cross sections via Drell-Yan processes (solid blue line)
or via an intermediate off-shell hrg(green dashed line), as well as the single hmgproduction cross
section via ggF (dotted red line). The cross sections are shown for puf = 200 GeV Fand vy = 1.
The peak in the single hgproduction cross at my,. &~ 125 GeV occurs due to an increase in the
neutral scalar mixing angle when the two neutral scalars are nearly degenerate, and not due to an
s-channel resonance.

Figure 7 shows the pair production cross sections for the new scalars via Drell-Yan
or via an intermediate off-shell k1, in addition to single hy production via ggF. The cross
sections were obtained using MadGraph5. The Drell-Yan cross section was evaluated with
NLO QCD corrections, while the off-shell A1 and ggF ho production cross sections are loop
induced processes evaluated at leading order. As argued earlier, the cross section for the
production of a single hs is via ggF is suppressed by sin 0, such that it is large only when
mp, ~ mp,. Pair production dominates away from this region, and will always dominate
if vy, <

~

0.5 GeV. Furthermore, pair produced ho lead to multi-gauge boson events with
significantly smaller backgrounds, and as a result we focus on pair production at colliders.

Note that ggF Higgs production increases significantly with the inclusion of higher
order corrections, with a k-factor of around 3 at N3LO [67]. The cross sections shown in
figure 7 are unmodified. Even with the correction, single ho production remains subdomi-
nant for most of the parameter-space. However, this raises a concern that the higher order
corrections to the pair production through intermediate off-shell h; are similarly signifi-
cant. Naively, as the QCD component of the ggF single Higgs and new scalar ggF pair
production are the same, one might expect a k-factor of k ~ 3. In contrast, the k-factor for
SM Higgs pair production is k ~ 2 [68-70]. As mentioned before, this process is different
as it features an additional interfering box diagram. It is unclear which k-factor is more
readily applicable to the new scalar ggF pair production process. We take the lower of
the two and scale this cross section by a k-factor of k = 2. With the k-factor correction,
pair production via an intermediate hi results in a 10-20% increase in the overall pair
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production cross section. Furthermore, it is the only source of hoho pairs, as they are not
produced via neutral-current Drell-Yan processes.

4.2 Decay channels

The hy and h*'scalars have three means of decaying:

e Decay via mixing with the SM Higgs or charged Goldstone into fermions and gauge
bosons. For the ho, these partial widths are suppressed relative to SM Higgs decays
by a factor of sin 8y, while the partial widths for the A *will be proportional to sin 6.

e Decay via vy, into weak gauge bosons (W' W™ ZZ W™Z). These partial widths
are suppressed by vy /vy relative to similar SM Higgs decays.

e Decay into hih; or W “h1. These partial widths are proportional to vy + v sin 6y
and sin 0o + 2sin 0, respectively.

Thus, aside from the A %5 hyW ¥ channel which depends on 0y, the partial widths of the
charged scalar are completely determined by its mass (kinematics) and vy, (which fixes 6¢).
The scenario for the neutral scalar is more complicated, as 0y is a function of vy, ;ﬂz and
mp,. Additionally, one must include the by dependent diphoton rate. For the purposes of
the decay phenomenology, changing u% affects the size of the neutral scalar mixing angle
On. In particular, note that from eq. (2.13), if pd = vdby, then vy = 7o such that the
off-diagonal term in the scalar mass mixing matrix disappears and we get 5 = 0. Hence
when /ﬂz is small, of the order of a few GeV?, the neutral scalar mixing angle Oy will
also be very small and the decays of the neutral triplet will be dominated by decays into
weak gauge bosons hg — W sy () Conversely, a larger | MQZ| corresponds to a larger 0.
Finally, as both 0y and 6c are both proportional to vy, the triplet VEV sets the overall
size of the widths and has very little impact on the branching fractions.

