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Abstract

In this mostly expository article, we describe some properties of the space of convex
domains in complex Euclidean space (endowed with the local Hausdorff topology).
In particular, we give careful proofs that the Kobayashi metric, the Bergman ker-
nel/metric, and the Kéhler—Einstein metric are all continuous on the space of convex
domains. The group of affine automorphisms acts on this space and we also describe
the orbit closures for some special classes of domains.
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1 Introduction

A convex domain © C C? is called C-properly convex if every complex affine map
C — Qs constant. Let X; denote the space of all C-properly convex domains in c
endowed with the local Hausdorff topology (see Sect. 3). Then let X; ¢ denote the
space of pointed C-properly convex domains, that is

Xa0:=1{(R,2): QeXgz€ Q) CXgxC.

Next let Aff(C?) denote the group of affine automorphisms of C¢, that is maps A :
C? — €4 of the form
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The Space of Convex Domains in Complex Euclidean Space 1313

A(z) =b+ Mz

where b € C? and M € GL4(C). Then Aff(C?) has a natural continuous action on
X4 and Xy o given by

A-Q=AQ and A-(Q,2) = (AQ, A2).

In this mostly expository article, we will describe some properties of these spaces and
actions.

The space Xy o is quite large—by any reasonable definition it has infinitely many
dimensions, while the group Aff(C¢) is a finite dimensional Lie group. Despite this
difference in size, Frankel proved that the action of Aff ((Cd) on X, o is nearly transitive,
more precisely:

Theorem 1.1 (Frankel [15]) The action of Aff(C?) on X4.0 is co-compact, that is
there exists a compact set K C Xy o such that Aff (C? . K = X4.0-

We provide a proof of this theorem in Sect. 4 and construct an explicit compact
subset K0 C Xg.0 such that Aff(C?) - Ky.0 = Xq.0.

In Sects. 5 and 6 we give two applications of Frankel’s result. In Sect. 5, we use
Frankel’s co-compactness theorem to construct holomorphic embeddings of convex
domains with certain uniform properties. In Sect. 6, we use these embeddings to
show that convex domains are holomorphic homogeneous regular domains (see Defi-
nition 6.1). This result was established by Frankel [15], but was recently rediscovered
independently by Kim—Zhang [25] and Nikolov—Andreev [32].

One important property of holomorphic homogeneous regular domains is that the
standard invariant metrics are all complete and uniformly bi-Lipschitz to each other. In
particular, given a C-properly convex domain  C C9 let b, cq, g? g»and ko denote
the Bergman metric, Carathéodory metric, Kédhler—Einstein metric, and Kobayashi
metric, respectively. Then we have the following.

Theorem 1.2 For any d € N there exists A = A(d) > 1 such that: if @ ¢ C? is
a C-properly convex domain, then the metrics bg, cq, g% g» and kg induce proper
geodesic metric spaces and are all A-bi-Lipschitz to each other.

Remark 1.3 It appears that Theorem 1.2 was first observed by Frankel [15].
In Sect. 7, we study the Aff (C?%)-orbit closure of certain types of bounded convex

domains  c C¢. In particular, given a domain Q2 € Xy, let

—X
AFF(CY . Q ' c Xy

denote the closure of the Aff (Cd)—orbit of Q2 in X;. We will show that geometric
properties of 92 can be magnified by considering limits of the form D = lim,,_, oo A, 2
where A, € Aff (Cd). For instance, we will show that if €2 is a bounded convex domain
with C* boundary and 92 contains a point of infinite type in the sense of D’ Angelo,
then there exists some
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1314 H. Gaussier, A. Zimmer

— X
D e Aff(Ch . @ *

such that D contains a non-trivial holomorphic disk (that is, there exists a non-
constant map D — 9 D).

Sections 8—11 are devoted to proving that the four standard invariant metrics
(Bergman, Carathéodory, Kihler—Einstein, and Kobayashi) are continuous on the
space of convex domains. The continuity of Kobayashi metric uses standard tech-
niques and is already known, see for instance the Appendix in [5]. The continuity of
the Kéhler—Einstein metric follows from a compactness result for families of Kéhler
metrics of quasi-bounded geometry established in [S] using tools from [37]. The con-
tinuity of the Bergman metric in the general setting of C-properly convex domains
appears to be new.

In particular, we will prove the following.

