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We introduce a scenario for CP-violating (CPV) dark photon interactions in the context of non-Abelian
kinetic mixing. Assuming an effective field theory that extends the Standard Model (SM) field content with
an additional U(1) gauge boson (X) and a SU(2), triplet scalar, we show that there exist both CP-
conserving and CPV dimension five operators involving these new degrees of freedom and the SM SU(2),
gauge bosons. The former yields kinetic mixing between the X and the neutral SU(2), gauge boson
(yielding the dark photon), while the latter induces CPV interactions of the dark photon with the SM
particles. We discuss experimental probes of these interactions using searches for permanent electric dipole
moments (EDMs) and dijet correlations in high-energy pp collisions. It is found that the experimental limit
on the electron EDM currently gives the strongest restriction on the CPV interaction. In principle, high-
energy pp collisions provide a complementary probe through azimuthal angular correlations of the two
forward tagging jets in vector boson fusion. In practice, observation of the associated CPV asymmetry is

likely to be challenging.
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I. INTRODUCTION

In recent years, the possible existence of a new U(1)
gauge boson has been motivated by experimental results in
several phenomenological contexts, such as lepton flavor
universalities in B physics [1-5] and muon anomalous
magnetic moment [2,6,7]. Moreover, the new gauge boson
itself can be a dark matter candidate or mediator between
the Standard Model (SM) particles and dark matter [3,8,9].
It is often called a dark photon or Z'.

The dark photon (X) has kinetic mixing with the SM
U(1)y gauge boson, X, B, yielding interactions with the
SM particles [10,11] parametrized by a dimensionless
parameter €. So far, a variety of searches for the X in both
low- and high-energy frontiers have been conducted [12—
14]. The resulting constraint is given by e <1073, or
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smaller, for the dark photon mass below about 10 GeV.
This situation motivates us to study theoretical explanations
of the rather small coupling €. One solution might be going
beyond renormalization theory, namely, introducing
higher-dimensional operators [15-19]. In Ref. [19], it is
assumed that an SU(2), triplet scalar £ ~ (1,3,0), as well
as the SM particles, is present below a scale A that lies well
above electroweak scale (v ~ 246 GeV). This setup yields a
SU(2),-invariant dimension-5 operator Tr[W,, X|X**/A.
After the triplet scalar develops a nonzero vacuum expect-
ation value (VEV) x, the operator gives rise to kinetic
mixing, (xo/A)W;,X*. The triplet VEV breaks the cus-
todial symmetry [20]; therefore, it is strongly constrained
by electroweak precision measurements [21]. As a result,
kinetic mixing is suppressed meanwhile collider signatures
can be significant [19].

Most studies of the dark photon have concentrated on
kinetic mixing that preserves CP symmetry. Once we have
addressed the small kinetic mixing parameter ¢ with the
dimension-5 CP-conserving (CPC) operator, it is well
motivated and natural to investigate possible CPV inter-
actions. One may ask about the possibility of CP-violating
(CPV) kinetic mixing, B, X" with X" = e"%X,/2.
However, it is not present since the interaction is equivalent
to total derivative and does not contribute to the action.
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Nevertheless, the current framework allows a CPV dimen-
sion-5 operator Tr(W,, X)X* / A. Due to the presence of the
triplet scalar, this operator is not equivalent to a total
derivative. Consequently, there are nontrivial CPV inter-
actions that cannot be removed from the effective
Lagrangian: (xo -+ X°)X*W, W, and X*F, X° with £°
and F,, being a neutral component of the triplet scalar and
field strength of the photon. The CPV interactions are a
distinctive characteristic of non-Abelian kinetic mixing,
requiring different experimental probes from those of the
CPC case.

Among powerful probes of CPV interactions at low
energy are searches for permanent electric dipole moments
(EDMs). The EDMs are P- and T-violating quantities,
implying CP violation under the CPT theorem. They
provide a powerful window on either strong CPV or
CPV interactions arising from physics beyond the SM
(BSM), since the predictions associated with SM electro-
weak CP violation are much below experimental sensitiv-
ities (for recent reviews, see Refs. [22-25]). On the other
hand, BSM scenarios may possess new CPV phases,
inducing nonzero EDMs that the experiments are able to
reach. In the present model, the CPV interaction VG WZO
generates the fermion EDMs at one-loop level through two
types of mixing: non-Abelian kinetic mixing and mixing of
the SM Higgs boson with the neutral component of X.
Although the experimental constraints on kinetic mixing
generally become more severe as the dark photon is lighter,
it should be emphasized that in this model a new light
degree of freedom, which cannot be integrated out, con-
tributes to the EDMs. This situation contrasts with the more
widely considered sources of EDMs that involve new
particles at the TeV scale and above.

