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Let (¢+) be a holomorphic semigroup of the unit disc (i.e., the flow of a semicomplete
holomorphic vector field) without fixed points in the unit disc and let € be the
starlike at infinity domain image of the Koenigs function of (¢¢). In this paper we
characterize the type of convergence of the orbits of (¢;) to the Denjoy-Wolff point in
terms of the shape of 2. In particular we prove that the convergence is non-tangential
if and only if the domain Q is “quasi-symmetric with respect to vertical axis”. We
also prove that such conditions are equivalent to the curve [0,00) 2 t — ¢:(2)
being a quasi-geodesic in the sense of Gromov. Also, we characterize the tangential
convergence in terms of the shape of Q.

© 2019 Elsevier Masson SAS. All rights reserved.

RESUME

Soit (¢+) un semi-groupe holomorphe du disque unité (i.e. le flot d’un champ de
vecteur holomorphe semi-complet), sans point fixe dans le disque unité, et soit Q le
domaine étoilé & l'infini, image du disque unité par la fonction de Koenigs de (¢¢).
Nous caractérisons le type de convergence des orbites de (¢;) au point de Denjoy-
Wolff en termes de forme de 2. Nous démontrons notamment que la convergence est
non tangentielle si et seulement si le domaine 2 est “quasi-symétrique par rapport a
I’axe vertical”. Nous démontrons aussi que de telles conditions sont équivalentes au
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fait que la courbe [0,00) 3 ¢ — ¢¢(z) est une quasi-géodésique au sens de Gromov.
Enfin, nous caractérisons la convergence tangentielle en termes de forme de .
© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction and statements of the main results

A holomorphic vector field G on the unit disc D is (real) semicomplete if the Cauchy problem i(t) =
G(z(t)),z(0) = z has a solution defined for all ¢ > 0 and for all z € D. The flow of a semicomplete vector
field, (¢¢), is a continuous semigroup of holomorphic self-maps of D—or simply a semigroup in D. Namely,
(¢¢) is a continuous homomorphism of the real semigroup [0, +00) endowed with the Euclidean topology
to the semigroup under composition of holomorphic self-maps of D endowed with the topology of uniform
convergence on compacta.

It appears that semigroups in D were first considered in the 1930’s by J. Wolff [20], although it was
only with a paper of E. Berkson and H. Porta [3] in the 1970’s that the modern study of semigroups
in D initiated. Since their work, interest in semigroups in D has expanded due to their connections with
branching stochastic processes (see, e.g., [14,15]), biology [16] and their connections to composition operators
and Loewner’s theory (we refer the reader to the books [1,19,18,12] and [5] for more details).

In this paper we study the asymptotic behavior of semigroups in D via the Euclidean geometry of the
image of an associated Koenigs function. Aside being motived by the study of the dynamics of semigroups,
our main results also give a complete answer to the following question from geometric function theory.

Let f : D — C be a Riemann map such that Q := f(D) is starlike at infinity, that is Q + it C Q for
every t > 0. Let p € Q and let {t,} be a sequence of positive real numbers converging to +o0c. Looking only
at the shape of Q, how can one decide whether the sequence {f~(p + it,)} converges to a point T € 0D
non-tangentially or tangentially?

Starlike at infinity domains are also sometimes called “vertically invariant” (e.g. [1]) or “convex in the
positive direction of the real axis” (e.g. [12]).

If (¢¢) is a semigroup in D, which is not a group of hyperbolic rotations, then there exists a unique 7 € D,
the Denjoy- Wolff point of (¢;), such that lim;_, 1 o, ¢:(2) = 7, and the convergence is uniform on compacta.
In case 7 € D, the semigroup is called elliptic.

In case the semigroup (¢;) is non-elliptic, the action is conjugate to linear translation on an unbounded
simply connected domain. More precisely, there exists an (essentially unique) univalent function h, called
the Koenigs function of (¢;), such that h(DD) is starlike at infinity, h(¢¢(z)) = h(z) + it for all ¢ > 0 and
z €D (see, e.g., [1,2,11]).

The slope of a non-elliptic semigroup (¢;) at z € D is the cluster set of Arg(1 —7¢.(2)) as t — +o00. The
slope is a compact connected subset of [—m/2,7/2].

Given z € D, we say that the orbit [0, +00) 5t — ¢;(z) converges non-tangentially to the Denjoy-Wolff
point if the slope of (¢:) at z is contained in (—n/2,7/2). In case the slope is {—n/2} or {n/2}, the
convergence is tangential.

For one-parameter groups of automorphisms there are two possible behaviors. Either (D) is a vertical
strip (and the group is called hyperbolic) or h(D) is a vertical half-plane (and the group is called parabolic).
In the hyperbolic group case, h(ID) is symmetric with respect to the line of symmetry of the vertical strip,
and “quasi-symmetric” with respect to any vertical line contained in the strip, and, in fact, the orbits of
the group converge non-tangentially to the Denjoy-Wolff point. While, in the parabolic case, h(D) is highly
non-symmetric with respect to any line contained in the half-plane and the orbits of the group converge
tangentially to the Denjoy-Wolff point.
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For the general case, we will show that non-tangential convergence is equivalent to the image of the
Koenigs function being “quasi-symmetric” about a vertical line. Suppose 2 C C is a domain starlike at
infinity and p € C. Then for ¢ > 0 define

55@(2&) = min{t, inf{|z — (p+it)| : 2 € 9N, Rez > Rep}l},
and
bgp(t) = min{t, inf{|z — (p+it)| : 2 € 9Q,Rez < Rep}}.

