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Abstract
In this paper we consider the following question: For bounded domains with smooth
boundary, can strong pseudoconvexity be characterized in terms of the intrinsic com-
plex geometry of the domain? Our approach to answering this question is based on
understanding the dynamical behavior of real geodesics in the Kobayashi metric and
allows us to prove a number of results for domains with low regularity. For instance,
we show that for convex domains with C2,ε boundary strong pseudoconvexity can be
characterized in terms of the behavior of the squeezing function near the boundary,
the behavior of the holomorphic sectional curvature of the Bergman metric near the
boundary, or any other reasonable measure of the complex geometry near the bound-
ary. The first characterization gives a partial answer to a question of Fornæss andWold.
As an application of these characterizations, we show that a convex domain with C2,ε

boundary which is biholomorphic to a strongly pseudoconvex domain is also strongly
pseudoconvex.

1 Introduction

A domain in C
d with C2 boundary is called strongly pseudoconvex if the Levi form

of the boundary is positive definite. The Levi form is extrinsic and in this paper we
study the following question:

Question 1 For domains with C2 boundary, can strong pseudoconvexity be character-
ized in terms of the intrinsic complex geometry of the domain?

Although strongly pseudoconvex domains form one of the most important classes
of domains in several complex variables, it does not appear that Question 1 has been
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1812 A. Zimmer

extensively studied. The only general results we know of are due to Bland [4,5],
who studies compactifications of complete simply connected non-positively curved
Kähler manifolds whose curvature tensor approaches the curvature tensor of complex
hyperbolic space in a controlled way. Under these conditions, Bland proves that the
geodesic compactification has a natural CR-structure which is strongly pseudoconvex
and uses this to construct bounded holomorphic functions.

In this paper we will consider only domains inCd , but will avoid needing to control
how fast the geometry of the domain approaches the geometry of complex hyperbolic
space. We will also focus on the case of convex domains. Convexity is a strong geo-
metric assumption, but in relation to Bland’s results can be seen as a non-positive
curvature condition. By assuming convexity we are also able to prove results about
unbounded domains and domains whose boundary has low regularity.

Our approach to studying Question 1 is based on understanding the behavior of
the real geodesics in the Kobayashi metric. Let Bd ⊂ C

d denote the open unit ball
and KBd denote the Kobayashi distance on Bd . Then geodesics in (Bd , KBd ) have the
following properties:

1. if γ1, γ2 : R≥0 → Bd are geodesics and lim infs,t→∞ KBd (γ1(s), γ2(t)) < ∞,
then there exists T ∈ R such that limt→∞ KBd (γ1(t), γ2(t + T )) = 0 and

2. if γ1, γ2 : R≥0 → Bd are geodesics and limt→∞ KBd (γ1(t), γ2(t)) = 0, then

lim
t→∞

1

t
log KBd (γ1(t), γ2(t)) = −2

if γ1, γ2 are contained in the same complex geodesic and

lim
t→∞

1

t
log KBd (γ1(t), γ2(t)) = −1

otherwise.

The numbers ±2, ±1 are exactly the Lyapunov exponents of the geodesic flow on
complex hyperbolic space. In Sect. 2, we will establish, for certain types of convex
domains, a relationship between the “Lyapunov exponents of the geodesic flow” and
the shape of the boundary. This relationship is fundamental in all the results of this
paper.

1.1 Domains biholomorphic to strongly pseudoconvex domains

One of our motivations for studying Question 1 is the following question of Fornæss
and Wold.

Question 2 (Fornæss and Wold [11, Question 4.5]) Suppose � ⊂ C
d is a bounded

domain withC2 boundary and� is biholomorphic to the unit ball inCd . Is� strongly
pseudoconvex?

One can also ask the following more general question:

123



Characterizing strong pseudoconvexity, obstructions to biholomorphisms. . . 1813

Question 3 Suppose �1,�2 ⊂ C
d are bounded domains with C2 boundary, �1 is

strongly pseudoconvex, and �2 is biholomorphic to �1. Is �2 also strongly pseudo-
convex?

When �1 and �2 both have C∞ boundary, Bell [2] answered the above question
in the affirmative using deep analytic methods, namely condition (R) and Kohn’s
subelliptic estimates in weighted L2-spaces. It does not appear that Bell’s analytic
approach can be used in the C2 regularity case.

Using the dynamical approach described above, we will establish the following
partial answer to Question 3.

Theorem 1.1 Suppose � ⊂ C
d is a bounded strongly pseudoconvex domain with C2

boundary and C ⊂ C
d is a convex domain biholomorphic to�. If C has C2,α boundary

for some α > 0, then every x ∈ ∂ C is a strongly pseudoconvex point of ∂ C.
Remark 1.2 Theorem 1.1 makes no assumptions about the boundedness of C.

The dynamical approach also allows us to prove a theorem for convex domains
with only C1 boundary, but we need to introduce some additional notation.

Definition 1.3 For a domain � ⊂ C
d , a point z ∈ �, and a non-zero vector v ∈ C

d

define

δ�(z) = inf{‖z − w‖ : w ∈ ∂�}

and

δ�(z; v) = inf{‖z − w‖ : w ∈ ∂� ∩ (z + C ·v)}.

We will then prove the following.

Theorem 1.4 (see Sect. 4) Suppose � ⊂ C
d is a bounded strongly pseudoconvex

domain with C2 boundary and C ⊂ C
d is a convex domain biholomorphic to �. If C

has C1 boundary, then for every ε > 0 and R > 0 there exists a C = C(ε, R) ≥ 1
such that

δC(z; v) ≤ CδC(z)1/(2+ε)

for all z ∈ C with ‖z‖ ≤ R and all nonzero v ∈ C
d .

Remark 1.5 1. Suppose � ⊂ C
d is bounded, convex, and has C2 boundary. Then �

is strongly pseudoconvex if and only if there exists a C ≥ 1 such that

δ�(z; v) ≤ Cδ�(z)1/2

for all z ∈ � and all nonzero v ∈ C
d . Thus the conclusion of Theorem 1.4 can be

interpreted as saying C is “almost” strongly pseudoconvex.
2. By picking ε < α, one sees that Theorem 1.1 is a corollary of Theorem 1.4.

123



1814 A. Zimmer

1.2 The intrinsic complex geometry of a domain

There are many ways to measure the complex geometry of a domain and in this
subsection we describe how certain natural measures provide characterizations of
strong pseudoconvexity amongst convex domains with C2,α boundary. As we will
describe in Subsection 5.1, a recent example of Fornæss and Wold [11] shows that all
these characterizations fail for convex domains with C2 boundary.

1.2.1 The squeezing function

One natural intrinsic measure of the complex geometry of a domain is the squeezing
function. Given a bounded domain � ⊂ C

d let s� : � → (0, 1] be the squeezing
function on �, that is

s�(p) = sup{r : there exists an one-to-one holomorphic map

f : � → Bd with f (p) = 0 and r Bd ⊂ f (�)}.

Although only recently introduced, the squeezing function has a number of applica-
tions, see for instance [19,22].

Work of Diederich et al. [6, Theorem 1.1] and Deng et al. [8, Theorem 1.1] implies
the following theorem.

Theorem 1.6 [6,8] If � ⊂ C
d is a bounded strongly pseudoconvex domain with C2

boundary, then

lim
z→∂�

s�(z) = 1.

Based on the above theorem, it seems natural to ask if the converse holds.

Question 4 (Fornæss and Wold [11, Question 4.2]) Suppose � ⊂ C
d is a bounded

pseudoconvex domain with Ck boundary for some k > 2. If

lim
z→∂�

s�(z) = 1,

is � strongly pseudoconvex?

Surprisingly the answer is no when k = 2: Fornæss and Wold [11] constructed
a convex domain with C2 boundary which is not strongly pseudoconvex, but the
squeezing function still approaches one on the boundary. However, we will prove that
a little bit more regularity is enough for an affirmative answer.

Theorem 1.7 (see Subsection 5.5) For any d ≥ 2 and α > 0, there exists some
ε = ε(d, α) > 0 such that: if � ⊂ C

d is a bounded convex domain with C2,α

boundary and

s�(z) ≥ 1 − ε

outside a compact subset of �, then � is strongly pseudoconvex.
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Remark 1.8 Using a different argument, we previously gave an affirmative answer to
Question 4 for bounded convex domains with C∞ boundary [23]. Moreover, Joo and
Kim [15] gave an affirmative answer for bounded finite type domains in C2 with C∞
boundary.