Experiments at the high-energy frontier have the poten-
tial to play a complementary role in probing CPV inter-
actions. In collider experiments, CPV effects can appear in
angular distributions of final states. One possible way is to
see a correlation of azimuthal angle difference between two
tagging jets (j) in the vector boson fusion (VBF) process
[26-28]. The aforementioned CPV interaction X””W;’ w;
can affect the angular correlation. Contrary to the EDMs,
this collider signature does not depend on mixing between
the neutral scalars. Thus, we expect that the collider
signature of the CPV interactions is potentially observable,
having no suppression associated with a small scalar
mixing term.

It is interesting to note that our setup is also related to
electroweak baryogenesis that needs new source of CP
violation and a first order phase transition, while the real
triplet may catalyze such a first order transition through
either a single- or two-step electroweak symmetry-breaking
transition [29]. A detailed analysis of the baryon asym-
metry computation in this model, however, goes beyond
our current study.

In this paper, we will illustrate how the fermion EDMs
probe the CPV dimension-5 operator of a massive dark
photon and discuss the possibility of the complementary
probe at the Large Hadron Collider (LHC). This paper is
organized as follows. First, in Sec. II, we introduce the
dimension-5 operators and scalar potential. In Sec. III, it is
discussed how the fermion EDMs arise from the CPV
interactions, and their current bounds are shown. In Sec. IV,
collider analyses associated with VBF processes are dis-
cussed. Section V contains our conclusions.

II. MODEL

The dimension-5 operators of interest are'

— ﬂ v /} YUY
L£d=5) — —KTr[WWZ]X/‘ —KTr[WWZ]X” . (D)
where W, = W¢,7%/2 and X* = ¢"%/X ,/2. An SU(2),
triplet scalar £ ~ (1,3,0) is given by

1/ x° 25+
s-! ( v2 ) ®)
2\v2z- -3
After the triplet scalar has its VEV (£°) = x,, the operators
in Eq. (1) give the following interactions:

_ 1
L= 5 —5(@zxZu X"+ gy F, X)

b5 . _ _
— LR s 0 —iga g+ X (W W =W W),
G)

where azx(ax) = fxocw(sw)/A with the weak mixing
angle cy (sy) = cos Oy (sinfy). Z,, and F,, are the field
strengths of the Z boson and photon, respectively. The first
row in Eq. (3) comes from the CPC operator in Eq. (1),
which implies kinetic mixing between the SM gauge
bosons and dark photon. Taking x; =1 GeV and
A =1 TeV, one can see that the dimensionless Kkinetic
mixing parameters are order of 1073 for g~ O(1). The
second row describes the CPV interactions relevant to our
study. While the first term of X*F WZO is responsible for
the fermion EDMs, the subsequent terms contribute to VBF
processes. We have checked that the one-loop contribution
from CPV XW*W~ to the Cabibbo-Kobayashi-Maskawa
matrix is order of fx3 /(162> A%) ~ O(1078) for the above
parameter choice as well as  ~ O(1). As mentioned in the
Introduction, the interactions X*“A,, and X*Z,, are not
present since each can be written as a total derivative.

'Note that the massless limit in this model does not correspond
to the case in Ref. [10].
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The scalar potential for the SU(2), doublet and triplet
scalars is [30]

M% b
V(H,%) = —2H'H + A(H'H)? - TEF + sz

+a H'SH + %H*HF, (4)

where F = (X0)% + 2342~ and H = (¢, (h + i¢°)/V/2).
The last two terms with a; and a, cause mixing between H
and X. For the neutral scalars, we define their mass
eigenstates as

(H1>_<cos0 sin9)<h) (5)
H,) \-sin® cos®/)\ )’
with the mixing angle 0 given by

(—Cll + 2612)(0)1)

tan 20 = .
200% = (2byxg +4)

(6)

Here, H; is regarded as the SM Higgs with
my, =125 GeV. The above mixing allows the triplet
scalar to couple to the SM fermions. For detailed expres-
sions of the mass matrices, see Ref. [30].