Then, the first main result we prove is the following:

Theorem 1.1. Let (¢¢) be a non-elliptic semigroup in D with Denjoy- Wolff point 7 € 0D and Koenigs
function h and let 2 := h(D). Suppose that {t,} is a sequence converging to +oco. Then

(1) the sequence {¢;, ()} converges non-tangentially to T as n — oo for some—and hence any—z € D if
and only if for some—and hence any—p € ) there exist 0 < ¢ < C' such that for alln € N

cbgy ,(tn) < 0g,(tn) < CO4 (1),

(2) lim, oo Arg(l — T¢y,(2)) = 5 (in particular, {¢;,(2)} converges tangentially to T as n — oo) for
some—and hence any—z € D if and only if for some—and hence any—op € €2,

54 (tn
lim —‘}P( ) _ 0,
n——+00 6Q,p(tn)
while, lim,, oo Arg(1 — Ty, (2)) = =5 (in particular, {¢y, (2)} converges tangentially to T as n — o)

for some—and hence any—z € D if and only if for some—and hence any—p € Q,

The proof of this result is very involved, and it is based almost entirely on Gromov’s theory of negatively
curved metric spaces. In particular, let kg denote the hyperbolic distance on 2. When 0 ¢ Q and it € € for
all t > 0, we show that the 2-Lipschitz curve

0g0(t) = g ()

o:[1,400) >t 5

+ it (1.1)
can be reparametrized to be a quasi-geodesic in (9, kg) (see Section 3 for details on quasi-geodesics).
Thus, by Gromov’s shadowing lemma, o always stays within a finite hyperbolic distance from a geodesic
“converging to co.” Theorem 1.1 then follows by noticing that non-tangential convergence is equivalent to
staying at finite hyperbolic distance from o (see Section 5 for details).

This argument also shows that an orbit of a semigroup converges non-tangentially if and only if it can
be reparameterized to be a quasi-geodesic in the unit disc.

Theorem 1.2. Let (¢¢) be a non-elliptic semigroup in D with Denjoy-Wolff point 7 € 0D and Koenigs
function h and let  := h(D). Then the following are equivalent:
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(1) for some—and hence any—=z € D, the orbit [0,+00) D t — ¢¢(z) converges non-tangentially to T as
t — +o0,

(2) for some—and hence any—z € D, the curve [0,+00) > t — ¢(2) can be reparametrized to be a
quasi-geodesic,

(3) for some—and hence any—p € Q) there exist 0 < ¢ < C such that for all t > 0,

C(sg,p(t) < g ,(t) < cagm(t).

The proof actually implies more: the orbit (¢:(z)) converges non-tangentially if and only if for every
0 < t1 < ta, the hyperbolic length of the orbit of (¢:(z)) between ¢; and t, is, up to uniform multiplicative
and additive error, the hyperbolic distance between ¢y, (z) and ¢, (z). The fact that these orbits are close
to length minimizing is somewhat surprising given the examples constructed in [4,8,6]. In particular, there
exist examples of parabolic semigroups whose slope is an interval [a, b] with —7/2 < a < b < 7/2. Despite
this oscillation, which can only increase the hyperbolic length, Theorem 1.2 implies that the orbits in these
examples are almost length minimizing.

We also give a geometric characterization of when an orbit converges tangentially.

Theorem 1.3. Let (¢:) be a non-elliptic semigroup in D with Denjoy-Wolff point 7 € 0D and Koenigs
function h and let Q := h(D). Then the following are equivalent:

(1) limy 400 Arg(l — ¢4(2)) = w/2 (respectively = —m/2) for some—and hence any—z € D, and, in partic-
ular, [0,+00) >t — ¢¢(z) converges tangentially to T as t — 400,

54 (1) 55,
R0) o — 1)

(2) limy_ 4 o0 =0 (respect. limy_, 4

As we will show, Theorem 1.2 and Theorem 1.3 are consequences of Theorem 1.1 and of its
proof.

Recall that a non-elliptic semigroup (¢;) is hyperbolic if h(D) is contained in a vertical strip, it is parabolic
of positive hyperbolic step if h(ID) is contained in a vertical half-plane but not in a vertical strip and parabolic
of zero hyperbolic step otherwise. We mention that, although our proofs do not rely on previous results about
dynamics of semigroups, it was already known (see [7,9]) that if (¢;) is a hyperbolic semigroup then the
trajectory ¢t — ¢¢(z) always converges non-tangentially to its Denjoy-Wolff point as ¢ — 4oo for every
z € D and the slope is a single point which depends harmonically on z, while, if it is parabolic of positive
hyperbolic step then ¢:(z) always converges tangentially to its Denjoy-Wolff point as ¢ — +oo for every
z € D and the slope is independent of z (and it is either {m/2} or {—7/2}).

Therefore, Theorem 1.3 gives the new information that every orbit of a hyperbolic semigroup is a
quasi-geodesic, while, in the case of parabolic semigroups of positive hyperbolic step, the orbits are never
quasi-geodesics.

In the case of parabolic semigroups of zero hyperbolic step, all cases can happen. In Section 2 we give
some examples illustrating the possible behaviors.

The paper is organized as follows. In Section 2 we provide some examples of possible behavior of orbits. In
Section 3 we state some preliminaries we need in this paper. In Section 4 we show that the curve o defined
in Equation (1.1) can indeed be reparametrized to be a quasi-geodesic and also estimate its hyperbolic
distance to the vertical axis at p. Finally, in Section 5 we prove the theorems.

Acknowledgments. We thank the referee for helpful corrections and comments which improved this pa-
per.
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2. Examples

In this section we construct some examples of parabolic semigroups of zero hyperbolic step illustrating
possible cases. We define domains (2 starlike at infinity, and, if b : D — 2 is a Riemann map, the semigroup
is given by ¢4(2) := h=t(h(2) + it).

Example 2.1. The model domain € is defined by Q; := {¢ € C : Im (¢) > (Re (¢))?} (see Fig. 1).

Fig. 1. Semigroup with orthogonal convergence.

Then Q; is symmetric with respect to the imaginary axis, 5s+21,0(t) =g, 0(t) for t >0 and v : [1,+00) 3
t — it can be reparametrized as a geodesic in ;. Hence, for every z € D, the semigroup ¢:(z) converges
orthogonally to the Denjoy-Wolff point 7 € dD.

Example 2.2. The model domain € (see Fig. 2) is defined by

Qy:={C€C:Re(¢)>0}U{C€C:Im(¢)> (Re(C))?}.

Fig. 2. Semigroup with tangential convergence.