1.2.2 Holomorphic sectional curvature of the Bergmanmetric

Another intrinsic measure of the complex geometry of a domain is the curvature of
the Bergman metric.

Let (X , J ) be a complexmanifold with Kähler metric g. If R is the Riemannian cur-
vature tensor of (X , g), then the holomorphic sectional curvature Hg(v) of a nonzero
vector v is defined to be the sectional curvature of the 2-plane spanned by v and Jv,
that is

Hg(v) := R(v, Jv, Jv, v)

‖v‖4g
.

A classical result of Hawley [12] and Igusa [14] says that if (X , g) is a complete
simply connected Kähler manifold with constant negative holomorphic sectional cur-
vature, then X is biholomorphic to the unit ball (also see Chapter IX, Section 7 in [17]).
Moreover, if bBd is the Bergman metric on the unit ball Bd ⊂ C

d , then (Bd , bBd ) has
constant holomorphic sectional curvature−4/(d+1). Klembeck proved that the holo-
morphic sectional curvature of Bergman metric on a strongly pseudoconvex domain
approaches −4/(d + 1) on the boundary.

Theorem 1.9 (Klembeck [16]) Suppose � ⊂ C
d is a bounded strongly pseudoconvex

domain with C∞ boundary. Then

lim
z→∂�

max
v∈Tz�\{0}

∣
∣
∣
∣
Hb�(v) − −4

d + 1

∣
∣
∣
∣
= 0,

where b� is the Bergman metric on �.

We will prove the following converse to Klembeck’s theorem:

Theorem 1.10 (see Subsection 5.7) For any d ≥ 2 and α > 0, there exists some
ε = ε(d, α) > 0 such that: if � ⊂ C

d is a bounded convex domain with C2,α

boundary and

max
v∈Tz�\{0}

∣
∣
∣
∣
Hb�(v) − −4

d + 1

∣
∣
∣
∣
≤ ε,

outside a compact subset of �, then � is strongly pseudoconvex.
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1.2.3 Kähler metrics with controlled geometry

In Subsection 5.6 we will introduce families of Kähler metrics, denoted by GM (�)

for some M > 1, on a convex domain � which have controlled geometry relative to
the Kobayashi metric. We will also show that there exists some M0 > 1 such that the
Bergman metric is always contained in GM (�) when M ≥ M0. Then we will prove
the following generalization of Theorem 1.10.

Theorem 1.11 (see Subsection 5.6) For any d ≥ 2, α > 0, and M > 1, there exists
some ε = ε(d, α, M) > 0 such that: if � ⊂ C

d is a bounded convex domain with
C2,α boundary and there exists a metric g ∈ GM (�) with

max
v,w∈Tz�\{0}

∣
∣Hg(v) − Hg(w)

∣
∣ ≤ ε,

outside a compact subset of �, then � is strongly pseudoconvex.

1.2.4 Other intrinsic measures of the complex geometry of a domain

Theorem 1.7, Theorem 1.10, and Theorem 1.11 are particular cases of more general
theorems which we state and prove in Section 5. These more general theorems extend
Theorem 1.7, Theorem 1.10, and Theorem 1.11 to essentially any intrinsic measure
of the complex geometry of a domain.

1.3 Some notations

1. For z ∈ C
d , let ‖z‖ denote the standard Euclidean norm.

2. For a point z ∈ C
d and r > 0, let

Bd(z; r) = {w ∈ C
d : ‖w − z‖ < r}.

3. D ⊂ C will denote the open unit disk and Bd := Bd(0; 1) ⊂ C
d will denote the

open unit ball.
4. Let

D1 = {z ∈ C : |Im(z)| + |Re(z)| < 1}.

5. If C ⊂ C
d is a convex domain with C1 boundary and ξ ∈ ∂ C let

TC

ξ ∂ C ⊂ C
d

denote the complex tangent space of ∂ C at ξ . Then since C is convex and open

(

ξ + TC

ξ ∂ C
)

∩ C = ∅.
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2 Lyapunov exponents and the shape of the boundary

In this section we establish a relationship between the “Lyapunov exponents of the
geodesic flow” and the shape of the boundary. This relationship allows us to prove the
following result.

Proposition 2.1 Suppose d ≥ 2 and C ⊂ C
d is a convex domain with the following

properties:

1. C ∩SpanC {e2, . . . , ed} = ∅,
2. C ∩C ·e1 = {ze1 : Im(z) > 0}, and
3. C is biholomorphic to the unit ball.

Then

lim
r→∞

1

r
log δC(ier e1; v) = 1/2,

for all v ∈ SpanC {e2, . . . , ed}.
Remark 2.2 The unit ball is biholomorphic to the convex domain

Pd =
{

(z1, . . . , zd) ∈ C
d : Im(z1) >

d
∑

i=2

|zi |2
}

,

and this domain satisfies:

(a) Pd ∩SpanC {e2, . . . , ed} = ∅,
(b) Pd ∩C ·e1 = {ze1 : Im(z) > 0}, and
(c) δPd (ie

r e1; v) = er/2 for all r ∈ R and v ∈ SpanC {e2, . . . , ed}.
Hence the above proposition states that if a convex domain is biholomorphic to the unit
ball and satisfies conditions (a) and (b) above, then the convex domain asymptotically
satisfies condition (c).

Before starting the proof of Proposition 2.1 we will recall some facts about the
Kobayashi pseudo-metric on convex domains and geodesics in complex hyperbolic
space.

2.1 The Kobayashi metric and distance

In this subsection we recall the definition of the Kobayashi pseudo-metric. A more
thorough introduction can be found in [18].

Given a domain � ⊂ C
d the (infinitesimal) Kobayashi pseudo-metric on � is the

pseudo-Finsler metric

k�(x; v) = inf {|ξ | : f ∈ Hol(	,�), f (0) = x, d( f )0(ξ) = v} .
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1818 A. Zimmer

Royden [20, Proposition 3] proved that the Kobayashi pseudo-metric is an upper
semicontinuous function on�×C

d . So, if σ : [a, b] → � is an absolutely continuous
curve (as a map [a, b] → C

d ), then the function

t ∈ [a, b] → k�(σ(t); σ ′(t))

is integrable and we can define the length of σ to be

��(σ ) =
∫ b

a
k�(σ(t); σ ′(t))dt .

One can then define the Kobayashi pseudo-distance to be

K�(x, y) = inf {��(σ ) : σ : [a, b] → � is absolutely continuous,

with σ(a) = x, and σ(b) = y} .

This definition is equivalent to the standard definition of K� via analytic chains, see
[21, Theorem 3.1].

Directly from the definition one obtains the following property of the Kobayashi
pseudo-metric:

Proposition 2.3 Suppose �1 ⊂ C
d1 and �2 ⊂ C

d2 are domains. If f : �1 → �2 is
a holomorphic map, then

K�2( f (z), f (w)) ≤ K�1(z, w)

for all z, w ∈ �1.

For a general domain� it is very hard to determine if (�, K�) is a Cauchy complete
metric space, but for convex domains there is a very simple (to state) characterization
due to Barth.

Theorem 2.4 (Barth [1, Theorem 1]) Suppose � ⊂ C
d is a convex domain. Then the

following are equivalent:

1. � does not contain any complex affine lines,
2. K� is non-degenerate and hence a distance on �,
3. K� is a proper Cauchy complete distance on �,

Remark 2.5 To be precise, Theorem 1 in [1] only states that conditions (1) and (2) are
equivalent to K� being a proper distance on�. However, for length spaces any proper
distance is also Cauchy complete, see for instance Corollary 3.8 in [3, Chapter I].

2.2 Basic estimates for the Kobayashi metric

In this subsection we recall some basic estimates for the Kobayashi metric on convex
domains. All these estimates are very well known, but we provide the short proofs for
the reader’s convenience.
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Lemma 2.6 Suppose � ⊂ C
d is a convex domain, V ⊂ C

d is a complex affine line,
and V ∩ � is a half plane in V . Then

K�(z1, z2) = KV∩�(z1, z2)

for all z1, z2 ∈ V ∩ �.