Besides the operators in Eq. (1), gauge invariance allows
other operators at dimension d < 5: B, X**, Tr[W X B,
and Tr[W,, Z]B*. The first two operators can contribute to
kinetic mixing,2 and the latter is able to give the CPV
interaction. Here, in order to illustrate how the CPV
observables are caused by the CPV dimension-5 inter-
actions including the dark photon, we exclusively focus on
the operators listed in Eq. (1). This setup can be realized if
heavy degrees of freedom (mediators) that induce the
higher dimensional operators are not charged under
U(1)y [19]. Besides, if we further assume that only the
interaction between the mediators and the X field violates
CP at the renormalizable level, there are no other CPV
operators generated involving only SM particles that
contribute to EDMs of fermions. On the other hand,
constraints from the LHC on the mediators can be evaded
by explicit model construction with the assignment of their
quantum numbers. For example, a vectorlike lepton doublet
v~ (1,2,0) in the loop with its mass of O(100 GeV) is
expected to be allowed since the existing searches [31,32]
do not apply. Keeping these considerations in mind, we will
investigate the probe of the CPV interactions in Eq. (3) with
the fermion EDMs and collider experiments.

*The operator Tr[W,,X]B" receives strong constraints from
bounds on the S parameter [21].

III. ELECTRIC DIPOLE MOMENT

Elementary fermion EDMs are defined by the interaction
i -
LEPM — _zdffo-ﬂbySfF/w' (7)

One stringent limit on the CPV interactions comes from
searches for the electron EDM, which have magnificently
been improving the limit using polar molecules such as
ThO and HfF". At 90% confidence level (C.L.), the current
upper limits are’

|d,| < 1.1 x107% ecm(ThO [35]), (8)
Id,| < 13 x 1028 ¢ cm(HFF" [36)). 9)

The light quark EDMs constitute those of nucleons. The
limit on the neutron EDM is given by [37]

|d,| <3.0x1072¢ ecm (10)

at 90% C.L. The next generation EDM searches aim to
improve the sensitivities by a factor of 10(100) for d,(d,,).
Moreover, the proton EDM experiment is also planned with
usage of storage ring [38]. The prospective sensitivity
is |d,| = 1.0 x 107 ecm.

In the present model, the third term in Eq. (3) gives the
CPV photon coupling to the dark photon and the neutral
triplet scalar. The dark photon can couple to the SM
fermions through kinetic mixing, whereas the neutral triplet
scalar can be connected to them through mixing with the
doublet scalar. It follows that the fermion EDMs arise at
one-loop level as in Fig. 1.* The resulting fermion EDM is

e m
df = gjfcase[czvjzrf(rzm > rZHz)

+CXV{(f(rXH11rXH2)]v (11)

where r7x)y = m%(x) /m?2,, and the loop function is

2
) = gtog (1) = (X HEN) )

2" \m3, l-x 1-y

The couplings are given by

CZ:

> =
=t

swsé, CX :XSWC§, (13)

The limits are obtained by assuming that only the electron
EDM affects energy shifts of molecule systems. For recent
discussions about exceptions to this assumption, see [25,33,34].

In Ref. [39], another type of the dimension-5 operator is
discussed for the fermion EDMs.
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FIG. 1. One-loop diagram of the fermion EDM generated by
the CPV dimension-5 operator.

f

g
V]; = (Cé - Sg“zx) —Z Orauxse, (14)
CwSw

Vj;( = —(s¢ + ceazx) —i — Qrasxce, (15)

CwSw

where Q; denotes the fermion electric charge and gé =
1/2 — s%VQf with isospin charge /. The mixing angle & is
introduced to diagonalize the mass matrices of the SM Z
boson and dark photon,

2 2
tan 2¢ = — — 22X (16)
mz — my

Except near the region my ~my, the mixing angle
can be expressed by &= -—mZayy/(m%—m%) since
azy ~O(107%). Assuming that s: ~ azy for myz > my,
we see that dy o« azy, axP/A; therefore, the fermion EDMs
scale as 1/A%. Furthermore, as seen in Eq. (11), the fermion
EDMs decrease as sin @ approaches zero.

