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Abstract

In this paper we consider the following question: For bounded domains with smooth
boundary, can strong pseudoconvexity be characterized in terms of the intrinsic com-
plex geometry of the domain? Our approach to answering this question is based on
understanding the dynamical behavior of real geodesics in the Kobayashi metric and
allows us to prove a number of results for domains with low regularity. For instance,
we show that for convex domains with C>€ boundary strong pseudoconvexity can be
characterized in terms of the behavior of the squeezing function near the boundary,
the behavior of the holomorphic sectional curvature of the Bergman metric near the
boundary, or any other reasonable measure of the complex geometry near the bound-
ary. The first characterization gives a partial answer to a question of Fornass and Wold.
As an application of these characterizations, we show that a convex domain with C2€
boundary which is biholomorphic to a strongly pseudoconvex domain is also strongly
pseudoconvex.

1 Introduction

A domain in C? with C? boundary is called strongly pseudoconvex if the Levi form
of the boundary is positive definite. The Levi form is extrinsic and in this paper we
study the following question:

Question 1 For domains with C? boundary, can strong pseudoconvexity be character-
ized in terms of the intrinsic complex geometry of the domain?

Although strongly pseudoconvex domains form one of the most important classes
of domains in several complex variables, it does not appear that Question 1 has been
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extensively studied. The only general results we know of are due to Bland [4,5],
who studies compactifications of complete simply connected non-positively curved
Kéhler manifolds whose curvature tensor approaches the curvature tensor of complex
hyperbolic space in a controlled way. Under these conditions, Bland proves that the
geodesic compactification has a natural CR-structure which is strongly pseudoconvex
and uses this to construct bounded holomorphic functions.

In this paper we will consider only domains in C¢, but will avoid needing to control
how fast the geometry of the domain approaches the geometry of complex hyperbolic
space. We will also focus on the case of convex domains. Convexity is a strong geo-
metric assumption, but in relation to Bland’s results can be seen as a non-positive
curvature condition. By assuming convexity we are also able to prove results about
unbounded domains and domains whose boundary has low regularity.

Our approach to studying Question 1 is based on understanding the behavior of
the real geodesics in the Kobayashi metric. Let By C €4 denote the open unit ball
and Kp, denote the Kobayashi distance on B,. Then geodesics in (By, Kp,) have the
following properties:

1. if y1, 72 : Ry9 — By are geodesics and liminf ;o Kg, (y1(s), y2(t)) < oo,
then there exists 7 € R such that lim; _, oo Kg,(y1(2), y2(t +T)) = 0 and
2. if y1, y2 : Rsg — By are geodesics and lim;—. oo K, (¥1(2), y2(t)) = 0, then

o1
lim —log Kp, (y1(1), y2(£)) = —2
t—o00 t

if y1, y» are contained in the same complex geodesic and

1
lim —log Kg, (y1(t), y2(1)) = —1
1—oo

otherwise.

The numbers £2, +1 are exactly the Lyapunov exponents of the geodesic flow on
complex hyperbolic space. In Sect. 2, we will establish, for certain types of convex
domains, a relationship between the “Lyapunov exponents of the geodesic flow” and
the shape of the boundary. This relationship is fundamental in all the results of this

paper.
1.1 Domains biholomorphic to strongly pseudoconvex domains

One of our motivations for studying Question 1 is the following question of Fornass
and Wold.

Question 2 (Fornass and Wold [11, Question 4.5]) Suppose 2 C C4 is a bounded
domain with C2 boundary and €2 is biholomorphic to the unit ball in C?. Is € strongly
pseudoconvex?

One can also ask the following more general question:
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Question 3 Suppose 21, Q2> C C¢ are bounded domains with C? boundary, € is
strongly pseudoconvex, and €2; is biholomorphic to ;. Is €2, also strongly pseudo-
convex?

When @ and €2, both have C* boundary, Bell [2] answered the above question
in the affirmative using deep analytic methods, namely condition (R) and Kohn’s
subelliptic estimates in weighted L2-spaces. It does not appear that Bell’s analytic
approach can be used in the C? regularity case.

Using the dynamical approach described above, we will establish the following
partial answer to Question 3.

Theorem 1.1 Suppose 2 C C¢ is a bounded strongly pseudoconvex domain with C?
boundary and C C C¢ is a convex domain biholomorphic to Q. If C has C*% boundary
for some o > 0, then every x € 9 C is a strongly pseudoconvex point of 3 C.

Remark 1.2 Theorem 1.1 makes no assumptions about the boundedness of C.

The dynamical approach also allows us to prove a theorem for convex domains
with only C! boundary, but we need to introduce some additional notation.

Definition 1.3 For a domain Q C (Cd, a point z € 2, and a non-zero vector v € cd
define

8o(z) = inf{|lz — w| : w € IR}
and
Sa(z;v) =inf{|lz —w| : w € 3Q N (z + C-v)}.

We will then prove the following.

Theorem 1.4 (see Sect. 4) Suppose Q C C? is a bounded strongly pseudoconvex
domain with C? boundary and C C C% is a convex domain biholomorphic to Q. If C
has C! boundary, then for every € > 0 and R > 0 there existsa C = C(e, R) > 1
such that

Sc(z;v) < Cép(z)!/CFe

forall z € C with ||z]| < R and all nonzero v € ce,

Remark 1.5 1. Suppose 2 C s bounded, convex, and has C2 boundary. Then
is strongly pseudoconvex if and only if there exists a C > 1 such that

8a(z;v) < Céa(z)'?
for all z € 2 and all nonzero v € C¥. Thus the conclusion of Theorem 1.4 can be

interpreted as saying C is “almost” strongly pseudoconvex.
2. By picking € < «, one sees that Theorem 1.1 is a corollary of Theorem 1.4.

@ Springer



1814 A. Zimmer

1.2 The intrinsic complex geometry of a domain

There are many ways to measure the complex geometry of a domain and in this
subsection we describe how certain natural measures provide characterizations of
strong pseudoconvexity amongst convex domains with C>% boundary. As we will
describe in Subsection 5.1, a recent example of Fornass and Wold [11] shows that all
these characterizations fail for convex domains with C2 boundary.

1.2.1 The squeezing function

One natural intrinsic measure of the complex geometry of a domain is the squeezing
function. Given a bounded domain 2 C C¢ let sq : @ — (0, 1] be the squeezing
function on 2, that is

sq(p) = sup{r : there exists an one-to-one holomorphic map
f:Q— By with f(p) =0and r By C f(R2)}.

Although only recently introduced, the squeezing function has a number of applica-
tions, see for instance [19,22].

Work of Diederich et al. [6, Theorem 1.1] and Deng et al. [8, Theorem 1.1] implies
the following theorem.

Theorem 1.6 [6,8] If 2 C C? is a bounded strongly pseudoconvex domain with C*
boundary, then

lim sq(z) =1.
7z—> 02

Based on the above theorem, it seems natural to ask if the converse holds.

Question 4 (Fornass and Wold [11, Question 4.2]) Suppose Q C C4 is a bounded
pseudoconvex domain with C¥ boundary for some k > 2. If

li =1
S sa() =1,

is 2 strongly pseudoconvex?

