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One Sentence Summary:
The CPMC model demonstrates the regulatory role of chromatin’s physical structure on
transcription, with implications for phenotypic plasticity.
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Abstract:

Three-dimensional supranucleosomal chromatin packing plays a profound role in modulating gene
expression by regulating transcription reactions through mechanisms such as gene accessibility,
binding affinities, and molecular diffusion. Herein we employ a computational model that
integrates disordered chromatin packing (CP) with local macromolecular crowding (MC) to study
how physical factors — including chromatin density, the scaling of chromatin packing, and the size
of chromatin packing domains — influence gene expression. We identify computationally and
experimentally a major role of these physical factors, specifically chromatin packing scaling, in
regulating phenotypic plasticity; determining responsiveness to external stressors by influencing
both intercellular transcriptional malleability and heterogeneity. Applying CPMC model
predictions to transcriptional data from cancer patients we identify an inverse relationship between
patient survival and phenotypic plasticity of tumor cells.

Main Text:
INTRODUCTION

Most perturbations a eukaryotic cell experiences occur at non-replicative time scales. These
perturbations are remarkably varied, range in intensity, and can be completely distinct from
previously encountered stimuli. Examples exist throughout the human body, including within the
skin, the alimentary tract, the immune system, the respiratory tract, the reproductive system, and
in malignancy. Consider the epithelial lining of the digestive and respiratory systems. While both
systems are constantly renewing their lining, the majority of functional cells within these tissues
persist for days to weeks after replication. During their lifespan, these cells are exposed to a wide
range of nutrients and toxicants that necessitate modification of gene expression to carry on basic
cellular functions across these variable conditions (e.g. appropriately absorb nutrients, regulate
ionic homeostasis, maintain a sufficient mucosal barrier, excrete waste products, secrete
immunoglobulins). No better example may exist than malignancy, as tumor cells are remarkably
adept at acclimating to a broad spectrum of cytotoxic chemotherapies and radiation exposure,
while evading detection from the myriad tools present within the immune system. These
capabilities evoke a critical question — how do individual cells acclimate to fluctuating or
completely novel conditions? Likewise, how do collections of cells, such as an organ or a tumor
mass, acclimate in aggregate to a heterogeneous, rapidly evolving environment?

One widely explored mechanism to respond to such varied conditions is to have a level of
predetermined functionalization: intermixing specialized cells within an organ to carry out specific
roles. Beyond establishing pre-coordinated responses, an intriguing possibility is for cells and cell
populations to have an encoded level of phenotypic plasticity in order to acclimate to novel
conditions in real time (/, 2). In the context of multicellular systems, the level of phenotypic
plasticity encoded would be a product of cellular malleability, i.e. the functional responsiveness of
cells toward stable end states upon external stimulation, and the level of intercellular heterogeneity,
the diversity of stable states that are observed within the same population at a given time.



Interestingly, recent advances in single cell technologies have highlighted the remarkable levels
of diversity within multicellular systems for otherwise seemingly identical cells (3-5). An
extraordinary level of diversity has been demonstrated in the lungs (3), breast tissue (4), the
gastrointestinal tract (5), and in malignancy (6-9). Furthermore, the cancer state is associated with
considerable structural (/0, 11), transcriptional (8, 12), epigenetic (9, /3), and mutational
heterogeneity (6, 9) — all of which have been demonstrated to be independently linked to
chemotherapeutic resistance, metastasis, survival and resilience in multiple cancer models.
Likewise, transcriptional responsiveness is concomitant with cancer cell survival in response to
chemotherapy as well as the functional responsiveness of immune cells to microbes (/4). To date,
these two facets of phenotypic plasticity have largely been viewed as distinct entities as no
mechanisms have been identified that simultaneously link both diversity and responsiveness.
However, at the level of gene transcription, both the malleability and intercellular heterogeneity
of gene expression within cell populations could result from the physical organization of chromatin
(14, 15).

To test the hypothesis that the physical organization of the genome is a regulator of both
transcriptional malleability and intercellular heterogeneity, we utilized multi-scale modeling to
describe transcription as a series of chemical reactions occurring in a heterogeneous, crowded
environment — a disordered Chromatin Packing Macromolecular Crowding (CPMC) model.
Pairing the CPMC model with single-cell RNA sequencing, chromatin electron microscopy
tomography (ChromEM) — a DNA-specific staining technique for electron microscopy — and live
cell Partial Wave Spectroscopic (PWS) microscopy, we demonstrate that the physical structure of
chromatin packing determines both the level of transcriptional malleability and heterogeneity. In
particular, the CPMC model predicts that at the supranucleosomal scale (from ~kbp to several
Mbp) the scaling behavior of chromatin packing size, which is the relationship between the
genomic length of a chromatin chain and its packing size, determines the level of intercellular
transcriptional heterogeneity by regulating local variations in chromatin density (/4, 16).
Furthermore, the scaling of chromatin packing regulates the level of transcriptional malleability
by regulating both gene accessibility and the free energy of transcription reactions (/7-19). Finally,
applying the CPMC model to interrogate the phenotypic plasticity of cancer cells, we show that
increased transcriptional malleability has an impact on cancer mortality. Analyzing gene
expression data from The Cancer Genome Atlas (TCGA) (20), we demonstrate that transcriptional
divergence — a direct measure of the level of transcriptional malleability, which is connected with
chromatin packing scaling — is inversely related to patient survival in advanced (Stage 3 and Stage
4) colorectal, breast, and lung cancers. In sum, this work mechanistically links two distinct aspects
of phenotypic plasticity, transcriptional malleability and intercellular heterogeneity, with the
physical properties representing the structure of disordered chromatin packing. Utilizing the
CPMC model, we quantitatively describe the role that physical forces play on gene expression in
vitro and describe a potential mechanistic relationship between structural alterations of chromatin
observed in cancer and prognosis.

MODEL

The CPMC model considers transcription in dilute, ex vivo conditions as a series of diffusion
limited chemical reactions that utilize DNA, transcription factors (TFs), and RNA polymerase 11



(Pol-IT) to produce mRNA (Fig. 1a). The total production of mRNA in these conditions will
depend on the concentration of reactants (/CJ:«r, Fig. 1b), the rate of polymerase elongation
(km, Fig. 1c¢), and (3) the dissociation rates of transcription factors and polymerase from DNA
(Kb, Fig. 1d). These molecular factors are well-studied regulators of gene expression in vitro. For
example, at the scale of nuclear compartments, formation and dissipation of TADs can alter local
transcription factor concentrations (27). Additionally, post-translational histone modifications
alter nucleosomal stability, thereby influencing the rate of polymerase elongation (22). Other post-
translational modifications of RNA polymerase itself independently control polymerase activity
(23). Furthermore, gene motifs determine binding affinities of polymerase and transcription
factors, resulting in varied dissociation constants of these molecules from their respective target
genes (24).

Compared to ex vivo conditions, the eukaryotic nucleus is a highly crowded, heterogeneous
environment (Fig. 1e). To model transcription reactions within such an environment requires
consideration of the length scales involved. At the smallest scale (within ~20nm of a gene, i.e. an
“interaction volume"), macromolecular crowding (¢;,) influences transcription by affecting the
mobility of transcriptional reactants and the dissociation rate of these molecules from DNA (79,
25, 26). Additionally, the accessible surface area of chromatin determines the number of DNA
binding sites available to transcriptional reactants. The probability of a gene promoter being
available for transcription depends on its local accessible surface area. At these small length scales,
transcription can be modeled as a network of chemical reactions involving TFs, Pol-II, and DNA.
TFs bind to their respective DNA-binding sites and recruit polymerases to gene promoters which,
in turn, bind DNA. These series of reactions result in intermediary transcription complexes that
stochastically transcribe genes into mRNA. Each reaction coefficient depends on local crowding
effects, which can be calculated using Brownian Dynamics (BD) and Monte Carlo (MC)
simulations. Gene expression for particular crowding conditions is calculated by solving the
steady-state network of equations that models these transcription reactions (79, 26). This modeling
approach predicts a non-monotonic dependence of transcription on crowding. The non-monotonic
behavior is influenced by the molecular factors previously discussed and is due to the opposing
effects of macromolecular crowders on chemical reactions. Initially, transcription rates increase
with crowding due to an enhanced binding stability of TFs and Pol-II arising from attractive
depletion interactions. At higher crowding conditions, however, the crowding-induced reduction
of molecular mobility dominates, lowering transcription rates. Notably, the most prevalent
macromolecular crowder in the nucleus is chromatin. Thus, local chromatin density within the
interaction volume of a gene should have a profound effect on transcription processes. Recent
electron microscopy studies have shown that chromatin packing density is highly heterogeneous
across the genome. Some genes have interaction volumes with exceedingly high densities
(chromatin volume concentration (CVC) up to >60%) while others may be positioned in regions
of the nucleus with CVC as low as ~10-20% (27). One approach to study the effect of local
crowding on transcription in cells would be to experimentally measure the local density of
chromatin near every gene using electron microscopy and pair these measurements with in situ
mRNA levels. This, however, is beyond existing technical capabilities, and an alternate approach
is needed.

Instead of experimentally mapping gene expression to locus-specific crowding conditions, the
CPMC model probabilistically samples the polymeric properties of chromatin in order to



approximate transcriptional output of an ensemble of genes under similar molecular and varying
physical conditions (/4, 28, 29). A combination of molecular factors influences the relative initial
expression levels of these genes (/9). In this work, we focus on how physical regulators further
modulate transcription reactions to produce a final observed transcription rate. The model
considers chromatin to be a disordered heteropolymer that is heterogeneously packed in three-
dimensional space. The 3D packing of the chromatin polymer determines the volume fraction
occupied by chromatin, the number of nucleotides acting together as a grouped polymeric entity
(Na), and the space filling geometry or the scaling behavior of these polymeric entities. N4 can be
considered as the number of nucleotides that are contained within a subset of the chromatin
polymer that has self-similar, power law scaling properties. As is the case with most other
disordered polymers, the power law scaling behavior describes the relationship between the length
of a given segment of the chromatin polymer (e.g. the number of nucleotides, N) and the size (R)
of the physical space occupied by the segment, N &< R? for N < N,. The scaling factor D is
frequently referred as the fractal dimension of the polymer and is determined by the balance of the
free energy of polymer-polymer and polymer-solvent interactions. D of an unconstrained free
polymer may range from D = 5/3 for an excluded volume polymer to D = 2 for an ideal chain
polymer in theta solvent and to D = 3 for a completely space-filling polymer. A polymer with a
uniform chain structure throughout would form a single fractal domain with D determined by the
properties of the chain as well as the solvent. Chromatin, on the other hand, is a heterogeneous
polymer with variable histone and DNA methylation. This leads to differential interactions
between the heterogeneous chromatin subunits and results in chromatin compartmentalization,
potentially as a result of liquid-liquid phase separation (30). Additional topological constraints
induced by chromatin-binding proteins, such as those responsible for the formation of chromatin
loops or nuclear lamins, might further influence D within a given chromatin domain or
compartment. Indeed, electron microscopy and super-resolution imaging studies have
demonstrated the existence of spatially segregated supranucleosomal nanoscale packing domains
with a variable size distribution in 3D space (27, 37). We have been able to visualize the existence
of these packing domains using ChromEM (Fig. 1e) and PWS (Fig. 1f) as small (100-200 nm in
diameter; genomic size between 100 and 400 kb), globular regions of higher chromatin crowding
density and D. The CPMC model considers a gene’s interaction volume to be located within these
packing domains. Accordingly, the local environment of a gene’s interaction volume is determined
by the encompassing packing domain, each of which may have its own average nuclear crowding
density (¢in,0) (Fig. 1e), chromatin packing scaling D (Fig. 1f&g), and genomic size (Na) (Fig.
1h). These local physical conditions are important determinants of gene expression. In addition,
gene length (L) partially influences the size of the interaction volume of a given gene, affecting
the range of crowding conditions the gene is probabilistically exposed to. The CPMC model is
eminently useful as it uses these measurable physical regulators of chromatin to approximate
distributions of mass density and accessibility of chromatin to determine transcription for each
gene throughout the entire nucleus, a feat which is currently experimentally infeasible (/7).