Figure 2 shows predictions for the EDMs as a function of
the mixing parameter sin €. For an illustration of the EDMs
induced by a light degree of freedom, we take the relatively
light dark photon mass my =20 GeV. It should be
emphasized that the values of the EDMs do not drastically
change for even lighter my, and in principle a nonvanishing
EDM can arise from the exchange of an ultralight (my at
the MeV-scale and below) dark photon. However, the CPC
kinetic mixing angle is restricted more severely for the
MeV-scale dark photon. Other relevant parameters are fixed
at fxog/A = Pxo/A =2 x 1073 and my, =200 GeV. At
this benchmark point, the second term in Eq. (15) becomes
the leading one while it is clear that the dominant
contribution to V]; comes from the first term in Eq. (14).
The blue line represents the electron EDM, and the shaded
region is the current experimental bound indicating
sin@ <5 x 1072, The green and orange lines correspond
to the neutron and proton EDMs, for which theoretical
formulas obtained by the lattice QCD calculations are
employed [40,41]. Naively, they become larger by m,/m,
than d,. In addition, since the neutron EDM receives the
dominant contribution from the down-quark EDM, it

T T T TTTITT] T T T TTTTT
Electron EDM constraint —
loB L ldel < 11x 102 e cm
5
o 1072F
=
<
~
-30 ~
10 Bxo Bxo 5 3
— = ——=2x%10 |
A A .
my =20 GeV, my, =200 GeV |
10-3! [ | Ll
1073 1072 10”
sin 6

FIG. 2. The electron, proton, and neutron EDMs ag~ainst the
mixing parameter sin@. It is taken that fx,/A = fxo/A =
2 x 1073, my = 20 GeV, and my = 200 GeV.

somewhat exceeds d,,. The experimental bound on d,, is
not reflected in the current figure since it is located well
above the chosen range. It is also seen that the prospective
sensitivity for d,, is able to reach sin@ ~ 1072

It should be noted that the two-loop contribution without
scalar mixing is also present. The contribution is induced
by the so-called Barr-Zee diagram [42], in which the W
boson runs in the upper loop. Naive dimensional analysis

2—loop ; ;1-loop o1 vxc —4 ¢y .
shows that df /df @ 5, 10 o which

implies that the two-loop diagram can be comparable with
the one-loop contribution if sy~ 107*. However, as
expected from Fig. 2, such a region indicates that the
EDMs are below the prospective sensitivities at the next
generation EDM experiments. Therefore, it is sufficient to
include only the one-loop contribution in the current
analysis.

IV. COLLIDER PROBES: DIJET CORRELATIONS

The previous study of the CPC operator in Eq. (1)
showed that for appropriate choice of final states involving
two X and one or more electroweak gauge bosons, the LHC
production rate needs not be suppressed by the mixing
parameter € ~ xo/A [19]. The corresponding collider phe-
nomenology, thus, contrasts with one wherein X interacts
via Abelian kinetic mixing and/or mixing of a dark Higgs
with the SM Higgs doublet. The CPC non-Abelian kinetic
mixing yields a unique set of collider signatures that may
be exploited for discovery.

Here, we explore the extent to which collider studies may
also provide a complementary probe of the CPV operator.
An interesting set of observables involves azimuthal
angular correlations between the forward, “tagging jets”
J produced in VBF process: pp — jjX, where X denotes
other objects produced in the underlying hard event. Dijet
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azimuthal angle distributions that depend on cos A¢;; have
been considered as a means for discovering an invisibly
decaying Higgs boson [43], diagnosing the spin of new
particles that appear in pairs in the state X [44,45], and
searching for higher spin resonances [26]. The interference
between CPC and CPV interactions in the fusion vertex
could lead to a sin Ag;; dependence in the A¢g;; distribu-
tion, a feature that has been considered as a means of
determining the CP nature of the Higgs boson in
VBF [27,28].

In the present context, the simplest VBF final state has
X — X as indicated by the interaction (x,/ A)X"”W}j W, in
Eq. (3). The observable of interest in this case is the CPV
asymmetry,

 o(sinAgj; > 0) +o(sin Agj; < 0)

(17)

In the laboratory frame, A¢);; is defined by [26,28,46,47]

Adjj =), = b, (18)

where ¢; and ¢;, are the azimuthal angles of the jets in the
forward and backward regions of the detector, respectively.
o(sin Ag;; > 0) and 6(sin A¢;; < 0) denote the total cross
sections (signal plus background) for 0 < A¢;; < = and
- < Agj; <0, respectively.

The rate for this process is suppressed by (xo/A)?,
leading to production cross sections of O(fb) or
smaller for phenomenogically allowed parameter choices.
Nevertheless, one may expect a sufficiently large number of
events at the high-luminosity phase of the LHC with
integrated luminosity of 3 ab~!. To proceed, we choose
a representative choice of parameters consistent with the
EDM-sensitive region fxo/A =1x 107 and fxy/A =
4 x 1073, We generate signal process pp — jjX using
MadGraph5_aMC@NLO [48] with the cuts,

py>20GeV, AR;;>04, |y;]<5,

|Ayj|>42, -y, <0, mj;>600GeV. (19)

In the above, j denotes light-flavor quarks, and the angular

distance in the n—¢ plane is defined as AR;; =

\/(11,- —;7]-)2 + (¢ — ¢j)2 with n; and ¢; being the pseu-
dorapidity and azimuthal angle of particle i, respectively.