Surprisingly the answer is no when k£ = 2: Fornass and Wold [11] constructed
a convex domain with C? boundary which is not strongly pseudoconvex, but the
squeezing function still approaches one on the boundary. However, we will prove that
a little bit more regularity is enough for an affirmative answer.

Theorem 1.7 (see Subsection 5.5) For any d > 2 and a > 0, there exists some
€ = e(d,a) > 0 such that: if @ C C4 is a bounded convex domain with C**
boundary and

s(z) >1—c¢

outside a compact subset of 2, then Q is strongly pseudoconvex.
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Remark 1.8 Using a different argument, we previously gave an affirmative answer to
Question 4 for bounded convex domains with C*° boundary [23]. Moreover, Joo and
Kim [15] gave an affirmative answer for bounded finite type domains in C? with C*®
boundary.

1.2.2 Holomorphic sectional curvature of the Bergman metric

Another intrinsic measure of the complex geometry of a domain is the curvature of
the Bergman metric.

Let (X, J) be a complex manifold with Kihler metric g. If R is the Riemannian cur-
vature tensor of (X, g), then the holomorphic sectional curvature Hg(v) of a nonzero
vector v is defined to be the sectional curvature of the 2-plane spanned by v and Jv,
that is

R, Jv, Jv,v)

H,(v) .=
¢ lvl?

A classical result of Hawley [12] and Igusa [14] says that if (X, g) is a complete
simply connected Kihler manifold with constant negative holomorphic sectional cur-
vature, then X is biholomorphic to the unit ball (also see Chapter IX, Section 7 in [17]).
Moreover, if by, is the Bergman metric on the unit ball B; C (Cd, then (By, bp,) has
constant holomorphic sectional curvature —4/(d 4-1). Klembeck proved that the holo-
morphic sectional curvature of Bergman metric on a strongly pseudoconvex domain
approaches —4/(d + 1) on the boundary.

Theorem 1.9 (Klembeck [16]) Suppose Q@ C C¢ is a bounded strongly pseudoconvex
domain with C* boundary. Then

lim  max |Hp,(v) — —' =0,

7—>0Q veT, Q\{0} d—+1

where bg is the Bergman metric on S2.
We will prove the following converse to Klembeck’s theorem:

Theorem 1.10 (see Subsection 5.7) For any d > 2 and a > 0, there exists some
€ = €(d,a) > 0 such that: if @ C C? is a bounded convex domain with C**
boundary and

Hbﬂw)—d_ﬁ‘ <e,

max
veTQ2\{0}
outside a compact subset of 2, then Q is strongly pseudoconvex.

@ Springer



1816 A. Zimmer

1.2.3 Kahler metrics with controlled geometry

In Subsection 5.6 we will introduce families of Kihler metrics, denoted by Gs(2)
for some M > 1, on a convex domain 2 which have controlled geometry relative to
the Kobayashi metric. We will also show that there exists some M > 1 such that the
Bergman metric is always contained in G (2) when M > Mj. Then we will prove
the following generalization of Theorem 1.10.

Theorem 1.11 (see Subsection 5.6) For any d > 2, « > 0, and M > 1, there exists
some € = €(d,a, M) > 0 such that: if Q C C4 is a bounded convex domain with
C?>% boundary and there exists a metric g € Gy () with

H. — H <e€,
v,wemT?é\{O}} ) ) =€

outside a compact subset of 2, then Q is strongly pseudoconvex.

1.2.4 Other intrinsic measures of the complex geometry of a domain

Theorem 1.7, Theorem 1.10, and Theorem 1.11 are particular cases of more general
theorems which we state and prove in Section 5. These more general theorems extend
Theorem 1.7, Theorem 1.10, and Theorem 1.11 to essentially any intrinsic measure
of the complex geometry of a domain.

1.3 Some notations

—_

Forz € (Cd, let ||z|| denote the standard Euclidean norm.
2. Forapointz € C? and r > 0, let

Ba(z;r) = {w e C: |w—z|| <r}.

3. D ¢ C will denote the open unit disk and B, := B;(0; 1) C C4 will denote the
open unit ball.
4. Let

D; = {z € C: [Im(z)| + |Re(z)| < 1}.
5. If C ¢ C“ is a convex domain with C' boundary and & € 9 C let
T 9c c
denote the complex tangent space of d C at &. Then since C is convex and open

(e+7fac)nc=w.
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2 Lyapunov exponents and the shape of the boundary

In this section we establish a relationship between the “Lyapunov exponents of the
geodesic flow” and the shape of the boundary. This relationship allows us to prove the
following result.

Proposition 2.1 Suppose d > 2 and C C C? is a convex domain with the following
properties:

1. CNSpang{ez, ..., eq} =1,
2. CNC-e; = {zey : Im(z) > 0}, and
3. C is biholomorphic to the unit ball.

Then
.1 .
lim —logéc(ie"er; v) =1/2,
r—oo r
forall v € Spanc {ez, ..., eq}.

Remark 2.2 The unit ball is biholomorphic to the convex domain

d
Pa=1(1, ... za) €CiIm@z) > Y lzil’
i=2

and this domain satisfies:

(@) PaNSpanc{e,...,eq} =0,
(b) PaNC-e; = {zey : Im(z) > 0}, and
(c) op,(ie"er;v) = e"/?forallr e Randv € Spanc {e, ..., eq}.

Hence the above proposition states that if a convex domain is biholomorphic to the unit
ball and satisfies conditions (a) and (b) above, then the convex domain asymptotically
satisfies condition (c).

Before starting the proof of Proposition 2.1 we will recall some facts about the
Kobayashi pseudo-metric on convex domains and geodesics in complex hyperbolic
space.

2.1 The Kobayashi metric and distance
In this subsection we recall the definition of the Kobayashi pseudo-metric. A more
thorough introduction can be found in [18].

Given a domain  C C¢ the (infinitesimal) Kobayashi pseudo-metric on 2 is the
pseudo-Finsler metric

ko(x;v) =inf{|§] : f € Hol(A, Q), f(0) =x, d(f)o(§) = v}.
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1818 A. Zimmer

Royden [20, Proposition 3] proved that the Kobayashi pseudo-metric is an upper
semicontinuous function on  x C<. So,if o : [a, b] — 2 is an absolutely continuous
curve (as a map [a, b] — e ), then the function

t € la,b] — kq(o(t); /(1))

is integrable and we can define the length of o to be

b
la(o) =/ ke (o (1); o' (1))dt.

One can then define the Kobayashi pseudo-distance to be

Kqo(x,y) =inf {{q(o) : 0: [a, b] — Q2 is absolutely continuous,
with o (a) = x, and o (b) = y}.

This definition is equivalent to the standard definition of K¢, via analytic chains, see
[21, Theorem 3.1].

Directly from the definition one obtains the following property of the Kobayashi
pseudo-metric:

Proposition 2.3 Suppose 1 C CU and Q; € C® are domains. If f = Q1 — Q is
a holomorphic map, then

Ko, (f(2), f(w)) = Kg,(z, w)

forall z,w € Q.

