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Abstract: 
Three-dimensional supranucleosomal chromatin packing plays a profound role in modulating gene 
expression by regulating transcription reactions through mechanisms such as gene accessibility, 
binding affinities, and molecular diffusion. Herein we employ a computational model that 
integrates disordered chromatin packing (CP) with local macromolecular crowding (MC) to study 
how physical factors – including chromatin density, the scaling of chromatin packing, and the size 
of chromatin packing domains – influence gene expression. We identify computationally and 
experimentally a major role of these physical factors, specifically chromatin packing scaling, in 
regulating phenotypic plasticity; determining responsiveness to external stressors by influencing 
both intercellular transcriptional malleability and heterogeneity. Applying CPMC model 
predictions to transcriptional data from cancer patients we identify an inverse relationship between 
patient survival and phenotypic plasticity of tumor cells. 
 
 
Main Text: 
 
INTRODUCTION 
 
Most perturbations a eukaryotic cell experiences occur at non-replicative time scales. These 
perturbations are remarkably varied, range in intensity, and can be completely distinct from 
previously encountered stimuli. Examples exist throughout the human body, including within the 
skin, the alimentary tract, the immune system, the respiratory tract, the reproductive system, and 
in malignancy. Consider the epithelial lining of the digestive and respiratory systems. While both 
systems are constantly renewing their lining, the majority of functional cells within these tissues 
persist for days to weeks after replication. During their lifespan, these cells are exposed to a wide 
range of nutrients and toxicants that necessitate modification of gene expression to carry on basic 
cellular functions across these variable conditions (e.g. appropriately absorb nutrients, regulate 
ionic homeostasis, maintain a sufficient mucosal barrier, excrete waste products, secrete 
immunoglobulins). No better example may exist than malignancy, as tumor cells are remarkably 
adept at acclimating to a broad spectrum of cytotoxic chemotherapies and radiation exposure, 
while evading detection from the myriad tools present within the immune system. These 
capabilities evoke a critical question – how do individual cells acclimate to fluctuating or 
completely novel conditions? Likewise, how do collections of cells, such as an organ or a tumor 
mass, acclimate in aggregate to a heterogeneous, rapidly evolving environment?  
 
One widely explored mechanism to respond to such varied conditions is to have a level of 
predetermined functionalization: intermixing specialized cells within an organ to carry out specific 
roles. Beyond establishing pre-coordinated responses, an intriguing possibility is for cells and cell 
populations to have an encoded level of phenotypic plasticity in order to acclimate to novel 
conditions in real time (1, 2). In the context of multicellular systems, the level of phenotypic 
plasticity encoded would be a product of cellular malleability, i.e. the functional responsiveness of 
cells toward stable end states upon external stimulation, and the level of intercellular heterogeneity, 
the diversity of stable states that are observed within the same population at a given time. 
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Interestingly, recent advances in single cell technologies have highlighted the remarkable levels 
of diversity within multicellular systems for otherwise seemingly identical cells (3-5). An 
extraordinary level of diversity has been demonstrated in the lungs (3), breast tissue (4), the 
gastrointestinal tract (5), and in malignancy (6-9). Furthermore, the cancer state is associated with 
considerable structural (10, 11), transcriptional (8, 12), epigenetic (9, 13), and mutational 
heterogeneity (6, 9) – all of which have been demonstrated to be independently linked to 
chemotherapeutic resistance, metastasis, survival and resilience in multiple cancer models. 
Likewise, transcriptional responsiveness is concomitant with cancer cell survival in response to 
chemotherapy as well as the functional responsiveness of immune cells to microbes (14). To date, 
these two facets of phenotypic plasticity have largely been viewed as distinct entities as no 
mechanisms have been identified that simultaneously link both diversity and responsiveness. 
However, at the level of gene transcription, both the malleability and intercellular heterogeneity 
of gene expression within cell populations could result from the physical organization of chromatin 
(14, 15). 
 
To test the hypothesis that the physical organization of the genome is a regulator of both 
transcriptional malleability and intercellular heterogeneity, we utilized multi-scale modeling to 
describe transcription as a series of chemical reactions occurring in a heterogeneous, crowded 
environment – a disordered Chromatin Packing Macromolecular Crowding (CPMC) model. 
Pairing the CPMC model with single-cell RNA sequencing, chromatin electron microscopy 
tomography (ChromEM) – a DNA-specific staining technique for electron microscopy – and live 
cell Partial Wave Spectroscopic (PWS) microscopy, we demonstrate that the physical structure of 
chromatin packing determines both the level of transcriptional malleability and heterogeneity. In 
particular, the CPMC model predicts that at the supranucleosomal scale (from ~kbp to several 
Mbp) the scaling behavior of chromatin packing size, which is the relationship between the 
genomic length of a chromatin chain and its packing size, determines the level of intercellular 
transcriptional heterogeneity by regulating local variations in chromatin density (14, 16). 
Furthermore, the scaling of chromatin packing regulates the level of transcriptional malleability 
by regulating both gene accessibility and the free energy of transcription reactions (17-19). Finally, 
applying the CPMC model to interrogate the phenotypic plasticity of cancer cells, we show that 
increased transcriptional malleability has an impact on cancer mortality. Analyzing gene 
expression data from The Cancer Genome Atlas (TCGA) (20), we demonstrate that transcriptional 
divergence – a direct measure of the level of transcriptional malleability, which is connected with 
chromatin packing scaling – is inversely related to patient survival in advanced (Stage 3 and Stage 
4) colorectal, breast, and lung cancers. In sum, this work mechanistically links two distinct aspects 
of phenotypic plasticity, transcriptional malleability and intercellular heterogeneity, with the 
physical properties representing the structure of disordered chromatin packing. Utilizing the 
CPMC model, we quantitatively describe the role that physical forces play on gene expression in 
vitro and describe a potential mechanistic relationship between structural alterations of chromatin 
observed in cancer and prognosis.  

 

MODEL  
 
The CPMC model considers transcription in dilute, ex vivo conditions as a series of diffusion 
limited chemical reactions that utilize DNA, transcription factors (TFs), and RNA polymerase II 
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(Pol-II) to produce mRNA (Fig. 1a). The total production of mRNA in these conditions will 
depend on the concentration of reactants ([C]tot, Fig. 1b), the rate of polymerase elongation 
(km, Fig. 1c), and (3) the dissociation rates of transcription factors and polymerase from DNA 
(KD, Fig. 1d). These molecular factors are well-studied regulators of gene expression in vitro. For 
example, at the scale of nuclear compartments, formation and dissipation of TADs can alter local 
transcription factor concentrations (21). Additionally, post-translational histone modifications 
alter nucleosomal stability, thereby influencing the rate of polymerase elongation (22). Other post-
translational modifications of RNA polymerase itself independently control polymerase activity 
(23). Furthermore, gene motifs determine binding affinities of polymerase and transcription 
factors, resulting in varied dissociation constants of these molecules from their respective target 
genes (24).  
 
Compared to ex vivo conditions, the eukaryotic nucleus is a highly crowded, heterogeneous 
environment (Fig. 1e). To model transcription reactions within such an environment requires 
consideration of the length scales involved. At the smallest scale (within ~20nm of a gene, i.e. an 
“interaction volume"), macromolecular crowding (𝜙𝜙𝑖𝑖𝑖𝑖) influences transcription by affecting the 
mobility of transcriptional reactants and the dissociation rate of these molecules from DNA (19, 
25, 26). Additionally, the accessible surface area of chromatin determines the number of DNA 
binding sites available to transcriptional reactants. The probability of a gene promoter being 
available for transcription depends on its local accessible surface area. At these small length scales, 
transcription can be modeled as a network of chemical reactions involving TFs, Pol-II, and DNA. 
TFs bind to their respective DNA-binding sites and recruit polymerases to gene promoters which, 
in turn, bind DNA. These series of reactions result in intermediary transcription complexes that 
stochastically transcribe genes into mRNA. Each reaction coefficient depends on local crowding 
effects, which can be calculated using Brownian Dynamics (BD) and Monte Carlo (MC) 
simulations. Gene expression for particular crowding conditions is calculated by solving the 
steady-state network of equations that models these transcription reactions (19, 26). This modeling 
approach predicts a non-monotonic dependence of transcription on crowding. The non-monotonic 
behavior is influenced by the molecular factors previously discussed and is due to the opposing 
effects of macromolecular crowders on chemical reactions. Initially, transcription rates increase 
with crowding due to an enhanced binding stability of TFs and Pol-II arising from attractive 
depletion interactions. At higher crowding conditions, however, the crowding-induced reduction 
of molecular mobility dominates, lowering transcription rates. Notably, the most prevalent 
macromolecular crowder in the nucleus is chromatin. Thus, local chromatin density within the 
interaction volume of a gene should have a profound effect on transcription processes. Recent 
electron microscopy studies have shown that chromatin packing density is highly heterogeneous 
across the genome. Some genes have interaction volumes with exceedingly high densities 
(chromatin volume concentration (CVC) up to >60%) while others may be positioned in regions 
of the nucleus with CVC as low as ~10-20% (27). One approach to study the effect of local 
crowding on transcription in cells would be to experimentally measure the local density of 
chromatin near every gene using electron microscopy and pair these measurements with in situ 
mRNA levels. This, however, is beyond existing technical capabilities, and an alternate approach 
is needed.  
 
Instead of experimentally mapping gene expression to locus-specific crowding conditions, the 
CPMC model probabilistically samples the polymeric properties of chromatin in order to 
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approximate transcriptional output of an ensemble of genes under similar molecular and varying 
physical conditions (14, 28, 29). A combination of molecular factors influences the relative initial 
expression levels of these genes (19). In this work, we focus on how physical regulators further 
modulate transcription reactions to produce a final observed transcription rate. The model 
considers chromatin to be a disordered heteropolymer that is heterogeneously packed in three-
dimensional space. The 3D packing of the chromatin polymer determines the volume fraction 
occupied by chromatin, the number of nucleotides acting together as a grouped polymeric entity 
(Nd), and the space filling geometry or the scaling behavior of these polymeric entities. Nd can be 
considered as the number of nucleotides that are contained within a subset of the chromatin 
polymer that has self-similar, power law scaling properties. As is the case with most other 
disordered polymers, the power law scaling behavior describes the relationship between the length 
of a given segment of the chromatin polymer (e.g. the number of nucleotides, 𝑁𝑁) and the size (𝑅𝑅) 
of the physical space occupied by the segment, 𝑁𝑁 ∝ 𝑅𝑅𝐷𝐷 for 𝑁𝑁 ≤ 𝑁𝑁𝑑𝑑. The scaling factor D is 
frequently referred as the fractal dimension of the polymer and is determined by the balance of the 
free energy of polymer-polymer and polymer-solvent interactions. D of an unconstrained free 
polymer may range from D = 5/3 for an excluded volume polymer to D = 2 for an ideal chain 
polymer in theta solvent and to D = 3 for a completely space-filling polymer. A polymer with a 
uniform chain structure throughout would form a single fractal domain with D determined by the 
properties of the chain as well as the solvent. Chromatin, on the other hand, is a heterogeneous 
polymer with variable histone and DNA methylation. This leads to differential interactions 
between the heterogeneous chromatin subunits and results in chromatin compartmentalization, 
potentially as a result of liquid-liquid phase separation (30). Additional topological constraints 
induced by chromatin-binding proteins, such as those responsible for the formation of chromatin 
loops or nuclear lamins, might further influence D within a given chromatin domain or 
compartment. Indeed, electron microscopy and super-resolution imaging studies have 
demonstrated the existence of spatially segregated supranucleosomal nanoscale packing domains 
with a variable size distribution in 3D space (27, 31). We have been able to visualize the existence 
of these packing domains using ChromEM (Fig. 1e) and PWS (Fig. 1f) as small (100-200 nm in 
diameter; genomic size between 100 and 400 kb), globular regions of higher chromatin crowding 
density and D. The CPMC model considers a gene’s interaction volume to be located within these 
packing domains. Accordingly, the local environment of a gene’s interaction volume is determined 
by the encompassing packing domain, each of which may have its own average nuclear crowding 
density (𝜙𝜙𝑖𝑖𝑖𝑖,0) (Fig. 1e), chromatin packing scaling D (Fig. 1f&g), and genomic size (Nd) (Fig. 
1h). These local physical conditions are important determinants of gene expression. In addition, 
gene length (L) partially influences the size of the interaction volume of a given gene, affecting 
the range of crowding conditions the gene is probabilistically exposed to. The CPMC model is 
eminently useful as it uses these measurable physical regulators of chromatin to approximate 
distributions of mass density and accessibility of chromatin to determine transcription for each 
gene throughout the entire nucleus, a feat which is currently experimentally infeasible (17).  
  
The expected expression rate of a gene in vitro is the product of the steady-state mRNA expression 
rate of that gene (𝜖𝜖) and the probability of the gene to be on the accessible surface of the chromatin 
polymer (pg). Steady-state expression rate is a function of molecular features surrounding the gene 
of interest (𝑚𝑚��⃑ ; transcription factor concentration, histone state, enhancer-promoter interactions, 
etc.) (Fig. 1b-d) in the context of local physical conditions (Fig. 1e-h) (14, 18, 19, 25). The 
probability of gene accessibility contributes to the likelihood of a gene to interact with 
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transcriptional components (TFs and Pol-II) in vitro (32). It is beyond technical capabilities to 
measure all molecular and physical parameters of the model for specific genes at the single-cell 
level. Thus, we explore how a given ensemble of genes with similar molecular features 𝑚𝑚��⃑  (e.g. 
grouped by their initial expression or associated gene ontologies) would respond to changes in 
average measurable physical conditions. Specifically, we study how average nuclear crowding 
density, 𝜙𝜙𝑖𝑖𝑖𝑖,0, average chromatin packing scaling, D, and genomic size of a packing domain, Nd, 
change the behavior of global transcription processes. It is critical to stress that the CPMC model 
does not assume that the chromatin polymer has the same power law scaling behavior or constant 
density throughout the entire nucleus, but that this is instead an approximation due to existing 
experimental limitations. The model can further be extended to consider each packing domain has 
its own chromatin packing scaling D as technological cabilities to co-register chromatin packing, 
molecular, and genomic properties advance. Finally, in this model, nuclear crowding density 
within each interaction volume,  𝜙𝜙𝑖𝑖𝑖𝑖, is assumed to be constant relative to the time-scale of 
transcription (~minutes), in line with recent imaging studies of chromatin mobility (33).  
 