DPrs Y ; denote the transverse momentum and rapidity of jet
Jj- y1 and y, are the rapidities in the forward and backward
regions of the detector. Ay;; and m;; are the rapidity
difference and invariant mass of these two jets. The
NN23LO1 parton distribution function set [49] is used.
We choose two benchmark values of the dark photon
mass, my = 30,100 GeV. The signal cross sections for

pp — jjX are 1.85x 107 pb and 2.51 x 1073 pb for
my = 30 and 100 GeV, respectively, after imposing the
cuts in Eq. (19). We note that these cross sections include
non-VBF subprocesses, such as those wherein the X is
emitted from a quark line rather than fusing weak vector
bosons. The corresponding asymmetries with zero SM
backgrounds are 0.009 and 0.021. To enhance these
asymmetries, we observe that the non-VBF X production
process tends to yield a softer pJ. and p5 spectrum than
does the VBF subprocesses. Thus, we impose the addi-
tional cuts

py>40GeV,  pf >70 GeV (20)
for my = 30 GeV and
py>60GeV,  pf>100 GeV (21)

for my = 100 GeV. As a result, the asymmetries are
increased. We obtain A(my =30 GeV) =0.017 and
A(my =100 GeV) = 0.135 with zero SM backgrounds.
However, the respective cross sections o(pp — jjX) are
reduced to 4.40 x 107 pb and 1.68 x 107* pb.

To suppress the SM backgrounds, we consider the
displaced decays of the X to £T¢~ pairs (¢ = e, p) with
branching ratios 0.32 and 0.07 for my = 30 and 100 GeV,
respectively. The resulting respective numbers of events are
42 and 35. It is clear that the associated statistical precision
is, thus, not sufficient to permit observation of a CPV
asymmetry in the O(1-10%) range.

A potentially more promising possibility involves an
explicit tripletlike scalar in the final state, which stems from
the interaction ZOX””W; W, /A in Eq. (3). In this case, one
avoids the (x,/A)? suppression factor, though with the
price of an additional final state particle phase space. For
concreteness, we consider the case X = XH,. From an
analysis of previous long-lived particle searches [50,51],
we find that the choice B/A = /A = 1/TeV for my =
0.4 GeV is allowed. In this case, we find that after
imposing the same selection cuts as in Eq. (19) and
considering the displaced X decays to di-lepton pairs,
we would expect roughly 1500 signal events after collec-
tion of 3 ab~! of data. The corresponding statistical
uncertainty is 2.6% without the SM backgrounds. On
the other hand, we find that the magnitude of CPV
asymmetry A lies below 1%. While it may be possible
to impose additional cuts to enhance the latter (as in the
case of the pp — jjX study), it appears challenging to
probe the CPV interactions from the CPV operator in
Eq. (1) through VBF process at the LHC.

V. CONCLUSIONS

The dark photon is a new U(1) gauge boson, which is
motivated by several phenomenological considerations. It
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couples to the SM fermions through kinetic mixing with the
SM gauge bosons. CPV kinetic mixing does not arise in the
Abelian mixing case since the operator X HDB"” is equivalent
to a total derivative. However, in the non-Abelian mixing
context, the dark photon can have CPV interactions. One
interesting source of non-Abelian kinetic mixing is the
higher dimensional operator Tr[W,, X|X**/A, which can
explain the small mixing parameter. The corresponding
CPV operator Tr[W,, Z]X* /A becomes a source for the
fermion EDMs, which are induced by the one-loop diagram
with the help of CPC kinetic and scalar mixing. Therefore,
as far as the mixing parameters are nonvanishing, the CPV
operator can be probed by searches for the EDMs of the
electron, neutron, and proton. A potentially complementary
probe might be studies of the VBF process at the Large
Hadron Collider that analyze azimuthal angular correla-
tions of the two forward tagging jets. Importantly, this
process is free from scalar mixing and, thus, unsuppressed
by the small scalar mixing angle. Here, we have considered

two possible VBF channels: pp — jjX and pp — jjXH,.
We find that the former suffers from large statistical
uncertainty, and the latter cannot produce a sufficiently
large CPV asymmetry to be observed. Consequently, the
EDM searches provide the most promising avenue for
probing the CPV dark photon interaction.
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