To obtain the partial widths for decays into fermions and gluons arising from mixing
with the SM Higgs, we utilise the HDECAY 6.511 [71] package. The hy partial widths for
decays into fermions and gluons are those of a SM Higgs of mass my, scaled by sin? 6.
For the diphoton rate I %28?:177 we use the analytic formulae given in eq. (2.27). We do
not include the hy — Z~ decay. The partial widths for the decay of h**into fermions are

1
tan Oy

and sin(a) = 0, as given by HDECAY. The other decays into scalars and electroweak gauge

obtained from the partial widths of a charged Higgs in a type-I 2HDM with tan 8 =

bosons were obtained automatically by MadWidth [72], a component of MadGraph5.

The resulting branching fractions and partial widths are shown in figures 8 and 9 for
the triplet-like neutral and charged scalar, respectively. The hy width features a resonance
at mp, ~ 125 GeV due to a large neutral scalar mixing angle 6. However, the branching
fractions are relatively smooth and instead feature a transition between fermionic and
electroweak decays due to kinematic suppression. For small masses, the ho decay primarily
into bb, 7t7% and cé. Conversely, for larger masses they decay primarily into W * and
h1h1, with the branching ratio into the latter being strongly dependent on ,u%. The charged
scalar will decay mostly into 7v or cs fermions if my= < 120 GeV, and into tb, W *hi, or
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W'™Z pairs when heavier. Note that if we had fixed ay instead of setting p3 = 1007 GeV?
the behaviour of the branching fraction would be significantly different. In particular, if as
is negative, then Br(hy — ZZ) can become large. Additionally, if u ~ v2by such that 0y
is small and the SM Higgs mixing-induced decays into two fermions are suppressed, and
< mw, so that the decays into weak gauge bosons are kinematically suppressed, then

~

mp,
the hg diphoton branching fraction can become significant.

Note that our choice to fix the cubic term a; as a function of vy significantly affects
the behaviour of the widths as a function of mass. If we had instead selected a value for a;
and used that to fix vy (leading to vy x 1/ m%Q), the partial widths would decrease as the
mass of the triplet becomes very large. However, as mentioned earlier, varying vy, scales
the overall widths without affecting the branching ratios. Hence, the phenomenological
results would be the same.
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4.3 Collider searches

There are a range of ATLAS and CMS analyses searching for exotic scalars. However, these
searches generally focus on single scalar production. Examples include searches for new
neutral scalars decaying into v [73-76] or 777 % [77], and searches for new charged scalars
decaying into Tv, [78, 79], tb [80, 81], or WZ [82, 83]. In our scenario the dominant source
of new scalars is via pair production. While pair production may lead to signal events
in these searches, dedicated pair production searches would have significantly lower back-
grounds, and thus, would be significantly more constraining. Taking the constraints on the
production cross section times branching fractions obtained by these analyses and directly
interpreting them as constraints on the pair-production cross-section times branching frac-
tions, we find that none of these searches constrain the SM.% Note that this interpretation
neglects the details of the analyses, i.e., ref. [78] specifically searches for, and places con-
straints on, A “po production, not general h 5 production. However, as the bound on the
cross sections is too weak to constrain the 3>SM, a more detailed examination is unnecessary.

There are dedicated pair production searches for neutral scalars with a focus on new
contributions to SM Higgs pair production [84, 85]. The signal regions in these analyses will
constrain our model. However, as mentioned previously, the only source of neutral hoho
pairs is via an off-shell hy;. While this process can give a ~ 10% correction to the overall
pair production cross section for large ,u%, the cross section is too small to be constrained
by these searches. Additionally, if the new charged scalars are heavy, hihi pairs could be
produced via hth Sy by W However, once again the cross section and branching
fractions are too small to be constrained by current SM Higgs pair production searches.

As pointed out by refs. [8, 86], there is a lack of dedicated searches for pair production
involving charged scalars at 13 TeV. In particular, there are no recent searches with tb, b
final states, which might arise in the triplet model via h*h™ pair production if My > my.
Similarly, there are no recent searches with t£, tb(tb) or bb, tb(tb) final states, which may arise
in hoh* pair production. The latter of these ﬁ%ﬁl statgf?]-?is explored in ref. [8]. However,
for mp, 2 150 GeV our branching fraction Br hg — bb becomes too small for this final
state to constrain the minimal triplet model.