Proof By applying an affine transformation we may assume that

1. V ∩ � = {(z, 0, . . . , 0) : Im(z) > 0} and
2. � ⊂ {(z1, . . . , zd) : Im(z1) > 0}.
Applying the distance decreasing property of the Kobayashi metric to the inclusion

map V ∩ � ↪→ � implies that

K�(z1, z2) ≤ KV∩�(z1, z2)

for all z1, z2 ∈ V ∩ �.
Let P : Cd → V denote the map P(z1, . . . , zd) = (z1, 0, . . . , 0). Then P(�) =

� ∩ V and P(z) = z for z ∈ V . So applying the distance decreasing property of the
Kobayashi metric to the projection map P : � → V ∩ � implies that

KV∩�(z1, z2) ≤ K�(z1, z2)

for all z1, z2 ∈ V ∩ �. �

Lemma 2.7 Suppose � ⊂ C

d is a convex domain, H ⊂ C
d is a complex affine

hyperplane such that H∩� = ∅, and P : Cd → C is an affinemapwith P−1(0) = H.
Then for any z1, z2 ∈ � we have

K�(z1, z2) ≥ 1

2

∣
∣
∣
∣
log

∣
∣
∣
∣

P(z1)

P(z2)

∣
∣
∣
∣

∣
∣
∣
∣
.

Proof Since � is convex there exists a real hyperplane HR such that H ⊂ HR and
HR∩� = ∅. By replacing P with eiθ P for some θ ∈ Rwe can assume that P(HR) =
R and

P(�) ⊂ H := {z ∈ C : Im(z) > 0}.

Then

K�(z1, z2) ≥ KP(�)(P(z1), P(z2)) ≥ KH(P(z1), P(z2))

= 1

2
arcosh

(

1 + |P(z1) − P(z2)|2
2 Im(P(z1)) Im(P(z2))

)

≥ 1

2
arcosh

(

1 + (|P(z1)| − |P(z2)|)2
2 |P(z1)| |P(z2)|

)

= 1

2
arcosh

( |P(z1)|
|P(z2)| + |P(z2)|

|P(z1)|
)

= 1

2

∣
∣
∣
∣
log

∣
∣
∣
∣

P(z1)

P(z2)

∣
∣
∣
∣

∣
∣
∣
∣
.

�
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Since every point in the boundary of a convex domain is contained in a supporting
hyperplane we have the following consequence of Lemma 2.7.

Lemma 2.8 Suppose � ⊂ C
d is a convex domain and x, y ∈ � are distinct. If L is

the complex affine line containing x, y, then

sup
ξ∈L\L∩�

1

2

∣
∣
∣
∣
log

(‖x − ξ‖
‖y − ξ‖

)∣
∣
∣
∣
≤ K�(x, y).

2.3 Geodesics in complex hyperbolic space

LetBd ⊂ C
d be the unit ball. Then it is well known that (Bd , KBd ) is a standard model

of complex hyperbolic d-space. In this subsection we describe some basic properties
of geodesics in this metric space, but first a definition.

Definition 2.9 A complex geodesic in a domain � is a holomorphic map ϕ : D → �

which satisfies

K�(ϕ(z), ϕ(w)) = KD(z, w)

for all z, w ∈ D.

For the unit ball, every real geodesic is contained in a unique complex geodesic.

Proposition 2.10 If γ : R≥0 → Bd is a geodesic ray, then there exists a complex
geodesic ϕ : D → Bd such that γ (R≥0) ⊂ ϕ(D). Moreover, ϕ is unique up to
parametrization, that is: if ϕ0 : D → Bd is a complex geodesic with γ (R≥0) ⊂ ϕ0(D)

then ϕ0 = ϕ ◦ φ for some φ ∈ Aut(D).

In the proof of Proposition 2.1 we will use the following fact about the asymptotic
behavior of geodesics in complex hyperbolic space.

Theorem 2.11 If γ1, γ2 : R≥0 → Bd are geodesic rays such that

lim inf
s,t→∞ KBd (γ1(s), γ2(t)) < +∞,

then there exists T ∈ R such that

lim
t→∞ KBd (γ1(t), γ2(t + T )) = 0.

Moreover, if the images of γ1 and γ2 are contained in the same complex geodesic, then

lim
t→∞

1

t
log KBd (γ1(t), γ2(t + T )) = −2

otherwise

lim
t→∞

1

t
log KBd (γ1(t), γ2(t + T )) = −1.
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Although this result is well known, we will sketch the proof of Theorem 2.11 in
the appendix.

2.4 The proof of Proposition 2.1

Before starting the proof we state the following observation:

Observation 2.12 Suppose C ⊂ C
d is an open convex domain. If x0 + R≥0 ·v0 ⊂ C

for some x0 ∈ C and v0 ∈ C
d , then x + R≥0 ·v0 ⊂ C for every x ∈ C.

Now for the rest of the subsection, suppose d ≥ 2 and C ⊂ C
d is a convex domain

with the following properties:

1. C ∩SpanC {e2, . . . , ed} = ∅,
2. C ∩C ·e1 = {ze1 : Im(z) > 0}, and
3. C is biholomorphic to the unit ball.

ByObservation 2.12 and property (2) above, for every v ∈ SpanC{e2, . . . , ed} there
exists some αv ∈ R∪{∞} such that

{ze1 + v : Im(z) > αv} = C ∩
(

C ·e1 + v
)

. (1)

Since C ∩SpanC {e2, . . . , ed} = ∅ we have that αv ∈ R≥0 ∪{∞}.
Let S be the set of unit vectors in SpanC {e2, . . . , ed}. Then fix some δ > 0 such

that

ie1 + 2δD ·v ⊂ C

for every v ∈ S. Let γ : R≥0 → C
d be the curve given by

γ (t) = e2t ie1

and for v ∈ S let γv : R≥0 → C
d be the curve given by

γv(t) = δv + (αδv + e2t )ie1

By Lemma 2.6 these curves are geodesic rays in (C, KC).

Claim: For every v ∈ S ,

lim
t→∞ KC(γ (t), γv(t)) = 0.

Proof of Claim: For t large let

st,v = t + 1

2
log

(

1 − αδv

e2t

)

.
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1822 A. Zimmer

Then γv(st,v) = δv + e2t ie1 and

KC(γv(t), γv(st,v)) = 1

2

∣
∣
∣log

(

1 − αδv

e2t

)∣
∣
∣ .

Since ie1 + 2δD ·v ⊂ C, the equality in (1) implies that

ire1 + 2δD ·v ⊂ C

for all r ≥ 1. Hence

lim sup
t→∞

KC(γ (t), γv(t)) ≤ lim sup
t→∞

(

KC(γ (t), γv(st,v)) + KC(γv(st,v), γv(t))
)

= lim sup
t→∞

KC(γ (t), γv(st,v)) ≤ lim sup
t→∞

K2δD(0, δ) < ∞.

Thus by Theorem 2.11 there exists Tv ∈ R such that

lim
t→∞KC(γ (t), γv(t + Tv)) = 0.

We claim that Tv = 0. Let P : C
d → C be the complex linear map given by

P(z1, . . . , zd) = z1. Then by Lemma 2.7

0 = lim
t→∞ KC(γ (t), γv(t + Tv)) ≥ lim

t→∞
1

2

∣
∣
∣
∣
log

∣
∣
∣
∣

P(γ (t))

P(γv(t + Tv))

∣
∣
∣
∣

∣
∣
∣
∣

= lim
t→∞

1

2

∣
∣
∣
∣
log

e2t

e2(t+Tv) + αδv

∣
∣
∣
∣
= |Tv|

and so Tv = 0. �

By Lemma 2.6, for each v ∈ S the geodesics γ and γv are contained in different

complex geodesics. So by Theorem 2.11 for each v ∈ S we have

lim
t→∞

1

t
log KC(γ (t), γv(t)) = −1.

Moreover

∣
∣KC(γ (t), γv(t)) − KC(γ (t), γv(st,v))

∣
∣ ≤ KC(γv(t), γv(st,v)) = 1

2

∣
∣
∣log

(

1 − αδv

e2t

)∣
∣
∣

= αδv

2
e−2t + O

(

e−4t
)

.