1
Then for every ¢ > 4, 552}0(t) =tand dq, o(t) =/t — T Hence

05,08 _

{500 552_’0(75) -

It follows from Theorem 1.3 that for every z € DD, the semigroup ¢;(z) converges tangentially to the
Denjoy-Wolff point 7 € dD.

Example 2.3. Fix two sequence of negative numbers (a,) and (b,). Then consider the model domain Q3 (see
Fig. 3) defined by

Q3 := Qy Up>1 Sy,
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SQ ]
S —
Qs

Fig. 3. Semigroup with slope [—7/2, ] for some —7/2 < o < 7/2.

where for every n > 1, S,, is a vertical strip S, := {¢ € C : a,, < Re(¢) < b, < 0}. We claim that we can
select the sequences (a,) and (b,,) such that the slope of the associated semigroup (¢;) is [—7/2, ] for some
—T/2 < a<m/2.

First notice that for any choice of (a,,) and (b,) we can find ¢,, — +oo such that

553,0(tn) - 5?2_2,0(%)
and hence

5?2_3,0@") _ tn

65370(t") tn —

— +00 asn — oo,

=

which, by Theorem 1.1, implies that ¢, (2) — 7 with slope —m/2.
On the other hand, by making the gap between a, and b, sufficiently large we can find s,, € (ay,b,)
such that

005.0(8n) > Sn /2.
Then

66370(871) > Sn/2 _ 1
30l ~ a2

and hence for every z € D the sequence {¢;, (z)} converges non-tangentially to 7. In particular, the slope
of (¢¢) is [-7/2, @] for some —7/2 < a < /2.

3. Preliminaries on hyperbolic and Euclidean geometry
3.1. Hyperbolic geometry of simply connected domains

Let Q@ C C be a simply connected domain. Recall that the hyperbolic metric kg is defined for z € Q) and
v € C by
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where f: D — Q is the Riemann map such that f(0) = z and f/(0) > 0. The hyperbolic distance between
z,w € € is defined as

ko(z,w) = inf/KJQ(’)/(T);’}/(T))dT,
0

where the infimum is taken over all piecewise C''-smooth curves 7 : [0,1] — Q such that v(0) = z and
V(1) = w.
A curve v : [a,b] — Q is rectifiable if

N
ta(yifa ) == sup 3 ka(1(t;): (t41)) < +oo,
=0

where the supremum is taken over all partitions P of [a,b] of type a =tg < t1 < ... <tyi1 =b, N € N.
The number £ (7; [a, b]) is the hyperbolic length of v and, by definition,

la(v; [a,b]) > ka(v(a), v(b)).

Every rectifiable curve can be reparametrized by hyperbolic arc length. If v is a Lipschitz curve then

t

la: [s.1)) = / k(3 () ())dr.

S

3.2. Geodesics and non-tangential convergence

Let —0o < a < b < 400. A smooth curve 7 : (a,b) — Q is a (unit speed) geodesic if

t—s=ka(n(s),n(t))

foralla <s<t<bd.
Given R > 0 and a geodesic 7 : [0, +00) — €, the hyperbolic sector around n of amplitude R is given by

Sa(n, R) := {z € Q: ko (2,1([0, +00))) < R}.
We can use hyperbolic sectors to detect non-tangential convergence (see for instance [6, Proposition 4.5)):
Proposition 3.1. Let Q C C be a simply connected domain and let f : D — Q be a Riemann map.

(1) Supposey : [0,+00) — Q be a continuous curve such that lim;_, o ka(7(0),v(t)) = +oo, then f=1(y(t))
converges non-tangentially to a point o € 0D if and only if there exist R > 0 and a geodesic n :
[0, +00) —  such that y(t) € Sa(n, R) for all t sufficiently large.

(2) Suppose {w,} C Q be a sequence such that lim,,_, o kq(wg, w,) = 00, then w, converges non-tangentially
to a point o € OD if and only if there exist R > 0 and a geodesic n : [0,+00) — Q such that w, €
Sa(n, R) for all n sufficiently large.
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3.8. Quasi-geodesics

Given a general simply connected domain Q2 C C, it is essentially impossible to determine the geodesics in
the hyperbolic metric. However, it is sometimes possible to find so-called quasi-geodesics which, by Gromov’s
shadowing lemma (also called Morse lemma, or the geodesic stability lemma), turn out to approximate
geodesics.

Definition 3.2. Let —oo < a < b < +00. Let Q C C be a simply connected domain and « : [a,b) — Q. Let
A>1, B>0. We say that v is a (A, B)-quasi-geodesic if for all a < s <t < b,

1

Z(t_ s) — B < Lq(v;[s,t]) < A(t — s) + B.

For short, we say that v is a quasi-geodesic if there exist A > 1, B > 0 such that v is a (4, B)-quasi-
geodesic.

By Gromov’s shadowing lemma (see, e.g., [10, Théoréme 3.1, pag. 41]) there exists M > 0 (which
depends only on A, B) such that if  : [0, +00) — Q is a (A, B)-quasi-geodesic then there exists a geodesic
7 : [0, +00) = Q such that 7(0) = v(0) and for every t € [0, +00)

ka(v(t),n([0,+00))) < M,  ka(n(t),([0,+00))) < M. (3.1)

Remark 3.3. Let 2 C C be a simply connected domain and let f : D — Q be a Riemann map. By the
previous argument and Proposition 3.1 it follows that if v : [0, +00) — Q is a quasi-geodesic then f~1(v(t))
converges non-tangentially to a point o € dD as t — +o0.

From the previous discussion, we have the following result which allows to detect quasi-geodesics:

Proposition 3.4. Suppose that Q@ C C is a simply connected domain and ~ : [0,4+00) — Q is a Lipschitz
curve. If there exists A > 1 and B > 0 such that

la(v;[s,t]) < Aka(y(s),7(t) + B
for all 0 < s < t, then v can be reparametrized to be a (A, B)-quasi-geodesic.
3.4. FEstimates on the hyperbolic distance
As customary, for p € Q we let
da(p) =inf{|z —p|: 2 € C\ Q}.