There are other LHC searches that feature similar final states that can be used to
constrain the ¥SM. In particular, note that when the triplets are light (mp, < 110 GeV)
hoh'™ production can result in 777, pairs. On the other hand, for heavy triplets, processes
such as hh'™ — WTW™*ZZ or hoh™ — WTWH W™ Z can lead to a large number of
leptons if some of the weak gauge bosons decay leptonically. Therefore searches featuring
multilepton signal regions can be used to place constraints on the X.SM.

4.4 Collider constraints

We utilise the CheckMATE 2.0.26 [87] package in order to examine the constraints arising
from multilepton collider searches. CheckMATE compares simulated collider events against
a range of CMS and ATLAS analyses and determines whether a given model is excluded.

5Except for a small region of parameter-space with a large diphoton branching fraction, which is discussed
in more detail in the next section.
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We utilise MadGraphb to generate parton level pair production events, with the production
processes described in section 4.1. These events are showered by Pythia 8.230 [88] and
are then run through the Delphes 3.4.1 [89] detector simulation using the CheckMATE
interface. CheckMATE then evaluates the CLg [90] value for every signal region in each of
the implemented CMS and ATLAS analyses and uses the most sensitive signal region to
determine whether a model is excluded or not. These tools are dependent on a variety of
other packages and tools [91-99].

The most constraining analyses are generally ATLAS or CMS searches for
charginos and neutralinos with multilepton final states, specifically the searches in
refs. [100] and [101], each using 36 fb ™' of data taken at 13TeV. Additionally, as men-
tioned in previous sections, the diphoton branching fraction for the new scalar can be large
if ,u% = v%b4 and mp, S muw. Hence these parameter points are excluded by analyses
with photonic signatures, such as ref. [102]. Note that this region of parameter space is
also excluded by direct diphoton resonance searches, which are not yet implemented in
checkmate [73, 74].

We varied the mass of the triplet-like neutral scalar mp, from 70 to 350 GeV in steps
of 10GeV. We lefs pZ range from —1002 to 2002 GeV?. For my, < 150 GeV and my, >

150 GeV, we let | ,u%] vary in steps of 25 and 100 GeV, respectively. The triplet quartic
coupling and VEV were set to 1 and 1 GeV, respectively. Note that setting by = 1 violates
eq. (2.7) for large values of ;ﬂz. However, by has negligible impact on collider phenomenology
when % is large, such that the results are independent of the choice of bs. In order to
increase the fraction of generated events resulting in signal events for parameter points
with my, < 100GeV and | ,uQZ| > 50 GeV?, the triplet-like scalars were forced to decay into
7 leptons using MadSpin [103]. Outside of this region of parameter space all decays were
allowed. Five million pair production events were generated for most parameter sets. Ten
million events were generated for points near the 95% exclusion boundary.

The resulting CLg-values obtained by CheckMATE are shown in figure 10. From the
figure, we see that an unstable triplet-like scalar is required to have a mass my, 2 230 GeV.
The one exception is a region of the parameter space near mp, = 120 GeV and ,u% =
502 GeV?, which is only excluded at 84% confidence. As seen in figures 8 and 9, masses near
120 GeV correspond to the transition between weak gauge boson and fermion pair decays,
with the branching fraction of hy — 777 and ht — 77v, decreasing. Furthermore, the
rate of hg — W ==(VV tg) "is proportional to 45—2 cos B + sin Oy, which goes to zero near
pé = 502 GeV? and my,, = 120 GeV. Both of these factors combined lead to slightly fewer
signal events near my, = 120 GeV and u% = 502 GeV?2. Thus this region of parameter space
is not quite excluded by CheckMATE. Note that CheckMATE determines its CLg values using
only the signal region that has the best sensitivity assuming the observed number of events
match the SM prediction. This is done in order to avoid falsely excluding a model due to
a downward fluctuation in the observed number of events. However, it should be noted
that while the most sensitive signal region, region 104 in ref. [100], does not exclude this
point, three other signal regions from the same analysis (C18, G03, G05) each individually