So we also have

lim
t→∞

1

t
log KC(γ (t), γv(st,v)) = −1.
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Claim: For every v ∈ S ,

lim sup
t→∞

1

t
log δC(et ie1; v) ≤ 1/2

Proof of Claim: Note that

KC(γ (t), γv(st,v)) ≤ KδC(e2t ie1;v)D(0, δ) = KD

(

0,
1

δC(e2t ie1; v)
δ

)

.

Then since KD is locally Lipschitz onD×D and δC(e2t ie1; v) ≥ 2δ, there exists some
C ≥ 0 such that

KC(γ (t), γv(st,v)) ≤ C
δ

δC(e2t ie1; v)
.

Hence

−1 = lim
t→∞

1

t
log KC(γ (t), γv(st,v))

≤ lim inf
t→∞ −1

t
log δC(e2t ie1; v) = − lim sup

t→∞
1

t
log δC(e2t ie1; v)

= −2 lim sup
t→∞

1

t
log δC(et ie1; v)

�

Claim: For every v ∈ S ,

lim inf
t→∞

1

t
log δC(et ie1; v) ≥ 1/2.

Proof of Claim: Fix a sequence tn → ∞ such that

lim inf
t→∞

1

t
log δC(et ie1; v) = lim

n→∞
1

2tn
log δC(e2tn ie1; v).

Then let zn ∈ C be such that |zn| = δC(e2tn ie1; v) and e2tn ie1+ znv ∈ ∂ C. By passing
to a subsequence we can suppose that

zn
|zn| → eiθ

for some θ ∈ R.
Let v0 = −eiθ v, then by Lemma 2.8 we have

KC(γ (tn), γv0 (stn ,v0 )) ≥ 1

2

∣
∣
∣
∣
∣
∣

log

∥
∥
∥γ (tn) − (e2tn ie1 + znv)

∥
∥
∥

∥
∥γv0 (stn ,v0 ) − (e2tn ie1 + znv)

∥
∥

∣
∣
∣
∣
∣
∣

= 1

2

∣
∣
∣
∣
∣
log

|zn |
∣
∣δeiθ + zn

∣
∣

∣
∣
∣
∣
∣
.
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Now for n large

∣
∣
∣δeiθ + zn

∣
∣
∣ > |zn| + δ/2

and so for n large

KC(γ (tn), γv0 (stn ,v0 )) ≥ 1

2

∣
∣
∣
∣
∣
log

|zn |
∣
∣δeiθ + zn

∣
∣

∣
∣
∣
∣
∣
= 1

2
log

∣
∣
∣δeiθ + zn

∣
∣
∣

|zn | ≥ 1

2
log

(

1 + δ

2 |zn |
)

.

Since

lim
n→∞ KC(γ (tn), γv0(stn ,v0)) = 0,

the above estimate implies that |zn| → ∞, then using the fact that log : R>0 → R is
locally bi-Lipschitz there exists some C > 0 such that

KC(γ (tn), γv0(stn ,v0)) ≥ C

|zn| = C

δC(e2tn ie1; v)
.

Hence

−1 = lim
t→∞

1

t
log KC(γ (t), γv0(st,v))

≥ lim sup
n→∞

1

tn
log

C

δC(e2tn ie1; v)
= − lim inf

n→∞
1

tn
log δC(e2tn ie1; v)

= −2 lim inf
t→∞

1

t
log δC(et ie1; v).

�


3 The space of convex domains and the action of the affine group

Following work of Frankel [9,10], in this section we describe some facts about the
space of convex domains and the action of the affine group on this space.

Definition 3.1 Let Xd be the set of convex domains in C
d which do not contain a

complex affine line and let Xd,0 be the set of pairs (�, x) where � ∈ Xd and x ∈ �.

Remark 3.2 Themotivation for only considering convex domainswhich do not contain
complex affine lines comes from Theorem 2.4.

We now describe a natural topology on the sets Xd and Xd,0. Given two compact
sets A, B ⊂ C

d define the Hausdorff distance between them to be

dH (A, B) = max

{

max
a∈A

min
b∈B ‖a − b‖ ,max

b∈B min
a∈A

‖b − a‖
}

.
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The Hausdorff distance is a complete metric on the set of compact subsets of Cd . To
consider general closed sets, we introduce the local Hausdorff semi-norms between
two closed sets A, B ⊂ C

d by defining

d(R)
H (A, B) = dH

(

A ∩ Bd(0; R), B ∩ Bd(0; R)
)

for R > 0. Since an open convex set is determined by its closure, we can define a
topology on Xd and Xd,0 using these seminorms:

1. A sequence Cn ∈ Xd converges to C ∈ Xd if there exists some R0 ≥ 0 such that
d(R)
H (Cn, C) → 0 for all R ≥ R0,

2. A sequence (Cn, xn) ∈ Xd,0 converges to (C, x) ∈ Xd,0 if Cn converges to C in
Xd and xn converges to x in Cd .

Let Aff(Cd) be the group of complex affine isomorphisms of Cd . Then Aff(Cd)

acts on Xd and Xd,0. Remarkably, the action of Aff(Cd) on Xd,0 is co-compact:

Theorem 3.3 (Frankel [10]) The group Aff(Cd) acts co-compactly on Xd,0, that is
there exists a compact set K ⊂ Xd,0 such that Aff(Cd) · K = Xd,0.

Given some C and a sequence of points xn ∈ C the above theorem says that we
can find affine maps An ∈ Aff(Cd) such that {An(C, xn)}n∈N is relatively compact
in Xd,0. Hence there exists a subsequence nk → ∞ such that Ank (C, xnk ) converges
in Xd,0. Many of the arguments that follow rely on analyzing the geometry of the
domains obtained by this “rescaling” which leads to the next definition.

Definition 3.4 Given some C ∈ Xd let BlowUp(C) ⊂ Xd denote the set of C∞ in Xd

where there exist a sequence xn ∈ C, a point x∞ ∈ C∞, and affinemaps An ∈ Aff(Cd)

such that

1. xn → ∞ in C (that is, for every compact subset K ⊂ C there exists some N > 0
such that xn /∈ K for all n ≥ N ),

2. An(C, xn) converges to (C∞, x∞).

For some domains, the set BlowUp(C) is very special.

Proposition 3.5 Suppose that C ⊂ C
d is a convex domain which is biholomorphic

to a bounded strongly pseudoconvex domain with C2 boundary. Then every C∞ ∈
BlowUp(C) is biholomorphic to the unit ball in C

d .

This is a consequence of the Frankel-Pinchuk rescalingmethod, but wewill provide
a proof using the squeezing function.

Proof Suppose that C∞ ∈ BlowUp(C). Then fix a sequence xn ∈ C such that xn → ∞
in C, a point x∞ ∈ C∞, and affine maps An ∈ Aff(Cd) such that An(C, xn) converges
to (C∞, x∞).

By results of Diederich et al. [6, Theorem 1.1] and Deng et al. [8, Theorem 1.1]
(see Theorem 1.6 above)

lim
n→∞ sC(xn) = 1.
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Now the function (�, x) ∈ Xd,0 → s�(x) is an upper semicontinuous function on
Xd,0 (see Proposition 7.1 in [23]). So

sC∞(x∞) ≥ lim
n→∞ sAn C(Anxn) = lim

n→∞ sC(xn) = 1.

Then sC∞(x∞) = 1 and so C∞ is biholomorphic to the unit ball in C
d by Theorem

2.1 in [7]. �

We next define a particular compact subset ofXd,0 whose Aff(Cd)-translates cover

Xd,0. Recall that

D1 = {z ∈ C : |Im(z)| + |Re(z)| < 1}.

For 1 ≤ i ≤ d consider the complex (d − i)-dimensional affine plane

Zi = ei + SpanC{ei+1, . . . , ed}.

Definition 3.6 Let Kd ⊂ Xd be the set of convex domains � such that:

1. D1 ei ⊂ � for each 1 ≤ i ≤ d,
2. Zi ∩ � = ∅ for each 1 ≤ i ≤ d.

Also let Kd,0 = {(�, 0) : � ∈ K}.
Theorem 3.7 [23, Theorem 2.5]With the notation above:Kd,0 is a compact subset of
Xd,0 and Aff(Cd) · Kd,0 = Xd,0.

Remark 3.8 In [23] the set Kd ⊂ Xd was slightly different: in particular one had the
requirement that

D ei ⊂ � for each 1 ≤ i ≤ d

instead of

D1 ei ⊂ � for each 1 ≤ i ≤ d.