In this paper we will use the following estimates for the hyperbolic metric and distance (see [6, Section 3]
for details):

Theorem 3.5 (Distance Lemma). Let Q C C be a simply connected domain. Then for every z € Q and
veC,

Moreover, for every wy,ws € €,
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|wi — ws
min{ég(wl), 59(11)2)}

|duw|
da(w)’
T

1
1 log <1 + ) < ka(wr,ws) <

where T' is any absolutely continuous curve in § joining wi to ws.

Note that Theorem 3.5 implies immediately that for all z,w € €,

|z =<l
lw — ¢l

1
ka(z,w) > sup - |log (3.2)

cec\n 4

8.5. Fuclidean geometry of domains starlike at infinity

Let © be a simply connected domain which is starlike at infinity and p € C. For ¢t > 0, let

0y ,(t) == inf{|z — (p +it)| : Rez > Rep,z € C\ 0},
55,1)(1;) :=1inf{|z — (p+it)| : Rez < Rep,z € C\ Q}.
Note that, if p+ it € C\ Q then 5$p(t) = gﬁyp(t) = 0. While, for p € Q and t > 0, dq(p + it) =

min{6$ (1), dq,(t)}.
Moreover, for t > 0 we let

8¢ ,() ==min{od (t),t}, 0 (t) == min{dg (t),t}.

Note that, since Q is starlike at infinity, then (0, +00) 3 t — 52 ,(t) is non-decreasing.
Simple geometric considerations allow to prove the following lemma:

Lemma 3.6. Let 2 be a simply connected domain starlike at infinity. For all p,q € Q there exist 0 < ¢ < C
such that for allt >0

+ + +
céQ_’p(t) < Jﬂ’q(t) < C&Q’p(t).
4. Quasi-geodesics in starlike at infinity domains

The aim of this section is to construct a quasi-geodesic in a domain 2 C C starlike at infinity which
converges in the Carathéodory topology to “+00” and to get useful estimates on the hyperbolic distance
from this curve to a vertical axis.

In all this section, we assume that Q@ C C is a domain starlike at infinity such that 0 ¢ Q and it € € for
all ¢t > 0.

We define o : [1, +00) — Q by

+ it. (4.1)
Lemma 4.1. The curve o is 2-Lipschitz. In particular, |o’(t)| < 2 for almost every t > 1.

Proof. For all s,¢ > 1, using the triangle inequality we have 5570(15) < |t —s|+ 5570(5) and 5570(15) >
—t—s|+ 6570(3). Therefore,

1060(t) = 00 ()] < It — 5.

From this it follows immediately that ¢ is 2-Lipschitz. O
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4.1. The curve o is up to reparametrization a quasi-geodesic

The aim of this subsection is to prove the following result:
Theorem 4.2. The curve [1,4+00) 5t +— o(t) can be reparametrized to be a quasi-geodesic in 2.

The proof is rather long and technical and requires many lemmas.
Let

w(t) == 5?5,0@) + 55,0(15)'
Lemma 4.3. Fort > 1

So(o(t)) > %ﬁw(t).

Proof. Fix t > 1. First consider the case 65’0 (t) > g o(t), which implies that Reo(t) > 0.
If z € 002 and Re (z) > 0, then

+ -
u—a@|zp—umwn—g@”25adﬂ_5qaﬂQém@):wg)

Now, for z € C define
Izl = |Rez| + |Im z|.
Then
|21 < Izl < V22|

If z € 9Q and Rez < 0, then

|z = o(t)] [z = a(®)]s-

> ! |
V2
Further, since Rez < 0 < Reco(t) we have
|z—c(t)]l1 = |Rez — Reoc(t)|+ [Imz —Imo(t)] = Reo(t) — Rez + |[Imz — ¢|
=Reo(t) + ||z —itll > Reo(t) + [z —it| > Reo(t) + dg, 4 (t)

5 (1) — 65 o (t
_ a.0(t) . a.0(t) tba(t) = %w(t).

Hence

|z —o(t)] > —=w(t).

257

The case when 6;570(t) < dq(t) is similar. O

As a direct consequence of the previous lemma, Lemma 4.1 and Theorem 3.5, we have:
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Lemma 4.4. If 1 < a < b < oo, then

We can now prove Theorem 4.2 in a simple case.
Proposition 4.5. Suppose that there exist o, Ty > 0 such that
w(t) > at

for allt > Ty. Then o can be reparametrized to be a quasi-geodesic in §2.

Proof. We have 5570(15) <t for all t > 1, hence,

5F () — 65 4 (¢t 8& (t 5 (¢
06.0(t) — 0 0(1)] - |66, ()] N 1060 (1)

t - t t =2
Therefore, for all t > 1,
t < |o(t)| < 2t
So, by (3.2), for all 1 < a < b,
ka(o(a),o(b)) > i log EEZ% ‘ > ilogg - ilog 2. (4.2)
On the other hand, if Ty < a < b, then by Lemma 4.4,
b b
Lo (o;[a,b]) < 4\/5/% < %ﬁ/% = %105;2. (4.3)

From this last inequality, (4.2), and Proposition 3.4 it follows at once that ¢ can be reparametrized to be a
quasi-geodesic in 2. O

Remark 4.6. For future reference, we make the following observations. If there exist a, Ty > 0 such that

w(t) > at

for all ¢ > T}, then

(1) by the same token we obtained (4.2), we have

max{kq(ia, o (b)), ka(o(a),ib)} > ilogg — ilog 2.

Hence, by (4.3), there exist constants A, B > 0 such that for every Ty < a < b we have

ka(o(a), o (b)) < Lo(o;[a,b]) < Amin{ka(ia, o(b)), ka(o(a), i)} + B. (4.4)
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(2) Also, again arguing as in (4.2), we have

b
dt 4
a/w < akQ(Za,Zb). (4.5)

Now we make the following assumption:
Assumption. There does not exist o, Ty > 0 such that w(t) > at for all t > Ty.