exclude this point at 94% confidence. We have also utilised HiggsBounds 5.3.2beta [104—
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Figure 10. CheckMATE CLmexclusion values evaluated on a grid of masses and quadratic terms
with v = 1GeV and b= 1. Points with CL# < 0.05 are excluded at 95% confidence. The
CLgj= 0.05 contour is indicated by a dashed red line. The dotted orange lines are contours of
constant triplet-Higgs coupling. The solid grey region is the parameter-space where the scalar
couplings become non-perturbative at energies A < 1TeV, and the solid grey line shows where this
contour would be if the cutoff energy is increased to A = 10 iGeV. The perturbativity contour does
not use b= 1, and instead selects bigas described for figure 1.

108] and HiggsSignals 2.2.3beta [109-111] in order to verify that this parameter point is
not separately excluded by dedicated new scalar searches or corrections to SM Higgs signals.

Recently new searches with multilepton signals have been released that utilise up to
139 fb ™ of data [112-115]. These analyses have not yet been implemented in CheckMATE.
Based on a simple scaling approximation using the Collider-Reach tool [116], we expect
that this will increase the lower bound on the triplet mass to above mp, ~ 330 GeV, and
we expect the small allowed region to become excluded.

These collider constraints significantly restrict the parameter-space available for novel
multi-step electroweak baryogenesis models. In particular, the parameter-space considered
in ref. [3], and a significant chunk of the parameter-space considered in refs. [8, 17], are
excluded by these constraints. We expect that other models featuring SU(2) triplet scalars
decaying in such a manner would be similarly constrained.

Note that we have only considered values of the triplet VEV that result in short-lived
triplets. In the limit where the triplet VEV approaches zero (vs < 10™ GeV [18]), the
decays of the scalars will once again resemble those in the Zs symmetric case; the hg
will be stable on detector timescales and the h-* will decay into hom “or hotyv. At this
point disappearing tracks will once again constrain the triplet, though dark matter direct
detection constraints are avoided. For some small range of vy (or equivalently a;) the
decays of ho will be displaced from the primary vertex but still inside the detector. In this
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case both the disappearing charged track and multilepton searches will lose their efficacy.
The detailed phenomenology of this intermediate regime is worth a study in its own right,
and could be constrained through searches for displaced jets and leptons such as [117, 118].
Displaced vertex searches for scalars have been considered in the context of type-1I seesaw
models [31]. However, we are unaware of any such search for the minimal hypercharge-zero
triplet scalar model.

5 Conclusion

Taking to heart the notion that electroweak baryogenesis is attractive for its testability at
the LHC and prospective future colliders, we have examined the phenomenology of light
SU(2) real triplet scalars motivated by multi-step electroweak phase transitions. We have
demonstrated that such scalars are nearly excluded if they are stable. The only region
of parameter-space still allowed is where the magnitude of the Higgs portal coupling < 1,
which is unsuitable for a two-step electroweak phase transition. This constraint can be
avoided by breaking the Zs symmetry that stabilises the neutral component of the triplet,
allowing it to decay. However, depending on the lifetime of the charged triplets, one must
then contend with either disappearing track or multilepton searches at colliders. These
searches constrain the mass of the triplet to be at least 250 or 230 GeV, respectively. It may
be possible that there is a region of parameter-space in-between the two extremes where
both search types lose sensitivity. However, this likely requires a finely tuned selection for
the triplet VEV.

It should be noted that electroweak baryogenesis in the presence of a real triplet scalar
extension of the Standard Model requires particle content beyond the 3SM. In particular,
the ¥SM provides no additional sources of CP violation. Therefore, any realistic elec-
troweak baryogenesis model will necessarily feature additional particles which may couple
to the real scalar triplet, as is the case in ref. [6]. In addition to the phenomenology intro-
duced by the new particle content, the decay channels of the triplets would likely also be
modified such that the results obtained here will not be directly applicable. However, the
collider constraints on the triplet parameter-space will likely be similarly restrictive. Alter-
natively, the constraints imposed on the scalar potential could be relaxed by considering
further extensions of the scalar sector. This might allow for a large negative MQE term, such
that the triplet can be heavier at zero temperature.
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