The expected expression rate of a gene in vitro is the product of the steady-state mRNA expression
rate of that gene (€) and the probability of the gene to be on the accessible surface of the chromatin
polymer (pg). Steady-state expression rate is a function of molecular features surrounding the gene
of interest (in; transcription factor concentration, histone state, enhancer-promoter interactions,
etc.) (Fig. 1b-d) in the context of local physical conditions (Fig. 1le-h) (14, 18, 19, 25). The
probability of gene accessibility contributes to the likelihood of a gene to interact with



transcriptional components (TFs and Pol-II) in vitro (32). It is beyond technical capabilities to
measure all molecular and physical parameters of the model for specific genes at the single-cell
level. Thus, we explore how a given ensemble of genes with similar molecular features m (e.g.
grouped by their initial expression or associated gene ontologies) would respond to changes in
average measurable physical conditions. Specifically, we study how average nuclear crowding
density, ¢, o, average chromatin packing scaling, D, and genomic size of a packing domain, Na,
change the behavior of global transcription processes. It is critical to stress that the CPMC model
does not assume that the chromatin polymer has the same power law scaling behavior or constant
density throughout the entire nucleus, but that this is instead an approximation due to existing
experimental limitations. The model can further be extended to consider each packing domain has
its own chromatin packing scaling D as technological cabilities to co-register chromatin packing,
molecular, and genomic properties advance. Finally, in this model, nuclear crowding density
within each interaction volume, ¢;,, is assumed to be constant relative to the time-scale of
transcription (~minutes), in line with recent imaging studies of chromatin mobility (33).

Given these considerations, in a population of cells, each gene will be exposed to different
crowding densities ¢;,. Each ¢;, will be sampled from the probability distribution function
f (¢in), which is assumed to follow a normal distribution with mean ¢;, o and variance U(f,m ~

Pino(1— ¢in’0)(rmin/rin)3_D , where 7min is the radius of the elementary unit of chromatin (e.g. a

base pair) and rix is the radius of the interaction volume (Supplementary Text) (/4). Due to the
mass-fractal nature of chromatin, r;, = L9, + LYP1,,;, for a gene of length L, where L?, is the
radius of the interaction volume for a single base pair and is approximated from previous MC
simulations of crowding effects (/4, 19). Thus, the expected range of crowding densities each gene
is exposed to is dependent on the statistical properties of the packing domain where the gene is
located, including D and ¢;,, o, and is further influenced by length L of the gene. The transcription
rate € itself is assumed to depend on molecular features m as well as on local crowding density
¢n. We calculate all expression rates under the assumption that molecular features m remain
constant throughout the population, with physiologically relevant values used in previous Monte
Carlo and Brownian Dynamics crowding simulations (Table S1) (/9). This gives rise to the form
of €, the average expression rate for an ensemble of genes that share a given m as:

= f €, i) f (Pin)din (1)

Likewise, a power law model of chromatin packing scaling allows the CPMC model to calculate
the probability of a unit of DNA (e.g. a gene promoter) to be on the accessible surface of chromatin,
Ps, (28, 29):

pg o Nd _I/D (2)

Finally, merging accessibility with steady-state expression rate for a group of genes, the ensemble
expression rate is:

E=¢€:pg (3)

To quantitatively analyze the effect of D on gene expression, we calculate the sensitivity of gene
expression as a function of D as predicted by the CPMC model. Sensitivity (Se) is the measurement



of how a dependent variable (i.e. gene expression) will change as a function of a perturbation to
an independent variable (i.e. D). Se of expression rate for any group of genes to changes in
chromatin packing is defined as:

dln(E)
= —aln(D) E=E;, D=D; )
where Eiis the initial average expression rate of the group of genes sharing similar molecular
features m and gene length L, and D is the initial average packing scaling of the chromatin
polymer. A positive Se for a given group of genes indicates that an increase in the scaling of
chromatin packing (D7), on average, enhances their collective expression rate. Importantly, the
CPMC model predicts the output of transcription reactions that occur within the nucleus.
Assuming that the half-life of mRNA transcripts is dictated by cytoplasmic conditions, structural
changes in chromatin that alter chromatin packing scaling D are not considered to alter the
degradation rate of mRNA. Thus, sensitivity should be directly related to the number of transcripts
produced for any group of genes in the nucleus.

To solve Eq. 4, we utilized a Taylor series approximation of € around ¢;,, :

1 de2(m, pin)
o (o g2 N/
Ex E(m; ¢ln,0) + 2 O-ﬁbin a¢12n ¢in:¢in,0 (5)

where e(m, ¢;,,) is a non-monotonic function of ¢;, due the competing effects of crowding on

0€?(m,p; —
depletion interactions and molecular diffusion, and %anmo ~ —Je(m, @)k
in ’

quantifies gene expression as a function of crowding within a transcriptional interaction volume.
Expression rate k = 22.6 nM/s is derived from a steady-state solution of rate equations that
model transcription and whose crowding-dependent rates were determined from BD and MC
simulations as  described previously (/4, 19). Of note, the function

a 2 _\1 [ — . .
9e”tmbin) (e(m, )) can be simulated by varying any or several of the components of

a¢i2n |¢in=¢in,0
205 b o
m. Although, in principle, the exact form of Mf‘”” _ as a function of e(m, ¢) may
0din ¢in_¢in0
depend on which component of m is being varied, i.e. k = k(m) , in practice k is only weakly
0€*(mpin)

dependent on m. In other words, |, =i o depends on m primarily through e (m, ®),

07,
with the average expression rate as the “common dominator” of multiple molecular factors. Thus,
predictions of the CPMC model regarding the effects of physical regulators on ensemble gene
expression should be robust to changes in molecular factors. Integrating Eq. 1-5 the Se of
expression rate becomes:

1 1€, 16 ¢
Se(ED):;lnNd_ _—(O-¢ ) 1+ 1+( 2 )2 (6)

3—D;1,;
[D 1n< ‘”>+ LR [A/D: ln(L)]
Tmin Di
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RESULTS

Physical factors of chromatin structure regulate sensitivity of gene expression to changes in
chromatin packing scaling.

To first test the CPMC model predictions in vitro, we employed live cell PWS microscopy to
measure D (Fig. 2a&b) (38,39) and ChromEM to measure ¢, o (Fig. 2¢&d) (27) paired with
mRNA microarrays, RNA-Seq, and single-cell RNA sequencing (scRNA-seq) to measure gene
expression of cell populations under different conditions. Specifically, average D was calculated
by first averaging D values from PWS measurements within each cell nucleus and then averaging
these measurements over the entire cell population for each treatment condition. Utilizing
ChromEM, average chromatin density was measured within each nucleus with ~3 nm resolution.
As ¢n o represents the crowding contributions from both chromatin and mobile crowders within
the nucleus, we added to CVC measured by ChromEM an additional 5% contribution from
unbound macromolecules (as described in the Materials and Methods section). In addition, we
utilized publicly available DNA sequencing information to obtain gene length and high-throughput
chromatin conformation capture (Hi-C) data to approximate Nz from the size of topologically
associating domains (TADs) (35). In relation to prior work on higher order chromatin organization,
Na could extend from tens of thousands to millions of basepairs. While Nz might not necessarily
represent the organization observed in TADs, TAD size was utilized as an approximate measure
of Ng as these domains have been shown to obey self-similar organization (36), as evidenced by
power law scaling properties of contact probability within TADs (37). Combining these methods,
we then tested the CPMC model’s predictions of Se of gene expression against in vitro
measurements for each identified physical regulator of gene expression.

To test the role of initial D;, we performed an RNAi knockdown of the chromatin remodeling
enzyme, Arid-la (A-Kd) in human colon carcinoma HT-29 cells, which resulted in a lower D;
compared to wild-type (WT) cells (/7). Next, we measured changes in chromatin packing scaling
D in serum starved WT and A-Kd HT-29 cells before and 30 minutes after stimulation with 10%
fetal bovine serum, 100nM epidermal growth factor (EGF), and 100nM phorbol 12-myristate 13-
acetate (PMA) (/4). In parallel, we measured gene expression for these conditions at 5 hours
utilizing mRNA microarrays. Genes were grouped for WT and A-Kd cells separately based on
their relative initial expression during serum starvation, and the experimentally measured
sensitivity AInE /AlnD was calculated for each group of genes. As predicted by the CPMC model,
experimental measurements of the Se of gene expression shows a bidirectional, monotonic
responsiveness to D as a function of initial expression in HT-29 cells (¢, o ~ 39%, approximated
by dividing chromosome copy number by nuclear volume). In addition, we found that D;
predominantly changes the responsiveness of initially under-expressed genes (Fig. 2e&f). These
results indicate that populations of cells with a higher D would have a higher level of
transcriptional divergence (the difference between highly and low expressed genes) than low D
cells. Cancer cells across most malignancies, stem cells, and, especially, cancer stem cells, are all
examples of types of cell populations that have elevated chromatin packing scaling (2, 38).



Functionally, this suggests that D can act as a means to optimize transcriptional responses as is
explored in subsequent sections.

Next, we tested the effect of average nuclear crowding density, ¢;,,, on gene expression
sensitivity to changes in the chromatin packing scaling D. ChromEM was employed to measure
average chromatin density for both human lung adenocarcinoma A549 cells and differentiated BJ
fibroblast cells, which had mean chromatin volume concentration (CVC) of 0.35 and 0.30,
respectively (Fig. 2c&d, distribution of CVC values shown in Fig. S3). Approximating for an
additional space filling contribution from mobile crowders, estimates of ¢;,, o were 40% in A549
and 35% in BJ cells. Each cell line was treated with 100nM dexamethasone (DXM) to modulate
D, which was measured by PWS microscopy. Gene expression of both cell lines with and without
DXM treatment was measured by RNA-seq. Sensitivity of gene expression was measured as
described above for each cell line. Interestingly, the CPMC model predicts cells with a lower ¢;;, o
would had an attenuated bidirectional Se, an effect confirmed experimentally in the lower
chromatin density BJ cells (Fig. 2g). In contrast, the higher chromatin density A549 cells (Fig. 2h)
retain an asymmetric response to altered chromatin packing scaling. This suggests that cells with
smaller nuclear volume, such as immune cells, or cells with increased chromosome copy number,
such as malignant cancer cells, would be predisposed to produce a more pronounced bidirectional
response in gene expression to stimuli that alter whole nuclear chromatin structure compared to
cells with lower chromatin density. These results demonstrate the net effect of increasing D and
@in o 1s an increased transcriptional divergence between initially over- and under-expressed genes.