Assuming this condition, there exists Ty > 0 such that w(Tp) < Tp. In particular, max{éao(To), b0.0(T0)}
< Ty. Hence, for every t > Ty we have

630(25) <t-To+ 65,0(T0) <t-To+Tp=t.
Therefore, for every t > Ty,
Jgy0(t) < t. (4.6)

4.1.1. Step 1: constructing sequences
Fix a,b € [Ty, 00) with a < b. We define a sequence of positive numbers {t,}

a=1tg <t <ty <...
and complex numbers {zF} C C \ Q such that for all n > 0

(0) Imz} =1Imz,,

(1) Rez, <0< Rez!,

(2) [Re %] < 6% (1),

(3) yn < tn, where y,, := Sz, = Sz,

(4) max{lo(tn) — 27|, |o(tn) — 25 [} < 20(tn),

and for all n > 1,
(5) min{|o(tn) — zi_yl, lo(tn) = 2,1 [} = 6w (ty).

We first explain the construction of these sequences and then verify that they have the desired properties.
We define t,,, 2,7, and 2, sequentially as follows. If n = 0, then define t( := a. Otherwise, define

t, 1= max {t >tp_1 tw(s) > %min{’a(s) — 24| |o(s) = z,_4|} for all s € [tnht]} . (4.7

Next pick ay,, b, € C \ Q such that

Re(an) <0 < Re(by),
|an —itn| = 8g o(tn), and

by — ita| = 655 o (tn)-

Since t, > Tp, by (4.6) we have Re (a,,) < 0 < Re (b,,). Then let
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Yn := min{Im(a,), Im(b,)}.
Since ) is starlike at infinity, max{Im(a, ), Im(b,)} < t,, hence y,, < t,,. Then define
z7:=Re(b,) +iyn, 2, :=Re(a,)+iyn.
We now verify that the resulting sequences have the desired properties.
Claim. a = tg <t; <ty < ...

Proof. First, note that Property (4) implies that the set in (4.7) is non-empty. Hence each ¢, exists. We
next show that t, < +oco. If n =0, then ¢,, = a < +o00. If n > 1, then the definition of ¢ implies that

min{|o(t) — 2},

Jo(t) =z, 4|} >t —taa

for all ¢ > t,,_1. Then, since we assume that there does not exist «, Ty > 0 such that w(t) > «t for all ¢t > Ty,
we see that t,, < +oo. Finally, we show that if n > 0, then ¢, < t,,. By Property (4)

min{|0(tn_1) — z;f_l} , |0(tn_1) — z;_l}} < 2w(tp—1)-
So by the continuity of w we see that t, >t,_1. O
Now Properties (0)-(3) and (5) hold by the construction. So we only have to verify Property (4).
Claim. max{|o(t,) — 27|, |o(t,) — 2z, |} < 2w(ty,) for alln > 0.
Proof. We first argue that
max{|it, — z |, |it, — 2z, |} < w(tn). (4.8)

Indeed, assume that y, = Imb,, (a similar argument works in case y, = Ima,). Then, |it, — 25| = 65 (tn),
while

|itn — 2, | < ity — an| + |an — (Reay + iyn)| = dq o(tn) + (IMan — yy)
< 0g0(tn) + (tn = Yn) < 8 o(tn) + litn — bu| = 0g o(tn) + 53,0(1571) = w(tn).

Also, clearly |o(t,) — it,| < w(t,). This last inequality, together with (4.8), implies
o (tn) — 2E| < |o(tn) — itn| + |itn — 25| < 2w(t,). O
This completes the construction of the sequences.

4.1.2. Step 2: key estimates
We now establish key estimates on the sequences constructed in the previous step.

Lemma 4.7. For n > 1 we have
3w(tn) § Yn — tnfl S mln{tn - tnflvyn - ynfl}-

In particular,
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to<y1 <t1 <y2<ta<...
and lim,_, o, Yy, = 0.

Proof. Fix n > 1. By property (5),
min{|o(tn) — z_1, [o(tn) = 2,_1[} = 6w(ts).

First assume that |o(t,,) — 2 || = 6w(t,). Then, by (4.8) and taking into account that w(t,) > w(t,_1),

we have

Yn — th—1 = |Zyn - itnfl‘
> |0 (tn) = 21| = o(tn) = iYn| — litn—1 — 23|
> 6w(ty) — 2w(ty) — w(tn—1) > (6 — 3) w(ty) = 3w(ty).
By property (3), yn —tn—1 < min{t, —t,—1,Yn —Yn—1}. The case when |o(t,) —2,_,| = 6w(t,) is essentially

the same.
Finally, the previous estimates show that {y,} is an increasing sequence and

0 < 3w(tp) <3 lim w(ty) < lim (Y — Yn—1)-

n—oo n—oo

Hence lim,, oo ¥y, = 00. O

As straightforward consequence of the previous lemma and taking into account that w(t,) > w(t,—1), we
see that

Yn — Yn—1
1 ) >1 1 4.
og( () ) >log3 > (4.9)

for every n > 1.
Lemma 4.8. If n > 1 and t € [yn,ty], then

w(t) <w(ty) < 2w(t).

Proof. The first inequality follows from the fact that €2 is starlike at infinity.
Since t,—1 < Yn < t, it follows from (4.7) and the fact that o is 2-Lipschitz (see Lemma 4.1) that

wlt) 2 g min|o(t) = ] [o(0) — 5}
> 2minf[o(tn) — ] [o(tn) — 2} = 5 lo(tn) — o(0)
> w(t) — 2%(15” S8 > witn) - %mn ~iga| > (1 - %) wlty) > %w(tn),

and the proof is completed. 0O
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4.1.8. Step 3: A lower bound on distance
Define

5y :=Re(z) — Re(z;,).
By property (2) in the definition of the sequence {z*1,
Oon < 56,0(%) + g 0(tn) = w(ts).

Recall that we fixed a,b € [Ty, 00) with a < b. Lemma 4.7 implies that lim, . y, = 00 and yo < tg =
a < b, so there exists a unique N > 0 such that

yn <b<yny1.

Lemma 4.9. Suppose u € {ia,o(a)} and v € {ib,o(b)}. If N =0, then

ko (u, v) > —i log (2) + ilog <max {1, bw_(ay)o }) .