For a general domain 2 it is very hard to determine if (2, Kq) is a Cauchy complete
metric space, but for convex domains there is a very simple (to state) characterization
due to Barth.

Theorem 2.4 (Barth [1, Theorem 1]) Suppose @ C C? is a convex domain. Then the
following are equivalent:

1. Q does not contain any complex affine lines,
2. Kq is non-degenerate and hence a distance on 2,
3. Kq is a proper Cauchy complete distance on 2,

Remark 2.5 To be precise, Theorem 1 in [1] only states that conditions (1) and (2) are
equivalent to Kq being a proper distance on 2. However, for length spaces any proper
distance is also Cauchy complete, see for instance Corollary 3.8 in [3, Chapter I].

2.2 Basic estimates for the Kobayashi metric
In this subsection we recall some basic estimates for the Kobayashi metric on convex

domains. All these estimates are very well known, but we provide the short proofs for
the reader’s convenience.
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Lemma 2.6 Suppose 2 C C¢ is a convex domain, V. C C% is a complex affine line,
and V N Q is a half plane in V. Then

Kq(z1,22) = Kyna(zi, 22)

forallz1,z0 € VN Q.

Proof By applying an affine transformation we may assume that
1. VN ={(0,...,0): Im(z) > 0} and
2. Qc{(z1,...,zq) : Im(z7) > 0}.

Applying the distance decreasing property of the Kobayashi metric to the inclusion
map V N Q2 < Q implies that

Ka(z1,22) < Kvna(zi, 22)

forall z;,z0 € VN Q.

Let P : C¢ — V denote the map P(z1,...,2q4) = (21,0,...,0). Then P(Q2) =
QN YV and P(z) = z for z € V. So applying the distance decreasing property of the
Kobayashi metric to the projection map P : 2 — V N Q implies that

Kyvna(zi, 22) < Kq(z1, 22)

forall z;,z2 € VN Q. O

Lemma 2.7 Suppose Q@ C C? is a convex domain, H C C% is a complex affine
hyperplane suchthat HNQ = @, and P : C? — C is an affine map with P~'(0) = H.
Then for any z1, zo € Q we have

Proof Since € is convex there exists a real hyperplane Hg such that H C Hgr and
HrNQ = @. By replacing P with ¢! P for some # € R we can assume that P(Hg) =
R and

P(z1)
P(z2)

1
Kao(z1,22) = 3 llog’

P(Q) CH:={ze€C:Im(z) > 0}.
Then

Kq(z1,22) = Kp)(P(z1), P(22)) > K1 (P(z1), P(22))
|P(z1) — P(z2)I?
2Im(P(z1)) Im(P(z2))

2
larcosh <l+ (IP(zD)| — [P(z2)]) )

2 2|P(z1)] | P(z2)]

|P(z1)] |P(Zz)|) 21‘10 ‘P(Zl)
[P(z2)|  |P(z1)l 2 P(z2)

1
== h{l
3 arcos ( +

v

1
= — arcosh (
2

.
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1820 A. Zimmer

Since every point in the boundary of a convex domain is contained in a supporting
hyperplane we have the following consequence of Lemma 2.7.

Lemma 2.8 Suppose 2 C C% is a convex domain and x,y € Q are distinct. If L is
the complex affine line containing x, y, then

1 llx — &l
sup - |log < Kq(x, y).
fecL\LNQ 2 ly =&l

2.3 Geodesics in complex hyperbolic space

Let By C C¢ be the unit ball. Then it is well known that (By, Kg ,) is a standard model
of complex hyperbolic d-space. In this subsection we describe some basic properties
of geodesics in this metric space, but first a definition.

Definition 2.9 A complex geodesic in a domain < is a holomorphic map ¢ : D — Q
which satisfies

Ka(p(z), p(w)) = Kp(z, w)

forall z, w € D.
For the unit ball, every real geodesic is contained in a unique complex geodesic.

Proposition 2.10 If y : R>9 — By is a geodesic ray, then there exists a complex
geodesic ¢ : D — By such that y(R>o) C ¢(ID). Moreover;, ¢ is unique up to
parametrization, that is: if oo : D — By is a complex geodesic with y (R>o) C ¢o(D)
then o = ¢ o ¢ for some ¢ € Aut(D).

In the proof of Proposition 2.1 we will use the following fact about the asymptotic
behavior of geodesics in complex hyperbolic space.

Theorem 2.11 If y1, y2 : Rso — By are geodesic rays such that
lim inf K, (y1(s), y2(1)) < +o00,
§,1—>00
then there exists T € R such that
lim Kg,(y1(1), y2(t +T)) = 0.
—00
Moreover, if the images of y1 and y» are contained in the same complex geodesic, then
1
lim —log K, (y1 (), y2(t +T)) = =2
t—o00 t
otherwise

o1
lim —log Kp,(y1(t), 2(t +T)) = —1.
t—o0
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Although this result is well known, we will sketch the proof of Theorem 2.11 in
the appendix.

2.4 The proof of Proposition 2.1

Before starting the proof we state the following observation:

Observation 2.12 Suppose C C C? is an open convex domain. If xg + Rxq -vg C C
for some xo € C and vy € C%, then x + R>0-vo C C forevery x € C.

Now for the rest of the subsection, suppose d > 2 and C C C? is a convex domain
with the following properties:

1. CNSpang ez, ..., eq} =9,
2. CNC-e; = {zej : Im(z) > 0}, and
3. C is biholomorphic to the unit ball.

By Observation 2.12 and property (2) above, for every v € Spanc{es, ..., eq} there
exists some o, € R U{oco} such that

{zel+v:Im(z)>av}=Cﬁ<(C~el+v). (1)
Since C N Spang {ez, ..., eq} = ¥ we have that «,, € R>0 U{oo}.
Let S be the set of unit vectors in Spanc {ea, ..., e4}. Then fix some § > 0 such

that
iep +25DwvcCC
forevery v € S. Let y : R=g — C be the curve given by
y() = eZ’iel
and forv € Slety, : Ry — C? be the curve given by
yo () = v+ (s + ¢*iey

By Lemma 2.6 these curves are geodesic rays in (C, K¢).

Claim: Forevery v € S,
lim K¢e(y(t), yu(t)) =0.
11— 00

Proof of Claim: For t large let
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1822 A. Zimmer

Then y,(s;.,) = 8v + e*iey and

Asy

Ke 00, valsr) = 5 [log (1 - %2)]

Since ie; + 25D -v C C, the equality in (1) implies that
irep +28DwvcCC

for all » > 1. Hence

lim supKe(y (1), yo(1) = limsup (Ke(y (1), 7o (s1.00) + Ke(a(s1.). 70(0)))

11— 00
= lim sup K¢ (y (1), Vv(st W) < llm n sup Kosp(0,8) < oo.