Finally, we tested the roles of Nsand gene length on Se. From our model, Nz determines the
probability of genes being on an exposed surface to allow transcription reactions to occur, a
relationship which depends non-linearly on D (Eq. 2). Consequently, the CPMC model predicts
that (1) genes in larger packing domains (e.g. Na>2Mbp) would be relatively under-expressed in
comparison to those within smaller No domains (<50Kbp) and (2) genes within large Nz domains
would be more likely to become enhanced as a function of increasing D (+Se). To test these
predictions experimentally, we utilized the Arrowhead function in Juicer tools to measure TAD
sizes from Hi-C data of untreated and DXM treated A549 cells (39). As the dissociation and
formation of TADs has previously been shown to alter gene expression, for our analysis we only
selected TADs that were unaltered with DXM treatment. The top 20% largest (~2Mbp) and bottom
30% smallest (~50Kbp) of these TADs were chosen to produce roughly equal sized groups of
genes (~130 genes in each group). Using RNA-seq to measure gene expression and PWS
microscopy to measure the change in D before and after DXM treatment, we analyzed the
sensitivity of expression for genes localized to smaller 50Kbp TADs compared to larger 2Mbp
TADs (Fig. 2i). As predicted from the CPMC model, in vitro results demonstrate that genes within
larger 2Mbp TADs have an overall higher sensitivity to changes in D (Fig. 2i) while
simultaneously having lower initial expression compared to those within smaller 50Kbp TADs.
Consequently, these findings suggest a regulatory role of spatially confining genes into self-similar
structures, such as those found in TADs, in determining the probability of a gene being exposed
to transcriptional reactants. Given the recent work indicating significant variability in TADs from
cell to cell, this would suggest yet another mechanism that cells can use to regulate their functional
diversity within a population.



In addition, we tested the role of gene length on sensitivity of two fold under-expressed (low) and
two fold over-expressed (high) genes in the serum starved WT HT-29 cells described above. Using
the built-in Mathematica function, GenomeData, to obtain sequence length of genes, the sensitivity
of gene expression to D was then calculated as a function of their length. The model predicts
shorter genes have a smaller interaction volume, increasing the variance of crowding conditions
these genes are exposed to. Consequently, an increase in D should further increase fluctuations in
crowding concentrations surrounding these shorter genes, causing initially under-expressed genes
to further reduce their expression in proportion to decreasing gene length L. However, genes with
an initially higher expression level will be relatively unaffected by changes in gene length due to
more optimal molecular characteristics (e.g. high TF and Pol-II concentration) and initial crowding
conditions these genes are exposed to. In line with the CPMC model, our experimental microarray
data demonstrates that shorter, initially under-expressed genes become disproportionately under-
expressed as a function of increasing D, whereas length minimally influences initially over-
expressed genes (Fig. 2j).

The scaling behavior of chromatin packing regulates phenotypic plasticity through
transcriptional divergence and malleability

A major implication of the CPMC model is the role physical chromatin structure plays in shaping
gene expression. Thus, the model could provide a mechanistic link between two aspects of
phenotypic plasticity of a population of cells: transcriptional malleability and intercellular
transcriptional heterogeneity. In this case, we can consider transcriptional malleability to be the
average change in expression of a gene in response to an external stimulus, while transcriptional
heterogeneity can be thought of as the range in expression levels of each gene across a cell
population. While there is likely to be increased complexity that results from the variations from
cell to cell in average density and D, we herein test how heterogeneity and malleability are
influenced by the measurable features of disordered chromatin packing within a cell population.
An ideal testbed for this mechanistic integration is cancer. Multiple lines of evidence have shown
that chromatin structure is nearly universally transformed in malignancy (40-43). Microscale
structural alterations in chromatin are currently the gold standard for histopathological diagnosis
of dysplasia and malignancy (40). At the nanoscale, an increase in D has been previously reported
to occur at pre-dysplastic stages of lung, colon, esophageal, ovarian, liver, prostate, and pancreatic
cancers, while the severity of the chromatin transformation has been shown to be an accurate
indicator of the tumor aggressiveness (417, 43). Since (1) elevated D is a hallmark of malignancy,
(2) there is an emergent role of intercellular heterogeneity in determining chemotherapeutic
responsiveness and (3) cancer cells rapidly alter their gene expression to overcome cytotoxic
stressors (14, 16, 44), we hypothesized that cancer cells could leverage physical transformation
within the nucleus to gain survival advantages. Therefore, we wanted to test if cells could utilize
the scaling of chromatin packing as a regulator of both transcriptional malleability and
heterogeneity to achieve a rapid response to external stressors.

According to the CPMC model, the dependence of transcriptional malleability on chromatin
packing scaling results from the observed asymmetric response of upregulated and downregulated
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genes to changes in D (Fig. 2), which we denote as transcriptional divergence. Here, we focus on
changes in gene expression due to an external stimulus. A transcriptional response of a cell to a
chemotherapeutic stress provides a case in point. Chemotherapeutic induction of apoptosis has
been shown to depend on the rate of change in expression of critical genes (e.g. p53) and not their
steady-state levels alone (45). Accordingly, mechanisms which increase the rate of upregulation
of these critical genes would facilitate the development of cellular resilience to stressors. Consider
two populations of cells that have a baseline difference in their initial D. These two populations
are then exposed to the same exogenous stressor and a series of stress signaling pathways are
activated in an attempt to overcome the perturbation. The cells’ survival now depends, in part, on
the increased expression of these genes within a critical time frame. The CPMC model predicts
that the population of cells with initially higher D will be more likely to upregulate these critical
genes and remain viable (Fig. 3a).

To quantify the effect of initial D on transcriptional responsiveness, let mRNA; , be the initial
expression (the number of mRNA transcripts) for a given gene in cell a with chromatin packing
state D,. At time point ¢ = 0, a stimulus produces an increase in the gene’s rate of expression from
Ei 4 to E; 5. Without loss of generality, we first assume that both expression rate E; ; remains
stable and that the rate of mRNA degradation, v, remains constant post stimulation. The relative
change in expression at time ¢ is (MRNA,(t) — mRNA,,)/mRNA, 4 = (Eyq/E1q — 1)(1 —
e "), where mRNA;, = E;,/v is the pre-stimulation steady-state expression. This relative
change in expression increases with the ratio E; ,/E; 4, which is itself a function of both molecular
features and the chromatin packing state surrounding the gene. This can be illustrated by
comparing the response of an individual gene to an exogenous stressor in two cells a and b. Let

the same gene in both cells be associated with similar molecular features (m;, = m;;,i = 1,2)

but different chromatin packing states D, and D, with D, > D,. From Eq.4, d—E = 3@ dD, it

follows that:

E;p =E laexp[besel(D)dD] i=1,.2 ()

where Se; (D) is the sensitivity of expression state E; ;. In this situation, the effect of D on relative
changes in transcription in cell » compared to cell a would be defined as:

5= (ﬂ) / (ﬁ) = exp [ fDDab Sez(Dr)D—ISel(Dr) dD,]. (8)

Eip Eia

Within the physiological range of transcription, Se is an increasing function of E (Fig. 2) and, as
E, > E; for both cells, § > 1. Consequently, the same stimulus will result in enhanced upregulation
of the same gene in cell b compared to cell a, driven by the differences in chromatin packing
scaling between the two cells. This effect is expected to be particularly pronounced for initially
under-expressed genes with Se; < 0 that undergo a significant amplification (Se, > 0) upon
stimulation. We see that § is directly related to the transcriptional divergence and the shape of the
function Se(E) (Fig. 2). A faster rise of Se as a function of E results in a higher §. For cells a and
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b with similar D, § ~ 1+ (Se, — Se;)(D, — D,)/D,. This implies that factors that tend to
increase transcriptional divergence (e.g. high D, crowding, small Ns) would be expected to result
in a higher transcriptional malleability.

The functional significance of the relative transcriptional malleability coefficient § is twofold.
First, for highly amplified genes (E,/E; > 1) the relative increase in transcription at any given
time after the stimulation is proportional to §:

([mRNA],(t) — [mRNA],p)/[MRNA]Lp ~ & ([MRNA],(t) — [MRNA]y,)/[MRNA] . 9)

Second, the time 7 required to reach a given level of expression is dependent on chromatin packing
scaling and inversely proportional to &, i.e. 7,/T, = 8 1. This conclusion is applicable to genes
that are both upregulated as well as those that are downregulated in response to a stimulus, an
effect that might be especially consequential if decisions regarding cell fates must be made within
a limited time period after the introduction of the stressor (4J5).

To experimentally explore the relationship between D and phenotypic plasticity, we performed
concurrent single cell RNA sequencing and live cell PWS microscopy experiments on A2780
ovarian adenocarcinoma cells in response to treatment conditions that modulate chromatin packing
scaling. We first tested whether chemotherapy treatment of cancer cells resulted in a pre-selection
of high D cells. We measured changes in D using live cell PWS in A2780 ovarian adenocarcinoma
cells before and after treatment with a chemotherapeutic agent, 5SnM paclitaxel, for 48 hours. We
also monitored cell coverage, which represents survival of a cell population. Defining high D cells
as those that fall within the top 25" percentile of D in the cell population prior to the PAC treatment
(D=2.47), we then measured the percentage of cells with high D at 48 hours after paclitaxel
treatment. We observed that the percentage of high D cells increased in paclitaxel-treated cells
compared to the control population (Fig. 3b). In combination with coverage measurements, which
demonstrated significant cell death after 48 hours of paclitaxel treatment, our results indicate that
high D cells have an increased survival rate when exposed to paclitaxel treatment (Fig. 3b&ec).

We then compared the transcriptional malleability of populations of cells with differential D. As a
model system, we relied on chemically-induced modulation in D. To reduce D, we treated A2780
cells with 75 uM celecoxib (CBX), a nonsteroidal anti-inflammatory agent for 16 hours.
Previously, we have found that celecoxib reduces D within 30 minutes of treatment in A2780
ovarian carcinoma cells by at least 8% compared to untreated cells (/4). As a model of high-D
cells, we used untreated A2780 cells. Both CBX-treated cells (low D) and untreated cells (high D)
were then exposed to a chemotherapeutic agent, SnM paclitaxel (PAC) for 16 or 48 hours. Single
cell RNA sequencing was conducted using [llumina NextSeq500. Raw reads were aligned, mapped
and used to calculate transcripts per million (TPM) for each condition using bowtie2 (46) and
RSEM (47). Thus, as a model system, we measured transcriptional perturbation induced by a
cytotoxic chemotherapy stressor in a lower D (celecoxib-treated) versus higher D (not treated by
celecoxib) A2780 cell populations.