Given these considerations, in a population of cells, each gene will be exposed to different 
crowding densities 𝜙𝜙𝑖𝑖𝑖𝑖. Each 𝜙𝜙𝑖𝑖𝑖𝑖 will be sampled from the probability distribution function 
𝑓𝑓(𝜙𝜙𝑖𝑖𝑖𝑖), which is assumed to follow a normal distribution with mean 𝜙𝜙𝑖𝑖𝑖𝑖,0 and variance 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2 ≈
 𝜙𝜙𝑖𝑖𝑖𝑖,0(1 − 𝜙𝜙𝑖𝑖𝑖𝑖,0)(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑖𝑖𝑖𝑖� )3−𝐷𝐷, where rmin is the radius of the elementary unit of chromatin (e.g. a 
base pair) and rin is the radius of the interaction volume (Supplementary Text) (14). Due to the 
mass-fractal nature of chromatin, 𝑟𝑟𝑖𝑖𝑖𝑖 =  𝐿𝐿𝑖𝑖𝑖𝑖0 + 𝐿𝐿1/𝐷𝐷𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 for a gene of length L, where 𝐿𝐿𝑖𝑖𝑖𝑖0  is the 
radius of the interaction volume for a single base pair and is approximated from previous MC 
simulations of crowding effects (14, 19). Thus, the expected range of crowding densities each gene 
is exposed to is dependent on the statistical properties of the packing domain where the gene is 
located, including D and 𝜙𝜙𝑖𝑖𝑖𝑖,0, and is further influenced by length L of the gene. The transcription 
rate 𝜖𝜖 itself is assumed to depend on molecular features 𝑚𝑚��⃑  as well as on local crowding density 
𝜙𝜙𝑖𝑖𝑖𝑖. We calculate all expression rates under the assumption that molecular features 𝑚𝑚��⃑  remain 
constant throughout the population, with physiologically relevant values used in previous Monte 
Carlo and Brownian Dynamics crowding simulations (Table S1) (19). This gives rise to the form 
of 𝜖𝜖,̅ the average expression rate for an ensemble of genes that share a given 𝑚𝑚��⃑  as: 

       𝜖𝜖̅ = �𝜖𝜖(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)𝑓𝑓(𝜙𝜙𝑖𝑖𝑖𝑖)𝑑𝑑𝜙𝜙𝑖𝑖𝑖𝑖 

 

 

Likewise, a power law model of chromatin packing scaling allows the CPMC model to calculate 
the probability of a unit of DNA (e.g. a gene promoter) to be on the accessible surface of chromatin, 
pg, (28, 29): 

      𝑝𝑝𝑔𝑔  ∝ 𝑁𝑁𝑑𝑑  −1 𝐷𝐷�   

 
Finally, merging accessibility with steady-state expression rate for a group of genes, the ensemble 
expression rate is: 

     𝐸𝐸 = 𝜖𝜖̅ ∙ 𝑝𝑝𝑔𝑔  

 
To quantitatively analyze the effect of D on gene expression, we calculate the sensitivity of gene 
expression as a function of D as predicted by the CPMC model. Sensitivity (Se) is the measurement 

(1) 

(2) 

(3) 
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of how a dependent variable (i.e. gene expression) will change as a function of a perturbation to 
an independent variable (i.e. D). Se of expression rate for any group of genes to changes in 
chromatin packing is defined as: 

 
𝑆𝑆𝑆𝑆 =  

𝜕𝜕ln (𝐸𝐸)
𝜕𝜕ln (𝐷𝐷)

|𝐸𝐸=𝐸𝐸𝑖𝑖,   𝐷𝐷=𝐷𝐷𝑖𝑖 
 

 
where Ei is the initial average expression rate of the group of genes sharing similar molecular 
features 𝑚𝑚��⃑  and gene length L, and Di is the initial average packing scaling of the chromatin 
polymer. A positive Se for a given group of genes indicates that an increase in the scaling of 
chromatin packing (D↑), on average, enhances their collective expression rate. Importantly, the 
CPMC model predicts the output of transcription reactions that occur within the nucleus. 
Assuming that the half-life of mRNA transcripts is dictated by cytoplasmic conditions, structural 
changes in chromatin that alter chromatin packing scaling D are not considered to alter the 
degradation rate of mRNA. Thus, sensitivity should be directly related to the number of transcripts 
produced for any group of genes in the nucleus.  
 
To solve Eq. 4, we utilized a Taylor series approximation of 𝜖𝜖 ̅around 𝜙𝜙𝑖𝑖𝑖𝑖,0: 

𝜖𝜖̅ ≈ 𝜖𝜖�𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖,0� +
1
2
𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 𝜕𝜕𝜖𝜖2(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)

𝜕𝜕𝜙𝜙𝑖𝑖𝑖𝑖2
|𝜙𝜙𝑖𝑖𝑖𝑖=𝜙𝜙𝑖𝑖𝑖𝑖,0

 

where 𝜖𝜖(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖) is a non-monotonic function of 𝜙𝜙𝑖𝑖𝑖𝑖 due the competing effects of crowding on 

depletion interactions and molecular diffusion, and 
𝜕𝜕𝜖𝜖2(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)

𝜕𝜕𝜙𝜙𝑖𝑖𝑖𝑖
2 |𝜙𝜙𝑖𝑖𝑖𝑖=𝜙𝜙𝑖𝑖𝑖𝑖,0 ≈ −�𝜖𝜖(𝑚𝑚��⃑ ,𝜙𝜙�)𝜅𝜅 

quantifies gene expression as a function of crowding within a transcriptional interaction volume. 
Expression rate 𝜅𝜅 = 22.6 nM/s  is derived from a steady-state solution of rate equations that 
model transcription and whose crowding-dependent rates were determined from BD and MC 
simulations as described previously (14, 19). Of note, the function 
𝜕𝜕𝜖𝜖2(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)

𝜕𝜕𝜙𝜙𝑖𝑖𝑖𝑖
2 |𝜙𝜙𝑖𝑖𝑖𝑖=𝜙𝜙𝑖𝑖𝑖𝑖,0(𝜖𝜖(𝑚𝑚��⃑ ,𝜙𝜙�)) can be simulated by varying any or several of the components of 

𝑚𝑚��⃑ . Although, in principle, the exact form of  𝜕𝜕𝜖𝜖
2(𝑚𝑚���⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)
𝜕𝜕𝜙𝜙𝑖𝑖𝑖𝑖

2 |𝜙𝜙𝑖𝑖𝑖𝑖=𝜙𝜙𝑖𝑖𝑖𝑖,0
 as a function of 𝜖𝜖(𝑚𝑚��⃑ ,𝜙𝜙�) may 

depend on which component of 𝑚𝑚��⃑  is being varied, i.e. 𝜅𝜅 = 𝜅𝜅(𝑚𝑚��⃑ ) , in practice 𝜅𝜅 is only weakly 

dependent on 𝑚𝑚��⃑ . In other words, 
𝜕𝜕𝜖𝜖2(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)

𝜕𝜕𝜙𝜙𝑖𝑖𝑖𝑖
2 |𝜙𝜙𝑖𝑖𝑖𝑖=𝜙𝜙𝑖𝑖𝑖𝑖,0  depends on 𝑚𝑚��⃑  primarily through 𝜖𝜖(𝑚𝑚��⃑ ,𝜙𝜙�), 

with the average expression rate as the “common dominator” of multiple molecular factors. Thus, 
predictions of the CPMC model regarding the effects of physical regulators on ensemble gene 
expression should be robust to changes in molecular factors. Integrating Eq. 1-5 the Se of 
expression rate becomes:  
 

 

𝑆𝑆𝑆𝑆(𝜖𝜖,̅𝐷𝐷𝑖𝑖) ≅
1
𝐷𝐷𝑖𝑖

ln 𝑁𝑁𝑑𝑑 −  
1
8
𝜅𝜅
𝜖𝜖̅

(𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 )2 �1 + �1 +

16
(𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2 )2
𝜖𝜖̅
𝜅𝜅�

∙ �𝐷𝐷𝑖𝑖 ln �
𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

� +
3 − 𝐷𝐷𝑖𝑖
𝐷𝐷𝑖𝑖

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑖𝑖𝑖𝑖
𝐿𝐿1 𝐷𝐷𝑖𝑖⁄ ln(𝐿𝐿)� 

 

  
 
 

(4) 

(5) 

(6) 
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RESULTS 
 
Physical factors of chromatin structure regulate sensitivity of gene expression to changes in 
chromatin packing scaling. 
 
To first test the CPMC model predictions in vitro, we employed live cell PWS microscopy to 
measure D (Fig. 2a&b) (38,39) and ChromEM to measure 𝜙𝜙𝑖𝑖𝑖𝑖,0 (Fig. 2c&d) (27) paired with 
mRNA microarrays, RNA-Seq, and single-cell RNA sequencing (scRNA-seq) to measure gene 
expression of cell populations under different conditions. Specifically, average D was calculated 
by first averaging D values from PWS measurements within each cell nucleus and then averaging 
these measurements over the entire cell population for each treatment condition. Utilizing 
ChromEM, average chromatin density was measured within each nucleus with ~3 nm resolution. 
As 𝜙𝜙𝑖𝑖𝑖𝑖,0 represents the crowding contributions from both chromatin and mobile crowders within 
the nucleus, we added to CVC measured by ChromEM an additional 5% contribution from 
unbound macromolecules (as described in the Materials and Methods section). In addition, we 
utilized publicly available DNA sequencing information to obtain gene length and high-throughput 
chromatin conformation capture (Hi-C) data to approximate Nd from the size of topologically 
associating domains (TADs) (35). In relation to prior work on higher order chromatin organization, 
Nd could extend from tens of thousands to millions of basepairs. While Nd might not necessarily 
represent the organization observed in TADs, TAD size was utilized as an approximate measure 
of Nd as these domains have been shown to obey self-similar organization (36), as evidenced by 
power law scaling properties of contact probability within TADs (37). Combining these methods, 
we then tested the CPMC model’s predictions of Se of gene expression against in vitro 
measurements for each identified physical regulator of gene expression.  
 
To test the role of initial Di, we performed an RNAi knockdown of the chromatin remodeling 
enzyme, Arid-1a (A-Kd) in human colon carcinoma HT-29 cells, which resulted in a lower Di 

compared to wild-type (WT) cells (17). Next, we measured changes in chromatin packing scaling 
D in serum starved WT and A-Kd HT-29 cells before and 30 minutes after stimulation with 10% 
fetal bovine serum, 100nM epidermal growth factor (EGF), and 100nM phorbol 12-myristate 13-
acetate (PMA) (14). In parallel, we measured gene expression for these conditions at 5 hours 
utilizing mRNA microarrays. Genes were grouped for WT and A-Kd cells separately based on 
their relative initial expression during serum starvation, and the experimentally measured 
sensitivity ∆𝑙𝑙𝑙𝑙𝑙𝑙/∆𝑙𝑙𝑙𝑙𝑙𝑙 was calculated for each group of genes. As predicted by the CPMC model, 
experimental measurements of the Se of gene expression shows a bidirectional, monotonic 
responsiveness to D as a function of initial expression in HT-29 cells (𝜙𝜙𝑖𝑖𝑖𝑖,0 ~ 39%, approximated 
by dividing chromosome copy number by nuclear volume). In addition, we found that Di 
predominantly changes the responsiveness of initially under-expressed genes (Fig. 2e&f). These 
results indicate that populations of cells with a higher D would have a higher level of 
transcriptional divergence (the difference between highly and low expressed genes) than low D 
cells. Cancer cells across most malignancies, stem cells, and, especially, cancer stem cells, are all 
examples of types of cell populations that have elevated chromatin packing scaling (2, 38). 
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Functionally, this suggests that D can act as a means to optimize transcriptional responses as is 
explored in subsequent sections. 
 
Next, we tested the effect of average nuclear crowding density, 𝜙𝜙𝑖𝑖𝑖𝑖,0, on gene expression 
sensitivity to changes in the chromatin packing scaling D. ChromEM was employed to measure 
average chromatin density for both human lung adenocarcinoma A549 cells and differentiated BJ 
fibroblast cells, which had mean chromatin volume concentration (CVC) of 0.35 and 0.30, 
respectively (Fig. 2c&d, distribution of CVC values shown in Fig. S3). Approximating for an 
additional space filling contribution from mobile crowders, estimates of 𝜙𝜙𝑖𝑖𝑖𝑖,0 were 40% in A549 
and 35% in BJ cells. Each cell line was treated with 100nM dexamethasone (DXM) to modulate 
D, which was measured by PWS microscopy. Gene expression of both cell lines with and without 
DXM treatment was measured by RNA-seq. Sensitivity of gene expression was measured as 
described above for each cell line. Interestingly, the CPMC model predicts cells with a lower 𝜙𝜙𝑖𝑖𝑖𝑖,0 
would had an attenuated bidirectional Se, an effect confirmed experimentally in the lower 
chromatin density BJ cells (Fig. 2g). In contrast, the higher chromatin density A549 cells (Fig. 2h) 
retain an asymmetric response to altered chromatin packing scaling. This suggests that cells with 
smaller nuclear volume, such as immune cells, or cells with increased chromosome copy number, 
such as malignant cancer cells, would be predisposed to produce a more pronounced bidirectional 
response in gene expression to stimuli that alter whole nuclear chromatin structure compared to 
cells with lower chromatin density. These results demonstrate the net effect of increasing D and 
𝜙𝜙𝑖𝑖𝑖𝑖,0 is an increased transcriptional divergence between initially over- and under-expressed genes. 
 