Theorem 1.4 Suppose that Q, converges to Q in X4. Then

(1) bg =1lim,_, bg, locally uniform on S in the C* topology,

(2) cq = lim,—« cq, locally uniform on Q in the C 0 topology,

3) g%E = lim, 0 g%’b locally uniform on Q in the C* topology, and
4) ko =lim,_ kg, locally uniform on 2 in the C O topology.

Remark 1.5 Here “f = lim,_, f, locally uniformly on  in the C¥ topology”” means
that for every compact subset K of €2, all the derivatives of f, of order less than or
equal to k converge to the corresponding derivative of f, uniformly on K.

Part (1) is established in Sect. 10. Part (2) is a consequence of Part (4) and deep
results of Lempert. Part (3) is established in Sect. 11. Finally, Part (4) is established
in Sects. 8 and 9.

We end the introduction by explaining two situations where studying the space of
convex domains can lead to insight into the complex geometry of a particular convex
domain.

1.1 Domains with Non-compact Automorphism Groups

There has been considerable interest in the following question (see the survey [21]):

Problem Characterize the bounded pseudoconvex domains with smooth boundary
and non-compact automorphism group.

The first major result in this direction is the Wong—Rosay Theorem [35,36] which
characterizes the ball, up to biholomorphism, as the unique strongly pseudoconvex
domain with non-compact automorphism group.

Later, Bedford—Pinchuk [6] established a similar result for finite type convex
domains. In particular, they proved: if &  C¢ is a smoothly bounded convex domain
with finite type with non-compact automorphism group, then €2 is biholomorphic to
a domain of the form

{(zw) e C"1 x C: Re(w) + H(z,2) < 0}, )
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The Space of Convex Domains in Complex Euclidean Space 1315

where H is “balanced, weighted homogeneous convex polynomial.” Further, in case
d=2 H(z,2) = |z|2m for some integer m > 0.

In the same vein, Frankel [14] characterized the bounded symmetric domains as the
only C-properly convex domains in c? admitting a co-compact, free, discrete action
of a subgroup of its automorphism group.

The results of Bedford—Pinchuk and Frankel have the same (implicit) starting point:
one considers a sequence ¢, of automorphisms of €2 and a point pg € 2 where ¢, (po)
converges to a boundary point. Using Frankel’s co-compactness theorem one can then
select affine maps A, € Aff ((Cd) such that the set

{An(R2, 0u(po) :n >0} C Xy

is relatively compact. Then by passing to a subsequence one can assume that
A, (2, ¢, (po)) converges to some (20, Zoo) 1N Xy0. A normal family argument
can then be used to show that a subsequence of the maps

So=Anpy 2 — A,Q

converges to a biholomorphism 2 — 4. In both cases, the domain Q2+, can be
chosen to have special structure which is then analyzed (in highly non-trivial ways!).

1.2 Geometric Properties of Domains

Frankel’s co-compactness theorem can also be used as a starting point to study the
interior complex geometry of a particular domain. The general philosophy is as fol-
lows: suppose that you want to show that a convex domain 2 does not have some
particular property-(x). One can first try to show that if property-(x) holds for €2, then
property-(*) holds for every domain in

—_X
AFCH - ' Xy,

One then can try and construct a domain in the orbit closure where it is easier to show
that property-(x) does not hold.

This general scheme was the starting point of the following result of the authors
joint work with Bracci.

Theorem 1.6 [5] Suppose Q@ C C? is a convex domain and Q has a complete Kiihler
metric, with pinched negative holomorphic bisectional curvature outside a (possibly
empty) compact subset of Q2. Then:

(1) Q is a C-properly convex domain,

(2) 02 does not contain an analytic disk (that is, there does not exist a non-constant
holomorphic map D — 9<2), and

(3) if 92 is a C*™ smooth hypersurface, then 02 is of finite type in the sense of
D’Angelo.
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1316 H. Gaussier, A. Zimmer

This theorem is a generalization of a classical result of Yang [38] who proved that the
bidisk does not admit any complete Kéhler metric with negative pinched holomorphic
bisectional curvature.

This general scheme was also used by the second author to show that (2) implies
(1) in the following theorem.

Theorem 1.7 [40] Suppose that @ C C% is a bounded convex domain with C* bound-
ary. Then the following are equivalent:

(1) 0K has finite type in the sense of D’Angelo,
(2) the Kobayashi metric on Q2 is Gromov hyperbolic.