However, the proof is identical.

We end this sectionwith a technical result whichwill allow us to reduce calculations
to the two dimensional case.

Proposition 3.9 Suppose C ∈ Xd is a convex domain such that:

1. C ∩ (

e1 + SpanC{e2, . . . , ed}
) = ∅ and

2. C ∩SpanC{e1, e2} ∈ K2,

then there exists A ∈ GLd(C) such that A|SpanC{e1,e2} = IdSpanC{e1,e2} and A C ∈ Kd .
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Proof We will select points ξ1, . . . , ξd ∈ ∂ C and subspaces H1, . . . , Hd ⊂ C
d as

follows. First let ξ1 = e1 and H1 = SpanC{e2, . . . , ed}. Then let ξ2 = e2 and let H2
be a (d − 2)-dimensional complex subspace such that (e2 + H2) ∩ C = ∅ and

H2 ⊂ H1 = SpanC{e2, . . . , ed}.

Since SpanC{e2, . . . , ed} ∩ C is convex and e2 ∈ ∂ C, such a subspace exists. Now
supposing that ξ1, . . . , ξk−1 and H1, . . . , Hk−1 have already been selected, we pick
ξk and Hk as follows: let ξk be a point in Hk−1 ∩ ∂ C closest to 0 and let Hk be a
(d − k)-dimensional complex subspace such that Hk ⊂ Hk−1 and (ξk + Hk)∩ C = ∅.
Since Hk−1 ∩ C is convex and ξk ∈ ∂(Hk−1 ∩ C), such a subspace exists.

Notice that

1. C ·ξk + Hk = Hk−1 for k ≥ 2,
2. Hk = SpanC{ξk+1, . . . , ξd} for k ≥ 1, and
3. SpanC{ξ1, . . . , ξd} = C

d .

Now let A ∈ GLd(C) be the complex linear map with A(ξi ) = ei for 1 ≤ i ≤ d.
Since ξ1, . . . , ξd is a basis of Cd , the linear map A is well defined. Since ξ1 = e1 and
ξ2 = e2 we see that A|SpanC{e1,e2} = IdSpanC{e1,e2}.

We now claim that A C ∈ Kd . Since A C ∩SpanC{e1, e2} ∈ K2 we have

D1 ·ei ⊂ A C for i = 1, 2

and by construction

D ·ei ⊂ A C for i = 3, . . . , d.

So

D1 ·ei ⊂ A C for i = 1, . . . , d.

Since A(ξk) = ek and Hk = SpanC{ξk+1, . . . , ξd} we have

A C ∩Zk = A
(

C ∩A−1Zk

)

= A
(C ∩(ξk + SpanC{ξk+1, . . . , ξd})

)

= A (C ∩(ξk + Hk)) = ∅.

So A C ∈ Kd . �


4 The proof of Theorem 1.4

In this section we will prove Theorem 1.4 which we begin by recalling.
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1828 A. Zimmer

Theorem 4.1 Suppose � ⊂ C
d is a bounded strongly pseudoconvex domain with C2

boundary and C ⊂ C
d is a convex domain biholomorphic to �. If C has C1 boundary,

then for every ε > 0 and R > 0 there exists a C = C(ε, R) ≥ 1 such that

δC(z; v) ≤ CδC(z)1/(2+ε)

for all z ∈ C with ‖z‖ ≤ R and all nonzero v ∈ C
d .

For the rest of the section, fix a convex domain C ⊂ C
d satisfying the conditions

of the theorem. Then fix some ε > 0 and R > 0.
For z ∈ C let Pz be the set of points in ∂ C which are closest to z. Then pick R′ ≥ R

such that

Pz ⊂ Bd(0; R′)

for all z ∈ Bd(0; R) ∩ C. Next let K = Bd(0; R′) ∩ ∂ C. For ξ ∈ ∂ C let n(ξ) be the
inward pointing unit normal vector of C at ξ . Finally fix δ ∈ (0, 1) such that

ξ + rn(ξ) ∈ C

for all ξ ∈ K and r ∈ (0, δ]. As before let

D1 = {z ∈ C : |Im(z)| + |Re(z)| < 1}.

Since ∂ C is C1, by shrinking δ > 0 if necessary, we can assume that

ξ + δn(ξ) + δD1 ·n(ξ) ⊂ C

for all ξ ∈ K. Then

ξ + rn(ξ) + r D1 ·n(ξ) ⊂ ξ + δn(ξ) + δD1 ·n(ξ) ⊂ C

for all ξ ∈ K and r ∈ (0, δ].
We begin by showing that the desired estimate holds for tangential directions.

Lemma 4.2 With the notation above, there exists C0 > 1 such that

δC(ξ + rn(ξ); v) ≤ C0r
1/(2+ε)

for all ξ ∈ K, r ∈ (0, δ], and nonzero v ∈ TC

ξ ∂ C.

Proof Suppose not, then there exist ξn ∈ K, rn ∈ (0, δ], unit vectors vn ∈ TC

ξn
∂ C, and

Cn > 0 such that Cn → ∞ and

δC(ξn + rnn(ξn); vn) = Cnr
1/(2+ε)
n .
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By increasing rn if necessary we can assume in addition that

δC(ξn + rn(ξn); vn) ≤ Cnr
1/(2+ε)

for all r ∈ [rn, δ]. Since C contains no complex affine lines, we must have rn → 0.
Now for each n, let τn : Cd → C

d be an affine isometry such that

1. τn(ξn) = 0,
2. τn(ξn + n(ξn)) = ie1,
3. τn (ξn + vn) = e2.

Conditions (1) and (2) imply that

T0τn(∂ C) = {(z1, . . . , zn) ∈ C
n : Im(z1) = 0}

and

τn(C) ⊂ {(z1, . . . , zn) ∈ C
n : Im(z1) > 0}.

Condition (3) implies that

δτn(C)(rnie1; e2) = Cnr
1/(2+ε)
n .

Then pick zn ∈ C such that |zn| = Cnr
1/(2+ε)
n and

rnie1 + zne2 ∈ ∂τn C .

Then consider the diagonal matrix

An =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
rn

1
zn

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Let Cn = Anτn(C). Since

ξn + rnn(ξn) + rn D1 ·n(ξn) ⊂ C

we see that

ie1 + D1 ·e1 ⊂ Cn .

Further, by construction:

1. {(z1, . . . , zn) ∈ C
n : Im(z1) = 0} ∩ Cn = ∅,
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2. ie1 + e2 /∈ Cn , and
3. ie1 + D ·e2 ⊂ Cn .
Hence Cn ∩SpanC{e1, e2} ⊂ ie1 + K2 where K2 ⊂ X2 is the subset from Defini-
tion 3.6. Now by Proposition 3.9 there exists an affine map Bn ∈ Aff(Cd) such that
Bn|SpanC{e1,e2} = IdSpanC{e1,e2} and Bn Cn ∈ ie1 + Kd .

Now since Kd is compact in Xd , we can pass to a subsequence such that Bn Cn
converges to some C∞ in Xd . Notice that Bn Cn = Bn Anτn C and

ie1 = (Bn Anτn)(ξn + rnn(ξn)).

Since rn → 0 and ie1 ∈ C∞ we see that

C∞ ∈ BlowUp(C).

We next claim that C∞ satisfies conditions (1), (2), and (3) from Proposition 2.1.
By Proposition 3.5, C∞ is biholomorphic to the unit ball and hence satisfies condition
(3).

Since each Bn Cn is in ie1 + Kd , we see that

{(z1, . . . , zn) ∈ C
n : Im(z1) = 0} ∩ Bn Cn = ∅

and so

{(z1, . . . , zn) ∈ C
n : Im(z1) = 0} ∩ C∞ = ∅.

Hence C∞ satisfies condition (1).
For η > 0 and r ∈ (0,∞] let

A(r; η) = {z ∈ C : 0 < |z| < r and |Im(z)| < ηRe(z)}.

Since K ⊂ ∂ C is compact and ∂ C is a C1 hypersurface, for any η > 0 there exists
some rη > 0 such that

ξ + A(rη; η) · n(ξ) ⊂ C

for all ξ ∈ K. Then for any η > 0 we have

A(rη/rn; η) · ie1 ⊂ Bn Cn

and so

A(∞; η) · ie1 ⊂ C∞ .