Finally, we tested the roles of Nd and gene length on Se. From our model, Nd determines the 
probability of genes being on an exposed surface to allow transcription reactions to occur, a 
relationship which depends non-linearly on D (Eq. 2). Consequently, the CPMC model predicts 
that (1) genes in larger packing domains (e.g.  Nd >2Mbp) would be relatively under-expressed in 
comparison to those within smaller Nd domains (<50Kbp) and (2) genes within large Nd domains 
would be more likely to become enhanced as a function of increasing D (+Se). To test these 
predictions experimentally, we utilized the Arrowhead function in Juicer tools to measure TAD 
sizes from Hi-C data of untreated and DXM treated A549 cells (39). As the dissociation and 
formation of TADs has previously been shown to alter gene expression, for our analysis we only 
selected TADs that were unaltered with DXM treatment. The top 20% largest (~2Mbp) and bottom 
30% smallest (~50Kbp) of these TADs were chosen to produce roughly equal sized groups of 
genes (~130 genes in each group). Using RNA-seq to measure gene expression and PWS 
microscopy to measure the change in D before and after DXM treatment, we analyzed the 
sensitivity of expression for genes localized to smaller 50Kbp TADs compared to larger 2Mbp 
TADs (Fig. 2i). As predicted from the CPMC model, in vitro results demonstrate that genes within 
larger 2Mbp TADs have an overall higher sensitivity to changes in D (Fig. 2i) while 
simultaneously having lower initial expression compared to those within smaller 50Kbp TADs. 
Consequently, these findings suggest a regulatory role of spatially confining genes into self-similar 
structures, such as those found in TADs, in determining the probability of a gene being exposed 
to transcriptional reactants. Given the recent work indicating significant variability in TADs from 
cell to cell, this would suggest yet another mechanism that cells can use to regulate their functional 
diversity within a population.  
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In addition, we tested the role of gene length on sensitivity of two fold under-expressed (low) and 
two fold over-expressed (high) genes in the serum starved WT HT-29 cells described above. Using 
the built-in Mathematica function, GenomeData, to obtain sequence length of genes, the sensitivity 
of gene expression to D was then calculated as a function of their length. The model predicts 
shorter genes have a smaller interaction volume, increasing the variance of crowding conditions 
these genes are exposed to. Consequently, an increase in D should further increase fluctuations in 
crowding concentrations surrounding these shorter genes, causing initially under-expressed genes 
to further reduce their expression in proportion to decreasing gene length L. However, genes with 
an initially higher expression level will be relatively unaffected by changes in gene length due to 
more optimal molecular characteristics (e.g. high TF and Pol-II concentration) and initial crowding 
conditions these genes are exposed to. In line with the CPMC model, our experimental microarray 
data demonstrates that shorter, initially under-expressed genes become disproportionately under-
expressed as a function of increasing 𝐷𝐷, whereas length minimally influences initially over-
expressed genes (Fig. 2j).  
 
 
 
 
The scaling behavior of chromatin packing regulates phenotypic plasticity through 
transcriptional divergence and malleability 
 
A major implication of the CPMC model is the role physical chromatin structure plays in shaping 
gene expression. Thus, the model could provide a mechanistic link between two aspects of 
phenotypic plasticity of a population of cells: transcriptional malleability and intercellular 
transcriptional heterogeneity. In this case, we can consider transcriptional malleability to be the 
average change in expression of a gene in response to an external stimulus, while transcriptional 
heterogeneity can be thought of as the range in expression levels of each gene across a cell 
population. While there is likely to be increased complexity that results from the variations from 
cell to cell in average density and D, we herein test how heterogeneity and malleability are 
influenced by the measurable features of disordered chromatin packing within a cell population. 
An ideal testbed for this mechanistic integration is cancer. Multiple lines of evidence have shown 
that chromatin structure is nearly universally transformed in malignancy (40-43). Microscale 
structural alterations in chromatin are currently the gold standard for histopathological diagnosis 
of dysplasia and malignancy (40). At the nanoscale, an increase in D has been previously reported 
to occur at pre-dysplastic stages of lung, colon, esophageal, ovarian, liver, prostate, and pancreatic 
cancers, while the severity of the chromatin transformation has been shown to be an accurate 
indicator of the tumor aggressiveness (41, 43). Since (1) elevated D is a hallmark of malignancy, 
(2) there is an emergent role of intercellular heterogeneity in determining chemotherapeutic 
responsiveness and (3) cancer cells rapidly alter their gene expression to overcome cytotoxic 
stressors (14, 16, 44), we hypothesized that cancer cells could leverage physical transformation 
within the nucleus to gain survival advantages. Therefore, we wanted to test if cells could utilize 
the scaling of chromatin packing as a regulator of both transcriptional malleability and 
heterogeneity to achieve a rapid response to external stressors. 
  
According to the CPMC model, the dependence of transcriptional malleability on chromatin 
packing scaling results from the observed asymmetric response of upregulated and downregulated 
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genes to changes in D (Fig. 2), which we denote as transcriptional divergence. Here, we focus on 
changes in gene expression due to an external stimulus. A transcriptional response of a cell to a 
chemotherapeutic stress provides a case in point. Chemotherapeutic induction of apoptosis has 
been shown to depend on the rate of change in expression of critical genes (e.g. p53) and not their 
steady-state levels alone (45). Accordingly, mechanisms which increase the rate of upregulation 
of these critical genes would facilitate the development of cellular resilience to stressors. Consider 
two populations of cells that have a baseline difference in their initial D. These two populations 
are then exposed to the same exogenous stressor and a series of stress signaling pathways are 
activated in an attempt to overcome the perturbation. The cells’ survival now depends, in part, on 
the increased expression of these genes within a critical time frame. The CPMC model predicts 
that the population of cells with initially higher D will be more likely to upregulate these critical 
genes and remain viable (Fig. 3a). 
 
To quantify the effect of initial D on transcriptional responsiveness, let 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1,𝑎𝑎 be the initial 
expression (the number of mRNA transcripts) for a given gene in cell a with chromatin packing 
state 𝐷𝐷𝑎𝑎. At time point t = 0, a stimulus produces an increase in the gene’s rate of expression from 
𝐸𝐸1,𝑎𝑎 to 𝐸𝐸2,𝑎𝑎. Without loss of generality, we first assume that both expression rate 𝐸𝐸2,𝑎𝑎 remains 
stable and that the rate of mRNA degradation, v, remains constant post stimulation. The relative 
change in expression at time t is �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1,𝑎𝑎� 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1,𝑎𝑎� = �𝐸𝐸2,𝑎𝑎 𝐸𝐸1,𝑎𝑎⁄ − 1�(1 −
𝑒𝑒−𝜈𝜈𝜈𝜈), where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1,𝑎𝑎 =  𝐸𝐸1,𝑎𝑎/𝜈𝜈 is the pre-stimulation steady-state expression. This relative 
change in expression increases with the ratio 𝐸𝐸2,𝑎𝑎 𝐸𝐸1,𝑎𝑎⁄ , which is itself a function of both molecular 
features and the chromatin packing state surrounding the gene. This can be illustrated by 
comparing the response of an individual gene to an exogenous stressor in two cells a and b. Let 
the same gene in both cells be associated with similar molecular features (𝑚𝑚��⃑ 𝑖𝑖,𝑎𝑎 = 𝑚𝑚��⃑ 𝑖𝑖,𝑏𝑏, 𝑖𝑖 = 1,2) 
but different chromatin packing states 𝐷𝐷𝑎𝑎 and 𝐷𝐷𝑏𝑏, with 𝐷𝐷𝑏𝑏 > 𝐷𝐷𝑎𝑎. From Eq.4, d𝐸𝐸

𝐸𝐸
= Se(𝐷𝐷)

𝐷𝐷
d𝐷𝐷, it 

follows that: 
 

E𝑖𝑖,𝑏𝑏 = E𝑖𝑖,𝑎𝑎 exp �∫ 𝑆𝑆𝑆𝑆𝑖𝑖�𝐷𝐷′�
𝐷𝐷′

𝑑𝑑𝑑𝑑′𝐷𝐷𝑏𝑏
𝐷𝐷𝑎𝑎

� , 𝑖𝑖 = 1,2   
 

(7) 
 
 

 
where 𝑆𝑆𝑆𝑆𝑖𝑖(𝐷𝐷) is the sensitivity of expression state E𝑖𝑖,𝑎𝑎. In this situation, the effect of D on relative 
changes in transcription in cell b compared to cell a would be defined as: 
 

𝛿𝛿 =  � E2,𝑏𝑏
 E1,𝑏𝑏 

� � E2,𝑎𝑎
 E1,𝑎𝑎 

�� = exp �∫ Se2(D′)−Se1(D′)
𝐷𝐷′

dD′𝐷𝐷𝑏𝑏
𝐷𝐷𝑎𝑎

�. 
 

(8) 
 
 

 
Within the physiological range of transcription, Se is an increasing function of 𝐸𝐸 (Fig. 2) and, as 
𝐸𝐸2 > 𝐸𝐸1 for both cells, 𝛿𝛿 > 1. Consequently, the same stimulus will result in enhanced upregulation 
of the same gene in cell b compared to cell a, driven by the differences in chromatin packing 
scaling between the two cells. This effect is expected to be particularly pronounced for initially 
under-expressed genes with  𝑆𝑆𝑆𝑆1 < 0 that undergo a significant amplification (𝑆𝑆𝑆𝑆2 > 0) upon 
stimulation. We see that 𝛿𝛿 is directly related to the transcriptional divergence and the shape of the 
function Se(E) (Fig. 2). A faster rise of Se as a function of E results in a higher 𝛿𝛿. For cells a and 



 12 

b with similar D, 𝛿𝛿 ≈  1 + (Se2 − Se1)(𝐷𝐷𝑏𝑏 − 𝐷𝐷𝑎𝑎) 𝐷𝐷𝑎𝑎⁄ . This implies that factors that tend to 
increase transcriptional divergence (e.g. high D, crowding, small Nd) would be expected to result 
in a higher transcriptional malleability. 
 
The functional significance of the relative transcriptional malleability coefficient 𝛿𝛿 is twofold. 
First, for highly amplified genes (𝐸𝐸2 𝐸𝐸1⁄ ≫ 1) the relative increase in transcription at any given 
time after the stimulation is proportional to 𝛿𝛿:  
 
�[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]𝑏𝑏(𝑡𝑡) − [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]1,𝑏𝑏� [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]1,𝑏𝑏� ≈ 𝛿𝛿 �[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]𝑎𝑎(𝑡𝑡) − [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]1,𝑎𝑎� [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]1,𝑎𝑎� .  

 
  (9) 
 
 

Second, the time 𝜏𝜏 required to reach a given level of expression is dependent on chromatin packing 
scaling and inversely proportional to 𝛿𝛿, i.e. 𝜏𝜏𝑏𝑏 𝜏𝜏𝑎𝑎⁄ ≈ 𝛿𝛿−1. This conclusion is applicable to genes 
that are both upregulated as well as those that are downregulated in response to a stimulus, an 
effect that might be especially consequential if decisions regarding cell fates must be made within 
a limited time period after the introduction of the stressor (45). 
 
To experimentally explore the relationship between D and phenotypic plasticity, we performed 
concurrent single cell RNA sequencing and live cell PWS microscopy experiments on A2780 
ovarian adenocarcinoma cells in response to treatment conditions that modulate chromatin packing 
scaling. We first tested whether chemotherapy treatment of cancer cells resulted in a pre-selection 
of high D cells. We measured changes in D using live cell PWS in A2780 ovarian adenocarcinoma 
cells before and after treatment with a chemotherapeutic agent, 5nM paclitaxel, for 48 hours. We 
also monitored cell coverage, which represents survival of a cell population. Defining high D cells 
as those that fall within the top 25th percentile of D in the cell population prior to the PAC treatment 
(D=2.47), we then measured the percentage of cells with high D at 48 hours after paclitaxel 
treatment. We observed that the percentage of high D cells increased in paclitaxel-treated cells 
compared to the control population (Fig. 3b). In combination with coverage measurements, which 
demonstrated significant cell death after 48 hours of paclitaxel treatment, our results indicate that 
high D cells have an increased survival rate when exposed to paclitaxel treatment (Fig. 3b&c). 
 
We then compared the transcriptional malleability of populations of cells with differential D. As a 
model system, we relied on chemically-induced modulation in D. To reduce D, we treated A2780 
cells with 75 µM celecoxib (CBX), a nonsteroidal anti-inflammatory agent for 16 hours. 
Previously, we have found that celecoxib reduces D within 30 minutes of treatment in A2780 
ovarian carcinoma cells by at least 8% compared to untreated cells (14). As a model of high-D 
cells, we used untreated A2780 cells. Both CBX-treated cells (low D) and untreated cells (high D) 
were then exposed to a chemotherapeutic agent, 5nM paclitaxel (PAC) for 16 or 48 hours.  Single 
cell RNA sequencing was conducted using Illumina NextSeq500. Raw reads were aligned, mapped 
and used to calculate transcripts per million (TPM) for each condition using bowtie2 (46) and 
RSEM (47). Thus, as a model system, we measured transcriptional perturbation induced by a 
cytotoxic chemotherapy stressor in a lower D (celecoxib-treated) versus higher D (not treated by 
celecoxib) A2780 cell populations.  
 