—00

Thus by Theorem 2.11 there exists 73, € R such that

lim Ke(y (1), yo(t + Ty)) = 0.
t—00

We claim that T, = 0. Let P : C? — C be the complex linear map given by
P(z1,...,24) = z1. Then by Lemma 2.7

0= lim Ke(y(@), yo(t + T,)) > lim l log| ———— P(y(t))
t—00 ~ t—o0 2 P(yv(t + Ty))
2t
:)_1)12105 logm = [Tyl
andso T, = 0. O

By Lemma 2.6, for each v € S the geodesics y and y, are contained in different
complex geodesics. So by Theorem 2.11 for each v € S we have

1
Jlim ” log Ke(y (1), yu(1) = —1.
Moreover
1 v
|Ke(y (1), yo () — Ke(y (1), vulsio)| < Kero (1), yolsiw) = ‘log (1 - %)’
2 e

:“;” —2’+O( )

So we also have

1
lim —log Kc(y (1), yu(si0)) = —1
t—oo t
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Claim: Forevery v € S,

1
limsup;10g8c(eti€1; v) =1/2

—>00

Proof of Claim: Note that

1
Ke(y @), yo(sen) < Kac(e%iel;v)]n)((), 8) = Kp (0, m(?) .

Then since Ky is locally Lipschitzon D x D and é¢ (32’ ier; v) > 24, there exists some
C > 0 such that

Ke(y @), yo(siv)) < Cm~

Hence

o1
—1 = lim —log K¢ (y (1), Yv(st,v))
t—oot

1 1
< liminf —=log 8¢ (e*'ie; v) = — lim sup — log 8¢ (e*ier; v)
1—00 14 t—oo I

1
= —2lim sup - logs¢c(e'ier; v)

—>00

Claim: For every v € S,
o] ‘e
liminf — logd¢c(e'ier; v) > 1/2.
t—>o0 t

Proof of Claim: Fix a sequence , — oo such that

. 1 . . 1 2y »

liminf — logdc(e'ie;; v) = lim — logdc(e“"ier; v).

t—>oo t n—00 2t,

Then let z,, € C be such that |z,| = 8¢ (e*"ier; v) and e*ie; +z,v € 9 C. By passing
to a subsequence we can suppose that

in — ¢
|z
for some 6 € R.
Let vy = —e'%, then by Lemma 2.8 we have
1 ¥ (tn) = (€ier + zpv) H 1 A
K (y (tn)s Yoo (St,.m0)) = = [log - =z |logi———|-
C n)s Yvo St,,v0 2 H)/vo(stn,vo)_(eZI"’el+ZHU)H 2 |8€’0 +Zn|
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1824 A. Zimmer

Now for n large

‘Sem-i-zn > |zu] + /2
and so for n large
i0
Ko (i), vy Gpa)) = | on] L ‘661 +Zn‘>1' <]+ ‘ )
, s > llog——F——|=zlog—F— > >lo :
CRYEnd Yoolstnvo)) = 5 PO Tsgit 4 o[ T 2% Jaal 2% 2 |zn]

Since
lim Ke(y(th), vy (S1,,00)) = 0,
n—oo

the above estimate implies that |z,| — oo, then using the fact that log : R.¢g — Ris
locally bi-Lipschitz there exists some C > 0 such that

C C

K t R Ky > — = —
(v @), Yoo (St,,00)) = 12 5c(€2t"i€1; v)

Hence

o1
—1 = lim - IOg Ke(y (@), Vvo(st,v))
t—o00t

1 1
> limsup — log ———— — —liminf — log 8¢ (e*™iey; v
- n—>oop Iy g 5c(€2tni€1; v) n—oo f, gdc(eier; v)

1
= —2liminf — log 8¢ (e'ier; v).
t—o0 f

3 The space of convex domains and the action of the affine group
Following work of Frankel [9,10], in this section we describe some facts about the
space of convex domains and the action of the affine group on this space.

Definition 3.1 Let X; be the set of convex domains in C¢ which do not contain a
complex affine line and let X ¢ be the set of pairs (€2, x) where Q2 € X; and x € Q.

Remark 3.2 The motivation for only considering convex domains which do not contain
complex affine lines comes from Theorem 2.4.

We now describe a natural topology on the sets X; and X, 0. Given two compact
sets A, B C C? define the Hausdorff distance between them to be

dy (A, B) = max {maxmin |la — b|| , maxmin |b — a]| ¢ .
acA beB beB acA
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The Hausdorff distance is a complete metric on the set of compact subsets of C?. To
consider general closed sets, we introduce the local Hausdorff semi-norms between
two closed sets A, B C C¢ by defining

diP (A, B) = dy (ANBa(0: B, BNE,O: R) )

for R > 0. Since an open convex set is determined by its closure, we can define a
topology on X; and X, o using these seminorms:

1. A sequence C,, € X; converges to C € Xy if there exists some Ry > 0 such that
d\®P(C,,C) — Oforall R > Ry,

2. A sequence (Cp, x,) € Xy, converges to (C,x) € Xy if C,, converges to C in
Xg and x, converges to x in ce.

Let Aff(C?) be the group of complex affine isomorphisms of C¢. Then Aff(C¢)
acts on Xy and X, o. Remarkably, the action of Aff ((Cd) on Xy o is co-compact:

Theorem 3.3 (Frankel [10]) The group Aff ((Cd) acts co-compactly on Xy 0, that is
there exists a compact set K C X4 0 such that Aff(CY - K = X4.0-

Given some C and a sequence of points x, € C the above theorem says that we
can find affine maps A, € Aff (C4) such that {A,(C, x,)}nen is relatively compact
in X4,0. Hence there exists a subsequence ny — oo such that A,, (C, x,,,) converges
in Xy 0. Many of the arguments that follow rely on analyzing the geometry of the
domains obtained by this “rescaling” which leads to the next definition.

Definition 3.4 Given some C € X, let BlowUp(C) C X, denote the set of C in Xy
where there exist a sequence x, € C, apoint xo, € Coo, and affine maps A, € Aff (C%
such that

1. x, — oo in C (that is, for every compact subset K C C there exists some N > 0
such that x, ¢ K foralln > N),
2. A,(C, xp) converges to (Coo, Xoo)-

For some domains, the set BlowUp(C) is very special.

Proposition 3.5 Suppose that C C C? is a convex domain which is biholomorphic
to a bounded strongly pseudoconvex domain with C* boundary. Then every Coo €
BlowUp(C) is biholomorphic to the unit ball in ce,

This is a consequence of the Frankel-Pinchuk rescaling method, but we will provide
a proof using the squeezing function.

Proof Suppose that Co, € BlowUp(C). Then fix a sequence x,, € C such that x,, — oo
in C, a point xo, € Co, and affine maps A, € Aff (C4) such that A, (C, x,) converges
t0 (Coo, Xo0)-

By results of Diederich et al. [6, Theorem 1.1] and Deng et al. [8, Theorem 1.1]
(see Theorem 1.6 above)

lim sc(x,) = 1.
n—o0
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Now the function (2, x) € Xy 0 — sq(x) is an upper semicontinuous function on
X4.,0 (see Proposition 7.1 in [23]). So

5Coe (Xoo) = lim 54, c(Apxy) = lim s¢(x,) = 1.
n—0o0o n—oo

Then s¢_ (xo0) = 1 and so C is biholomorphic to the unit ball in e by Theorem
2.11in [7]. O

We next define a particular compact subset of X; o whose Aff ((Cd)—translates cover
Xa,0. Recall that

D) ={z € C: [Im(z)| + |[Re(z)| < 1}.
For 1 <i < d consider the complex (d — i)-dimensional affine plane
Z; = e + Spanc{ej+1, ..., eq}.