Inputting the experimentally observed difference in D into the CPMC model, we estimated & > 4
for initially under-expressed genes that become activated (Fig. 3d, blue manifold) and a smaller
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increase in § for initially over-expressed genes that are upregulated in response to stimulation (Fig.
3d, red manifold). We then tested if these predicted trends are observed experimentally using
single-cell RNA sequencing. Importantly, the crucial window for response to chemotherapy
frequently is thought to occur within 24 hours (45). Thus, we compared changes in gene expression
in A2780 cells with initially higher D to initially lower D after stimulation by paclitaxel treatment
for 16 hours. In agreement with the CPMC model, the stimulation of initially under-expressed
genes by chemotherapy treatment in initially higher D cells (upregulation of expression rate from
control rate E; , to 16hr PAC-treated rate E; ) was much higher than that in lower D cells (from
CBX-treated rate E; , to 16hr combo rate E; ,), resulting in §~4 (Fig. 3e). Likewise, a similar but
mitigated effect was observed in initially over-expressed genes (Fig. 3e), in strong agreement with
the model predictions. Next, we tested whether these trends were independent of cell line and
compound. We performed parallel experiments using propranolol as a D lowering agent in A2780
cells and celecoxib and propranolol to decrease D in more malignant TP53 mutant A2780 (M248)
cells. These additional conditions demonstrated a similar effect of D on transcriptional malleability
in response to paclitaxel stimulation of high D compared to low D cells (Fig. S4). Finally, we
tested if observed effect of chromatin packing scaling influences genes specifically involved in
functionally relevant stress response pathways. We first identified differentially expressed genes
that, on average, increased their expression at least two fold in A2780 cells treated with paclitaxel
for 48 hours compared to control cells. Gene ontology analysis of these upregulated genes showed
the activation of multiple stress response pathways after stimulation by paclitaxel treatment,
including DNA repair, autophagy, cell cycle arrest, and apoptosis (p-value < 0.05, Fig. 3f, Fig.
S5). The effect of D on the activation of these established stress response genes was consistent
with that observed in all upregulated genes, with 6 as high as ~ 4 (Fig. 3g).

The scaling behavior of chromatin packing regulates phenotypic plasticity through
intercellular transcriptional heterogeneity

Another key aspect of phenotypic plasticity that can be modulated by the disordered packing of
chromatin is transcriptional heterogeneity, or the range of expression levels across genes exposed
to similar molecular conditions. The CPMC model predicts that transcriptional heterogeneity
increases as a function of D due to increased variations in both packing density (aéin) and gene
accessibility (pg). To quantify this effect from the CPMC model, the variance in € across any given
cell population, Var,, is (/4):

1(0€e*(m, ¢in)
2

Var, =~ —
‘ o097,

2
) U¢in4
d’in:(pin,o (10)

Consequently, intercellular transcriptional heterogeneity, i.e. the standard derivation of steady-
state expression rate £ in Eq. 3, becomes:

V2 16 €
H(D) =p,-VarM? ~ —p, - (62 |1+ |1+ —
g € g F9 “Véin (O-(%in)z,c (11)
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and the coefﬁcient of variation (the ratio of the standard deviation to the mean expression) is

cov(D) = . ( )2K<1 + /1 +( > )2 ) Both H and COV increase with D, and COV also

decreases as a function of expression.

To investigate the association between D and intercellular transcriptional heterogeneity, we
analyzed our scRNA-seq data to quantify the spread in transcriptional states across each treatment
condition. Focusing on overall transcriptional differences between cells within the same condition
provides better validation to the model than analyzing the spread of all observed genes. Thus, we
first used t-Distributed Stochastic Neighbor Embedding (t-SNE) combined with principal
component analysis (PCA) to reduce the dimensionality of the system on all cells simultaneously
(48). The dimensionality reduction mapped each cell onto a three-dimensional projection.
Distances between cells in 3D space represented overall differences in transcriptional states, as has
been described by van der Maaten and Hinton (48). Intercellular transcriptional heterogeneity for
each cell population was quantified by the average radius of the cluster of cells, R, =

\/ SN (i — Tmean)? Where 1; is the position of each cell in the reduced spaced, N is the total

number of cells in each treatment group, and 75,04, = ?’:1 1; . Intuitively, Rc can be thought of

N
as the radius of relative genomic space. Consistent with predictions of the CPMC model, we found
that transcriptional heterogeneity, as measured by the radius of genomic space, increases with D
in response to paclitaxel treatment, which preselects for high D cells, as shown above. Notably,
after 48 hours of paclitaxel treatment, the population of surviving cells had both higher D and
increased transcriptional heterogeneity compared to control cells (Fig. 4a-c&f). In contrast,
celecoxib treatment reduces average D of a cancer cell population. Accordingly, cells treated with
celecoxib for 16 hours had a lower transcriptional heterogeneity compared to control cells. In
addition, when these celecoxib-primed cells with initially lower D were treated with paclitaxel for
16 hours, they had a decreased transcriptional heterogeneity compared to paclitaxel-treated control
cells (Fig. 4d-f). Although the resulting projection from t-SNE is non-unique, the trends in the
radius of genomic space across conditions are robust to randomly selected choice of seed (Fig.
S6). Additional analyses quantifying the Euclidean distance between expression of DNA repair
genes upregulated in 48 hour paclitaxel treatment as well as the coefficient of variation of
expression between cells in the same treatment condition demonstrate the same effect of chromatin
packing scaling on transcriptional heterogeneity as the t-SNE results (Fig. S7).

Next, we sought to investigate the effect of chromatin packing scaling on changes in transcriptional
heterogeneity in response to stimulation. For higher D compared to lower D populations, the
CPMC model predicts an increase in transcriptional malleability concomitant with an increase in
gene expression variability in response to stimulation. As a case in point, consider the upregulation
of stress response genes due to a stressor such as chemotherapy. Both transcriptional malleability
and heterogeneity may facilitate a response to the stress. An increase in the average expression
(malleability) and in the standard deviation of expression levels (heterogeneity) for these genes
upon the stimulation would increase the percentage of cells that express these genes above any
given level that may facilitate cell survival, regardless of the exact value of this critical level. We
used scRNA-seq data on A2780 cells to analyze the distributions of transcriptional responses to
paclitaxel treatment, as an example of an exogenous stressor, in cell populations with different
initial D. We assessed the ratio of the upregulated expression rate due to the stressor versus the
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initial expression rate (relative upregulation, E,/E;). Focusing on transcriptional responsiveness
of genes associated with DNA repair pathways that had been upregulated in response to 48 hour
paclitaxel treatment, we found that the higher D population had both an increase in the average
(malleability) and the variance of relative upregulation compared to those for the lower D
population (Fig. 4g). Next, we examined relative expression levels of genes suppressed in the
control condition, specifically those that occupied the bottom 10™ percentile of gene expression,
and observed a similar behavior (Fig. 4h). Importantly, this D-dependent increase in intercellular
transcriptional heterogeneity was itself a function of expression levels, i.e. genes that were under-
expressed in cells prior to PAC treatment had a more significant difference in the heterogeneity of
their relative upregulation in the high compared to the low D populations than those that were
already highly expressed prior to the stimulation (Fig. 4i), also in agreement with the CPMC
predictions.

Transcriptional divergence is inversely associated with patient survival

As described above, D determines a cell’s responsiveness to stressors such as chemotherapeutic
agents through the effect of chromatin packing scaling on phenotypic plasticity. A logical next
step was to establish if these physical regulators play a role in tumor aggressiveness in vivo. The
effects of chromatin packing scaling on phenotypic plasticity may foster the ability of cancer cells
to develop resilience and/or resistance to chemotherapy in vivo and may also be involved in other
processes fostering increased tumor fitness and aggressiveness. Throughout carcinogenesis,
tumors are frequently exposed to a wide range of stressors including attack by a host’s immune
system, inadequate oxygen supply from nearby blood vessels, or an acidotic microenvironment.
To test if such a relationship between phenotypic plasticity and tumor fitness exists, we analyzed
publicly available RNA-seq data collected by the TCGA Research Network (20) for lung,
colorectal, and breast cancers, which are the three most prevalent malignancies in the United
States. As the model predicts cellular responsiveness to external stressors, of which chemotherapy
is an example, we focus on patients presenting with Stage III and IV tumors at time of diagnosis,
as systemic therapy is the standard of care for these patients. Using the R package, TCGAbiolinks
(49), we quantified gene expression in units of fragments per kilobase million (FPKM) for each
patient. As this data lacks initial control measurements of cancer cells prior to initiation of systemic
therapy, transcriptional malleability cannot be measured directly for each patient. Additionally, we
do not have information related to chromatin packing scaling and other physical regulators of
transcription for these patients. However, the essence of the effect of § is that elevated D amplifies
a gene’s transcriptional response to stimuli: over-expressed genes are enhanced whereas under-
expressed genes are suppressed (Fig. 2). Consequently, as the bidirectional behavior of Se(E)
curves indicates, an elevated D widens the distribution of gene expression resulting in increased
transcriptional divergence, which, in turn, is a key determinant of transcriptional malleability (Fig.
5a). Thus, quantifying transcriptional divergence within these patient cohorts will, by proxy,
measure transcriptional responsiveness, which we have shown above is linked to D. Borrowing a
method from macroeconomics, transcriptional divergence can be quantified by the ratio of
expression of the top 50% of genes and the bottom 50% of genes (P50/P50), for ranked expression,
Ek, and total number of detected genes, N :
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As age is also a major predictor of cancer mortality, we restricted our analysis to patients under 75
years at time of diagnosis. As CPMC model predicts that higher transcriptional divergence
produces more adaptable tumor cells, we would expect that patients with a shorter survival time
would have tumor cells with an elevated P50/P50 ratio at time of diagnosis. To test this hypothesis,
we compared the P50/P50 ratio calculated at time of diagnosis of patients surviving above or below
the median survival time for each cancer type (Fig. Sb). We found a statistically significant inverse
relationship between P50/P50 ratio and relative patient survival time for lung (Fig. Sb, p<0.021),
breast (Fig. 5b, p<0.0001), and colon (Fig. 5b, p=0.018) cancers.

Next, we analyzed the relative contribution of transcriptional divergence to patient survival time
compared to effects of other prognostic factors (e.g. demographic factors, tumor molecular
subtype, and stage) by performing a multivariate regression on each prognostic factor. We then
calculated the relative survival time (RST) for each patient as the observed survival time relative
to the expected survival time based on these other prognostic factors. RST < 1 indicates that a
patient’s survival is shorter than expected (e.g. RST = 0.5 indicates that their survival duration is
50% shorter than expected) whereas RST > 1 indicates the opposite. Patients were then grouped
into a high and a low P50/P50 cohort based on if they were in the top or bottom half of P50/P50
values, respectively. Notably, high P50/P50 patients had an RST below 0.8 for all malignancies
whereas a low P50/P50 translated into a significantly higher RST > 1 (p <0.05). Next, we analyzed
the relationship between patient survival and P50/P50 directly for all malignancies. As survival
depends on a multitude of factors, some of which were not available within the TCGA dataset for
all patients (e.g. comorbidities), a fixed moving window average was applied to the data (see
Methods for details). We found a continuous inverse trend between P50/P50 and patient survival
for all three malignancies (Fig. 5d, Fig. S8). Finally, Kaplan-Meier survival curves show that
patients with high P50/P50 ratios have a median survival of 8 months compared to 28 months for
those with a low P50/P50 (Fig. Se, p=0.01). In summary, these results support a strong correlation
between transcriptional divergence, a facet of phenotypic plasticity that is directly affected by
chromatin packing scaling, and patient survival (Fig. 5).