Inputting the experimentally observed difference in D into the CPMC model, we estimated 𝛿𝛿 > 4 
for initially under-expressed genes that become activated (Fig. 3d, blue manifold) and a smaller 
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increase in 𝛿𝛿 for initially over-expressed genes that are upregulated in response to stimulation (Fig. 
3d, red manifold). We then tested if these predicted trends are observed experimentally using 
single-cell RNA sequencing. Importantly, the crucial window for response to chemotherapy 
frequently is thought to occur within 24 hours (45). Thus, we compared changes in gene expression 
in A2780 cells with initially higher D to initially lower D after stimulation by paclitaxel treatment 
for 16 hours. In agreement with the CPMC model, the stimulation of initially under-expressed 
genes by chemotherapy treatment in initially higher D cells (upregulation of expression rate from 
control rate E1,𝑏𝑏 to 16hr PAC-treated rate E2,𝑏𝑏) was much higher than that in lower D cells (from 
CBX-treated rate E1,𝑎𝑎 to 16hr combo rate E2,𝑎𝑎), resulting in 𝛿𝛿~4 (Fig. 3e). Likewise, a similar but 
mitigated effect was observed in initially over-expressed genes (Fig. 3e), in strong agreement with 
the model predictions. Next, we tested whether these trends were independent of cell line and 
compound. We performed parallel experiments using propranolol as a D lowering agent in A2780 
cells and celecoxib and propranolol to decrease D in more malignant TP53 mutant A2780 (M248) 
cells. These additional conditions demonstrated a similar effect of D on transcriptional malleability 
in response to paclitaxel stimulation of high D compared to low D cells (Fig. S4). Finally, we 
tested if observed effect of chromatin packing scaling influences genes specifically involved in 
functionally relevant stress response pathways. We first identified differentially expressed genes 
that, on average, increased their expression at least two fold in A2780 cells treated with paclitaxel 
for 48 hours compared to control cells. Gene ontology analysis of these upregulated genes showed 
the activation of multiple stress response pathways after stimulation by paclitaxel treatment, 
including DNA repair, autophagy, cell cycle arrest, and apoptosis (p-value < 0.05, Fig. 3f, Fig. 
S5). The effect of D on the activation of these established stress response genes was consistent 
with that observed in all upregulated genes, with δ as high as ~ 4 (Fig. 3g). 
 
The scaling behavior of chromatin packing regulates phenotypic plasticity through 
intercellular transcriptional heterogeneity 
 
Another key aspect of phenotypic plasticity that can be modulated by the disordered packing of 
chromatin is transcriptional heterogeneity, or the range of expression levels across genes exposed 
to similar molecular conditions. The CPMC model predicts that transcriptional heterogeneity 
increases as a function of D due to increased variations in both packing density (𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2 ) and gene 
accessibility (𝑝𝑝𝑔𝑔). To quantify this effect from the CPMC model, the variance in 𝜖𝜖 across any given 
cell population, Var𝜖𝜖, is (14): 

Var𝜖𝜖 ≈
1
2�

𝜕𝜕𝜖𝜖2(𝑚𝑚��⃑ ,𝜙𝜙𝑖𝑖𝑖𝑖)
𝜕𝜕𝜙𝜙𝑖𝑖𝑖𝑖2

�
𝜙𝜙𝑖𝑖𝑖𝑖=𝜙𝜙𝑖𝑖𝑖𝑖,0

�
2

𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
4 

 

 
 
(10) 

 
Consequently, intercellular transcriptional heterogeneity, i.e. the standard derivation of steady-
state expression rate E in Eq. 3, becomes: 

𝐻𝐻(𝐷𝐷) = 𝑝𝑝𝑔𝑔 ∙ Var𝜖𝜖1/2 ≈
√2
8
𝑝𝑝𝑔𝑔 ∙ (𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2 )2𝜅𝜅 �1 + �1 +
16

(𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 )2

𝜖𝜖̅
𝜅𝜅�

 

 

 
 
(11) 
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and the coefficient of variation (the ratio of the standard deviation to the mean expression) is  

𝐶𝐶𝐶𝐶𝐶𝐶(𝐷𝐷) = √2
8

(𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 )2 𝜅𝜅

𝜖𝜖�
�1 + �1 + 16

(𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 )2

𝜖𝜖�
𝜅𝜅
� . Both H and COV increase with D, and COV also 

decreases as a function of expression.  
 
To investigate the association between D and intercellular transcriptional heterogeneity, we 
analyzed our scRNA-seq data to quantify the spread in transcriptional states across each treatment 
condition. Focusing on overall transcriptional differences between cells within the same condition 
provides better validation to the model than analyzing the spread of all observed genes. Thus, we 
first used t-Distributed Stochastic Neighbor Embedding (t-SNE) combined with principal 
component analysis (PCA) to reduce the dimensionality of the system on all cells simultaneously 
(48). The dimensionality reduction mapped each cell onto a three-dimensional projection. 
Distances between cells in 3D space represented overall differences in transcriptional states, as has 
been described by van der Maaten and Hinton (48). Intercellular transcriptional heterogeneity for 
each cell population was quantified by the average radius of the cluster of cells, 𝑅𝑅𝑐𝑐 =

�1
𝑁𝑁
∑ (𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑁𝑁
𝑖𝑖=1  where 𝑟𝑟𝑖𝑖 is the position of each cell in the reduced spaced, N is the total 

number of cells in each treatment group, and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ 𝑟𝑟𝑖𝑖𝑁𝑁
𝑖𝑖=1  . Intuitively, Rc can be thought of 

as the radius of relative genomic space. Consistent with predictions of the CPMC model, we found 
that transcriptional heterogeneity, as measured by the radius of genomic space, increases with D 
in response to paclitaxel treatment, which preselects for high D cells, as shown above. Notably, 
after 48 hours of paclitaxel treatment, the population of surviving cells had both higher D and 
increased transcriptional heterogeneity compared to control cells (Fig. 4a-c&f). In contrast, 
celecoxib treatment reduces average D of a cancer cell population. Accordingly, cells treated with 
celecoxib for 16 hours had a lower transcriptional heterogeneity compared to control cells. In 
addition, when these celecoxib-primed cells with initially lower D were treated with paclitaxel for 
16 hours, they had a decreased transcriptional heterogeneity compared to paclitaxel-treated control 
cells (Fig. 4d-f). Although the resulting projection from t-SNE is non-unique, the trends in the 
radius of genomic space across conditions are robust to randomly selected choice of seed (Fig. 
S6). Additional analyses quantifying the Euclidean distance between expression of DNA repair 
genes upregulated in 48 hour paclitaxel treatment as well as the coefficient of variation of 
expression between cells in the same treatment condition demonstrate the same effect of chromatin 
packing scaling on transcriptional heterogeneity as the t-SNE results (Fig. S7).  
 
Next, we sought to investigate the effect of chromatin packing scaling on changes in transcriptional 
heterogeneity in response to stimulation. For higher D compared to lower D populations, the 
CPMC model predicts an increase in transcriptional malleability concomitant with an increase in 
gene expression variability in response to stimulation. As a case in point, consider the upregulation 
of stress response genes due to a stressor such as chemotherapy. Both transcriptional malleability 
and heterogeneity may facilitate a response to the stress. An increase in the average expression 
(malleability) and in the standard deviation of expression levels (heterogeneity) for these genes 
upon the stimulation would increase the percentage of cells that express these genes above any 
given level that may facilitate cell survival, regardless of the exact value of this critical level. We 
used scRNA-seq data on A2780 cells to analyze the distributions of transcriptional responses to 
paclitaxel treatment, as an example of an exogenous stressor, in cell populations with different 
initial D. We assessed the ratio of the upregulated expression rate due to the stressor versus the 
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initial expression rate (relative upregulation, 𝐸𝐸2/𝐸𝐸1). Focusing on transcriptional responsiveness 
of genes associated with DNA repair pathways that had been upregulated in response to 48 hour 
paclitaxel treatment, we found that the higher D population had both an increase in the average 
(malleability) and the variance of relative upregulation compared to those for the lower D 
population (Fig. 4g). Next, we examined relative expression levels of genes suppressed in the 
control condition, specifically those that occupied the bottom 10th percentile of gene expression, 
and observed a similar behavior (Fig. 4h). Importantly, this D-dependent increase in intercellular 
transcriptional heterogeneity was itself a function of expression levels, i.e. genes that were under-
expressed in cells prior to PAC treatment had a more significant difference in the heterogeneity of 
their relative upregulation in the high compared to the low D populations than those that were 
already highly expressed prior to the stimulation (Fig. 4i), also in agreement with the CPMC 
predictions.  
 
 
Transcriptional divergence is inversely associated with patient survival 
 
As described above, D determines a cell’s responsiveness to stressors such as chemotherapeutic 
agents through the effect of chromatin packing scaling on phenotypic plasticity. A logical next 
step was to establish if these physical regulators play a role in tumor aggressiveness in vivo. The 
effects of chromatin packing scaling on phenotypic plasticity may foster the ability of cancer cells 
to develop resilience and/or resistance to chemotherapy in vivo and may also be involved in other 
processes fostering increased tumor fitness and aggressiveness. Throughout carcinogenesis, 
tumors are frequently exposed to a wide range of stressors including attack by a host’s immune 
system, inadequate oxygen supply from nearby blood vessels, or an acidotic microenvironment.  
To test if such a relationship between phenotypic plasticity and tumor fitness exists, we analyzed 
publicly available RNA-seq data collected by the TCGA Research Network (20) for lung, 
colorectal, and breast cancers, which are the three most prevalent malignancies in the United 
States. As the model predicts cellular responsiveness to external stressors, of which chemotherapy 
is an example, we focus on patients presenting with Stage III and IV tumors at time of diagnosis, 
as systemic therapy is the standard of care for these patients. Using the R package, TCGAbiolinks 
(49), we quantified gene expression in units of fragments per kilobase million (FPKM) for each 
patient. As this data lacks initial control measurements of cancer cells prior to initiation of systemic 
therapy, transcriptional malleability cannot be measured directly for each patient. Additionally, we 
do not have information related to chromatin packing scaling and other physical regulators of 
transcription for these patients. However, the essence of the effect of 𝛿𝛿 is that elevated D amplifies 
a gene’s transcriptional response to stimuli: over-expressed genes are enhanced whereas under-
expressed genes are suppressed (Fig. 2). Consequently, as the bidirectional behavior of Se(E) 
curves indicates, an elevated D widens the distribution of gene expression resulting in increased 
transcriptional divergence, which, in turn, is a key determinant of transcriptional malleability (Fig. 
5a). Thus, quantifying transcriptional divergence within these patient cohorts will, by proxy, 
measure transcriptional responsiveness, which we have shown above is linked to D. Borrowing a 
method from macroeconomics, transcriptional divergence can be quantified by the ratio of 
expression of the top 50% of genes and the bottom 50% of genes (P50/P50), for ranked expression, 
Ek, and total number of detected genes, N : 
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(12) 

As age is also a major predictor of cancer mortality, we restricted our analysis to patients under 75 
years at time of diagnosis. As CPMC model predicts that higher transcriptional divergence 
produces more adaptable tumor cells, we would expect that patients with a shorter survival time 
would have tumor cells with an elevated P50/P50 ratio at time of diagnosis. To test this hypothesis, 
we compared the P50/P50 ratio calculated at time of diagnosis of patients surviving above or below 
the median survival time for each cancer type (Fig. 5b). We found a statistically significant inverse 
relationship between P50/P50 ratio and relative patient survival time for lung (Fig. 5b, p<0.021), 
breast (Fig. 5b, p<0.0001), and colon (Fig. 5b, p=0.018) cancers.  

Next, we analyzed the relative contribution of transcriptional divergence to patient survival time 
compared to effects of other prognostic factors (e.g. demographic factors, tumor molecular 
subtype, and stage) by performing a multivariate regression on each prognostic factor. We then 
calculated the relative survival time (RST) for each patient as the observed survival time relative 
to the expected survival time based on these other prognostic factors. RST < 1 indicates that a 
patient’s survival is shorter than expected (e.g. RST = 0.5 indicates that their survival duration is 
50% shorter than expected) whereas RST > 1 indicates the opposite. Patients were then grouped 
into a high and a low P50/P50 cohort based on if they were in the top or bottom half of P50/P50 
values, respectively. Notably, high P50/P50 patients had an RST below 0.8 for all malignancies 
whereas a low P50/P50 translated into a significantly higher RST > 1 (p < 0.05). Next, we analyzed 
the relationship between patient survival and P50/P50 directly for all malignancies. As survival 
depends on a multitude of factors, some of which were not available within the TCGA dataset for 
all patients (e.g. comorbidities), a fixed moving window average was applied to the data (see 
Methods for details). We found a continuous inverse trend between P50/P50 and patient survival 
for all three malignancies (Fig. 5d, Fig. S8). Finally, Kaplan-Meier survival curves show that 
patients with high P50/P50 ratios have a median survival of 8 months compared to 28 months for 
those with a low P50/P50 (Fig. 5e, p=0.01). In summary, these results support a strong correlation 
between transcriptional divergence, a facet of phenotypic plasticity that is directly affected by 
chromatin packing scaling, and patient survival (Fig. 5). 