If N > 1, then

N-1
1 Y1 — Yo Yr+1 — Yk b—yn
k >_ [ —log2+1 + E 1 T 7)) 41 1 .
a(u,v) > 1 < og og( o(0) ) 2 og( 5 og | max < 1, B

Proof. First suppose that N = 0. If b — yg < w(a) there is nothing to prove. So suppose that

it ()
w(a) ~
By (4.8) and property (4) in Step 1,
max {|u — 2 |, |u — 25 |} < 2w(a). (4.10)

Next, since [v — 2| > [Imv — Im 2| = b — yo, we have
min {|v — 2 |, [v — 25 |} = b — wo. (4.11)

Putting together (3.2) with (4.10) and (4.11), we have

1 v—zf 1 1 b— 1o
k > -1 01> _Zlog(2)+ =1 )
Q(u7v)_4og e 4Og<)+40g<w(a)>

Next suppose that N > 0. Let v : [0,7] — 2 be a unit speed geodesic with v(0) = v and v(T") = v. For
k=1,...,N define

7 :=min{t > 0: Im((t)) = yi.}-

Notethat a <71 < T < --- < 7n < b.
Then, since ) is starlike at infinity,

Re(z;) < Re(v(m)) < Re(2})). (4.12)
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Also, since |y(Th41) — zi| > [Imy(Tp41) — Im 25| = yry1 — Yk, we have

min {[v(7e+1) = 2 |, [V (Te+1) — 25 1} = Yos1 — Y-

Moreover, by (4.12) we have |y(rx) — zi| = |[Rey(7) — Re zif| < 0k, hence

max {|7(mk) = 7 |, [7(7h) — 2 |} < 0

Now, by (3.2), (4.13) and (4.10) we have

v(m) — =
+

1 1 Y1 — Yo
> ——1 2)+ -1 .
u—zg | RS 4Og< w(&))

1
ka(u,~(r1)) > 1 log

For k > 1, (3.2), (4.13) and (4.14) imply that

1 Y(Thy1) — 2 1 Ye+1 — Yk
k > — 1 > 2 e IR )
(Y (Tkt1),7(Tk)) = 1108 ) =27 |21 og 5
Finally, (3.2), (4.14) implies that
k ,v) > =1 N__|>Z] ,
a(1w).v) = log Yw) =2yl 4 Og( oNn

and hence

Since 7 is a geodesic, we have

ko (u, ) = ko(u, (1)) + Y ka(¥(7),Y(Tk11)) + ko (3(7n), v).-

k=1

The statement then follows from (4.15), (4.16), (4.17). O

4.1.4. Proof of Theorem 4.2
By Lemma 4.4 we have

b
(o (o [a, b]) g4\/§/ﬁdt.

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Hence to prove Theorem 4.2 it is enough to show that ffw(t)’ldt is comparable to the lower bounds in

Lemma 4.9.

Lemma 4.10. If T € [a, 1], then
T

[ty rsom om0

w(t)

a
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Proof. Notice that by (4.8), (a —yo) = (to — yo) < |ito — 25| < w(to), hence,
Yo < a < yo +w(a)
and if a < t, then w(a) < w(t). So

Yo+w(a) Yo+w(a)
d dt

L
w(t) ~

Now if ¢ € [a, y1], then by (4.7),

w(t) > émin{’o(t) —zF

)

So if T' > yo + w(a), then

Lemma 4.11. For k > 1,

Yk+1

Yi
Proof. By Lemma 4.7 and the fact that w is an increasing function,
yr +w(tr) < yr +3w(tr) < yr + 3w(tptr) <t + 3w(ter1) < Yrrr-
Further, by Lemma 4.8, if ¢ € [y, tx], then
w(t) > w(ty)/2

and, since (2 is starlike at infinity, if ¢ > ¢, then w(¢) > w(ty). Therefore, w(t) > w(tx)/2 when t > yi. Thus

yrtw(t) it ) yrtw(tr)
T) =

w(
Yr Yk

2dt
w(tr)

=2 (4.18)

Next consider ¢ € [yx + w(ti), Yr+1]. By (4.8), we have
tk — Yk = |itk — iyk‘ S |itk — 2’2:| S w(tk).
Then yy + w(ty) > tr. So t € [tg, Yrt1] and yry1 < tgx11. Hence, by (4.7),
1 .\ 1
w(t) 2 gmin{lo(t) — 2] lo(t) — 2z [} = £ (8 —yw).

Therefore,
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Ye+1 dt Y41 dt
= <6 = 6log <M> . (4.19)
w(t) t—y w(t)
yrtw(ty) yrtw(ty)
Thus by (4.18) and (4.19) and (4.9),
Yk+1 d
i Yrt1 _yk> (yk+1 _yk>
= <2+46log [ LEEE) < 8log (LR
/cww g( w(t) S\ ()
Yk

and we are done. 0O
Repeating the proof of the previous lemma one can prove:
Lemma 4.12. If N > 1, then
f d b
t —
/ —— < 2+6log (maX {1, ﬂ}) .
w(t) w(tn)
YN

Combining the estimates in the previous three lemmas we can estimate f;w(t)_ldt.
Recall that a,b € [Ty, 00) with a < b and N > 0 is a natural number such that yy < b < yny1.
If N =0, then Lemma 4.10 implies

lo(o;[a,b]) < 4v/2 + 24v/21og (max {1, b= %o }) : (4.20)

while if N > 0, then Lemma 4.11 and Lemma 4.12 imply

%@MW§mﬁ+%@%@&$)

N-1
— h—
+32v2 ) log (M) +24v/21og (max{l, N }) :
k=1 )

w( w(tn)

(4.21)

Then Lemma 4.9 and the fact that 6 < w(t;) imply that there exist A > 1 and B > 0 such that for
every Top < a < b,

Lo (o [a, b)) < Akg(o(a),o(b)) + B.

Now, since o([1,Tp]) is compact, possibly taking a larger B, the previous estimate holds for every 1 < a < b,
and Theorem 4.2 is finally proved.