DISCUSSION

In this work, we combined multi-scale modeling with high-throughput chromatin conformation
capture, single cell RNA sequencing, chromatin electron tomography, and live cell Partial-Wave
Spectroscopic microscopy to demonstrate the role of the disordered chromatin polymer on
regulating both intercellular transcriptional heterogeneity and transcriptional malleability. Based
on predictions from the CPMC model, which were verified experimentally, the spatial arrangement
of chromatin packing affects gene expression through a number of physical regulators, including
@Pino, Na, and D (Fig. 1&2). We demonstrate, both computationally and experimentally, that a
crucial role of chromatin packing is to determine the level of phenotypic plasticity within a cell
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population. In particular, the scaling of chromatin packing, D, modulates both the transcriptional
malleability through a chromatin mediated enhancement 0, a “tailwind effect” (Fig. 3), and the
level of intercellular transcriptional heterogeneity (Fig. 4). This effect is further regulated by other
physical properties of chromatin. A higher average crowding density within the nucleus suppresses
the expression of initially under-expressed genes as D increases (Fig. 2g&h). The modulatory
effects of Ns are two-fold. Genes localized to domains with a large Na (Mbp range) are more
suppressed than those localized to domains with small Nz (kbp range) owing to the reduced
accessibility to transcription factors and polymerases. However, as D increases, expression of
genes associated with large Nq is disproportionately enhanced (Fig. 2i). Overall, higher D, higher
crowding, and lower Ny increase both transcriptional malleability and heterogeneity, with D having
a much larger effect compared to the other two chromatin packing properties.

The fact that eukaryotic cells have encoded information into the scaling behavior of chromatin
packing may have important medical implications. Elevated D is a hallmark of cancer cells and
could represent a mechanism by which malignancy gains non-mutational advantages over
neighboring healthy cells. As observed in vitro, treating cells with a chemotherapeutic agent such
as paclitaxel selects for cells with a higher D (Fig. 3b), which, as demonstrated within this work,
is in part due to the increased phenotypic plasticity compared to cells with a lower D (Fig. 3&4).
This selects for tumor cell populations with a higher transcriptional adaptive potential, which in
turn may facilitate their survival despite future exposure to new stressors. In support of this
potential mechanism, our data shows that transcriptional divergence, the cross-sectional
measurement of transcriptional malleability, in advanced colorectal, lung, and breast cancers is
associated with worse prognosis independent of demographic factors (e.g. age, gender), tumor
stage, and molecular transformations (Fig. 5).

At present, experimental validation of the CPMC model relies on the measurement of average
chromatin packing scaling D and crowding within the entire nucleus. While currently beyond
existing experimental capabilities, subsequent studies directly comparing how local (e.g. intra-
packing domain) chromatin structure affects transcriptional processes and output would be of
considerable importance. Pairing gene-tracking techniques such as CRISPRainbow with imaging
modalities that measure chromatin structure, such as live-cell PWS microscopy and ChromEM, as
well as super-resolution imaging of molecular factors would help elucidate how intranuclear
variations in molecular and physical regulators of transcription contribute to transcriptional
heterogeneity and malleability (12, 27, 50).

Although not explored in this work, there are several implications of these results on the
understanding of multicellular fitness in the context of cell biology. For example, the localization
of genes into domains has been demonstrated to be a conserved, albeit heterogeneous, process
(51). From the predictions of the model, cells would benefit from localizing genes into large
domains that are intended to be suppressed at baseline but need rapid amplification if conditions
change. Likewise, crowding density could be adjusted by cells either as a preprogrammed response
by changing nuclear volume or incidentally from the retention of an extra chromosome during
replication. Consequently, as has been hypothesized, this could be a mechanism linking nuclear
size and density (e.g. hyperchromasia) with differential gene expression. Interestingly, nuclear
size, hyperchromasia, and abnormal nuclear texture are some of the most ubiquitous histological

17



markers of neoplasia, although their etiology and functional consequences have been poorly
understood (52).

In light of the CPMC model conclusions, it should be clear that disordered chromatin packing does
not mean that the configurations are random or that observed patterns in gene transcription are the
result of configurational noise. While it is beyond the scope of this work, the conformation of a
chromatin polymer depends on the balance between chromatin-chromatin and chromatin-
nucleoplasm interactions and is further shaped by active chromatin loop formation processes and
other constraints such as nuclear lamins (53). The shape of the disordered chromatin polymer will
ultimately depend on molecular factors such as histone modifications, transcriptional and
replication induced supercoiling, DNA motif stiffness, as well as nucleoplasmic factors such as
nuclear pH, ionic concentrations, and crowding, which collectively alter chromatin-chromatin and
chromatin-nucleoplasm interactions (26, 54-56). Therefore, individual cells could utilize a
combination of chromatin-chromatin and chromatin-nucleoplasm interactions to appropriately
organize the genome while also encoding a pre-determined level of phenotypic plasticity.

In addition, this work may have implications on the open question in chromatin biology regarding
the importance of non-coding DNA. Some roles have since been illuminated, including the
production of non-coding RNA and the distribution of transcriptional regulatory motifs such as
enhancers and insulators (27, 57). In light of this work, and in relation to previously suggested
hypotheses of the role of macromolecular crowding on gene expression, one of the evolutionary
functions of non-coding DNA could be derived from its space-filling role. Consequently, non-
coding DNA might be a critical component within the genome to determine phenotypic plasticity
as it contains the ability to modulate transcription reactions by influencing the free-energy of these
reactions and the diffusion of reactants.

Finally, one could consider how D plays a role in the adaptability of cancer cells throughout
carcinogenesis. Carcinogenesis depends on cells overcoming aberrations in metabolism,
derangements of the microenvironment, inadequate vascular supply, immune surveillance, and
acclimation to distal tissue environments during metastasis. As it could take multiple replicative
generations to develop a new useful mutation within a population for each of these processes,
cancer cells could in addition leverage the physical properties of chromatin packing to increase
their transcriptional plasticity in order to acclimate to these conditions over a faster time scale.
Thus, it may be worth investigating, for example, whether cancer cells with elevated D are better
able to survive an immune response and acclimate to distant tissue sites during metastasis. From
the therapeutic standpoint, while mutations are difficult to remove from a cell population, this
work suggests that limiting cancer cell evolution might be possible pharmacologically by lowering
the scaling of disordered chromatin packing.

Materials and Methods:

Gene expression analysis

mRNA Microarray for HT-29 Cells
HT-29 cells were serum deprived for 5 hours prior to treatment with 10% FBS v/v (SE), 100ng/ml
epidermal growth factor (EGF), or 100ng/ml phorbol 12-myristate 13-acetate (PMA). mRNA for
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these treatment groups was collected by TRIzol® isolation (Life Technologies, Carlsbad
California) from 10mL petri dishes and analyzed using [llumina human HG12-T microarray chips.
The R Bioconductor package, lumi, was used for quality control analysis by the Northwestern
Genomics Core to assess probe level processing from the Illumina microarray data. 2445
differentially expressed genes were identified for subsequent analysis.

RNA-Seq for A549 and BJ Cells

RNA-seq data for A549 and BJ cells as downloaded from ENCODE and GEO with access codes
ENCSR897XFT for A549 cells and GSE81087 for BJ cells (35, 58). 4 replicates are included in
both control and 12 hour DXM treated A549 cells. Gene expression was quantified using
featureCounts were downloaded from GEO for A549 cells. The length and the counts for each
replicate from featureCounts outputs were then changed into Transcripts Per Kilobase Million
(TPM) using TPM; = 108(cts;/L;)/ %; (), where TPM,, cts; and L; are the TPM value, the
count and the length of gene i. The differential expression (DE) analysis for A549 cells was
performed using the DESeq2 packages in R. 2292 differentially expressed genes were found after
12 hours 100 nM DXM treatment in A549 cells were using p-value<0.01. 3 replicates are included
in this analysis for BJ cells. The processed fragments per kilobase of transcript per million mapped
reads (FPKM) results from 3 replicated for BJ cells from control cells and the cells treated with
100 nM DXM for 32 hours were downloaded from GEO and transformed into TPM unit using
TPM; = 10°FPKM;/ ¥, FPKM;, where FPKM; is the FPKM value of gene i. The same differential
expression method was used on BJ cells and 7601 genes were identified with p-value <0.01.

RNA-Seq for A2780.M248 Cells

RNA samples from ovarian carcinoma TP53 mutant clone A2780.M248 cells were collected from
the cells treated under control, 16 hours celecoxib, 16 hours paclitaxel, 16 hours paclitaxel plus
celecoxib and 48 hours paclitaxel conditions with 3 biological replicates per condition. The
stranded mRNA-seq was conducted in the Northwestern University NUSeq Core Facility. Briefly,
total RNA quantity was determined with Qubit fluorometer, and quality assessed using RINs
generated from Agilent Bioanalyzer 2100. To proceed to sequencing library prep, RIN must be at
least 7. The Illumina TruSeq Stranded mRNA Library Preparation Kit was used to prepare
sequencing libraries from 100 ng RNA. The Kit procedure was performed without modifications.
This procedure includes mRNA purification and fragmentation, cDNA synthesis, 3’ end
adenylation, [llumina adapter ligation, library PCR amplification and validation. lllumina HiSeq
4000 Sequencer was used to sequence the libraries with the production of single-end, 50 bp reads.
Single-end FASTQ reads from RNA-seq measurements were aligned and mapped to hg38 using
bowtie2. Transcriptions per million (TPM) from mapped reads were estimated using RSEM.
Sgnificant genes that are expressed across all conditions and have fold changes larger/smaller than

2-fold/%-f01d of control in cells treated with paclitaxel for 48 hours are selected.

Single cell RNA sequencing for A2780 Cells

The single cell RNA sequencing experiments on A2780 were conducted under Illumina NextSeq
500 platform by University of Illinois at Chicago Research Resources Center Cores using Smart-
seq protocol. The paired FASTQ reads with four technical replicates of each cell were aligned to
mapped and used to hg38 using bowtie2. The gene expression levels, transcripts per million
(TPM), under each condition were estimated using software package RSEM. 46 out of 57 control
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cells, 55 out of 58 16hr paclitaxel cells, 53 out of 62 48hr paclitaxel cells, 62 out of 67 16hr
celecoxib cells and 59 out of 59 16hr combination (paclitaxel + celecoxib) cells were selected after
quality control (excluding cells with less than 4000 genes expressed). Additional quality control
was performed using the expression level housekeeping genes (59), but no additional cells were
excluded. In total, 8415 genes were identified for subsequent analysis for each individual cell after
removing genes expressed in less than 20% of the total cell population. To quantify the size of
genomic information space at different chromatin packing conditions, 8276 genes (average fold
changes relative to control are larger than 1.5 or smaller than 2/3) were selected to do a 3-
dimension (3D) t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis (48). The t-SNE
analysis was done using ‘Rtsne’ package in R with initial PCA step performed.

Gene Ontology Analysis

To perform the gene ontology analysis, the average TPM values of each gene across all the A2780
cells under each condition were normalized to the mean TPM values of control. The top 10%
expressed genes after normalizing with 48hr pac treatment were selected (841 genes) to conduct
the gene ontology analysis using DAVID. 20 biological processes were shown to be significantly
involved by these over-expressed genes (Fig. S5). Out of the 20 upregulated biological processes,
11 of them are involved in DNA repair (Fig. 3d).