 

DISCUSSION 
 
In this work, we combined multi-scale modeling with high-throughput chromatin conformation 
capture, single cell RNA sequencing, chromatin electron tomography, and live cell Partial-Wave 
Spectroscopic microscopy to demonstrate the role of the disordered chromatin polymer on 
regulating both intercellular transcriptional heterogeneity and transcriptional malleability. Based 
on predictions from the CPMC model, which were verified experimentally, the spatial arrangement 
of chromatin packing affects gene expression through a number of physical regulators, including 
𝜙𝜙𝑖𝑖𝑖𝑖,0, Nd, and D (Fig. 1&2). We demonstrate, both computationally and experimentally, that a 
crucial role of chromatin packing is to determine the level of phenotypic plasticity within a cell 
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population. In particular, the scaling of chromatin packing, D, modulates both the transcriptional 
malleability through a chromatin mediated enhancement δ, a “tailwind effect” (Fig. 3), and the 
level of intercellular transcriptional heterogeneity (Fig. 4). This effect is further regulated by other 
physical properties of chromatin. A higher average crowding density within the nucleus suppresses 
the expression of initially under-expressed genes as D increases (Fig. 2g&h). The modulatory 
effects of Nd are two-fold. Genes localized to domains with a large Nd (Mbp range) are more 
suppressed than those localized to domains with small Nd (kbp range) owing to the reduced 
accessibility to transcription factors and polymerases. However, as D increases, expression of 
genes associated with large Nd is disproportionately enhanced (Fig. 2i). Overall, higher D, higher 
crowding, and lower Nd increase both transcriptional malleability and heterogeneity, with D having 
a much larger effect compared to the other two chromatin packing properties.   
 
The fact that eukaryotic cells have encoded information into the scaling behavior of chromatin 
packing may have important medical implications. Elevated D is a hallmark of cancer cells and 
could represent a mechanism by which malignancy gains non-mutational advantages over 
neighboring healthy cells. As observed in vitro, treating cells with a chemotherapeutic agent such 
as paclitaxel selects for cells with a higher D (Fig. 3b), which, as demonstrated within this work, 
is in part due to the increased phenotypic plasticity compared to cells with a lower D (Fig. 3&4). 
This selects for tumor cell populations with a higher transcriptional adaptive potential, which in 
turn may facilitate their survival despite future exposure to new stressors. In support of this 
potential mechanism, our data shows that transcriptional divergence, the cross-sectional 
measurement of transcriptional malleability, in advanced colorectal, lung, and breast cancers is 
associated with worse prognosis independent of demographic factors (e.g. age, gender), tumor 
stage, and molecular transformations (Fig. 5).  
 
At present, experimental validation of the CPMC model relies on the measurement of average 
chromatin packing scaling D and crowding within the entire nucleus. While currently beyond 
existing experimental capabilities, subsequent studies directly comparing how local (e.g. intra-
packing domain) chromatin structure affects transcriptional processes and output would be of 
considerable importance. Pairing gene-tracking techniques such as CRISPRainbow with imaging 
modalities that measure chromatin structure, such as live-cell PWS microscopy and ChromEM, as 
well as super-resolution imaging of molecular factors would help elucidate how intranuclear 
variations in molecular and physical regulators of transcription contribute to transcriptional 
heterogeneity and malleability (12, 27, 50).  
 
Although not explored in this work, there are several implications of these results on the 
understanding of multicellular fitness in the context of cell biology. For example, the localization 
of genes into domains has been demonstrated to be a conserved, albeit heterogeneous, process 
(51). From the predictions of the model, cells would benefit from localizing genes into large 
domains that are intended to be suppressed at baseline but need rapid amplification if conditions 
change. Likewise, crowding density could be adjusted by cells either as a preprogrammed response 
by changing nuclear volume or incidentally from the retention of an extra chromosome during 
replication. Consequently, as has been hypothesized, this could be a mechanism linking nuclear 
size and density (e.g. hyperchromasia) with differential gene expression. Interestingly, nuclear 
size, hyperchromasia, and abnormal nuclear texture are some of the most ubiquitous histological 
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markers of neoplasia, although their etiology and functional consequences have been poorly 
understood (52).   
 
In light of the CPMC model conclusions, it should be clear that disordered chromatin packing does 
not mean that the configurations are random or that observed patterns in gene transcription are the 
result of configurational noise. While it is beyond the scope of this work, the conformation of a 
chromatin polymer depends on the balance between chromatin-chromatin and chromatin-
nucleoplasm interactions and is further shaped by active chromatin loop formation processes and 
other constraints such as nuclear lamins (53). The shape of the disordered chromatin polymer will 
ultimately depend on molecular factors such as histone modifications, transcriptional and 
replication induced supercoiling, DNA motif stiffness, as well as nucleoplasmic factors such as 
nuclear pH, ionic concentrations, and crowding, which collectively alter chromatin-chromatin and 
chromatin-nucleoplasm interactions (26, 54-56). Therefore, individual cells could utilize a 
combination of chromatin-chromatin and chromatin-nucleoplasm interactions to appropriately 
organize the genome while also encoding a pre-determined level of phenotypic plasticity.  
 
In addition, this work may have implications on the open question in chromatin biology regarding 
the importance of non-coding DNA. Some roles have since been illuminated, including the 
production of non-coding RNA and the distribution of transcriptional regulatory motifs such as 
enhancers and insulators (21, 57). In light of this work, and in relation to previously suggested 
hypotheses of the role of macromolecular crowding on gene expression, one of the evolutionary 
functions of non-coding DNA could be derived from its space-filling role. Consequently, non-
coding DNA might be a critical component within the genome to determine phenotypic plasticity 
as it contains the ability to modulate transcription reactions by influencing the free-energy of these 
reactions and the diffusion of reactants.  
 
Finally, one could consider how D plays a role in the adaptability of cancer cells throughout 
carcinogenesis. Carcinogenesis depends on cells overcoming aberrations in metabolism, 
derangements of the microenvironment, inadequate vascular supply, immune surveillance, and 
acclimation to distal tissue environments during metastasis. As it could take multiple replicative 
generations to develop a new useful mutation within a population for each of these processes, 
cancer cells could in addition leverage the physical properties of chromatin packing to increase 
their transcriptional plasticity in order to acclimate to these conditions over a faster time scale. 
Thus, it may be worth investigating, for example, whether cancer cells with elevated D are better 
able to survive an immune response and acclimate to distant tissue sites during metastasis. From 
the therapeutic standpoint, while mutations are difficult to remove from a cell population, this 
work suggests that limiting cancer cell evolution might be possible pharmacologically by lowering 
the scaling of disordered chromatin packing. 
 
 
Materials and Methods: 

Gene expression analysis 
mRNA Microarray for HT-29 Cells 
HT-29 cells were serum deprived for 5 hours prior to treatment with 10% FBS v/v (SE), 100ng/ml 
epidermal growth factor (EGF), or 100ng/ml phorbol 12-myristate 13-acetate (PMA). mRNA for 
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these treatment groups was collected by TRIzol® isolation (Life Technologies, Carlsbad 
California) from 10mL petri dishes and analyzed using Illumina human HG12-T microarray chips. 
The R Bioconductor package, lumi, was used for quality control analysis by the Northwestern 
Genomics Core to assess probe level processing from the Illumina microarray data. 2445 
differentially expressed genes were identified for subsequent analysis.  
 
RNA-Seq for A549 and BJ Cells 
RNA-seq data for A549 and BJ cells as downloaded from ENCODE and GEO with access codes 
ENCSR897XFT for A549 cells and GSE81087 for BJ cells (35, 58). 4 replicates are included in 
both control and 12 hour DXM treated A549 cells. Gene expression was quantified using 
featureCounts were downloaded from GEO for A549 cells. The length and the counts for each 
replicate from featureCounts outputs were then changed into Transcripts Per Kilobase Million 
(TPM) using TPM𝑖𝑖 = 106(cts𝑖𝑖/L𝑖𝑖)/∑ �cts𝑖𝑖

L𝑖𝑖
�𝑖𝑖 , where TPM𝑖𝑖, cts𝑖𝑖 and Li are the TPM value, the 

count and the length of gene i. The differential expression (DE) analysis for A549 cells was 
performed using the DESeq2 packages in R. 2292 differentially expressed genes were found after 
12 hours 100 nM DXM treatment in A549 cells were using p-value<0.01. 3 replicates are included 
in this analysis for BJ cells. The processed fragments per kilobase of transcript per million mapped 
reads (FPKM) results from 3 replicated for BJ cells from control cells and the cells treated with 
100 nM DXM for 32 hours were downloaded from GEO and transformed into TPM unit using 
TPM𝑖𝑖 = 106FPKM𝑖𝑖/∑ FPKM𝑖𝑖𝑖𝑖 , where FPKM𝑖𝑖 is the FPKM value of gene i. The same differential 
expression method was used on BJ cells and 7601 genes were identified with p-value <0.01.    
 
RNA-Seq for A2780.M248 Cells 
RNA samples from ovarian carcinoma TP53 mutant clone A2780.M248 cells were collected from 
the cells treated under control, 16 hours celecoxib, 16 hours paclitaxel, 16 hours paclitaxel plus 
celecoxib and 48 hours paclitaxel conditions with 3 biological replicates per condition. The 
stranded mRNA-seq was conducted in the Northwestern University NUSeq Core Facility. Briefly, 
total RNA quantity was determined with Qubit fluorometer, and quality assessed using RINs 
generated from Agilent Bioanalyzer 2100. To proceed to sequencing library prep, RIN must be at 
least 7. The Illumina TruSeq Stranded mRNA Library Preparation Kit was used to prepare 
sequencing libraries from 100 ng RNA. The Kit procedure was performed without modifications. 
This procedure includes mRNA purification and fragmentation, cDNA synthesis, 3’ end 
adenylation, Illumina adapter ligation, library PCR amplification and validation. lllumina HiSeq 
4000 Sequencer was used to sequence the libraries with the production of single-end, 50 bp reads. 
Single-end FASTQ reads from RNA-seq measurements were aligned and mapped to hg38 using 
bowtie2. Transcriptions per million (TPM) from mapped reads were estimated using RSEM. 
Sgnificant genes that are expressed across all conditions and have fold changes larger/smaller than 
2-fold/1

2
-fold of control in cells treated with paclitaxel for 48 hours are selected.   

  
Single cell RNA sequencing for A2780 Cells 
The single cell RNA sequencing experiments on A2780 were conducted under Illumina NextSeq 
500 platform by University of Illinois at Chicago Research Resources Center Cores using Smart-
seq protocol. The paired FASTQ reads with four technical replicates of each cell were aligned to  
mapped and used to hg38 using bowtie2. The gene expression levels, transcripts per million 
(TPM), under each condition were estimated using software package RSEM. 46 out of 57 control 
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cells, 55 out of 58 16hr paclitaxel cells, 53 out of 62 48hr paclitaxel cells, 62 out of 67 16hr 
celecoxib cells and 59 out of 59 16hr combination (paclitaxel + celecoxib) cells were selected after 
quality control (excluding cells with less than 4000 genes expressed). Additional quality control 
was performed using the expression level housekeeping genes (59), but no additional cells were 
excluded. In total, 8415 genes were identified for subsequent analysis for each individual cell after 
removing genes expressed in less than 20% of the total cell population. To quantify the size of 
genomic information space at different chromatin packing conditions, 8276 genes (average fold 
changes relative to control are larger than 1.5 or smaller than 2/3) were selected to do a 3-
dimension (3D) t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis (48). The t-SNE 
analysis was done using ‘Rtsne’ package in R with initial PCA step performed. 
 
Gene Ontology Analysis 
To perform the gene ontology analysis, the average TPM values of each gene across all the A2780 
cells under each condition were normalized to the mean TPM values of control. The top 10% 
expressed genes after normalizing with 48hr pac treatment were selected (841 genes) to conduct 
the gene ontology analysis using DAVID. 20 biological processes were shown to be significantly 
involved by these over-expressed genes (Fig. S5). Out of the 20 upregulated biological processes, 
11 of them are involved in DNA repair (Fig. 3d). 
 

TCGA patients expression analysis 

The P50/P50 ratio of each patient’s gene expression is calculated by: 𝑃𝑃50
𝑃𝑃50

=
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘
𝑘𝑘=𝑁𝑁
𝑘𝑘=𝑁𝑁2+1

∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘
𝑘𝑘=𝑁𝑁/2
𝑘𝑘=0

 where 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘 is the sorted FKPM value of the transcribed genes in each patient and N is the total number 
of measurably transcribed genes. Only transcribed genes (FKPM≠0) are considered using RNA-
seq obtained from the TCGC database. Patients from breast, colon and lung cancers in stage III 
and stage IV are divided into survival over/below the median survival time based on their vital 
status and survival time after diagnosis. The number of patients in each group can be found in 
Table S2. Then, the P50/P50 values of patients from all three cancer types (breast, colon and lung 
cancers) were pooled together to apply a fixed moving window average (MWA) with 15 patients 
per group to analyze if an overall trend exists between P50/P50 and survival time (days). This 
analysis is applicable to inherently noisy data or for datasets where important co-variates are not 
completely available (e.g. chemotherapeutic/radiation therapy status or comorbidities were not 
present in the data set). A linear regression analysis using survival duration, P50/P50, and tumor 
stage as survival predictors was also conducted using Python showing a significant prediction of 
patient survival only for P50/P50 (p-value<0.05) with negative coefficient of -33.6day. Notably, 
regression analysis did not show a strong predictive power of stage at time of diagnosis (p-
value>0.05) or an association between tumor stage and P50/P50 level.  