Definition 3.6 Let K; C X, be the set of convex domains €2 such that:

1. Dye; c Qforeachl <i <d,
2. ZiNnQ=@Wforeachl <i <d.

Alsolet Ky 0 = {(£2,0) : Q € K}.

Theorem 3.7 [23, Theorem 2.5] With the notation above: Kg.o is a compact subset of
Xa.0 and Aff(C?) - Kg.0 = Xa.0.

Remark 3.8 In [23] the set K; C X was slightly different: in particular one had the
requirement that

De; c Qforeachl <i <d
instead of
Die; C Qforeach 1l <i <d.

However, the proof is identical.

We end this section with a technical result which will allow us to reduce calculations
to the two dimensional case.

Proposition 3.9 Suppose C € Xy is a convex domain such that:

1. CN(er + Spance, ..., eq}) =¥ and
2. CﬂSpanC{el, er} € Koy,

then there exists A € GL4(C) such that Alspancer.er} = Ldspancfe;.er} and A C e Kg.

@ Springer



Characterizing strong pseudoconvexity, obstructions to biholomorphisms. . . 1827

Proof We will select points &, ...,&; € dC and subspaces Hy, ..., Hy C C? as
follows. First let & = e; and Hy = Spanc{ez, ..., eq}. Then let & = e; and let H
be a (d — 2)-dimensional complex subspace such that (e; + H>) NC = ¥ and

H, C Hy = Spanc{es, ..., eq}.
Since Spanc{ez, ..., eq} N C is convex and e; € 9 C, such a subspace exists. Now
supposing that &1, ..., &1 and Hi, ..., Hr—1 have already been selected, we pick
&, and Hy as follows: let & be a point in Hy_; N 9 C closest to 0 and let Hy be a
(d — k)-dimensional complex subspace such that Hy C Hy_1 and (§; + Hx) NC = (.

Since Hx_1 N C is convex and & € d(Hk—1 N C), such a subspace exists.
Notice that

1. C-&x + Hy = Hy_ fork > 2,
2. Hy = Spanc{&k+1, ..., &4} fork > 1, and
3‘ Span(c{gl’ M} Ed} = Cd

Now let A € GL4(C) be the complex linear map with A(§;) = ¢; for 1 <i <d.
Since &1, ..., &; is a basis of (Cd, the linear map A is well defined. Since &) = e; and
& = ep we see that A|Spanc{e1,e2} = Idspanc{el,ez}.

We now claim that AC € K. Since AC N Spanc{ey, e2} € Ky we have

D -e; C AC fori=1,2
and by construction
D.e; c AC fori =3,...,d.
So

D¢, c AC fori=1,...,d.

Since A(&x) = ex and Hy = Spang{&x+1, ..., &4} we have

ACNZ; = A (c mA—lzk) = A (CN(& + Spang{&xti, ..., £a)))
= ACNE + Hy)) =0.

So AC € Ky. O

4 The proof of Theorem 1.4

In this section we will prove Theorem 1.4 which we begin by recalling.
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Theorem 4.1 Suppose Q@ C C¢ is a bounded strongly pseudoconvex domain with C*
boundary and C C C% is a convex domain biholomorphic to 2. If C has C" boundary,
then for every € > 0 and R > 0 there exists a C = C(€, R) > 1 such that

Sc(z;v) < Cée(2)!/ 2

forall z € C with ||z|| < R and all nonzero v € C¢.

For the rest of the section, fix a convex domain C C C¢ satisfying the conditions
of the theorem. Then fix some € > 0 and R > 0.
For z € C let P, be the set of points in d C which are closest to z. Then pick R’ > R
such that
P, C B4(0; R')

forall z € B;(0; R) N C. Next let L = B4(0; R") NdC. For & € 3C let n(¢) be the
inward pointing unit normal vector of C at £. Finally fix § € (0, 1) such that

E+rmmE)eC
forall £ € K and r € (0, §]. As before let
Dy ={z € C: [Im(2)| + [Re(2)| < 1}.
Since 8 C is C', by shrinking § > 0 if necessary, we can assume that
E+omE)+6DnéE) CC
for all & € K. Then
E+mE)+rDin@E) Cé+n@E)+8DnE) CC

forall ¢ € K and r € (0, 8].
We begin by showing that the desired estimate holds for tangential directions.

Lemma 4.2 With the notation above, there exists Cy > 1 such that
Sc(& + rn(&); v) < Cor'/C+
forall & € K, r € (0, 4], and nonzero v € TECB C.

Proof Suppose not, then there exist &, € IC, r, € (0, 8], unit vectors v, € TgSB C, and
C, > 0 such that C,, — oo and

1/(2
S (En + ran(En); v) = Cyry/ @1,
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By increasing r,, if necessary we can assume in addition that
8c(n +rn(En): va) < Cur/2T)

for all r € [ry, §]. Since C contains no complex affine lines, we must have r,, — 0.
Now for each n, let 7, : C? — C be an affine isometry such that

1. 7,(5,) =0,
2. 17 (§n +0(5y)) = iey,
3. 1, (6 +vp) = en.

Conditions (1) and (2) imply that

Tota(0C) = {(z1, ..., 24) € C" : Im(z1) = 0}
and

7,(C) C {(z1,...,22) € C" : Im(zy) > O}.
Condition (3) implies that
8ryC) (rniers €2) = Cury! *79).
Then pick z,, € C such that |z, | = Cnr,i/(erE) and
rpie; + zpe2 € 01, C.

Then consider the diagonal matrix

LetC, = A, 1,(C). Since
&n +ran(§y) +r, Dy m(§,) CC
we see that
ieg +Dy-e1 CCp.

Further, by construction:

L {(z1,...,z20) € C" : Im(z1) =0} NC, =9,
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2. iey +e ¢ Cy,and
3. ie1 +D-ey CCy.

Hence C,, N Spanc{ey, e2} C ie; + Ky where Ky C Xj is the subset from Defini-
tion 3.6. Now by Proposition 3.9 there exists an affine map B, € Aff (C9) such that
Bn|SpanC{e|,e2} = IdSpanC{el,ez} and B, C, € ie; + Ky.

Now since K, is compact in X;, we can pass to a subsequence such that B, C,
converges to some C, in Xy. Notice that B, C,, = B, A, t, C and

ie] = (ByAuty) (&, + ran(&y)).
Since r, — O and ie; € Coo We see that
Coo € BlowUp(C).

We next claim that C, satisfies conditions (1), (2), and (3) from Proposition 2.1.
By Proposition 3.5, C is biholomorphic to the unit ball and hence satisfies condition
(3)Since each B, C, isinie; + K , we see that

{(z1,...,zp) €C" i Im(z1) =0} N B, Cp =¥
and so

{(z1,...,2,) €C" : Im(z1) =0} NCoo = .

Hence C o, satisfies condition (1).
Forn > 0 and r € (0, oo] let

A(r;n)=1{z€C:0<|z] <rand |Im(z)] < nRe(2)}.