In some cases, one can apply the opposite argument: given a C-properly convex
domain €2, if every domain in

—X
AFF(CY) - @\ AFF(CY) - @
has some particular property-(x), then it is sometimes possible to show that Q2 also

has property-(x). For instance, this strategy was used to show that (1) implies (2) in
Theorem 1.7.

1.3 The Purpose of this Article
In order to use the strategies described in the previous two subsection, one needs
to understand the space of convex domains and its basic properties. Of particular

importance is understanding the types of domains which can be found in the orbit
closures

_X
AFCH-Q ' Xy

and verifying that the “interior complex geometry” of a domain is continuous on the
space of domains Xy . In this article, we explain some aspects of this theory.
More exposition along these lines can be found in [4,13,15,19,23,33].

1.4 Some Notations

Let us first fix some notations.

(1) For z € C? let ||z|| be the standard Euclidean norm.
(2) Forzo € C% and r > 0, let

Bazoir) = {2 iz 20l <r}.
Then let B; = B;(0; 1) and D = B;.
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The Space of Convex Domains in Complex Euclidean Space 1317

(3) Given a domain  Cc C? and a point z € €, let 6q(z) denote the distance from z
to the boundary of €2, that is

dq(z) =inf{l|lz — & : & € 0Q2}.

Given a non-zero vector v € C? let 8g(z; v) denote the distance from z to the
boundary of €2 in the complex direction of v, that is

da(z;v) =inf{llz =& : § € 32N (z+ C-v)}.

2 Invariant Metrics

In this section we define the Bergman, Carathéodory, Kidhler—Einstein, and Kobayashi
metrics. These metrics are all known to exist and be non-degenerate on bounded
pseudoconvex domains. To obtain that these metrics also exist on C-properly convex
domains we will use the following observation.

Observation 2.1 Suppose 2 C C? is a convex domain. Then €2 is C-properly convex
if and only if 2 is biholomorphic to a bounded domain.

Proof If €2 is biholomorphic to a bounded domain, then every holomorphic map C —
Q2 is constant. In particular, every complex affine map C — 2 is constant and so €2 is
C-properly convex.

If Q2 is C-properly convex, then €2 is biholomorphic to a bounded domain by Propo-
sition 6.2. O

2.1 The Kobayashi Metric

Definition 2.2 Let z, z’ be two points in a complex manifold M and v € T, M, where
T, M is the space of tangent vectors at z.

e The infinitesimal Kobayashi (pseudo-)metric ky(z; v) is given by
ky(z; v) = inf {|a| : 3f € Hol(D, M), f(0) =z, dfpax = v}.

e The Kobayashi (pseudo-)distance is the length function defined by

1
Ku(z,7') = inf {/ kg (y (1) )/'(l))dt} )
0
where the infimum is taken over all piecewise C! curves y : [0, 1] — M, joining
zto 7.

The Kobayashi (pseudo-)metric is a complex Finsler (pseudo-)metric that has only
weak regularity in general. It is the largest complex Finsler metric on a complex
manifold that coincides with the Poincaré metric on the unit disk D C C and that is
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1318 H. Gaussier, A. Zimmer

decreasing under the composition by holomorphic maps, meaning thatif f : M — N
is holomorphic, then for every z € M and every v € T, M,

kn(f(2), df:(v)) < km(z, v).

When Q@ C C¢ is a bounded domain, it is fairly easy to show that K is a non-
degenerate metric, but in general it is very difficult to determine if K¢ is a Cauchy
complete metric. In the convex case, things are easier and we have the following result
of Barth.

Theorem 2.3 (Barth [3]) Suppose Q C C? is a convex domain. Then the following are
equivalent:

(1) Q is C-properly convex,

(2) Kq is a non-degenerate metric on <2,

3) (2, Kq) is a proper geodesic metric space.

Remark 2.4 Recall that a metric space is called proper if closed bounded sets are
compact. A proper metric space is always Cauchy complete. A metric space (X, d) is
called geodesic if every two points can be joined by a geodesic segment, i.e., for all
x,y € X there existsamap o : [0, T] - X witho(0) = x,0(T) =y, and

d(o(s),0(1) =Is —1]

foralls,t € [0, T].