Hi-C Topologically Associating Domain (TAD) Analysis  
The total mass of chromatin at the upper length scale of self-similarity Nd  of genes in the 3D space 
was estimated using the publicly available high throughput chromatin conformation (Hi-C) data 
on A549 cells (GEO access code: GSE92819 for control cells and GSE92811 for cells treated with 
DXM for 12 hours) (35). Nd was approximated as the size the topologically associated domains 
(TADs) measured from Hi-C. The processed TADs in A549 cells from the GEO data sets were 
used to determine the size of TADs surrounding differentially expressed genes. Genes localized 
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within the same TAD were assigned with the same Nd. As dissolution of TADs was previously 
shown to alter access of transcription factors to DNA and we wanted to analyze the effect of Nd  
size, we selected only TADs that remained intact and of comparable size before and after DXM 
treatments. Genes within these consistent TADs were divided into two cohorts: a high Nd  group 
and low Nd  group. Each group had ~130 genes and the average Nd for each group were 
approximately 50Kbp for low the Nd group and 2Mbp for high Nd group. Genes with top 5% and 
bottom 5% Nd  were removed from each groups to exclude outliers.     

Live cell Partial Wave Spectroscopic (PWS) Microscopy  
HT-29 Cell Culture 
HT-29 Cells (ATCC, Manassas Virginia) were grown in Gibco® formulated McCoys-5A Media 
(Life Technologies, Carlsbad California) supplemented with 10% v/v FBS (Sigma Aldrich, St. 
Louis Missouri) and grown at 37℃ and 5% 𝐶𝐶𝐶𝐶2. All of cells in this study were maintained between 
passage 5 and 25. Transient HT-29 Arid-1a shRNA knockdown line (A-Kd) was produced using 
a lipofectamine vector. qRT-PCR was used to assess for knockdown: imaging and microarrays 
were performed on clones that demonstrated at least an 80% reduction in ARID-1a expression 
compared to the control vector.  
 
Prior to imaging, cells were cultured in 35mm glass bottom petri dishes (Cellvis, Mountain View, 
CA) until at least 50% confluent. Cells were given at least 24 hours to re-adhere prior to 5 hours 
of serum deprivation. For serum deprivation, cells were grown in fresh McCoy’s 5A (Life 
Technologies) without serum supplementation and maintained at 37℃ with 5% 𝐶𝐶𝐶𝐶2.  
 
A2780 Cell Culture 
Ovarian A2780 cells were a gift from Dr. Chia-Peng Huang Yang and obtained from the lab of Dr. 
Elizabeth de Vries at Albert Einstein College of Medicine. They were cultured in RPMI-1640 
Medium (ThermoFisher Scientific, Waltham, MA # 11875127).  All culture media was 
supplemented with 10% FBS (ThermoFisher Scientific, Waltham, MA #16000044). Cells were 
cultured in 35mm 6-well glass bottom plates (Cellvis, Mountain View, CA) until 60-85% 
confluent. All cells were given at least 24 hours to re-adhere prior to pharmacological treatment. 
Cells were treated with 75uM celecoxib (2 hrs, 16 hrs), 5nM paclitaxel (16 hrs, 48 hrs), or 
combination celecoxib and paclitaxel (16 hrs) prior to trypsinization and being resuspended in 
growth media.  Cell sorting was performed on a Fluidigm - C1 Single-Cell Capture instrument.  
Single cell sequencing of the sorted cells was performed by staff researchers at the University of 
Illinois Chicago Genomics Core.   
 
A549 and BJ Cell Culture 
A549 cells were cultures in Dulbecco's Modified Eagle Medium (ThermoFisher Scientific, 
Waltham, MA, #11965092). BJ cells were cultured in Minimum Essential Media (ThermoFisher 
Scientific, Waltham, MA, #11095080). All culture media was supplemented with 10% FBS 
(ThermoFisher Scientific, Waltham, MA, no. 16000044) and 100 µg/mL Penicillin-Streptomycin 
(ThermoFisher Scientific, Waltham, MA, # 15140122). All cells were maintained and imaged at 
physiological conditions (5% CO2 and 37 °C) for the duration of the experiment. All cell lines 
were tested for mycoplasma contamination with Hoechst 33342 within the past year. Experiments 
were performed on cells from passage 5–20. Before imaging, cells were cultured in 35 mm glass 
bottom petri dishes until approximately 70% confluent. All cells were given at least 24 hours to 
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re-adhere prior to treatment (for treated cells) and imaging. A549 and BJ cells treated with 100nm 
Dexamethasone (Sigma-Aldrich, St. Louis, MO, D6645) for 12 and 32 hours, respectively, in line 
with published chromatin conformation capture and RNA-seq experiments.  
 
Live Cell PWS Measurements 
PWS measurements were performed on a commercial inverted microscope (Leica DMIRB) using 
a Hamamatsu Image-EM CCD camera C9100-13 coupled to a liquid crystal tunable filter (LCTF; 
CRi Woburn, MA) to acquire mono-chromatic spectrally resolved images that range from 500-
700nm at 1nm intervals produced by a broad band illumination provided by an Xcite-120 LED 
Lamp (Excelitas, Waltham, Massachusetts) as previously described (33, 34). Briefly, PWS 
measures the spectral interference resulting from internal light scattering structures within the cell, 
which captures the mass density distribution. To obtain the interference signal directly related to 
refractive index fluctuations in the cell, we normalize measurements by the reflectance of the glass-
media interface, i.e. to an independent reference measurement acquired in an area without cells. 
PWS measures a data cube (spatial coordinates of a location within a cell and the light interference 
spectrum recorded from this location). The data cube then allows to measure spectral standard 
deviation (Σ), which is related to the spatial variations of refractive index within a given coherence 
volume. The coherence volume is defined by the spatial coherence in the transverse directions 
(~200 nm) and the depth of field in the axial direction (~1 µm). In turn, the spatial variations of 
refractive index depend on the local auto-correlation function (ACF) of the chromatin refractive 
index. Finite-difference time-domain (FDTD) simulations have shown that PWS is sensitive to 
ACF within 20 nm to 200 nm range. According to the Gladstone-Dale equation, refractive index 
is a linear function of local molecular crowding. Therefore, Σ depends on the ACF of the media’s 
macromolecular mass density. Small molecules and other mobile crowders within the nucleus are 
below the limit of sensitivity of PWS, and PWS is primarily sensitive to chromatin conformation 
above the level of the nucleosome. To convert Σ for a given location within a nucleus to mass 

fractal dimension D, we model ACF as a power-law 𝐵𝐵𝜑𝜑(𝑟𝑟) =  𝜎𝜎𝜑𝜑2 �
𝑟𝑟

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
�
𝐷𝐷−3

, where 𝜎𝜎𝜑𝜑2 is the 
variance of chromatin volume concentration (60). Generally, Σ is a sigmoidal function of D. 
However, for fractal structures such as a chromatin packing domain where within physiological 
range 2 < D < 3, Σ can be approximated as a linear function of D by the relationship 𝐷𝐷 ≈ 𝐷𝐷0 + 𝑎𝑎Σ, 
where 𝐷𝐷0 = 1.473 and is comparable to the minimal fractal dimension that an unconstrained 
polymer can attain and constant 𝑎𝑎~7.6. The measured change in chromatin packing scaling 
between treatment condition was quantified by first averaging D within each cell’s nucleus and 
then averaging nuclei from over 50 cells per condition.  