TCGA patients expression analysis
y=N" FPKM)

The P50/P50 ratio of each patient’s gene expression is calculated by: UG ’,(;2+ where

P50 Y=o FPKMp
FPKM,, is the sorted FKPM value of the transcribed genes in each patient and N is the total number
of measurably transcribed genes. Only transcribed genes (FKPM=0) are considered using RNA-
seq obtained from the TCGC database. Patients from breast, colon and lung cancers in stage III
and stage IV are divided into survival over/below the median survival time based on their vital
status and survival time after diagnosis. The number of patients in each group can be found in
Table S2. Then, the P50/P50 values of patients from all three cancer types (breast, colon and lung
cancers) were pooled together to apply a fixed moving window average (MWA) with 15 patients
per group to analyze if an overall trend exists between P50/P50 and survival time (days). This
analysis is applicable to inherently noisy data or for datasets where important co-variates are not
completely available (e.g. chemotherapeutic/radiation therapy status or comorbidities were not
present in the data set). A linear regression analysis using survival duration, P50/P50, and tumor
stage as survival predictors was also conducted using Python showing a significant prediction of
patient survival only for P50/P50 (p-value<0.05) with negative coefficient of -33.6day. Notably,
regression analysis did not show a strong predictive power of stage at time of diagnosis (p-
value>0.05) or an association between tumor stage and P50/P50 level.

Hi-C Topologically Associating Domain (TAD) Analysis

The total mass of chromatin at the upper length scale of self-similarity Na of genes in the 3D space
was estimated using the publicly available high throughput chromatin conformation (Hi-C) data
on A549 cells (GEO access code: GSE92819 for control cells and GSE92811 for cells treated with
DXM for 12 hours) (35). Nawas approximated as the size the topologically associated domains
(TADs) measured from Hi-C. The processed TADs in A549 cells from the GEO data sets were
used to determine the size of TADs surrounding differentially expressed genes. Genes localized

20



within the same TAD were assigned with the same Nua. As dissolution of TADs was previously
shown to alter access of transcription factors to DNA and we wanted to analyze the effect of Na
size, we selected only TADs that remained intact and of comparable size before and after DXM
treatments. Genes within these consistent TADs were divided into two cohorts: a high Na group
and low Nz group. Each group had ~130 genes and the average Nz for each group were
approximately S0Kbp for low the Nas group and 2Mbp for high Na group. Genes with top 5% and
bottom 5% Na were removed from each groups to exclude outliers.

Live cell Partial Wave Spectroscopic (PWS) Microscopy

HT-29 Cell Culture

HT-29 Cells (ATCC, Manassas Virginia) were grown in Gibco® formulated McCoys-5A Media
(Life Technologies, Carlsbad California) supplemented with 10% v/v FBS (Sigma Aldrich, St.
Louis Missouri) and grown at 37°C and 5% CO,. All of cells in this study were maintained between
passage 5 and 25. Transient HT-29 Arid-1a shRNA knockdown line (A-Kd) was produced using
a lipofectamine vector. QqRT-PCR was used to assess for knockdown: imaging and microarrays
were performed on clones that demonstrated at least an 80% reduction in ARID-1a expression
compared to the control vector.

Prior to imaging, cells were cultured in 35mm glass bottom petri dishes (Cellvis, Mountain View,
CA) until at least 50% confluent. Cells were given at least 24 hours to re-adhere prior to 5 hours
of serum deprivation. For serum deprivation, cells were grown in fresh McCoy’s 5A (Life
Technologies) without serum supplementation and maintained at 37°C with 5% CO,.

A2780 Cell Culture

Ovarian A2780 cells were a gift from Dr. Chia-Peng Huang Yang and obtained from the lab of Dr.
Elizabeth de Vries at Albert Einstein College of Medicine. They were cultured in RPMI-1640
Medium (ThermoFisher Scientific, Waltham, MA # 11875127). All culture media was
supplemented with 10% FBS (ThermoFisher Scientific, Waltham, MA #16000044). Cells were
cultured in 35mm 6-well glass bottom plates (Cellvis, Mountain View, CA) until 60-85%
confluent. All cells were given at least 24 hours to re-adhere prior to pharmacological treatment.
Cells were treated with 75uM celecoxib (2 hrs, 16 hrs), 5SnM paclitaxel (16 hrs, 48 hrs), or
combination celecoxib and paclitaxel (16 hrs) prior to trypsinization and being resuspended in
growth media. Cell sorting was performed on a Fluidigm - C1 Single-Cell Capture instrument.
Single cell sequencing of the sorted cells was performed by staff researchers at the University of
Illinois Chicago Genomics Core.

A549 and BJ Cell Culture

A549 cells were cultures in Dulbecco's Modified Eagle Medium (ThermoFisher Scientific,
Waltham, MA, #11965092). BJ cells were cultured in Minimum Essential Media (ThermoFisher
Scientific, Waltham, MA, #11095080). All culture media was supplemented with 10% FBS
(ThermoFisher Scientific, Waltham, MA, no. 16000044) and 100 pg/mL Penicillin-Streptomycin
(ThermoFisher Scientific, Waltham, MA, # 15140122). All cells were maintained and imaged at
physiological conditions (5% COz and 37 °C) for the duration of the experiment. All cell lines
were tested for mycoplasma contamination with Hoechst 33342 within the past year. Experiments
were performed on cells from passage 5-20. Before imaging, cells were cultured in 35 mm glass
bottom petri dishes until approximately 70% confluent. All cells were given at least 24 hours to
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re-adhere prior to treatment (for treated cells) and imaging. A549 and BJ cells treated with 100nm
Dexamethasone (Sigma-Aldrich, St. Louis, MO, D6645) for 12 and 32 hours, respectively, in line
with published chromatin conformation capture and RNA-seq experiments.

Live Cell PWS Measurements

PWS measurements were performed on a commercial inverted microscope (Leica DMIRB) using
a Hamamatsu Image-EM CCD camera C9100-13 coupled to a liquid crystal tunable filter (LCTF;
CRi Woburn, MA) to acquire mono-chromatic spectrally resolved images that range from 500-
700nm at Inm intervals produced by a broad band illumination provided by an Xcite-120 LED
Lamp (Excelitas, Waltham, Massachusetts) as previously described (33, 34). Briefly, PWS
measures the spectral interference resulting from internal light scattering structures within the cell,
which captures the mass density distribution. To obtain the interference signal directly related to
refractive index fluctuations in the cell, we normalize measurements by the reflectance of the glass-
media interface, i.e. to an independent reference measurement acquired in an area without cells.
PWS measures a data cube (spatial coordinates of a location within a cell and the light interference
spectrum recorded from this location). The data cube then allows to measure spectral standard
deviation (X), which is related to the spatial variations of refractive index within a given coherence
volume. The coherence volume is defined by the spatial coherence in the transverse directions
(~200 nm) and the depth of field in the axial direction (~1 pm). In turn, the spatial variations of
refractive index depend on the local auto-correlation function (ACF) of the chromatin refractive
index. Finite-difference time-domain (FDTD) simulations have shown that PWS is sensitive to
ACF within 20 nm to 200 nm range. According to the Gladstone-Dale equation, refractive index
is a linear function of local molecular crowding. Therefore, 2 depends on the ACF of the media’s
macromolecular mass density. Small molecules and other mobile crowders within the nucleus are
below the limit of sensitivity of PWS, and PWS is primarily sensitive to chromatin conformation
above the level of the nucleosome. To convert 2 for a given location within a nucleus to mass

D-3
fractal dimension D, we model ACF as a power-law B, (r) = o? ( r ) , Where a(g is the

? \"min
variance of chromatin volume concentration (60). Generally, £ is a sigmoidal function of D.
However, for fractal structures such as a chromatin packing domain where within physiological
range 2 <D <3, X can be approximated as a linear function of D by the relationship D = Dy + aZ,
where Dy, = 1.473 and is comparable to the minimal fractal dimension that an unconstrained
polymer can attain and constant a~7.6. The measured change in chromatin packing scaling
between treatment condition was quantified by first averaging D within each cell’s nucleus and
then averaging nuclei from over 50 cells per condition.

Chromatin Electron Microscopy (ChromEM)

A549 Cell Culture

Two cells lines were used in this work: adenocarcinomic human lung epithelial cell line (A549),
and human cellosaurus cell line (BJ). The A549s were grown in DMEM with 10% FBS. The BJ
cells were grown in MEM with 10% FBS and 1x non-essential amino acids (NEAA). All cells
were cultured on 35 mm MatTek dishes (MatTek Corp) at 37°C at 5% COz. Confluency of around
60% were reached for all experiments.
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EM Sample Preparation and TEM/STEM Data Collection

For EM experiment, all the cells were prepared by the ChromEM staining protocol and embedded
in Durcupan resin (EMS) (27). After curing, 40 nm thin sections were made and deposited onto
copper 200 mesh grid with carbon/formvar film (EMS). The grids were plasma-cleaned by a
plasma cleaner (Easi-Glow, TED PELLA) prior to use. A HT7700 (HITACHI) transmission
electron microscopy was employed to record TEM images of cell sections at 80 kV with a pixel
size of 2.5 nm.
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Fig. 1. The Chromatin-Packing Macromolecular-Crowding model integrates molecular and
physical regulators of transcription. The regulators influencing transcription reactions can be

generally divided into two categories: molecular regulators (km, Kp, and /C/::) (a-d) and physical
regulators (D, ¢y, 0, and Na) (e-h). (a) The CPMC model describes transcription as a series of