2.2 The Carathéodory Metric

Definition 2.5 Let z, z’ be two points in a complex manifold M and v € T, M.
e The infinitesimal Carathéodory (pseudo-)metric ky(z; v) is given by

cm(z;v) = sup {ldf:(v)| : f € Hol(M, D), f(z) =0}.

e The Carathéodory (pseudo-)distance is the length function defined by
1
Cum(z, 7)) = inf {f cm(y (0); J/(t))dt} ;
0

where the infimum is taken over all piecewise C! curves y : [0, 1] — M, joining
zto 7.

Notice that by definition ¢y < kjs and hence Cp; < K. A deep result of Lem-
pert [26] shows that on C-properly convex domains the Carathéodory and Kobayashi
metrics coincide.

Theorem 2.6 (Lempert [26])IfQ2 C C¢ isa C-properly convex domain, then cq = ke.

Remark 2.7 To be precise, in [26] the above theorem is only established for bounded
convex domains, but a simple argument extends the result to all C-properly convex
domains (see for instance [8, Lemma 3.1]).
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2.3 The Bergman Metric

Let 2 be a domain in C? and let
HA(Q) = {f € Hol(22, C) : / | f1Pdu < +oo} ,
Q

where du denotes the Lebesgue measure on CY. If H2(2) # {0}, then it is a non-
trivial Hilbert space, equipped with the L?-inner product. The Bergman kernel of <2,
denoted by «q, is the function defined on 2 x Q by

ka(z,w) =Y ¢;(@);w),

j=0

where {¢;, j = 1,2, ...} is an orthonormal basis of the Hilbert space H2(Q). Tt is
uniquely defined and does not depend on the choice of an orthonormal basis of H2(£2),
see [22, Chapter 12].

The Bergman (pseudo-)metric is then defined as follows.

Definition 2.8 Suppose €2 C C¢ is a domain and kq(z, z) > 0 for all z € . Then the
Bergman (pseudo-)metric on 2 is the smooth (1,1)-Hermitian form

n
ba(zi- )= ) b3(@)dz; ®dzx
j.k=1
where

3%(¢ > logka(, ©))
AL;00k

(2).

b() 1=

According to [22, Corollary 12.7.6, p. 486], bo(z; -, -) defines a metric (i.e., is
positive definite), if for every v € C4\{0}, there exists f € H2(S2) such thatdf, (v) #
0. This is the case, for instance, if €2 is biholomorphic to a bounded domain in e,

In the rest of this subsection, we will recall some basic properties of the Bergman
metric and kernel.

We first explain why this definition is invariant under biholomorphisms. When
® : Q) — 2 is abiholomorphism and {¢;, j = 1,2, ...} is an orthonormal basis of
the Hilbert space Hz(Qz), then {J(®)¢pj o @, j =1,2,...}is an orthonormal basis
of the Hilbert space H2(21), where J(P)(z) := det(0®;/9z(z));j. Hence

k0, (P(2), (W) J (P)(2)J(P)(w) = kg, (2, w) )
for all z, w € 1. Using Eq. (2) it is straightforward to show that

ba, (P (2); d(®).v, d(P) w) = bg, (z; v, w)
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1320 H. Gaussier, A. Zimmer

forallz € Q;and v, w € C?. Thus the Bergman metric is invariant under biholomor-
phisms.

We next state some basic estimates. The Bergman kernel is a reproducing kernel
(see [22, Chapter 12]) and hence

1@ = [ fwwat. wiuw) )
for every f € H*(R2) and every z € Q. In particular,

ko 2) = /Q ca(w, a2, w) du(w) = /Q ke DPdu = ke DB @)

for every z € Q. Further, if z1, z2 € €2, then the Cauchy—Schwarz inequality implies
that

lkq(z1, 22)| = ‘/QK(U),ZOK(ZL w)du(w)| < llka-, zD 2 llka (-, z2) 12

and hence

lka(z1, 22)I* < ka(z1, 21)ke(z2, 22). (5)

Next we describe how xq(-, z) is the solution to a certain optimization problem.
For every z € €, let

1§2) == inf{/9|f|2du: feH (), f(z)zl}

with the convention I§*(z) = oo if { f € H*(Q) : f(z) #0} = 0.
The following lemma gives the existence and the uniqueness, for every z € Q, of
afunction f € H*(Q) such that f(z) = L and I§}(z) = [, | fI*dp.