Since η > 0 was arbitrary and

C∞ ⊂ {(z1, . . . , zd) ∈ C
d : Im(z1) > 0}
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we then have

{ze1 : Im(z) > 0} = C∞ ∩C ·e1.

Hence C∞ satisfies condition (2).
However, if 1 ≤ r ≤ δ/rn , then

δBn Cn (rie1; e2) = δCn (rie1; e2) = 1

|zn|δτn(C)(rnrie1; e2)

= 1

|zn|δC(ξ + rnrn(ξn); vn) ≤ 1

|zn|Cn(rnr)
1/(2+ε) = r1/(2+ε).

So for 1 ≤ r we have

δC∞(rie1; e2) ≤ r1/(2+ε).

Which Proposition 2.1 says is impossible. So we have a contradiction. �

We now prove the desired estimate for all directions.

Lemma 4.3 With the notation above, there exists C ≥ 1 such that

δC(x; v) ≤ CδC(x)1/(2+ε)

for all x ∈ Bd(0; R) ∩ C and all nonzero v ∈ C
d .

Proof Since C does not contain any complex affine lines, there exists M > 0 such that

δC(x; v) ≤ M

for all x ∈ Bd(0; R) ∩ C and all nonzero v ∈ C
d . Next let Kd ⊂ Xd be the subset

from Definition 3.6. Since Kd ⊂ Xd is compact there exists C1 > 0 such that

δC′(0; v) ≤ C1

for all C′ ∈ Kd and nonzero v ∈ C
d .

We claim that

δC(x; v) ≤ max
{

Mδ−1/(2+ε),C0C1

}

δC(x)1/(2+ε)

for all x ∈ Bd(0; R) ∩ C and all nonzero v ∈ C
d .

Fix x ∈ C. If δC(x) ≥ δ then

δC(x; v) ≤ M ≤ M

(
δC(x)

δ

)1/(2+ε)

≤ CδC(x)1/(2+ε)
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for all nonzero v ∈ C
d . So suppose that δC(x) < δ. Let ξ ∈ ∂ C be a point in ∂ C

closest to x . Then

x = ξ + δC(x)n(ξ)

and by construction ξ ∈ K.
Next we pick points ξ1, ξ2, . . . , ξd as follows. First let ξ1 = ξ . Next, assuming

ξ1, . . . , ξk have been already selected let Pk+1 be the (d − k)-dimensional complex
plane through x which is orthogonal to the lines xξi . Then let ξk+1 be a point in
Pk+1 ∩ ∂ C which is closest to x . By construction −x + P2 = TC

ξ ∂ C and hence

(ξ2 − x), . . . , (ξd − x) ∈ TC

ξ ∂ C. So by the lemma above

δC(x; ξi − x) ≤ C0δC(x)1/(2+ε)

for i ≥ 2. Moreover, since C0 ≥ 1 and δC(x) < δ ≤ 1 we also have

δC(x; ξ1 − x) = δC(x) ≤ C0δC(x)1/(2+ε).

Next let τ : Cd → C
d be the affine translation τ(z) = z − x and let U be the

unitary transformation such that

Uτ(ξi ) = δC(x; ξi − x)ei .

Then let

� =
⎛

⎜
⎝

δC(x; ξ1 − x)−1

. . .

δC(x; ξd − x)−1

⎞

⎟
⎠ .

Finally let A be the affine map A = �Uτ . Then we have A C ∈ Kd . So if v ∈ C
d is a

unit vector, then

δC(x; v) = 1

‖�Uv‖δA C(0;�Uv) ≤ C1

‖�Uv‖ ≤ C1C0δC(x)1/(2+ε)

since

‖�Uv‖ ≥ 1
∥
∥�−1

∥
∥

‖v‖ ≥ 1

C0δC(x)1/(2+ε)
.

�
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5 Characterizing strong pseudoconvexity

Theorems 1.7, 1.10, and 1.11are particular cases of more general theorems which we
now describe. In order to state these results we need to define intrinsic functions on
the space of convex domains.

Definition 5.1 A function f : Xd,0 → R is called intrinsic if f (C1, x1) = f (C2, x2)
whenever there exists a biholomorphism ϕ : C1 → C2 with ϕ(x1) = x2.

Example 5.2 The functions:

(C, x) → sC(x)

and

(C, x) → max
v∈Tx C \{0}

∣
∣
∣
∣
HbC (v) − −4

d + 1

∣
∣
∣
∣

are both intrinsic.

Since the unit ball is a homogeneous domain we have the following:

Observation 5.3 IfBd ⊂ C
d is the unit ball and f : Xd,0 → R is an intrinsic function,

then f (Bd , x) = f (Bd , 0) for all x ∈ Bd .

Recall that the set Xd,0 has a topology coming from the local Hausdorff topology
(see Sect, 3 above) and when an intrinsic function is continuous in this topology a
version of Klembeck’s Theorem (see Theorem 1.9 above) holds for convex domains:

Proposition 5.4 [23, Proposition 1.13] Suppose f : Xd,0 → R is a continuous intrin-
sic function and C is a bounded convex domain with C2 boundary. If ξ ∈ ∂ C is a
strongly pseudoconvex point of ∂ C, then

lim
z→ξ

f (C, z) = f (Bd , 0).

We will prove the following two converses to the above proposition:

Theorem 5.5 (see Subsection 5.3) Suppose that f : Xd,0 → R is a continuous intrin-
sic function with the following property: if C ∈ Xd and f (C, x) = f (Bd , 0) for all
x ∈ C, then C is biholomorphic to Bd .

Then for any α > 0 there exists some ε = ε(d, f , α) > 0 such that: if C ⊂ C
d is a

bounded convex domain with C2,α boundary and

| f (C, z) − f (Bd , 0)| ≤ ε

outside some compact subset of C, then C is strongly pseudoconvex and thus

lim
z→∂ C

f (C, z) = f (Bd , 0).
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Some interesting intrinsic functions, for instance the squeezing function, do not
appear to be continuous on Xd,0 but are upper-semicontinuous. So we will also estab-
lish the following:

Theorem 5.6 (see Subsection 5.4) Suppose that f : Xd,0 → R is an upper semi-
continuous intrinsic function with the following property: if C ∈ Xd and f (C, x) ≥
f (Bd , 0) for all x ∈ C, then C is biholomorphic to Bd .
Then for any α > 0 there exists some ε = ε(d, f , α) > 0 such that: if C ⊂ C

d is a
bounded convex domain with C2,α boundary and

f (C, z) ≥ f (Bd , 0) − ε

outside some compact subset of C, then C is strongly pseudoconvex.

5.1 An example of Fornæss andWold

In this subsection we will use an example of Fornæss and Wold to show that Theo-
rem 5.5 and Theorem 5.6 both fail for convex domains with C2 boundary.

Proposition 5.7 For any d ≥ 2 there exists a bounded convex domain C ⊂ C
d with

C2 boundary which is not strongly pseudoconvex, but has the following properties:

1. If f1 : Xd,0 → R is a continuous intrinsic function, then

lim
z→∂ C

f1(C, z) = f1(Bd , 0),

2.) If f2 : Xd,0 → R is an upper semi-continuous intrinsic function, then

lim
z→∂ C

f2(C, z) ≥ f2(Bd , 0),

Proof For any d ≥ 2, Fornæss and Wold [11] have constructed an example of a
bounded convex domain C ⊂ C

d with C2 boundary which is not strongly pseudocon-
vex, but still satisfies

lim
z→∂ C

sC(z) = 1.

Now suppose that f : Xd,0 → R is a continuous intrinsic function. We claim that

lim
z→∂ C

f (C, z) = f (Bd , 0),

Suppose not then there exist a boundary point ξ ∈ ∂ C and a sequence zn ∈ C such
that zn → ξ and

lim
n→∞ f (C, zn) �= f (Bd , 0).
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Now by Theorem 3.3 we can find affine maps An ∈ Aff(Cd) such that An(C, zn)
converges to some (C∞, z∞) ∈ Xd,0. Since the squeezing function is an upper semi-
continuous function on Xd,0 (see [23, Proposition 7.1]) we have

sC∞(z∞) ≥ lim sup
n→∞

sAn C(Anzn) = lim sup
n→∞

sC(zn) = 1.