Remark 4.13. We also notice that by (4.20), (4.21) and Lemma 4.9, there exist constants A, B > 0 such
that for every 1 < a <'b,

kQ (0’(0,), O'(b)) § gﬂ (0’; [a, b]) S A min{kzg (0’((1), ’Lb), k?Q (J(b), za)} + B. (422)
As a consequence of the previous results, we have the following:

Proposition 4.14. Assume there exist c,C > 0 such that cdg o(t) < 55’0@) < Cdq4(t) for allt > 1. Then
Bi : [0,400) St i+ it can be reparametrized to be a quasi-geodesic.
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Proof. Since 0q(it) = min{ég’o(t),éao(t)} and dq, (t) is comparable to 55’0(15), there exists C’ > 1 such
that for every t > 1,

w(t) < C'éqit).

In particular, by Theorem 3.5, we have for every 0 < a < b,

b b

sl < [ S5 [ 5

a a

Therefore, in case there exist a, Ty > 0 such that w(t) > at for all ¢ > Ty, equation (4.5) implies that 3;
can be reparametrized to be a quasi-geodesic.

On the other hand, if there exist no a, Tp > 0 such that w(t) > at for all t > Ty, Lemmas 4.9, 4.10, 4.11,
4.12 imply again that §; can be reparametrized to be a quasi-geodesic. O

4.2. Estimates on the distance between o and the vertical azis
For t > 1, let s; € [1,400) be such that

ka(o(st),it) = reﬁl,ifoo) kq(o(r),it). (4.23)

Proposition 4.15. There exist a > 1,3 > 0 such that for every t > 1,
ka(o(t),it) < akq(o(st),it) + .
Proof. Either by (4.4), or by (4.22), for t > 1, we have
ka(o(t),o(st)) < Akq(it,o(st)) + B.
Therefore
kq(it,o(t)) < ka(it,o(st)) + ka(o(st),o(t)) < (A4 Dka(it,o(st)) + B,

and we are done. 0O
5. Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3
5.1. Proof of Theorem 1.1

Let (¢¢), 7, h,Q, {t,} be as in Theorem 1.1.

We can suppose that (¢;) is not a group of automorphisms of D, for otherwise the result is clear.

In this case, there exists p € C such that p € Q2 and p 4 it € Q for all £ > 0. Up to a translation, we can
assume p = 0. In particular, this implies that Sé,o(t) = 55,0(75) for every t > 0.
Lemma 5.1. The sequence {¢;, (h=1(i))} converges to T as n — +o0o non-tangentially (respectively, tangen-

tially) if and only if for every z € D the sequence {¢:,(2)} converges to T as n — +oo non-tangentially
(respect., tangentially).
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Proof. Since kp(¢r, (h=1(3)), ¢t (2))) < kp(h™1(i),2z) < +oo for every n € N, it follows that ¢, (2) is
contained in a fixed hyperbolic neighborhood of {¢;, (h=1(i)) : m € N} for all n € N. Therefore the result
follows at once from the triangle inequality and from Proposition 3.1. O

Let o be the curve defined in (4.1).
Lemma 5.2. lim;_, oo h = (o(t)) = 7.

Proof. By Remark 3.3, the limit z := lim;_, o h~ (0 (t)) exists. Suppose for a contradiction that = # 7.

For n € N consider the segments C'n(s) =in+ sw, 0 < s < 1. Note that C~’n C Q for all
n € N.

Let C,, := h='(C,), n € N. Since = # 7, the Euclidean diameter of (C,) is bounded from below by a
constant K > 0.

Moreover, for every sequence {z,} such that z, € Cy, it holds lim,_, o |h(z5)| = 0.

Therefore, (C,,) is a sequence of Koebe’s arcs for h, contradicting the no Koebe arcs theorem (see, e.g.,

[17, Corollary 9.1]). O

Corollary 5.3. The sequence {¢:,(z0)} converges non-tangentially to T as n — +oo for all zg € D if and
only if there exists C' > 0 such that for everyn € N

ka(ity, o([1, +00))) < C.

Conversely, the sequence {¢¢, (20)} converges tangentially to 7 as n — +oo for all zg € D if and only if for
every M > 0 there exists ny; > 1 such that for all n > nyy,

kq(ity,o([1,+00))) > M.

Proof. By Theorem 4.2 the curve o can be reparametrized to be a quasi-geodesic in , hence by (3.1),
it is “shadowed” by a geodesic v in . The curve h='(y) is then a geodesic in D and by Lemma 5.2 it
converges to 7. Hence, by the triangle inequality and Proposition 3.1, the sequence {¢;, (h~1(i))} converges
non-tangentially to 7 as n — +oc if and only if it is contained in a hyperbolic neighborhood of h=1(a[1, c0)).
Since h is an isometry for the hyperbolic distance, it follows that {¢:, (h~'(i))} converges non-tangentially
to 7 as n — o0 if and only if there exists C' > 0 such that for every n € N

ko (it,, o([1,400))) < C.

Conversely, since (again by Proposition 3.1) {¢;, (h~1(i))} converges tangentially to 7 as n — +oo if and
only if it is eventually outside any hyperbolic sector around h~1(7), by the same token as before, we get that
{¢, (h=1(i))} converges tangentially to 7 as n — +oc if and only if for every M > 0 there exists ny € N
such that for all n > nyy,

kq(itn, o([1,400))) > M,
and we are done. 0O
Now, for t > 1 let s; be defined as in (4.23). Notice that
kq(it,o([1, +00))) = kq(it,o(sy))).

Then, by Proposition 4.15 and the Distance Lemma (see Theorem 3.5), we have for all ¢ > 1,
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) 1 ) B 1 1065.0(t) = 8¢, (1) B
1 > = 2> 10 : , _F
ka(it,o([1, +00))) 2 Ckal(it,o(t)) = 0 = 7o log <2min{5g(it)7 S0} ) o
In other words, there exist A, B > 0 such that for every ¢t > 1,
165,0(t) = 36,0 (1)]
) 1 > Al : - — B. 1
mmﬁﬂﬁ%D_A%< Sy (51)
Now, for t > 1 let n; : [0, 1] — Q be defined as
5 o(t) — 6y o(t
() = it 58050
For all t > 1 we have
ka(o(st),it) < kq(it,o(t)) < La(n;[0,1]). (5.2)

We compute £g(n; [0, 1]). In order to do so, we need a lemma:

Lemma 5.4. For every t > 1 and for every r € [0, 1] we have

da(n:(r)) > da(it).