Since KL C 9 C is compact and 8 C is a C! hypersurface, for any n > 0 there exists
some ry, > 0 such that

§+A(r;;m)-nE) CC
for all £ € K. Then for any > 0 we have
A(ry/ra;m) -iep C B, Cy
and so
A(oo; 1) -ie] CCx.
Since n > 0 was arbitrary and

Coo C{(z1,...,24) € C? : Im(z1) > 0}
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we then have
{ze1 : Im(z) > 0} =Coo NC ey.

Hence C satisfies condition (2).
However, if 1 <r < §/ry,, then

. . 1 .
3B, c,(rie1; ex) = ¢, (riey; e2) = m‘stn(C)(rn”eH e2)
n

1 1
3¢ (& +rprmn(&y); vy) < Cn(rnr)l/(2+€) = rl/(2+€)~
F F

So for 1 < r we have
Sc, (rier; ez) < pl/@te)

Which Proposition 2.1 says is impossible. So we have a contradiction. O
We now prove the desired estimate for all directions.

Lemma 4.3 With the notation above, there exists C > 1 such that
Sc(x; v) < Ce(x)!/3He
for all x € B4(0; R) N C and all nonzero v € C.
Proof Since C does not contain any complex affine lines, there exists M > 0 such that
Sc(x;v) =M

for all x € B4(0; R) N C and all nonzero v € C¢. Next let K; C Xy be the subset
from Definition 3.6. Since K; C X is compact there exists C; > 0 such that

5c'(0;v) = €4

for all ¢’ € K, and nonzero v € ce.
We claim that

Sc(x: v) < max {M3—1/<2+€>, CoC } 500012+

for all x € B4(0; R) N C and all nonzero v € C4.
Fix x € C. If §¢(x) > & then

s 1/(24¢€)
Sc(x;v) =M < M( C;x)) < Cdp(x)1/C+e
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for all nonzero v € C?. So suppose that 8¢(x) < 8. Let & € 3C be a point in 3 C
closest to x. Then

x =&+ 8c(x)n(§)

and by construction & € K.

Next we pick points &1, &, ..., & as follows. First let £, = £. Next, assuming
&1, ..., & have been already selected let Py be the (d — k)-dimensional complex
plane through x which is orthogonal to the lines x&;. Then let & be a point in
Pry1 N 9 C which is closest to x. By construction —x + P, = TS(CBC and hence

& —x),..., (1 —x) € TE(CB C. So by the lemma above

Se(x; & —x) < CoSc(x)l/(z"'f)
for i > 2. Moreover, since Cp > 1 and §¢(x) < 6 < 1 we also have
Sc(x; €] —x) = 8¢ (x) < Cobe (x)1/ ),

Next let 7 : C¢ — C? be the affine translation t(z) = z — x and let U be the
unitary transformation such that

Ut(&) =dc(x; & — x)e;.
Then let

Se(x; &1 —x)7!
A =

Sc(x; €4 —x)7!

Finally let A be the affine map A = AUt. Then we have AC € Ky. Soifv e C?isa
unit vector, then

de(xiv) = 34c(0; AUv) < C1C08c(x)1/(2+6)

AU IAUv| —

since

1
AUV > ”A T vl = Codo(x)1/@Ha”
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5 Characterizing strong pseudoconvexity

Theorems 1.7, 1.10, and 1.11are particular cases of more general theorems which we
now describe. In order to state these results we need to define intrinsic functions on
the space of convex domains.

Definition 5.1 A function f : X0 — R is called intrinsic if f(C1,x1) = f(C2, x2)
whenever there exists a biholomorphism ¢ : C; — Cp with ¢(x1) = x3.

Example 5.2 The functions:
(€, x) = sc(x)

and

(C,x) > max
veT, C\{0}

4
Hp, (v) — i1 '

are both intrinsic.
Since the unit ball is a homogeneous domain we have the following:

Observation 5.3 If B; C C is the unit ball and f : X4.0 — Risanintrinsic function,
then f(By, x) = f (B4, 0) for all x € B,.

Recall that the set X ¢ has a topology coming from the local Hausdorff topology
(see Sect, 3 above) and when an intrinsic function is continuous in this topology a
version of Klembeck’s Theorem (see Theorem 1.9 above) holds for convex domains:

Proposition 5.4 [23, Proposition 1.13] Suppose f : X4.0 — R is a continuous intrin-
sic function and C is a bounded convex domain with C* boundary. If € € 3C is a
strongly pseudoconvex point of 3 C, then

Ieré f(C,z) = f(By,0).

We will prove the following two converses to the above proposition:

Theorem 5.5 (see Subsection 5.3) Suppose that f : Xg.0 — R is a continuous intrin-
sic function with the following property: if C € Xg and f(C,x) = f(By,0) for all
x € C, then C is biholomorphic to By.

Then for any o > 0 there exists some € = €(d, f,a) > 0 such that: if C C Clisa
bounded convex domain with C** boundary and

1f(C.2) — f(Ba,0)| <€

outside some compact subset of C, then C is strongly pseudoconvex and thus

Zgrglc f(C,2) = f(By,0).
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Some interesting intrinsic functions, for instance the squeezing function, do not
appear to be continuous on X, o but are upper-semicontinuous. So we will also estab-
lish the following:

Theorem 5.6 (see Subsection 5.4) Suppose that f : Xg0 — R is an upper semi-
continuous intrinsic function with the following property: if C € Xg4 and f(C, x) >
f(By,0) forall x € C, then C is biholomorphic to B.

Then for any o > 0 there exists some € = €(d, f,a) > 0 such that: if C C Clisa
bounded convex domain with C** boundary and

f(C2) = f(Ba,0) —€
outside some compact subset of C, then C is strongly pseudoconvex.

5.1 An example of Fornaess and Wold

In this subsection we will use an example of Fornass and Wold to show that Theo-
rem 5.5 and Theorem 5.6 both fail for convex domains with C? boundary.

Proposition 5.7 For any d > 2 there exists a bounded convex domain C C C? with
C? boundary which is not strongly pseudoconvex, but has the following properties:

1. If f1 : X4q.0 = R is a continuous intrinsic function, then
lim fi1(C,z2) = fi(Ba.0),
z—0C
2.) If fr : Xg.0 = R is an upper semi-continuous intrinsic function, then

lim f2(C,z) > f2(By, 0),
7z—0C

Proof For any d > 2, Fornass and Wold [11] have constructed an example of a
bounded convex domain C ¢ C? with C? boundary which is not strongly pseudocon-
vex, but still satisfies

lim sc(z) = 1.
z—0dC c(@
Now suppose that f : X7 0 — R is a continuous intrinsic function. We claim that

z]_i)r;lc f(C,z2) = f(Bqg,0),

Suppose not then there exist a boundary point & € 9 C and a sequence z,, € C such
that z, — & and

Jlim f(C, zn) # f(Ba, 0).
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Now by Theorem 3.3 we can find affine maps A, € Aff ((Cd) such that A, (C, z,)
converges to some (Coo, Zoo) € Xg,0. Since the squeezing function is an upper semi-
continuous function on Xy o (see [23, Proposition 7.1]) we have

8¢ (2o0) = lim sup sa,c(Anzy) = limsup sc(z,) = 1.
n—oo n—oo

So s¢. (zeo) = 1. Then C is biholomorphic to the unit ball by Theorem 2.1 in [7].
Then since f is continuous and intrinsic

So we have a contradiction.
The proof of part (2) is essentially identical. O

5.2 Rescaling revisited

In this subsection we prove the following rescaling result:

Proposition 5.8 Suppose C C C% is a convex domain which does not contain any com-
plex lines. If C has C** boundary for some a > 0 and is not strongly pseudoconvex,
then there exists some Coo € BlowUp(C) such that:

1. Cx €ie] + Ky,

2. CooNSpang {ez, ..., eq} =0,

3. CooNC-e; ={ze1 : Im(z) > 0}, and
4. 8¢ (rier;ex) <rl/CHD forp > 1.

The proof of the Proposition is very similar to the proof of Theorem 1.4, but we
will provide the details anyways.