Chromatin Electron Microscopy (ChromEM) 
A549 Cell Culture 
Two cells lines were used in this work: adenocarcinomic human lung epithelial cell line (A549), 
and human cellosaurus cell line (BJ). The A549s were grown in DMEM with 10% FBS. The BJ 
cells were grown in MEM with 10% FBS and 1x non-essential amino acids (NEAA). All cells 
were cultured on 35 mm MatTek dishes (MatTek Corp) at 37oC at 5% CO2. Confluency of around 
60% were reached for all experiments. 
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EM Sample Preparation and TEM/STEM Data Collection 
For EM experiment, all the cells were prepared by the ChromEM staining protocol and embedded 
in Durcupan resin (EMS) (27). After curing, 40 nm thin sections were made and deposited onto 
copper 200 mesh grid with carbon/formvar film (EMS). The grids were plasma-cleaned by a 
plasma cleaner (Easi-Glow, TED PELLA) prior to use. A HT7700 (HITACHI) transmission 
electron microscopy was employed to record TEM images of cell sections at 80 kV with a pixel 
size of 2.5 nm.   
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Fig. 1. The Chromatin-Packing Macromolecular-Crowding model integrates molecular and 
physical regulators of transcription. The regulators influencing transcription reactions can be 
generally divided into two categories: molecular regulators (km, KD, and [C]tot) (a-d) and physical 
regulators (D, 𝜙𝜙𝑖𝑖𝑖𝑖,0, and Nd) (e-h). (a) The CPMC model describes transcription as a series of 
diffusion limited chemical reactions. Ex vivo, expression depends on (b) concentration of 
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transcriptional reactants [C]tot (TFs (green), Pol-II (yellow)), (c) the RNA polymerase elongation 
rate, km, and (d) the disassociation rate of Pol-II from the transcription start site (TSS) KD. (e) (Left) 
In addition to the molecular determinants, transcriptional reactions are influenced by the highly 
dense and complex nuclear environment. The concentration of the main crowder with the nucleus, 
chromatin, can be measured by chromatin electron microscopy (ChromEM). As an example, 
ChromEM of a nucleus of an A549 lung adenocarcinoma cell is shown. (Right) ChromEM 
measurements of chromatin volume concentration (CVC) demonstrates that chromatin density 
varies throughout the nucleus. Chromatin packing domains can be visualized as areas of higher 
chromatin packing density. Within each packing domain the average volume fraction of chromatin 
can range from 15% to 65%. Typical domains are 100 to 200 nm in diameter and may contain, on 
average, ~400 kb. (f) Representative PWS image of an A549 cell demonstrating the existence of 
chromatin packing domains as regions of elevated chromatin packing scaling (also referred to as 
fractal dimension) D, which vary throughout the nucleus. (g) A polymer with a higher D (right) 
has a more heterogeneous density distribution and a greater accessible surface area compared to a 
polymer with a lower D (left). (h) Nd is the genomic size (in bp) of a chromatin packing domain 
and can range from less than 100Kbp to several Mbp. Packing domains are illustrated by color 
coding with each color representing a separate domain.  
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Fig. 2. Comparison of the CPMC model with experimental measurements of gene expression 
as a function of physical regulators 𝑫𝑫𝒊𝒊, Nd, and 𝝓𝝓𝒊𝒊𝒊𝒊,𝟎𝟎 and gene length L. (a,b) Representative 
live cell PWS microscopy images of nuclear D scaled between 2.56 and 2.66 for control (a) and 
12 hour dexamethasone treated lung adenocarcinoma A549 cells (b). Brighter red corresponds to 
higher chromatin packing scaling. (c,d) Representative heat maps of CVC values from analysis of 
ChromEM images of cell nuclei from A549 cells (c) and human fibroblasts BJ (d).  Representative 
magnified regions from each nucleus demonstrates average CVC=0.35 in A549 cell compared to 
0.35 in BJ cells, which represents the chromatin contribution to the average crowding volume 
fraction 𝜙𝜙𝑖𝑖𝑖𝑖,0. (e-j) Comparison between the CPMC model (solid lines) and experimentally 
measured (points) sensitivity of gene expression to an incremental change in chromatin D (Se, y-
axis) as a function of the initial gene expression (x-axis). (e) Cells with chromatin with a high 
initial Di=2.7 (wild-type HT29 cells) have a bidirectional Se curve that becomes attenuated if Di 
is lowered to 2.5 (shRNA knockdown Arid-1a HT-29 cells) (f). Each point represents the average 
of 100 genes. Changes in D were induced by cell treatment with 10% fetal bovine serum, 100nM 
epidermal growth factor (EGF), and 100nM phorbol 12-myristate 13-acetate (PMA).  The CPMC 
model was able to explain 86% of the variance of the experimental data for wild-type HT-29 cells 
and 51% of the variance for Arid-1a HT29 cells. (g) Se in cells with a lower 𝜙𝜙𝑖𝑖𝑖𝑖,0 (BJ cells, 𝜙𝜙𝑖𝑖𝑖𝑖,0 =
35%; each point corresponds to 300 genes; explained variance (EV) = 59%) is attenuated in 
comparison to that of cells with a higher density (h) (A549 cells;  𝜙𝜙𝑖𝑖𝑖𝑖,0 = 40%; 100 genes per 
point; EV = 74%). (i) Genes located within larger packing domains (Nd ~ 2Mbp, 12 genes/point, 
EV = 56%) have a lower initial expression but have a positive Se to changes in D in comparison 
to genes localized within smaller packing domains (Nd ~ 50Kbp, 12 genes/point, EV = 37%). The 
change in D was induced in A549 cells by treatment with 100 nM of dexamethasone. Nd was 
approximated based on the corresponding TAD size: 2Mbp TADs for the high Nd group of genes 
vs. 50Kbp TADs for the low Nd genes. TAD size was measured using the Arrowhead function 
from the Juicer Tools to analyze Hi-C data. (j) Comparison between the CPMC model (solid line) 
with experimental results (points, 60 genes/point) in HT-29 cells showing the effect of gene length 
(L, x-axis) on Se (y-axis). In agreement with the model, shorter, initially under-expressed genes 
(low expression, blue curve, points, EV = 67%) are disproportionally repressed by an incremental 
increase in D compared to longer genes (high expression, red curve, points). Error bars represent 
standard error from 4 biological replicates. 
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Fig. 3. The scaling of chromatin packing increases the transcriptional malleability of cancer 
cells. (a) In response to a stressor, such as a chemotherapeutic agent (e.g. paclitaxel), cells with a 
higher level of transcriptional malleability may have the ability to respond faster, which may lead 
to an increased survival. Chromatin packing with a higher D (right, Db) increases a change in the 
rate of transcription induced by a stimulus/stressor by a factor δ (yellow arrow) relative to a change 
in the rate of transcription in a cell with a lower 𝐷𝐷 = 𝐷𝐷𝑎𝑎 < 𝐷𝐷𝑏𝑏. If in response to a stressor a cell 
may increase the probability of retaining viability by reaching a given threshold of expression of 
pro-acclimation genes, a higher D in cell b would increase the probability of reaching this level of 
expression compared to cell a.  (b&c) The fraction of high D cells in a cell culture increases after 
treatment with paclitaxel for 48 hours (PAC), suggesting that cells with higher D are more likely 
to survive exposure to a cytotoxic chemotherapeutic agent. (b) The percentage of cells having D 
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above the top quartile of a control cell population (y-axis) increases in cells that survive treatment 
with paclitaxel for 48 hours. For both conditions, each dot represents percentage of high D cells in 
one replicate for a total number of N=5 replicates per condition. (c) Combination treatment with 
celecoxib, which lowers D, and paclitaxel for 48 hours results in increased elimination of cancer 
cells compared with untreated controls and paclitaxel mono-treated cells. (d) CPMC model 
predictions of the relative transcriptional malleability coefficient 𝛿𝛿 for initially under-expressed 
(blue spline) and over-expressed genes (red spline) for Da=2.3 and Db=2.5, a difference in D 
relevant to experimentally observed differences in celecoxib-treated versus untreated A2780 cells.  
(e) Single cell RNA sequencing on A2780 cells was performed to compare transcriptional profiles 
of control A2780 cells (high D population) and cells treated with 75 µM of a D-lowering agent 
celecoxib (low D population) and their response to treatment with 5nM paclitaxel (stressor) for 16 
hours. Initially under-expressed and initially over-expressed genes are defined based on control 
expression levels. Genes are grouped based on their quantile of 𝑙𝑙𝑙𝑙𝑙𝑙2(𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and the mean 
and standard error of each quantile for initially under-expressed genes (blue dots, 300 genes/data 
point) and initially over-expressed genes (red dots, 100 genes/data point) are plotted. (f) Gene 
Ontology (GO) analysis identified biological processes that are most significantly involved in the 
response to 48 hour paclitaxel treatment. Upregulated genes were defined as those with at least 2 
fold increase in expression.  (g) Chromatin packing scaling-facilitated upregulation (δ) of the 
stress-response genes identified by the GO analysis (red points, 150 genes/data point) was similar 
to that for all upregulated genes (blue points, 650 genes/data point). 
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Fig. 4. The scaling of chromatin packing regulates intercellular transcriptional heterogeneity 
of cancer cells. (a-e) 3D projections of scRNA-seq data (TPM values of 8,275 expressed genes) 
onto reduced t-SNE space for 5 conditions: (a) control cells (n=46), (b) cells treated with 5nM 
paclitaxel for 16 hours (16hr PAC, n=55), (c) 5nM paclitaxel for 48 hours (48hr PAC, n=53), (d) 
75µm celecoxib for 16 hours (16hr CBX, n=62), (e) and combination of 75µM celecoxib and 5nM 
paclitaxel for 16 hours (16hr Combo, n=59). The size of the cluster indicates the transcriptional 
heterogeneity within the population of surviving cells for each condition. (f) The radius of genomic 
space Rc (the radius of clusters through a-e) increases as a function of the chromatin packing 
scaling D. D was measured by live cell PWS at each time point on cells prior to sequencing. Cells 
treated with paclitaxel (higher D) have greater transcriptional heterogeneity, especially when 
compared to cells treated with non-steroidal anti-inflammatory agent, celecoxib, which lowers D. 
Likewise, the CPMC model (red curve, right side y-axis) shows that intercellular transcriptional 
heterogeneity increases with D. Error bars represent the standard error of D calculated from PWS 
measurements (x-axis) and Rc (y-axis) for each condition. (g) Relative expression of high D versus 
low D cells in response to paclitaxel treatment for genes associated with DNA repair pathways 
which are upregulated in 48 hour paclitaxel treated cells. For each condition (Control, 16hr PAC, 
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2hr CBX, 16hr Combo), TPM values of these genes (48 in total) was averaged within each cell. 
Next, expression of paclitaxel-stimulated cells was normalized by the average of the corresponding 
unstimulated population. The resulting intercellular distribution of relative expression levels is 
shown. Dashed lines represent mean relative expression. Solid red and blue arrows represent the 
standard deviation of distributions 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃/𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶/𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, respectively. For these stress 
response genes, cells with a higher initial D versus cells with a lower initial D had an increase in 
transcriptional malleability (↑ 𝛿𝛿) as well as a higher intercellular transcriptional heterogeneity (↑
𝐻𝐻). (h) Distribution of relative expression of genes, as described in (g), in the lowest quantile (10th 
percentile) of control expression levels (839 in total). (i) Variance (𝜎𝜎2) of intercellular distribution 
of relative expression for each percentile of control expression levels. Initially under-expressed 
genes show an increased effect of chromatin packing scaling on increasing intercellular 
transcriptional heterogeneity in response to paclitaxel stimulation compared to that of initially 
over-expressed genes.  
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Fig. 5. The relationship between transcriptional divergence (P50/P50) and patient survival 
in Stage III and IV lung, breast, and colon cancers. (a) From the Se curve predicted by the 
CPMC model, cells with high D, such as cancer cells, have a wider distribution of gene expression 
(transcriptional divergence). Quantitatively, this transcriptional divergence can be calculated by 
measuring the ratio of the expression of the top 50% of genes to that of the bottom 50% of genes 
(P50/P50). (b-e) Analysis of transcriptional divergence, P50/P50, in the cancer cells of patients 
with Stage III and IV lung cancer (n=31), breast cancer (n=168), and colon cancer (n=60) verses 
survival from the time of diagnosis based on The Cancer Genome Atlas dataset for patients <75 
years old at the time of diagnosis. (b) P50/P50 was elevated in patients with a survival duration 
below the median for each cancer type (p = 0.021, < 0.001 and = 0.018 for lung, breast, and colon 
cancers, respectively). (c) The relative survival time (RST; ratio between patient survival time and 
that predicted by a multidimensional linear regression model based on known prognostic factors 
such as stage at diagnosis, race, and molecular subtypes of the tumor) is higher for patients with 
low P50/P50 (P50/P50 below the mean for all patients with a given cancer type). RST < 1 indicates 
survival shorter than expected based on demographic factors and molecular subtype (all p < 0.05). 
For all three malignancies, RST < 0.8 in high-P50/P50 patients.  RST is an independent predictor 
of survival duration. (d) Pooling all patients with these malignancies, we analyzed survival 
duration (x-axis, in months) vs. P50/P50 at the time of diagnosis. There was an inverse relation 
between P50/P50 and survival duration. Each point is a moving window average of 10 patients to 
account for unreported variables (e.g. comorbidities). (e) The Kaplan-Meier curve measuring 
patient survival for the three malignancies.  Patients with a high P50/P50 (P50/P50 above the 
mean) have a shorter survival duration (median survival = 8 months) than patients with low 
P50/P50 (P50/P50 below the mean, median survival = 28 months, p = 0.01). 
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Supplementary Text 

 
Section SI. CPMC Model: Variance of Chromatin Packing Density.  
 
The variance of chromatin packing density in each interaction volume within the cell nucleus, 
𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 , can be expressed as a function of D. By definition, the variance of any value, x, with 

probability distribution function h(x) can be calculated from the autocorrelation function H(x) as 
Var(x)=H(x=0). The relationship between 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2  and the autocorrelation function of chromatin 
packing density, 𝜙𝜙𝑖𝑖𝑖𝑖, is 𝐵𝐵𝑖𝑖𝑖𝑖(𝑟𝑟), and can be calculated as: 
 
𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 = 𝐵𝐵𝑖𝑖𝑖𝑖(𝑟𝑟 = 0)                                                    (1) 

 
According to the definition of an autocorrelation function, 𝐵𝐵𝑖𝑖𝑖𝑖(𝑟𝑟) is calculated by: 
 
𝐵𝐵𝑖𝑖𝑖𝑖(𝑟𝑟) = ∫�𝜙𝜙𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ + 𝑟𝑟� − 𝜙𝜙���𝜙𝜙𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ � − 𝜙𝜙��𝑑𝑑𝑟𝑟′���⃗ = �𝜙𝜙𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ + 𝑟𝑟� − 𝜙𝜙�� ∗ �𝜙𝜙𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ � − 𝜙𝜙�� = �∫�𝜙𝜙𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ + 𝑟𝑟� −
𝜙𝜙��𝐴𝐴𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ �𝑑𝑑𝑟𝑟′���⃗ � ∗ �∫�𝜙𝜙𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ + 𝑟𝑟� − 𝜙𝜙��𝐴𝐴𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ �𝑑𝑑𝑟𝑟′���⃗ � = �[𝜙𝜙𝑖𝑖𝑖𝑖(𝑟𝑟) − 𝜙𝜙�] ∗ 𝐴𝐴𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ �� ∗ �[𝜙𝜙𝑖𝑖𝑖𝑖(𝑟𝑟) − 𝜙𝜙�] ∗ 𝐴𝐴𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ �� =

�[𝜙𝜙𝑖𝑖𝑖𝑖(𝑟𝑟) − 𝜙𝜙�] ∗ [𝜙𝜙𝑖𝑖𝑖𝑖(𝑟𝑟) − 𝜙𝜙�]� ∗ [𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟) ∗ 𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟)] = 𝐵𝐵(𝑟𝑟) ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟) = ∫𝐵𝐵�𝑟𝑟′���⃗ + 𝑟𝑟�𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ �𝑑𝑑𝑟𝑟′���⃗               (2)                                 

 
where '*' represents the convolution operation, 𝐵𝐵(𝑟𝑟) is the autocorrelation function of 𝜙𝜙(𝑟𝑟) and 
𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟) is the autocorrelation function of 𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟). As a result, Eq. 1&2 simplifies to: 
  
𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 = ∫𝐵𝐵�𝑟𝑟′���⃗ �𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑟𝑟′���⃗ �𝑑𝑑𝑟𝑟′���⃗                                       (3) 

 
Because of the self-similar scaling of chromatin, the autocorrelation function of the nuclear 
crowding density distribution for the chromatin packing model is defined as:  
 

𝐵𝐵(𝑟𝑟)
σ2

= �

1, 𝑟𝑟 < 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
�𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟
�
3−𝐷𝐷

, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑓𝑓
0, 𝑟𝑟 > 𝑟𝑟𝑓𝑓

                                      (4) 

where we can use the 1D form of 𝐵𝐵(𝑟𝑟) because of power-law symmetry. 
 
If we assume a Gaussian distribution of the shape of interaction volume 𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟) with a radius of 
𝑟𝑟𝑖𝑖𝑖𝑖, the autocorrelation function 𝐴𝐴𝐴𝐴𝐹𝐹𝑖𝑖𝑖𝑖(𝑟𝑟) of 𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟) is also a Gaussian distribution: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟) = 𝛼𝛼𝑒𝑒
− 𝑟𝑟2

2𝑟𝑟𝑖𝑖𝑖𝑖
2                            (5) 

 
where 𝛼𝛼 is a constant.  
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When 𝑟𝑟𝑖𝑖𝑖𝑖 ≪ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, or equivalently taking the limit 𝑟𝑟𝑖𝑖𝑖𝑖 → 0, 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2  should converge to σ2, which 

gives us: 
 

lim
𝑟𝑟𝑖𝑖𝑖𝑖→0

𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2

σ2
= 4𝜋𝜋𝜋𝜋 ∫ r2𝑒𝑒

− 𝑟𝑟2

2𝑟𝑟𝑖𝑖𝑖𝑖
2 𝑑𝑑𝑑𝑑∞

0 = 4𝜋𝜋𝜋𝜋�𝜋𝜋
2
𝑟𝑟𝑖𝑖𝑖𝑖3 ≡ 1                                                (6) 

In turn, Eq. 6 allows us to solve for alpha: 
 
𝛼𝛼 = 1

4𝜋𝜋
�2
𝜋𝜋

1
𝑟𝑟𝑖𝑖𝑖𝑖3

                         (7) 

 
Therefore, solving Eq. 5 becomes: 
 

𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 = σ2 1

4𝜋𝜋
�2
𝜋𝜋

1
𝑟𝑟𝑖𝑖𝑖𝑖3

4𝜋𝜋 �∫ r2𝑒𝑒
− 𝑟𝑟2

2𝑟𝑟𝑖𝑖𝑖𝑖
2 𝑑𝑑𝑑𝑑𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

0 + ∫ r2𝑒𝑒
− 𝑟𝑟2

2𝑟𝑟𝑖𝑖𝑖𝑖
2 �𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟
�
3−𝐷𝐷

𝑑𝑑𝑑𝑑∞
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

� ≈ σ2�2
𝜋𝜋

1
𝑟𝑟𝑖𝑖𝑖𝑖3

�1
3
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3 +

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3−𝐷𝐷2
𝐷𝐷
2−1𝑟𝑟𝑖𝑖𝑖𝑖𝐷𝐷 ∫ 𝑥𝑥

𝐷𝐷
2−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑∞

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2

2𝑟𝑟𝑖𝑖𝑖𝑖
2

� ≈ σ2�2
𝜋𝜋
�𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑖𝑖𝑖𝑖

�
3−𝐷𝐷

2
𝐷𝐷
2−1 �Γ �𝐷𝐷

2
� − 2

𝐷𝐷
1

2
𝐷𝐷
2
�𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑖𝑖𝑖𝑖

�
𝐷𝐷
� ≈ σ2�2

𝜋𝜋
2
𝐷𝐷
2−1 �𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑖𝑖𝑖𝑖
�
3−𝐷𝐷

Γ �𝐷𝐷
2
� ≈

σ2 �𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑖𝑖𝑖𝑖

�
3−𝐷𝐷

                                                                                                           (8) 
                                                         