Lemma 2.9 Suppose Q2 C C? is domain, 7 € S, kq(z,z) > 0,and f € Hz(Q). Then
f() =1and fQ |f12du = Igz(z) if and only if

1
f= KQ(Z’Z)KQ(',Z)-

In particular,

ICQ(Z, Z) = %
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The Space of Convex Domains in Complex Euclidean Space 1321

Proof Notice that if f € H*() and f(z) = 1, then

1= f(0) = /Q Fycaw, Dduw) < 1l kel Dz = Il k2.
Hence

1$(z) >

(6)

ka(z,2)

(«<): Define

fo =

" ke(z,2)

k(- 2).

Then f,(z) = 1. Further Egs. (6) and (4) imply

< I§(2).

1
B s [P = o [ ket ol au=
Q(Z)S Q|fz| 1% KQ(Z,Z)2 Q|KQ( 2l # ko(z,2) —

So fq I f:l*du = I§ (2).
(=): Suppose that f € H*(Q), f(z) = 1, and Ja |fI>dp = I§(z). Consider h =
L(f+ £.). Then h(z) = 1 and

1

180 = [ 1P =5 (115 + 1515 + 2Re (7. £2)
Q

1
= (IFB+ILB+21f L1 £0) = 1§@.

So we are in the equality case in the Cauchy—Schwarz inequality. Hence f = X f, for
some A € C. Since f(z) =1 = f;(z) we musthave A = 1 and so f = f,. O

As a consequence of Lemma 2.9 we have the following estimate.

Lemma2.10 [fQ2; C Q) C C? are domains, then

K, (2,2) < ke, (2, 2) (N
for every z € Q.

We end our discussion of Bergman kernel by recalling a classical result of
Ramadanov (see [22, Theorem 12.1.23, p. 428] for the case where €2 is unbounded).

Theorem 2.11 (Ramadanov [34]) Suppose that

QcCcc -
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1322 H. Gaussier, A. Zimmer

is an increasing sequence of domains and Q2 := Up>12,. Then
kg = lim kg,
n—oo
locally uniformly in the C* topology on  x .

2.4 The Kahler-Einstein Metric

Let g := (gl-;)l.j be a Hermitian metric on a complex manifold M, of class C*°, and
let w, be the associated symplectic form given in local holomorphic coordinates by

n
wg 1=+ —1 Z g;7dzi A dZ;j.

ij=1
The Ricci form of w,, denoted Ric(wy), is the (1, 1)-form defined by
Ric(wg) := —+/—139 log(det(g;7))-

Definition 2.12 Let g be a Hermitian metric on a complex manifold M. We say that

o gisaKdhler metric (or equivalently that (M, wg) is a Kéihler manifold) if dw, = 0
on M,

e g is an Einstein metric if there exists A € R such that Ric(wg) = Aw, and we call
A the Ricci curvature (or Ricci constant) of the Einstein metric g,

e g is a Kahler—Einstein metric if it is both a Kihler and an Einstein metric.

It is a deep result of Cheng and Yau [9] and Mok and Yau [31] that any bounded
pseudoconvex domain € C C? admits a unique Kihler—Einstein metric with Ricci
constant equal to —(d + 1) (and hence a unique Kihler-Einstein metric with Ricci
constant A for every A < 0).

Since every C-properly convex domain is biholomorphic to a bounded pseudocon-
vex domain, the following definition makes sense.

Definition 2.13 If Q@ C C? is a C-properly convex domain, then let g? g denote the
unique Kéhler—Einstein metric with Ricci constant equal to —(d + 1).

3 Topology on X4

In this section we describe the local Hausdorff topology on the set of C-properly
convex domains.

Let A and B be two sets in C¢. The Hausdorff distance between A and B is defined
by

dy (A, B) = max {sup bing lla — b, sup ing lla — bll} .

acAbE beB A€
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Despite the name, this does not yield a distance on the set of all sets. For instance,
dy (D, D) = dy (D\{0}, D) = dy (D \{0}, D) = 0.
However, when restricted to compact subsets we do obtain a distance.

Theorem 3.1 Let K be the set of all compact subsets of C?. Then (K, dg) is a complete
metric space.

The Hausdorff distance also does not behave very well on the set of all closed sets.
For instance, if

C,={x+iyeC:|x|<nandy >0},
then one would hope that the sequence C,, converges to
C:={x+iyeC:y=>0}
However,
dp (C,Cy) =00

for every n > 0.