Proof Since C is not strongly pseudoconvex, there exists a non-strongly pseudoconvex
point & € d C. Then there exist C, § > 0 and a unit vector v € Tgca C such that

8c(€ + rn(§); v) > Crl/Cte)

for every r € (0, 8]. Since 8 C is C2, by shrinking § > 0 if necessary we can assume
that

E+rmE)+rDnE)cCC

forr € (0, 5].
Then

’,l/(2+a)+e
Iim — =0
r—0 8¢ (& +rn(&); v)
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for every € > 0.
Now pick €, — 0 and r,, — 0 such that

rl/(2+ot)+e,,

lim u =0
n—o0 §c (& +ryn(); v)

Then let C,, > 0 be such that
8c(& +ran(§); v) = Gy, T,
Since C,, — 00, by increasing r, if necessary we can assume in addition that
8§ +rn(§); v) < Cyr/EFOF
for all » € [ry, d8]. Since C contains no complex affine lines, even after possibly

increasing each r;,, we still have r, — 0.
Now let 7 € Aff(C?) be an affine isometry of €4 such that

L. 7(§) =0,
2. (¢ +n()) =iey,and
3.1¢ +v) =en.

Notice that conditions (1) and (2) imply that
Tot(R) = {(z1, ..., z4) € C? : Im(z1) = 0}
and
T(Q) C {(z1, ..., 24) € C? : Im(z)) > O}
Condition (3) implies that
Seiey(raiers e2) = Cury/ CT0F,
Then pick z, € C such that |z,| = Cpr/ @77 and

rpiel +zye2 € 0T C.

Then consider the diagonal matrix
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LetC, = A, t(C). Since
§+ran@) +r,DnE) CC,
we have
ieg+D-eg CC,.

Further, by construction:

L. {(z1,...,z0) € C" : Im(z1) =0} NC, =9,
2. iey + ey ¢ Cp,and
3. ie1 +D-ey CCy.

Hence C, NSpangfe;, e2} € ie; + Ky where Ky C Xj is the subset from Defi-
nition 3.6. By Proposition 3.9 there exists an affine map B, € Aff(C?) such that
By |spancfer.es} = Idspancfey.e;) and B, Cy € i€y + Ky.

Now since K is compact in Xy, we can pass to a subsequence such that B, C,
converges to some C, in X;. Notice that B, C, = B, A, C and

iey = (B A1) (€ +ryn(§)).
Since & + r,n(§) converges to the boundary of C and ie] € C we see that
Coo € BlowUp(C).

Moreover, by construction Co € Ky and Coo N Spang {ea, ..., eq} = 0.
As in the proof of Theorem 1.4 for n > 0 and r € (0, oo] let

A(r;n) ={z€C:0 < |z] <rand |Im(z)| < nRe(z)}.
Since 8 C is a C? hypersurface, for any > 0 there exists some ry > 0 such that
§+ A(rpim) -n() CC.
Then for any n > 0 we have
A(ry/rnsm) - ier C By Apt(C)
and so
A(oo;n) rie] CCoo .-
Since n > 0 was arbitrary and

Coo C{(z1s...,24) € C? : Im(z1) > 0}
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we then have Coo NC e = {ze1 : Im(z) > 0}.
Finally, if 1 <r < §/r,, then

. . 1 .
dp,c,(rier; ex) =6¢, (rier; e2) = méf(c)(rnrlelg e)
n

Cn (rnr)l/(2+01)+€n — rl/(2+01)+€n .

1 1
Sc(& +rurn(€);v) < |

|z Znl
So for 1 < r we have

Sc. (rier; e2) < r!/3He).

5.3 The proof of Theorem 5.5

Fix d > 2, a continuous intrinsic function f : Xz 0 — R satisfying the hypothesis of
the theorem, and some « > 0. Suppose for a contradiction that there exists a sequence
of convex domains C,, € Xy o such that:

1. each C, has C>* boundary,
2. each C, is not strongly pseudoconvex, and
3. foralln € N

|f(Cn,2) — f(Ba,0)| < 1/n

outside some compact subset of C,,.

Now using Proposition 5.8 for each n we can find some C, o € BlowUp(C,) such
that

1. Choo €iel + Ky,

2. Cp,00NSpang {ez, ..., eq} =1,

3. ChooNC-e1 = {ze7 : Im(z) > 0}, and
4. 8¢, (e"ier; e2) < e/t forp > 1.

We claim that

|f(Cnoos2) = f(Ba,0)| < 1/n

for all z € C, . By the definition of BlowUp(C,), there exist a sequence x,, € Cp,
a point xo, € Cj,00, and affine maps A, € Aff((Cd) such that x,, — oo in C,, and
Am(Ch, xm) converges to (Cp .00, Xoo0)- Now fix z € C;.00 and a relatively compact
convex subdomain O C C, ~ Which contains x, and z. By the definition of the local
Hausdorff topology, O C A,, C, for m sufficiently large. So for m sufficiently large
A, /(O) C C,. Then

Ke,(ims Ay'2) < K -1 (s A" 2) = Ko (A, 2)
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and since A,,x;; — Xoo WE see that

lim sup K¢, (X, A,;lz) < 0.
m—0oQ

Since K¢, is a proper metric on C,, and x,, approaches the boundary of C,,, we see that
A1z approaches the boundary of C,. But then, since f is continuous and intrinsic,

£ Croes D) = F(Ba, O] = lim | £(Co A'2) = By, 0| < 1/m.

Now since K; C X, is compact, we can pass to a subsequence such that C,
converges in X, to some convex domain C. Since f is continuous, we see that

f(Cx,2) = f(By, 0)

for all z € Coo. So by hypothesis C, is biholomorphic to the unit ball. On the other
hand, by the definition of the local Hausdorff topology, we see that

1. CoocNSpang {ea, ..., eq} =0,
2. CooNC-e1 = {zey : Im(z) > 0}, and
3. 8¢ (e"ier; e) < /2T forr > 1.

Hence we have a contradiction with Proposition 2.1.

5.4 The proof of Theorem 5.6

This is essentially identical to the proof of Theorem 5.5.