 

where Γ �𝐷𝐷
2
� is the Gamma function. Here, we assume that 𝑟𝑟𝑖𝑖𝑖𝑖>>𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 and v(D) = �2

𝜋𝜋
2
𝐷𝐷
2−1Γ �𝐷𝐷

2
� ≈

1 when D is between 2 and 3. The actual form of v(D) will depend on our assumptions of the 
interactions that occur within the interaction volume, 𝐴𝐴𝑖𝑖𝑖𝑖(𝑟𝑟). If it has a uniform distribution, 
v(D) = 12

𝐷𝐷(𝐷𝐷+1)
≈ 1, which also gives us the same expression of 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2 . Next, if we assume a binary 
distribution of chromatin crowding density (assuming the hard sphere property of chromatin), the 
variance of the crowding density in nuclei can be approximated as: 
 
σ2 = 𝜙𝜙𝑖𝑖𝑖𝑖,0(1 − 𝜙𝜙𝑖𝑖𝑖𝑖,0)                         (9) 

 
Using these considerations, 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2  reduces to: 
 
𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 = 𝜙𝜙𝑖𝑖𝑖𝑖,0(1 − 𝜙𝜙𝑖𝑖𝑖𝑖,0) �𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑖𝑖𝑖𝑖
�
3−𝐷𝐷

                                    (10) 

 
The equation shown above indicates that the variance of local crowding increases with an increase 
of D. To test if this effect of D on 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖

2  as derived analytically above is conserved, we measured 
𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2  as a function of D using simulations of random clusters (Fig. S1) and random media (Fig. 

S2). As predicted analytically, 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2 increases as a function of D in both sets of simulations. 

Consequently, this indicates that the effect of chromatin packing on the variance of local crowding 
is independent of the chosen chromatin model.  



 41 

 
 
 
Section SII. Random Media Simulations: Calculation of D from Mass Density Variations. 

 

To test the relationship between σ2, D and 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖
2  derived based on the chromatin packing scaling 

model shown in Eq.10, we calculate the variations in density from a numerically generated random 
media model. The random medium was generated from an autocorrelation function (ACF) of 
random noise (61). The mass density ρ in this calculation can be transformed into crowding volume 
fraction, or crowding density 𝜙𝜙 through ρ = 𝜙𝜙ρ𝑐𝑐, where ρ𝑐𝑐 is the dry mass density of 
macromolecular crowders. First, an autocorrelation function was generated with density variance 
𝜎𝜎ρ2=0.2g/cm3, fractal range (1 to 100 nm) and fractal dimension D (1.2 or 2.5), based on the 
following equation:  

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜎𝜎ρ2exp � −𝑟𝑟/𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
1+(𝑟𝑟/𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)3−𝐷𝐷

�                (11) 

where 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚=1 nm, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚=100 nm. The fractal dimension in this autocorrelation function can be 
understood as the power low scaling factor determining the shape of the ACF. The random media 
was generated using this ACF for low (D=1.2) and high (D=2.5) fractal dimension (Fig. S2). The 
random media generated through this method had on average the same total mass density variance 
𝜎𝜎ρ2=0.2g/cm3. For each individual voxel, the mass density was averaged within the interaction 
volume with radius 𝑟𝑟𝑖𝑖𝑖𝑖 = 20𝑛𝑛𝑛𝑛 to calculate ρ𝑖𝑖𝑖𝑖. Next, the local variance of each interaction 
volume is calculated to determine 𝜎𝜎ρ𝑖𝑖𝑖𝑖

2  in each random media to compare low and high D cases. 
The results from these simulations are as shown in Fig. S1. As we can see, the random media 
generated through ACF with higher D (D=2.5) has a larger 𝜎𝜎ρ𝑖𝑖𝑖𝑖

2  compared with the 𝜎𝜎ρ𝑖𝑖𝑖𝑖
2  of the 

random media generated with lower D (D=1.25) when 𝜎𝜎ρ2, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 are the same. This 
confirms a direct relationship between D and 𝜎𝜎ρ2 shows both the capacity to generate analytical 
estimates for the variations in density as a function of the ACF and confirms the analytical 
relationship we derived from the fractal chromatin model in Eq. 10. In the case of the ACF of an 
alternative arbitrary medium (not necessary a fractal) this can produce a D larger than 3 but would 
still have the same effective relationship between D and 𝜎𝜎ρ2. 
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Figure S1. Analysis of the relationship between D and 𝝈𝝈𝝓𝝓𝒊𝒊𝒊𝒊

𝟐𝟐 . A random media was simulated 
with clusters of size distribution ~1/rs4-D for cluster radius rs. The mass density for each interaction 
volume 𝜙𝜙𝑖𝑖𝑖𝑖 was calculated by dividing the 3D random media into 125 separate boxes (5x5x5) and 
calculating the volume fraction occupied by the randomly distributed clusters in the media. The 
standard derivation of 𝜙𝜙𝑖𝑖𝑖𝑖, 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖, was calculated for media generated from two different D (Figure 
S2). The blue dashes in the figure represent 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖of the media with lower D and the red dashes 
represent 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖of the media with higher D, showing a higher 𝜎𝜎𝜙𝜙𝑖𝑖𝑖𝑖for the media with higher D. 
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Figure S2. Random media simulations for low and high D.  
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Section SIII. Calculation of 𝝓𝝓𝒊𝒊𝒊𝒊,𝟎𝟎 from ChromEM measurements.  
 
Chromatin volume concentration (CVC) was first calculated from ChromEM samples to estimate 
the contribution of chromatin to average nuclear crowding. Prior to processing, the negative 
logarithm of the TEM image intensity were calculated to convert the image contrast into mass-
thickness distribution based on the Beer’s law. The moving-window average DNA concentration 
were calculated for the whole nucleus, and the window size was chosen to be 100 nm3 after taking 
the thickness of the sections into consideration. The nucleus segmentation was conducted manually 
in FIJI. We then normalized the corresponding nuclear CVC so that it has the same range as the 
CVC distribution in previously published work, and the nominal minimum and maximum from 
the TEM images of thin sections were defined as the CVC values that accounts for 0.05% and 
99.95% of the total data respectively. Next, we calculated 𝜙𝜙𝑖𝑖𝑖𝑖,0 by adding an additional 5% to 
average CVC measurements in each nucleus to account for mobile crowders in the nucleus. This 
proportion of mobile crowders can be obtained from the multiple previously reported 
measurements of the refractive index (RI) of cell nuclei and other cellular compartments including 
the cytosol and the Gladstone-Dale relationship between RI and crowding: 𝑛𝑛(𝑟𝑟) =  𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +
𝛼𝛼𝛼𝛼(𝑟𝑟) where 𝑛𝑛(𝑟𝑟) is the refractive index of the biological material at point 𝑟𝑟 in 3D space, 𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
is the refractive index of water, 𝛼𝛼 is the refractive index increment, and 𝜌𝜌 is molecular density (in 
g/ml) (42). Earlier reports indicate that the average value RI of the nucleoplasm and the cytosol 
are 1.339, which results in the average estimate of 5% volume fraction of mobile crowders (𝜙𝜙) 
(62, 63). 
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Figure S3. CVC distributions of A549 and BJ cells as measured by ChromEM. Analysis of 
ChromEM of chromatin volume concentration (CVC) values across N=4 replicates of 
differentiated BJ fibroblast nuclei and N=9 replicates of A549 lung adenocarcinoma nuclei. A549 
nuclei have a pooled CVC average of 0.35 while BJ nuclei have a pooled CVC average of 0.30. 
These values represent the chromatin contribution to 𝜙𝜙𝑖𝑖𝑖𝑖,0. 

 

 

 

 

 
 
 



 46 

 
Figure S4. Transcriptional malleability in A2780 and M248 cells. The tailwind factor 𝛿𝛿 =
 � E2,𝑏𝑏

 E1,𝑏𝑏 
� � E2,𝑎𝑎

 E1,𝑎𝑎 
��  was determined from additional bulk RNA-seq experiments on A2780 cells and 

TP53 mutated clone A2780.M248 cells along with propranolol, another compound that lowers D. 
PWS measurements showed a 2% decrease in D in A2780 cells after propranolol treatment for 16 
hours and a ~5% decrease in D in M248 cells treated with separately with celecoxib and 
propranolol for 16 hours. (a) 𝛿𝛿 effect in A2780 cells treated with propranolol to lower D. All 
treatment conditions include: control, 16 hour propranolol, 16 hour paclitaxel, and 16 hours 
paclitaxel plus celecoxib. (b&c) 𝛿𝛿 tested in M248 cells treated with celecoxib (b) and propranolol 
(c) as D lowering compounds for 16 hours. All treatment conditions include control, 16 hours 
celecoxib/propranolol, 16 hours paclitaxel, 16 hours paclitaxel plus celecoxib/propranolol. All 
results are based on the expression data at t=16 hours. Error bars represent the standard error of 𝛿𝛿 
of genes within each quantile. There are three biological replicates for every condition. 
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Figure S5. Gene ontology analysis of upregulated genes. Full list of biological processes that 
contain genes upregulated in paclitaxel-treated A2780 cells compared to control cells. 
 
 
 
 
 
 



 48  



 49 

Figure S6. t-SNE transcriptional heterogeneity analysis is independent of seed. (a-c) t-SNE 
dimensionality reduction from a space of 8,275 genes down to 3D for conditions defined in main 
text Figure 3. t-SNE is a probabilistic algorithm that attempts to reduce dimensionality while 
maintaining a similar distribution of Euclidean distance between each cell. Although each iteration 
results in a different projection in 3D space in terms of coordinates, the overall trend in the spread 
of transcriptional states between treatment conditions remains the same through all different seeds.  
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Figure S7. Transcriptional heterogeneity is increased in high D cells. (a) Spread of pairwise 
Euclidean distance was calculated between cells in each condition for genes associated with DNA 
repair pathways that are upregulated in 48 hour paclitaxel treated cells. (b) Coefficient of variation 
(COV) across treatment populations of genes grouped by control expression levels normalized by 
control COV. Genes were first binned into groups of ~100 genes (80 quantiles total) each based 
on relative control expression (exposed to roughly similar molecular regulators of transcription) 

and expression of these genes was averaged within each cell. 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 =  
𝜎𝜎𝐸𝐸𝑖𝑖
2

𝜇𝜇𝐸𝐸𝑖𝑖
 was calculated over all 

average expression levels of cells in treatment condition i for genes in control expression quantile 
j and each non-control condition was normalized to COV calculated for each bin in the control 
condition. 
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Figure S8. Relationship between survival time and transcriptional divergence. Fixed moving 
window averaging (MWA) with window size 5 was applied to compare P50/P50 values from 
sequencing data to patient survival time for (a) breast, (b) colon, and (c) lung cancer patients. Red 
curves represent the fit to the data points.  
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Table S1. Descriptions and values of CPMC model parameters. 
 

FIXED 
PARAMETERS DESCRIPTION VALUE 

𝑲𝑲𝑫𝑫 Dissociation rate of Pol-II in the absence of crowders 1nM 
𝒌𝒌𝒎𝒎 Transcription rate of Pol-II in the absence of crowders 1𝜇𝜇M-1s-1 

𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎 Lower length scale of chromatin self-similarity 1nm 
𝝈𝝈𝟐𝟐 Variance of continues crowding density 𝜙𝜙 𝜙𝜙𝑖𝑖𝑖𝑖,0(1 − 𝜙𝜙𝑖𝑖𝑖𝑖,0) 
L Average number of base pairs in each gene 6Kbp 
𝒓𝒓𝒊𝒊𝒊𝒊
𝟎𝟎  Radius of interaction volume for single base pair 15nm 
𝑵𝑵𝒅𝒅 Total mass of upper length scale of chromatin self-

similarity Average for all cell 
types:~1Mbp  
Low Nd in A549: 50Kbp 
High Nd in A549:2Mbp 

𝝓𝝓𝒊𝒊𝒊𝒊,𝟎𝟎 Average crowding density HT29 cells: 39%  v/v 
A549 cells:40% v/v 
BJ cells: 31% v/v 
A2780: 39% v/v 

𝑫𝑫𝒊𝒊 Initial chromatin fractal dimension Wild-type HT-29 cell: 2.7 
HT-29 Arid-1a Kd: 2.50 
A549 cells: 2.66  
BJ cells: 2.66 
A2780 cells: 2.50 

UNFIXED 
PARAMETERS DESCRPTION VALUE 

  

[𝑪𝑪]𝒕𝒕𝒕𝒕𝒕𝒕 Total concentration of transcription complexes  [0.035𝜇𝜇M, 350𝜇𝜇M]  
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Table S2. TGCA Patient Information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tumor Name Tissue Overall Survival 

Alive Dead 

Breast Invasive Carcinoma Breast 152 16 

Colon Adenocarcinoma Colorectal 12 48 

Lung Adenocarcinoma Lung 21 10 
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