Proof. Fix ¢t > 1 and assume that (5;570( ) > 0 o(t) (the case 650(15) < 6 (t) is similar and we omit it).
Fix r € [0,1]. Notice that Ren.(r) > 0. Therefore, if z€ C\ 2 and Rez <0, then

me(r) = 2 2 Jit — 2[ = 0, () = da(it).

On the other hand, if z € C \ Q and Rez > 0, then |it — 2| > 55)0(t). Therefore,

me(r) =2l inf () — w] = 3¢y o(t) — Reme(r)
\w—zt|:5;§70(t),Rew>0

> 08,0(t) = Rea(t) = 5 (860(6) +95,0(1)) = dafit),

N | —

and we are done. O

By Lemma 5.4 and the Distance Lemma (Theorem 3.5), we have for every t > 1,

1 55t — i )
fa(m:; 0, 1)) :/Hﬂ(nt(r);nfe(?”))dfé P00(t) ~ Jaol |/5Q
0 0

165,0(t) = 3g,0(1)]
200 (Zt)

This latter equation together with (5.2) and (5.1) implies that for every ¢ > 1,

+ s + _s=
m%<mw2m$“”>—3smmnm&mms”mgmﬁ“m. 5
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The first part (the “non-tangential part”) of Theorem 1.1 follows now directly from Corollary 5.3 and
(5.3).
+
Also, by the same token, we see that ¢;, (z) — 7 tangentially if and only if Og.0(tn)

06,0(tn)

converges either to 0

or +00 as n — oQ.
We are left to show that

8¢ o(t
im ?’0( n) = (5.4)
n—00 5970(1571)
if and only if
lim Arg(1—7 -z 5.5
lim Arg(1— 7, () = 5. (5.5)
To this aim, we extend o to all of (0,00) in the obvious way:
dgy o(t) — 85 o(t

oy - T~

Since 0 & Q and it € Q for all ¢ > 0, lim;_,¢+ o(t) = 0. Then o((0,c0)) divides € into the connected domains
Ut ={z+iyeQ:z2>Reo(y)}

and
U ={z+iyeQ:z <Reo(y)}.

Hence, I' := h=1(0(0, +00)) divides D into two connected components D* := h=}(U*+) and D~ := h=1(U™).
Also, there exists 7 € D, 7 # 7 such that lim,_,o- h=!(co(t)) = 7 (see, e.g., [13, Theorem 1, p. 37)]).
By Remark 3.3 and Lemma 5.2, h=!(o(t)) converges to 7 non-tangentially as ¢ — -+oc. This implies that
I' is contained in the set

{zeD:|Arg(l —72)| <0} U{r, 7}

for some 6 € (0,7/2). Notice that the last set is an angular sector of amplitude 20 with vertex 7 symmetric
with respect to segment joining —7 with 7.
Since h preserves orientation, it follows that DT contains all the sequences converging tangentially to 7
with slope 7/2 while D~ contains all the sequences converging tangentially to 7 with slope —m/2.
Therefore, if (5.4) holds, then it,, € U~ for n sufficiently big, hence, ¢; (2) € D~ eventually and (5.5)
holds. Conversely, if (5.5) holds then ¢;, (2) € D~ eventually, hence, it,, € U~ eventually and (5.4) holds.
This concludes the proof of the theorem.

5.2. Proof of Theorem 1.2

The part “(1) if and only if (3)” follows immediately from Theorem 1.1. By Remark 3.3 it is clear that
(2) implies (1) in Theorem 1.2. In order to end the proof, we show that (3) implies (2).

We need to prove that the orbit [0,400)  t — ¢;(z) can be reparametrized to be a quasi-geodesic for
every z € D. Since h is an isometry between kp and kg, the latter statement is equivalent to proving that,
setting p = h(z), the curve j, : [0, +00) 3 t — p + it can be reparametrized to be a quasi-geodesic in 2.



F. Bracci et al. / J. Math. Pures Appl. 133 (2020) 263-286 285

As before, we can assume 0 €  and it € Q for all t > 0. Hence, by Proposition 4.14, the curve 3; can be
reparametrized to be a quasi-geodesic in 2.
In order to complete the proof, we will prove the following:

Lemma 5.5. For every p € €, there exists A, > 1 and B, > 0 such that

La(Bpi [s,t]) < Apka(Bp(s), Bp(t)) + By,

for all 0 < s <t. Hence, by Proposition 5.4, B, can be reparametrized to be a quasi-geodesic in 2.

Proof. Fix p € Q. By Proposition 4.14, there exists A > 1 and B > 0 such that

lo(Bi; [s,t]) < Aka(Bi(s), Bi(t)) + B, (5.6)
for all 0 < s <t. Now, for 0 < s <'t,

ka(i+is,i +it) < ko(p +is,i+is) + ka(p + is,p + it) + ka(i + it, p + it)
< ka(p +is,p+it) + 2ka(p, 1),

where the last inequality follows from the fact that €2 3 z — z+it is a holomorphic self-map of 2. Therefore,
there exists By > 0 such that for all s,¢ > 0,

ka(i + is, i+ it) < ka(p +is,p + it) + Bi. (5.7)

By Lemma 3.6 there exists ¢ > 0 such that dq(i + it) < cdq(p + it) for all ¢ > 0. Hence, by the Distance
Lemma (Theorem 3.5), for 0 < s < ¢,

t t

Lo (Bp; [s,t]) :/“Q(ﬂp(T)Qﬂig(T»dré /59(;:—17’)

S S

t t

dr . B "
< C/W < 40/&9(6¢(T);6i(r))dr = 4clqo(Bi; [, 1))

S S

Therefore, by (5.6) and (5.7)

Lo (Bp; [, t]) < 4cla(Bi;[s, t]) < 4cAkq(i+ is,i+ it) + 4cB
< dcAkq(p+is,p+it) + 4cAB; + 4¢B,

forall0<s<t. O
5.83. Proof of Theorem 1.3
It follows directly from Theorem 1.1.
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