5.5 The proof of Theorem 1.7

The function (C, x) € Xz,0 — sc(x) is an upper semicontinuous intrinsic function
(see [23, Proposition 7.1]) and by Theorem 2.1 in [7] if s (x) = 1 for some x € €2, then
2 is biholomorphic to the unit ball. Hence Theorem 1.7 follows from Theorem 5.6.

5.6 Kahler metrics with controlled geometry

We begin by introducing the following class of metrics on a domain which are infor-
mally the Kihler metrics which have controlled geometry relative to the Kobayashi
metic.

Definition 5.9 Suppose Q C C4 is a bounded domain and M > 1. Let G () be the
set of Kidher metrics g on €2 (with respect to the standard complex structure) with the
following properties:

1. gisa C? metric,
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2. Forallz € Qand v € C¢,

% 2:(v, v) < ka(zv) < My/g.(v, v).
3.If X, v,we Cd, then
1X (gz (v, w))| = Mkq(z; X)ka(z; v)ka(z; w).
4. If X, Y,v,w € C%, then
1Y (X(g:(v, w))| = Mkq(z; YV)ka(z; X)ka(z; v)ka(z; w).
(B3) IfX,Y,v,we C%and z1, 2 € Q, then

Y (X (g2, (v, w))) — Y (X(gz,(v, w)))|
< Mkq(z; Y)kq(z; X)ko(z; v)ko(z; w)Kq(z1, 22).

Definition 5.10 For M, d > 0, define a function iy : X4, 0 — R by letting /1, (C, x)
be the infimum of all numbers € > 0 such that there exists a metric g € Gy (C) with

max |Hg(v)—Hg(w)| <eforallz € Be(x; 1/€)
v,weT, C \{0}

where B¢ (x; r) is the closed ball of radius r about the point x € C with respect to the
Kobayashi distance.

In [23, Proposition 8.2, 8.3] we proved that —Aj; is an upper semi-continuous
intrinsic function on X ¢ and if 23 (C, x) = O forsome x € C then C is biholomorphic
to the unit ball in C¢. So Theorem 5.6 implies the following:

Corollary 5.11 For any d, M,a > O there exists € = e€(d, M, «) > 0 such that: if
C c C% is a bounded convex domain with C*% boundary and

hyu(C,z) <€

outside some compact subset of C, then C is strongly pseudoconvex.

Theorem 1.11 is now a simple consequence of this result.

Proof of Theorem 1.11 Fix € > 0 with the the following property: if C ¢ C¢ is a
bounded convex domain with C>* boundary and

hu(C,z) < 2e
outside a compact set of C, then C is strongly pseudoconvex.
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Now suppose that C € C¢ is a bounded convex domain with C%>¢ boundary, K C C
is compact, and there exists a metric g € G»7(C) such that

max H,(v) — H,(w)| <eforallz e C\K.
U’wenc\{o}| o (v) — Hy(w)] < z€C\

We claim that C is strongly pseudoconvex.

Since K¢ is a proper distance on C (see Theorem 2.4), there exists some compact
subset K’ C C such that Be(x; 1/(2¢)) € C\K for all x € C\K’. Then, with this
choice of K’,

hy(C,x) <2e

for all x € C\K’. So by our choice of € > 0, C is strongly pseudoconvex. O

5.7 The proof of Theorem 1.10

In [23, Proposition 9.1] we proved that for any d > 0 there exists some My =
My(d) > 1 such that: if C € X then be € Gy (C) for all M > My. So Theorem 1.10
is a corollary of Theorem 1.11.

Acknowledgements I would like to thank the referee for a number of comments and corrections which
improved the present work. This material is based upon work supported by the National Science Foundation
under Grants DMS-1400919 and DMS-1760233.

Appendix A. Properties of complex hyperbolic space

In this section we sketch the proof of Theorem 2.11:

Theorem A.1 If y1, y2 : Roo — By are geodesic rays such that
lim inf K5, (v1(s), y2(1)) < +00,
then there exists T € R such that
lim Kg, (y1(1), y2(t + T)) = 0.
—00
Moreover, if the images of y1 and v, are contained in the same complex geodesic then
o1
lim —log Kp, (y1(t), y2(t + T)) = —2
t—oo
otherwise

o1
lim —log Kp,(y1(t), y2(t +T)) = —1.
t—o0
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Proof The first assertion is a consequence of the Kobayashi distance on B, being
induced by a negatively curved Riemannian metric (it is isometric to complex hyper-
bolic space), see for instance [13, Proposition 4.1].

To establish the second assertion it is easiest to work with the domain

d
Pa=13(z1,...,2q) : Im(zy) > ZIZ,’I2

i=2

which is biholomorphic to B,.
Suppose that y1, y» : R>o — P4 are geodesic rays with

Aim Kp, (1), 2(0)) = 0.

Using the fact that the biholomorphism group Aut(P,) of P, acts transitively on the
set of geodesic rays in P4, we can assume that

2161.

yi(t) =ie
Then we must have
0 = v+ (a+i@ + o) ey
for some v € Spang{ez, ..., eq} and o € R. Moreover, y; and y» are contained in the

same complex geodesic if and only if v = 0.
The estimates on

1
lim —log Kp,(y1(1), y2(1))
t—>00

will follow from the well known fact that if V C C¢ is an affine subspace which
intersects P, then

KVﬂPd(Zv U)) = K’Pd(Z, w)

forall z, w € VNP,
First suppose that v = 0. Then

1 1
lim —log Kp,(y1(t), y2(¢)) = lim - log KH(iezt, o+ ieZt)
t—>00 t t—>00 t

where H = {z € C : Im(z) > 0}. Then

1 o?
Kp(ie”, a +ie*) = —arcosh [ 1+ —
He", a+ie”) 2arcos +2e4f

and using the fact that arcosh(x) = log(x + +/x2 — 1) we then have
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1 o? || ™
. 2t N _ -2t —41
KynGie?, a+ie') = 210g<1+—264t + ﬁe2f> = —zﬁe +O(e )
So
o1
lim —log Kp,(y1(t), y2(t)) = —2.
t—o0 t
Next suppose that v # 0. Then let 5 () = v + i(e® + ||lv]|*)e;. Since
li 1 log K V. =-2
Jim —log Py (2(0), V() = —
it is enough to show that
li 1l K Yy(t) = —1
Jm - log Pa(V1(1), ¥2(1) = —1.

Next for ¢ sufficiently large let

U DO R 1
St = +§ og — ezt .

Then

Kp, (7)), y,(s5)) = 5

1 I\ _ ol? y
1°g(1‘7t =5 ro(e)
so it is enough to show that

o1 _
Jim —log Kp, (y1(1), ¥3(s1)) = —1.

Now since ¥,(s;) = v 4 ie* ey and

Pdﬂ(ie2’+(C~v) - {ie2’+z”v—”:ze(C, Izl 5e’}.
v

we have
.1 _ o1
lim —log Kp,(y1(?), ¥,(s:)) = lim —log K. p(0, [[v])
t—>o00 t t—o00 t
1
= lim —log Kp(0,e~" |[v])) = —1
t—o0 t

where in the last equality we used the fact that Kp(0, z) = |z] + O (Izlz) for z close
to 0. O
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