So sC∞(z∞) = 1. Then C∞ is biholomorphic to the unit ball by Theorem 2.1 in [7].
Then since f is continuous and intrinsic

lim
n→∞ f (C, zn) = lim

n→∞ f (An C, Anzn) = f (C∞, z∞) = f (Bd , 0).

So we have a contradiction.
The proof of part (2) is essentially identical. �


5.2 Rescaling revisited

In this subsection we prove the following rescaling result:

Proposition 5.8 Suppose C ⊂ C
d is a convex domain which does not contain any com-

plex lines. If C has C2,α boundary for some α > 0 and is not strongly pseudoconvex,
then there exists some C∞ ∈ BlowUp(C) such that:

1. C∞ ∈ ie1 + Kd ,
2. C∞ ∩SpanC {e2, . . . , ed} = ∅,
3. C∞ ∩C ·e1 = {ze1 : Im(z) > 0}, and
4. δC∞(rie1; e2) ≤ r1/(2+α) for r ≥ 1.

The proof of the Proposition is very similar to the proof of Theorem 1.4, but we
will provide the details anyways.

Proof Since C is not strongly pseudoconvex, there exists a non-strongly pseudoconvex
point ξ ∈ ∂ C. Then there exist C, δ > 0 and a unit vector v ∈ TC

ξ ∂ C such that

δC(ξ + rn(ξ); v) ≥ Cr1/(2+α)

for every r ∈ (0, δ]. Since ∂ C is C2, by shrinking δ > 0 if necessary we can assume
that

ξ + rn(ξ) + r D ·n(ξ) ⊂ C

for r ∈ (0, δ].
Then

lim
r→0

r1/(2+α)+ε

δC(ξ + rn(ξ); v)
= 0
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for every ε > 0.
Now pick εn → 0 and rn → 0 such that

lim
n→∞

r1/(2+α)+εn
n

δC(ξ + rnn(ξ); v)
= 0.

Then let Cn > 0 be such that

δC(ξ + rnn(ξ); v) = Cnr
1/(2+α)+εn
n .

Since Cn → ∞, by increasing rn if necessary we can assume in addition that

δC(ξ + rn(ξ); v) ≤ Cnr
1/(2+α)+εn

for all r ∈ [rn, δ]. Since C contains no complex affine lines, even after possibly
increasing each rn we still have rn → 0.

Now let τ ∈ Aff(Cd) be an affine isometry of Cd such that

1. τ(ξ) = 0,
2. τ(ξ + n(ξ)) = ie1, and
3. τ(ξ + v) = e2.

Notice that conditions (1) and (2) imply that

T0τ(�) = {(z1, . . . , zd) ∈ C
d : Im(z1) = 0}

and

τ(�) ⊂ {(z1, . . . , zd) ∈ C
d : Im(z1) > 0}.

Condition (3) implies that

δτ(�)(rnie1; e2) = Cnr
1/(2+α)+εn
n .

Then pick zn ∈ C such that |zn| = Cnr
1/(2+α)+εn
n and

rnie1 + zne2 ∈ ∂T C .

Then consider the diagonal matrix

An =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
rn

1
zn

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Let Cn = Anτ(C). Since

ξ + rnn(ξ) + rn D ·n(ξ) ⊂ C,

we have

ie1 + D ·e1 ⊂ Cn .

Further, by construction:

1. {(z1, . . . , zn) ∈ C
n : Im(z1) = 0} ∩ Cn = ∅,

2. ie1 + e2 /∈ Cn , and
3. ie1 + D ·e2 ⊂ Cn .
Hence Cn ∩SpanC{e1, e2} ∈ ie1 + K2 where K2 ⊂ X2 is the subset from Defi-
nition 3.6. By Proposition 3.9 there exists an affine map Bn ∈ Aff(Cd) such that
Bn|SpanC{e1,e2} = IdSpanC{e1,e2} and Bn Cn ∈ ie1 + Kd .

Now since Kd is compact in Xd , we can pass to a subsequence such that Bn Cn
converges to some C∞ in Xd . Notice that Bn Cn = Bn Anτ C and

ie1 = (Bn Anτ)(ξ + rnn(ξ)).

Since ξ + rnn(ξ) converges to the boundary of C and ie1 ∈ C∞ we see that

C∞ ∈ BlowUp(C).

Moreover, by construction C∞ ∈ Kd and C∞ ∩SpanC {e2, . . . , ed} = ∅.
As in the proof of Theorem 1.4 for η > 0 and r ∈ (0,∞] let

A(r; η) = {z ∈ C : 0 < |z| < r and |Im(z)| < ηRe(z)}.

Since ∂ C is a C2 hypersurface, for any η > 0 there exists some rη > 0 such that

ξ + A(rη; η) · n(ξ) ⊂ C .

Then for any η > 0 we have

A(rη/rn; η) · ie1 ⊂ Bn Anτ(C)

and so

A(∞; η) · ie1 ⊂ C∞ .

Since η > 0 was arbitrary and

C∞ ⊂ {(z1, . . . , zd) ∈ C
d : Im(z1) > 0}
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we then have C∞ ∩C ·e1 = {ze1 : Im(z) > 0}.
Finally, if 1 ≤ r ≤ δ/rn , then

δBn Cn (rie1; e2) = δCn (rie1; e2) = 1

|zn|δτ(C)(rnrie1; e2)

= 1

|zn|δC(ξ + rnrn(ξ); v) ≤ 1

|zn|Cn(rnr)
1/(2+α)+εn = r1/(2+α)+εn .

So for 1 ≤ r we have

δC∞(rie1; e2) ≤ r1/(2+α).

�


5.3 The proof of Theorem 5.5

Fix d ≥ 2, a continuous intrinsic function f : Xd,0 → R satisfying the hypothesis of
the theorem, and some α > 0. Suppose for a contradiction that there exists a sequence
of convex domains Cn ∈ Xd,0 such that:

1. each Cn has C2,α boundary,
2. each Cn is not strongly pseudoconvex, and
3. for all n ∈ N

| f (Cn, z) − f (Bd , 0)| ≤ 1/n

outside some compact subset of Cn .
Now using Proposition 5.8 for each n we can find some Cn,∞ ∈ BlowUp(Cn) such
that

1. Cn,∞ ∈ ie1 + Kd ,
2. Cn,∞ ∩SpanC {e2, . . . , ed} = ∅,
3. Cn,∞ ∩C ·e1 = {ze1 : Im(z) > 0}, and
4. δCn,∞(er ie1; e2) ≤ er/(2+α) for r ≥ 1.

We claim that

∣
∣ f (Cn,∞, z) − f (Bd , 0)

∣
∣ ≤ 1/n

for all z ∈ Cn,∞. By the definition of BlowUp(Cn), there exist a sequence xm ∈ Cn ,
a point x∞ ∈ Cn,∞, and affine maps Am ∈ Aff(Cd) such that xm → ∞ in Cn and
Am(Cn, xm) converges to (Cn,∞, x∞). Now fix z ∈ Cn,∞ and a relatively compact
convex subdomainO ⊂ Cn,∞ which contains x∞ and z. By the definition of the local
Hausdorff topology, O ⊂ Am Cn for m sufficiently large. So for m sufficiently large
A−1
m (O) ⊂ Cn . Then

KCn (xm, A−1
m z) ≤ KA−1

m O(xm, A−1
m z) = KO(Amxm, z)
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and since Amxm → x∞ we see that

lim sup
m→∞

KCn (xm, A−1
m z) < ∞.

Since KCn is a proper metric on Cn and xm approaches the boundary of Cn , we see that
A−1
m z approaches the boundary of Cn . But then, since f is continuous and intrinsic,

∣
∣ f (Cn,∞, z) − f (Bd , 0)

∣
∣ = lim

m→∞
∣
∣
∣ f (Cn, A−1

m z) − f (Bd , 0)
∣
∣
∣ ≤ 1/n.

Now since Kd ⊂ Xd is compact, we can pass to a subsequence such that Cn,∞
converges in Xd to some convex domain C∞. Since f is continuous, we see that

f (C∞, z) = f (Bd , 0)

for all z ∈ C∞. So by hypothesis C∞ is biholomorphic to the unit ball. On the other
hand, by the definition of the local Hausdorff topology, we see that

1. C∞ ∩SpanC {e2, . . . , ed} = ∅,
2. C∞ ∩C ·e1 = {ze1 : Im(z) > 0}, and
3. δC∞(er ie1; e2) ≤ er/(2+α) for r ≥ 1.

Hence we have a contradiction with Proposition 2.1.