diffusion limited chemical reactions. Ex vivo, expression depends on (b) concentration of
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transcriptional reactants /CJ:w: (TFs (green), Pol-II (yellow)), (¢) the RNA polymerase elongation
rate, km, and (d) the disassociation rate of Pol-II from the transcription start site (TSS) Kb. (e) (Lef?)
In addition to the molecular determinants, transcriptional reactions are influenced by the highly
dense and complex nuclear environment. The concentration of the main crowder with the nucleus,
chromatin, can be measured by chromatin electron microscopy (ChromEM). As an example,
ChromEM of a nucleus of an A549 lung adenocarcinoma cell is shown. (Right) ChromEM
measurements of chromatin volume concentration (CVC) demonstrates that chromatin density
varies throughout the nucleus. Chromatin packing domains can be visualized as areas of higher
chromatin packing density. Within each packing domain the average volume fraction of chromatin
can range from 15% to 65%. Typical domains are 100 to 200 nm in diameter and may contain, on
average, ~400 kb. (f) Representative PWS image of an A549 cell demonstrating the existence of
chromatin packing domains as regions of elevated chromatin packing scaling (also referred to as
fractal dimension) D, which vary throughout the nucleus. (g) A polymer with a higher D (right)
has a more heterogeneous density distribution and a greater accessible surface area compared to a
polymer with a lower D (left). (h) Na is the genomic size (in bp) of a chromatin packing domain
and can range from less than 100Kbp to several Mbp. Packing domains are illustrated by color
coding with each color representing a separate domain.
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Fig. 2. Comparison of the CPMC model with experimental measurements of gene expression
as a function of physical regulators D;, N4, and ¢;, o and gene length L. (a,b) Representative
live cell PWS microscopy images of nuclear D scaled between 2.56 and 2.66 for control (a) and
12 hour dexamethasone treated lung adenocarcinoma A549 cells (b). Brighter red corresponds to
higher chromatin packing scaling. (¢,d) Representative heat maps of CVC values from analysis of
ChromEM images of cell nuclei from A549 cells (¢) and human fibroblasts BJ (d). Representative
magnified regions from each nucleus demonstrates average CVC=0.35 in A549 cell compared to
0.35 in BJ cells, which represents the chromatin contribution to the average crowding volume
fraction ;0. (e-j) Comparison between the CPMC model (solid lines) and experimentally
measured (points) sensitivity of gene expression to an incremental change in chromatin D (Se, y-
axis) as a function of the initial gene expression (x-axis). (e) Cells with chromatin with a high
initial Di=2.7 (wild-type HT29 cells) have a bidirectional Se curve that becomes attenuated if D:
is lowered to 2.5 (shRNA knockdown Arid-1a HT-29 cells) (f). Each point represents the average
of 100 genes. Changes in D were induced by cell treatment with 10% fetal bovine serum, 100nM
epidermal growth factor (EGF), and 100nM phorbol 12-myristate 13-acetate (PMA). The CPMC
model was able to explain 86% of the variance of the experimental data for wild-type HT-29 cells
and 51% of the variance for Arid-1a HT29 cells. (g) Se in cells with a lower ¢, o (BJ cells, i, o =
35%; each point corresponds to 300 genes; explained variance (EV) = 59%) is attenuated in
comparison to that of cells with a higher density (h) (A549 cells; ¢, = 40%; 100 genes per
point; EV = 74%). (i) Genes located within larger packing domains (Nz ~ 2Mbp, 12 genes/point,
EV =56%) have a lower initial expression but have a positive Se to changes in D in comparison
to genes localized within smaller packing domains (Na ~ 50Kbp, 12 genes/point, EV =37%). The
change in D was induced in A549 cells by treatment with 100 nM of dexamethasone. Ns was
approximated based on the corresponding TAD size: 2Mbp TADs for the high N group of genes
vs. 50Kbp TADs for the low Na genes. TAD size was measured using the Arrowhead function
from the Juicer Tools to analyze Hi-C data. (j) Comparison between the CPMC model (solid line)
with experimental results (points, 60 genes/point) in HT-29 cells showing the effect of gene length
(L, x-axis) on Se (y-axis). In agreement with the model, shorter, initially under-expressed genes
(low expression, blue curve, points, EV = 67%) are disproportionally repressed by an incremental
increase in D compared to longer genes (high expression, red curve, points). Error bars represent
standard error from 4 biological replicates.
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Fig. 3. The scaling of chromatin packing increases the transcriptional malleability of cancer
cells. (a) In response to a stressor, such as a chemotherapeutic agent (e.g. paclitaxel), cells with a
higher level of transcriptional malleability may have the ability to respond faster, which may lead
to an increased survival. Chromatin packing with a higher D (right, Dp) increases a change in the
rate of transcription induced by a stimulus/stressor by a factor o (yellow arrow) relative to a change
in the rate of transcription in a cell with a lower D = D, < D,,. If in response to a stressor a cell
may increase the probability of retaining viability by reaching a given threshold of expression of
pro-acclimation genes, a higher D in cell b would increase the probability of reaching this level of
expression compared to cell a. (b&c) The fraction of high D cells in a cell culture increases after
treatment with paclitaxel for 48 hours (PAC), suggesting that cells with higher D are more likely
to survive exposure to a cytotoxic chemotherapeutic agent. (b) The percentage of cells having D
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above the top quartile of a control cell population (y-axis) increases in cells that survive treatment
with paclitaxel for 48 hours. For both conditions, each dot represents percentage of high D cells in
one replicate for a total number of N=5 replicates per condition. (¢) Combination treatment with
celecoxib, which lowers D, and paclitaxel for 48 hours results in increased elimination of cancer
cells compared with untreated controls and paclitaxel mono-treated cells. (d) CPMC model
predictions of the relative transcriptional malleability coefficient § for initially under-expressed
(blue spline) and over-expressed genes (red spline) for D,=2.3 and D»=2.5, a difference in D
relevant to experimentally observed differences in celecoxib-treated versus untreated A2780 cells.
(e) Single cell RNA sequencing on A2780 cells was performed to compare transcriptional profiles
of control A2780 cells (high D population) and cells treated with 75 uM of a D-lowering agent
celecoxib (low D population) and their response to treatment with 5SnM paclitaxel (stressor) for 16
hours. Initially under-expressed and initially over-expressed genes are defined based on control
expression levels. Genes are grouped based on their quantile of log, (Epac/Econtror) and the mean
and standard error of each quantile for initially under-expressed genes (blue dots, 300 genes/data
point) and initially over-expressed genes (red dots, 100 genes/data point) are plotted. (f) Gene
Ontology (GO) analysis identified biological processes that are most significantly involved in the
response to 48 hour paclitaxel treatment. Upregulated genes were defined as those with at least 2
fold increase in expression. (g) Chromatin packing scaling-facilitated upregulation (8) of the
stress-response genes identified by the GO analysis (red points, 150 genes/data point) was similar
to that for all upregulated genes (blue points, 650 genes/data point).
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Fig. 4. The scaling of chromatin packing regulates intercellular transcriptional heterogeneity
of cancer cells. (a-e) 3D projections of sScRNA-seq data (TPM values of 8,275 expressed genes)
onto reduced t-SNE space for 5 conditions: (a) control cells (n=46), (b) cells treated with 5nM
paclitaxel for 16 hours (16hr PAC, n=55), (¢) 5nM paclitaxel for 48 hours (48hr PAC, n=53), (d)
75um celecoxib for 16 hours (16hr CBX, n=62), (¢) and combination of 75uM celecoxib and 5nM
paclitaxel for 16 hours (16hr Combo, n=59). The size of the cluster indicates the transcriptional
heterogeneity within the population of surviving cells for each condition. (f) The radius of genomic
space R. (the radius of clusters through a-e) increases as a function of the chromatin packing
scaling D. D was measured by live cell PWS at each time point on cells prior to sequencing. Cells
treated with paclitaxel (higher D) have greater transcriptional heterogeneity, especially when
compared to cells treated with non-steroidal anti-inflammatory agent, celecoxib, which lowers D.
Likewise, the CPMC model (red curve, right side y-axis) shows that intercellular transcriptional
heterogeneity increases with D. Error bars represent the standard error of D calculated from PWS
measurements (x-axis) and R. (y-axis) for each condition. (g) Relative expression of high D versus
low D cells in response to paclitaxel treatment for genes associated with DNA repair pathways
which are upregulated in 48 hour paclitaxel treated cells. For each condition (Control, 16hr PAC,
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2hr CBX, 16hr Combo), TPM values of these genes (48 in total) was averaged within each cell.
Next, expression of paclitaxel-stimulated cells was normalized by the average of the corresponding
unstimulated population. The resulting intercellular distribution of relative expression levels is
shown. Dashed lines represent mean relative expression. Solid red and blue arrows represent the
standard deviation of distributions Ep ¢/ Econtror a4 Ecgx/Ecombo» respectively. For these stress
response genes, cells with a higher initial D versus cells with a lower initial D had an increase in
transcriptional malleability (T &) as well as a higher intercellular transcriptional heterogeneity (T
H). (h) Distribution of relative expression of genes, as described in (g), in the lowest quantile (10"
percentile) of control expression levels (839 in total). (i) Variance (¢2) of intercellular distribution
of relative expression for each percentile of control expression levels. Initially under-expressed
genes show an increased effect of chromatin packing scaling on increasing intercellular
transcriptional heterogeneity in response to paclitaxel stimulation compared to that of initially
over-expressed genes.
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Fig. 5. The relationship between transcriptional divergence (PS0/P50) and patient survival
in Stage III and IV lung, breast, and colon cancers. (a) From the Se curve predicted by the
CPMC model, cells with high D, such as cancer cells, have a wider distribution of gene expression
(transcriptional divergence). Quantitatively, this transcriptional divergence can be calculated by
measuring the ratio of the expression of the top 50% of genes to that of the bottom 50% of genes
(P50/P50). (b-e) Analysis of transcriptional divergence, P50/P50, in the cancer cells of patients
with Stage III and IV lung cancer (n=31), breast cancer (n=168), and colon cancer (n=60) verses
survival from the time of diagnosis based on The Cancer Genome Atlas dataset for patients <75
years old at the time of diagnosis. (b) P50/P50 was elevated in patients with a survival duration
below the median for each cancer type (p =0.021, <0.001 and = 0.018 for lung, breast, and colon
cancers, respectively). (¢) The relative survival time (RST; ratio between patient survival time and
that predicted by a multidimensional linear regression model based on known prognostic factors
such as stage at diagnosis, race, and molecular subtypes of the tumor) is higher for patients with
low P50/P50 (P50/P50 below the mean for all patients with a given cancer type). RST <1 indicates
survival shorter than expected based on demographic factors and molecular subtype (all p < 0.05).
For all three malignancies, RST < 0.8 in high-P50/P50 patients. RST is an independent predictor
of survival duration. (d) Pooling all patients with these malignancies, we analyzed survival
duration (x-axis, in months) vs. P50/P50 at the time of diagnosis. There was an inverse relation
between P50/P50 and survival duration. Each point is a moving window average of 10 patients to
account for unreported variables (e.g. comorbidities). (e) The Kaplan-Meier curve measuring
patient survival for the three malignancies. Patients with a high P50/P50 (P50/P50 above the
mean) have a shorter survival duration (median survival = 8 months) than patients with low
P50/P50 (P50/P50 below the mean, median survival = 28 months, p = 0.01).
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Supplementary Text

Section SI. CPMC Model: Variance of Chromatin Packing Density.

The variance of chromatin packing density in each interaction volume within the cell nucleus,
aqzbm, can be expressed as a function of D. By definition, the variance of any value, x, with
probability distribution function /4(x) can be calculated from the autocorrelation function H(x) as
Var(x)=H(x=0). The relationship between a(f,in and the autocorrelation function of chromatin

packing density, ¢;,, is B;,, (1), and can be calculated as:

According to the definition of an autocorrelation function, B;,, (7) is calculated by:

Bin(?) = f[¢m(7 + 7_2) - (l_)] [d)m(ﬁ) - (l_)]dp = [¢m(7 + 7_2) - (l_)] * [¢m(7) - d_)] = [f[d’m(ﬁ + 7:)) -
BlAn()dr) « [[[¢in(T +7) = BlAin()dr] = [[pinF) = @1 * A ()] * [0 7) = B * 4in(77)] =
|($in® = @1 % [pin ) = G| % [4in () * A ()] = BGF) * ACFyu(7) = [ B(7 + F)ACFyu (r7)dr’ )

where "*' represents the convolution operation, B(#) is the autocorrelation function of ¢(7) and
ACF;,(7) is the autocorrelation function of 4;,, (7). As a result, Eq. 1&2 simplifies to:

03, = [ B(r)ACF,(r")dr’ 3)

Because of the self-similar scaling of chromatin, the autocorrelation function of the nuclear
crowding density distribution for the chromatin packing model is defined as:

1,7 < Tmin

B(r) Foin > P
o (%) Tmin ST <75 (4)
0,r> Ty

where we can use the 1D form of B(#) because of power-law symmetry.

If we assume a Gaussian distribution of the shape of interaction volume A;,, (') with a radius of
Tin, the autocorrelation function ACF;,,(#) of A;,,(#) is also a Gaussian distribution:

r2

ACF,(F) = ae (5)

where « is a constant.
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When 1}, < Tyin, or equivalently taking the limit r;, — 0, a(f,m should converge to 62, which
gives us:

2 TZ

. % 0 “2r2 —
lim — = 4nq [~ r?e *Tindr = 4na rm = (6)

Tin—0

In turn, Eq. 6 allows us to solve for alpha:

1 2 1
OI=E\/;$ (7)

Therefore, solving Eq. 5 becomes:

r2 r2

- 3-D
Tmin .2, " 2r? 2r2 (rmin) ~ 2 |21 |1 .3
O = 0% —— |/, mdr+fmn in dr| =~ o? |=— -1 +

T Tin
D D 3-D
r3> DZ__1 sz xz “leXdx|~ o f T"”" __1 F(E) _Ei(_fmm) ~o? [22771 (—r'”i") F(E) ~
Tmin in rm 2 ng Tin T Tin 2
5 (T3P
o min (8)
Tin

D
where I’ (g) is the Gamma function. Here, we assume that r;,,>>1;,,;,, and v(D) = \/% 227 (g) ~

1 when D is between 2 and 3. The actual form of v(D) will depend on our assumptions of the
interactions that occur within the interaction volume, A;,(#). If it has a uniform distribution,

12
v(D) = D(D+1)

distribution of chromatin crowding density (assuming the hard sphere property of chromatin), the
variance of the crowding density in nuclei can be approximated as:

~ 1, which also gives us the same expression of O'(%in. Next, if we assume a binary

o’ = ¢in,0(1 - ¢in,0) ©)

Using these considerations, G(lznn reduces to:

. \3-D
O = Pino(1 = bino) (22) (10)

The equation shown above indicates that the variance of local crowding increases with an increase
of D. To test if this effect of D on aj,in as derived analytically above is conserved, we measured

aqzbm as a function of D using simulations of random clusters (Fig. S1) and random media (Fig.
S2). As predicted analytically, adz,inincreases as a function of D in both sets of simulations.

Consequently, this indicates that the effect of chromatin packing on the variance of local crowding
is independent of the chosen chromatin model.
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Section SII. Random Media Simulations: Calculation of D from Mass Density Variations.

To test the relationship between 62, D and adz,m derived based on the chromatin packing scaling
model shown in Eq.10, we calculate the variations in density from a numerically generated random
media model. The random medium was generated from an autocorrelation function (ACF) of
random noise (6/). The mass density p in this calculation can be transformed into crowding volume
fraction, or crowding density ¢ through p = ¢pp., where p. is the dry mass density of
macromolecular crowders. First, an autocorrelation function was generated with density variance
0520.2g/cm3, fractal range (1 to 100 nm) and fractal dimension D (1.2 or 2.5), based on the
following equation:

ACF = o2exp [H(T;f%] (11)
where 73,;,=1 nm, 73,,,=100 nm. The fractal dimension in this autocorrelation function can be
understood as the power low scaling factor determining the shape of the ACF. The random media
was generated using this ACF for low (D=1.2) and high (D=2.5) fractal dimension (Fig. S2). The
random media generated through this method had on average the same total mass density variance
0'520.2g/cm3. For each individual voxel, the mass density was averaged within the interaction
volume with radius r;,, = 20nm to calculate p;,. Next, the local variance of each interaction
volume is calculated to determine agin in each random media to compare low and high D cases.
The results from these simulations are as shown in Fig. S1. As we can see, the random media
generated through ACF with higher D (D=2.5) has a larger a‘in compared with the agin of the
random media generated with lower D (D=1.25) when 0'5, Tmin and 7,4, are the same. This
confirms a direct relationship between D and ag shows both the capacity to generate analytical
estimates for the variations in density as a function of the ACF and confirms the analytical
relationship we derived from the fractal chromatin model in Eq. 10. In the case of the ACF of an
alternative arbitrary medium (not necessary a fractal) this can produce a D larger than 3 but would
still have the same effective relationship between D and a‘f.
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Figure S1. Analysis of the relationship between D and O'éin. A random media was simulated

with clusters of size distribution ~1/rs*P for cluster radius rs. The mass density for each interaction
volume ¢;,, was calculated by dividing the 3D random media into 125 separate boxes (5x5x5) and
calculating the volume fraction occupied by the randomly distributed clusters in the media. The
standard derivation of ¢, 04, was calculated for media generated from two different D (Figure

S2). The blue dashes in the figure represent gy, of the media with lower D and the red dashes
represent oy of the media with higher D, showing a higher oy, for the media with higher D.
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Section SIII. Calculation of ¢;,, o from ChromEM measurements.

Chromatin volume concentration (CVC) was first calculated from ChromEM samples to estimate
the contribution of chromatin to average nuclear crowding. Prior to processing, the negative
logarithm of the TEM image intensity were calculated to convert the image contrast into mass-
thickness distribution based on the Beer’s law. The moving-window average DNA concentration
were calculated for the whole nucleus, and the window size was chosen to be 100 nm?® after taking
the thickness of the sections into consideration. The nucleus segmentation was conducted manually
in FIJI. We then normalized the corresponding nuclear CVC so that it has the same range as the
CVC distribution in previously published work, and the nominal minimum and maximum from
the TEM images of thin sections were defined as the CVC values that accounts for 0.05% and
99.95% of the total data respectively. Next, we calculated ¢;, o by adding an additional 5% to
average CVC measurements in each nucleus to account for mobile crowders in the nucleus. This
proportion of mobile crowders can be obtained from the multiple previously reported
measurements of the refractive index (RI) of cell nuclei and other cellular compartments including
the cytosol and the Gladstone-Dale relationship between RI and crowding: n(r) = n,qrer +
ap(r) where n(7) is the refractive index of the biological material at point 7 in 3D space, Ny grer
is the refractive index of water, «a is the refractive index increment, and p is molecular density (in
g/ml) (42). Earlier reports indicate that the average value RI of the nucleoplasm and the cytosol
are 1.339, which results in the average estimate of 5% volume fraction of mobile crowders (¢)
(62, 63).

44



0.04

0.035

0.03|

0.025

0.02

Probability

0.015

0.01f

0.005

CcvC

Figure S3. CVC distributions of AS49 and BJ cells as measured by ChromEM. Analysis of
ChromEM of chromatin volume concentration (CVC) values across N=4 replicates of
differentiated BJ fibroblast nuclei and N=9 replicates of A549 lung adenocarcinoma nuclei. A549
nuclei have a pooled CVC average of 0.35 while BJ nuclei have a pooled CVC average of 0.30.
These values represent the chromatin contribution to ¢y, o.
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Figure S4. Transcriptional malleability in A2780 and M248 cells. The tailwind factor § =
(Ejz ) / (%) was determined from additional bulk RNA-seq experiments on A2780 cells and
TP53 mutated clone A2780.M248 cells along with propranolol, another compound that lowers D.
PWS measurements showed a 2% decrease in D in A2780 cells after propranolol treatment for 16
hours and a ~5% decrease in D in M248 cells treated with separately with celecoxib and
propranolol for 16 hours. (a) § effect in A2780 cells treated with propranolol to lower D. All
treatment conditions include: control, 16 hour propranolol, 16 hour paclitaxel, and 16 hours
paclitaxel plus celecoxib. (b&c) § tested in M248 cells treated with celecoxib (b) and propranolol
(c) as D lowering compounds for 16 hours. All treatment conditions include control, 16 hours
celecoxib/propranolol, 16 hours paclitaxel, 16 hours paclitaxel plus celecoxib/propranolol. All
results are based on the expression data at t=16 hours. Error bars represent the standard error of §
of genes within each quantile. There are three biological replicates for every condition.
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Figure S5. Gene ontology analysis of upregulated genes. Full list of biological processes that

contain genes upregulated in paclitaxel-treated A2780 cells compared to control cells.
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Figure S6. t-SNE transcriptional heterogeneity analysis is independent of seed. (a-c) t-SNE
dimensionality reduction from a space of 8,275 genes down to 3D for conditions defined in main
text Figure 3. t-SNE is a probabilistic algorithm that attempts to reduce dimensionality while
maintaining a similar distribution of Euclidean distance between each cell. Although each iteration
results in a different projection in 3D space in terms of coordinates, the overall trend in the spread
of transcriptional states between treatment conditions remains the same through all different seeds.
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Figure S7. Transcriptional heterogeneity is increased in high D cells. (a) Spread of pairwise

Euclidean distance was calculated between cells in each condition for genes associated with DNA

repair pathways that are upregulated in 48 hour paclitaxel treated cells. (b) Coefficient of variation

(COV) across treatment populations of genes grouped by control expression levels normalized by

control COV. Genes were first binned into groups of ~100 genes (80 quantiles total) each based

on relative control expression (exposed to roughly similar molecular regulators of transcription)
2

O'Ei

and expression of these genes was averaged within each cell. COV; = was calculated over all

HE;
average expression levels of cells in treatment condition 7 for genes in control expression quantile
J and each non-control condition was normalized to COV calculated for each bin in the control

condition.
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Figure S8. Relationship between survival time and transcriptional divergence. Fixed moving
window averaging (MWA) with window size 5 was applied to compare P50/P50 values from
sequencing data to patient survival time for (a) breast, (b) colon, and (¢) lung cancer patients. Red
curves represent the fit to the data points.
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FIXED DESCRIPTION VALUE
PARAMETERS
K, Dissociation rate of Pol-II in the absence of crowders InM
k,, Transcription rate of Pol-1I in the absence of crowders 1uM’'s”
Tmin Lower length scale of chromatin self-similarity Inm
5 . : . -
o Variance of continues crowding density ¢ ¢m’0(1 — ¢in‘0)
L Average number of base pairs in each gene 6Kbp
r?n Radius of interaction volume for single base pair 15nm
N, Total mass of upper length scale of chromatin self- | Average for all cell
similarity types:~1Mbp
Low N,in A549: 50Kbp
High N in A549:2Mbp
P, Average crowding density HT29 cells: 39% v/v
im0 A549 cells:40% v/v
BJ cells: 31% v/v
A2780: 39% v/v
D, Initial chromatin fractal dimension Wild-type HT-29 cell: 2.7
HT-29 Arid-1a Kd: 2.50
A549 cells: 2.66
BJ cells: 2.66
A2780 cells: 2.50
UNFIXED DESCRPTION VALUE
PARAMETERS
[(;]t . Total concentration of transcription complexes [0.035uM, 350uM]
(]

Table S1. Descriptions and values of CPMC model parameters.
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Tumor Name Tissue Overall Survival
Alive Dead
Breast Invasive Carcinoma Breast 152 16
Colon Adenocarcinoma Colorectal 12 48
Lung Adenocarcinoma Lung 21 10

Table S2. TGCA Patient Information.
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