5.4 The proof of Theorem 5.6

This is essentially identical to the proof of Theorem 5.5.

5.5 The proof of Theorem 1.7

The function (C, x) ∈ Xd,0 → sC(x) is an upper semicontinuous intrinsic function
(see [23, Proposition 7.1]) and byTheorem2.1 in [7] if s�(x) = 1 for some x ∈ �, then
� is biholomorphic to the unit ball. Hence Theorem 1.7 follows from Theorem 5.6.

5.6 Kähler metrics with controlled geometry

We begin by introducing the following class of metrics on a domain which are infor-
mally the Kähler metrics which have controlled geometry relative to the Kobayashi
metic.

Definition 5.9 Suppose � ⊂ C
d is a bounded domain and M > 1. Let GM (�) be the

set of Käher metrics g on � (with respect to the standard complex structure) with the
following properties:

1. g is a C2 metric,
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2. For all z ∈ � and v ∈ C
d ,

1

M

√

gz(v, v) ≤ k�(z; v) ≤ M
√

gz(v, v).

3. If X , v, w ∈ C
d , then

|X(gz(v,w))| ≤ Mk�(z; X)k�(z; v)k�(z;w).

4. If X ,Y , v, w ∈ C
d , then

|Y (X(gz(v,w)))| ≤ Mk�(z; Y )k�(z; X)k�(z; v)k�(z;w).

(5) If X ,Y , v, w ∈ C
d and z1, z2 ∈ �, then

∣
∣Y (X(gz1(v,w))) − Y (X(gz2(v,w)))

∣
∣

≤ Mk�(z; Y )k�(z; X)k�(z; v)k�(z;w)K�(z1, z2).

Definition 5.10 For M, d > 0, define a function hM : Xd,0 → R by letting hM (C, x)
be the infimum of all numbers ε > 0 such that there exists a metric g ∈ GM (C) with

max
v,w∈Tz C \{0}

∣
∣Hg(v) − Hg(w)

∣
∣ ≤ ε for all z ∈ BC(x; 1/ε)

where BC(x; r) is the closed ball of radius r about the point x ∈ C with respect to the
Kobayashi distance.

In [23, Proposition 8.2, 8.3] we proved that −hM is an upper semi-continuous
intrinsic function onXd,0 and if hM (C, x) = 0 for some x ∈ C then C is biholomorphic
to the unit ball in Cd . So Theorem 5.6 implies the following:

Corollary 5.11 For any d, M, α > 0 there exists ε = ε(d, M, α) > 0 such that: if
C ⊂ C

d is a bounded convex domain with C2,α boundary and

hM (C, z) ≤ ε

outside some compact subset of C, then C is strongly pseudoconvex.

Theorem 1.11 is now a simple consequence of this result.

Proof of Theorem 1.11 Fix ε > 0 with the the following property: if C ⊂ C
d is a

bounded convex domain with C2,α boundary and

hM (C, z) ≤ 2ε

outside a compact set of C, then C is strongly pseudoconvex.
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Now suppose that C ⊂ C
d is a bounded convex domain withC2,α boundary, K ⊂ C

is compact, and there exists a metric g ∈ GM (C) such that

max
v,w∈Tz C \{0}

∣
∣Hg(v) − Hg(w)

∣
∣ ≤ ε for all z ∈ C \K .

We claim that C is strongly pseudoconvex.
Since KC is a proper distance on C (see Theorem 2.4), there exists some compact

subset K ′ ⊂ C such that BC(x; 1/(2ε)) ⊂ C \K for all x ∈ C \K ′. Then, with this
choice of K ′,

hM (C, x) ≤ 2ε

for all x ∈ C \K ′. So by our choice of ε > 0, C is strongly pseudoconvex. �


5.7 The proof of Theorem 1.10

In [23, Proposition 9.1] we proved that for any d > 0 there exists some M0 =
M0(d) > 1 such that: if C ∈ Xd then bC ∈ GM (C) for all M ≥ M0. So Theorem 1.10
is a corollary of Theorem 1.11.
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improved the present work. This material is based upon work supported by the National Science Foundation
under Grants DMS-1400919 and DMS-1760233.

Appendix A. Properties of complex hyperbolic space

In this section we sketch the proof of Theorem 2.11:

Theorem A.1 If γ1, γ2 : R≥0 → Bd are geodesic rays such that

lim inf
s,t→∞ KBd (γ1(s), γ2(t)) < +∞,

then there exists T ∈ R such that

lim
t→∞ KBd (γ1(t), γ2(t + T )) = 0.

Moreover, if the images of γ1 and γ2 are contained in the same complex geodesic then

lim
t→∞

1

t
log KBd (γ1(t), γ2(t + T )) = −2

otherwise

lim
t→∞

1

t
log KBd (γ1(t), γ2(t + T )) = −1.
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Proof The first assertion is a consequence of the Kobayashi distance on Bd being
induced by a negatively curved Riemannian metric (it is isometric to complex hyper-
bolic space), see for instance [13, Proposition 4.1].

To establish the second assertion it is easiest to work with the domain

Pd =
{

(z1, . . . , zd) : Im(z1) >

d
∑

i=2

|zi |2
}

which is biholomorphic to Bd .
Suppose that γ1, γ2 : R≥0 → Pd are geodesic rays with

lim
t→∞ KPd (γ1(t), γ2(t)) = 0.

Using the fact that the biholomorphism group Aut0(Pd) of Pd acts transitively on the
set of geodesic rays in Pd , we can assume that

γ1(t) = ie2t e1.

Then we must have

γ2(t) = v +
(

α + i(e2t + ‖v‖2)
)

e1

for some v ∈ SpanC{e2, . . . , ed} and α ∈ R. Moreover, γ1 and γ2 are contained in the
same complex geodesic if and only if v = 0.

The estimates on

lim
t→∞

1

t
log KPd (γ1(t), γ2(t))

will follow from the well known fact that if V ⊂ C
d is an affine subspace which

intersects Pd then

KV∩Pd (z, w) = KPd (z, w)

for all z, w ∈ V ∩ Pd .
First suppose that v = 0. Then

lim
t→∞

1

t
log KPd (γ1(t), γ2(t)) = lim

t→∞
1

t
log KH(ie2t , α + ie2t )

where H = {z ∈ C : Im(z) > 0}. Then

KH(ie2t , α + ie2t ) = 1

2
arcosh

(

1 + α2

2e4t

)

and using the fact that arcosh(x) = log(x + √
x2 − 1) we then have
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KH(ie2t , α + ie2t ) = 1

2
log

(

1 + α2

2e4t
+ |α|√

2e2t

)

= |α|
2
√
2
e−2t + O

(

e−4t
)

.

So

lim
t→∞

1

t
log KPd (γ1(t), γ2(t)) = −2.

Next suppose that v �= 0. Then let γ 2(t) = v + i(e2t + ‖v‖2)e1. Since

lim
t→∞

1

t
log KPd (γ2(t), γ 2(t)) = −2

it is enough to show that

lim
t→∞

1

t
log KPd (γ1(t), γ 2(t)) = −1.

Next for t sufficiently large let

st = t + 1

2
log

(

1 − ‖v‖2
e2t

)

.

Then

KPd (γ 2(t), γ 2(st )) = 1

2

∣
∣
∣
∣
∣
log

(

1 − ‖v‖2
e2t

)∣
∣
∣
∣
∣
= ‖v‖2

2
e−2t + O

(

e−4t
)

so it is enough to show that

lim
t→∞

1

t
log KPd (γ1(t), γ 2(st )) = −1.

Now since γ 2(st ) = v + ie2t e1 and

Pd ∩
(

ie2t + C ·v
)

=
{

ie2t + z
v

‖v‖ : z ∈ C, |z| ≤ et
}

.

we have

lim
t→∞

1

t
log KPd (γ1(t), γ 2(st )) = lim

t→∞
1

t
log Ket D(0, ‖v‖)

= lim
t→∞

1

t
log KD(0, e−t ‖v‖) = −1

where in the last equality we used the fact that KD(0, z) = |z| + O
(|z|2) for z close

to 0. �
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