These types of examples can be handled by considering the local Hausdorff semi-
norm. For R > 0 and A a closed set in Cd, define A® == AN B4(0; R). Then, we
define the local Hausdorff semi-norms by

i (A, B) i=dy (AP, B®)).

Then we say that a sequence C, of closed sets converges in the local Hausdorff
topology to a closed set C if there exists Ry > 0 such that

lim d\®(C,,C) =0
n—>oo

forall R > Ry.
Since an open convex domain is completely determined by its closure, we can use
the local Hausdorff topology to obtain a topology on the set of all convex domains.

Definition 3.2 (1) A sequence 2, in X; converges to 2 in Xy if Q, converges to Q
in the local Hausdorff topology.

(2) A sequence (2, z,) in Xy 9 converges to (£2, z) in Xg4,o if Q, converges to Qin
the local Hausdorff topology and z, converges to z.

The following facts about this notion of convergence will be useful.

Proposition 3.3 Suppose that 2,, converges to 2 in X4. Then:
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1324 H. Gaussier, A. Zimmer

(1) If K C 2 is compact, then there exists N > 0 such that K C Qy, foralln = N.
2) If zp € Q2 and limy,_, o 2y = 2, then 7 € Q.
(3) If zp € CI\L, and lim,_ 00 21 = 2, then z € C4\ Q.

Proof Part(2)and (3) are immediate from the definition. To prove Part (1) fix acompact

set K C €2. Assume for a contradiction that there exist ny — oo and x,, € K such

that x,,, ¢ €, for every k > 0. Up to passing to a subsequence we may assume that

limy 00 Xp, = Xoo € K. Since each €2,,, is convex, each €2,,, is contained in a real half

space passing through x,, . In particular, if € > 0 is such that By (x0; €) C €2, then for

k sufficiently large there is a point y,, € By (xoo; €) such that dryc(Vn,, 2r,) = €/2.
Now fix R > ||xso|| + € so that

lim d\(Q,, Q) = 0.
n—oo

Since y, € By(xoo; €) C 2 and dguc(Yn; > £20;) > €/2, we see that
i (D, Q) > €/2,

which is impossible. O

4 Frankel’s Co-compactness Theorem

In this section we show that the action of Aff ((Cd) on X0 is proper and co-compact.
Proposition 4.1 The group Aff(C?) acts properly on Xy 0, that is if K C Xy is
compact, then the set

[A € Aff(C?) : AK N K # Q)}

is compact in Aff(C?).

Proof Suppose not, then there exists a compact set K C X o such that the set
[A € AfF(CY) : AK NK Q)}

is not compact in Aff(C?). Then we can find sequences (£2,,2,) € K and A, €
Aff(C?) such that

(1) A, — oo in Aff(C?) (that is, the sequence A, leaves every compact subset of
Aff(Ch)),

(2) (2, zn) converges to some (Uy, u1) in K, and

3) A,(2,, zn) converges to some (Uz, us) in K.

For (€2, z) € Xg40 let

[(Q,2)={veC?:v=00r |v] <8z v}
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Notice that this is always a compact set.
Since (£2,, z,) and A, (2, z,) are both convergent sequences in Xy o there exists
0 < ¢ < C such that
cBg C 1(2,2,) C CBy
and

cBy C I(A;2,, Ayzy) C CBy

foralln > 0.
Now suppose that A, (z) = b, + gn(z) where b,, € C4 and gn € GL4(C). Then

gnI(Qn, zn) = 1(A, 2, Apzy)

and so

c C
=By CgnBs C — By
C c

for n > 0. Hence {g, : n € N} is relatively compact in GL4(C). Then since z,, — u;
and A,z, — up we see that {b, : n € N} must be relatively compact in 4. So
{A, : n € N} is relatively compact in Aff (C?). Hence we have a contradiction. O

Theorem 4.2 (Frankel [15]) There exists a compact set K C Xg o such that Aff (CY.
K =Xy

Then rest of the section is devoted to a proof of Frankel’s theorem.

Definition 4.3 Let (e, ..., e;) denote the standard basis of e, Then, let K; C Xy
denote the set of convex domains Q C C? where I -¢ j C 2 and

(ej + Spanc{e;41, ...,ed}) NQ=40¢
forall j =1,...,d. Also, define
Kd,o = {(Q, 0):Q¢€ Kd}.

Proposition 4.4 The set K, is a compact subset of X.

Proof Suppose €2, is a sequence in K. For each m, the set
{K C By(0;m) : K is compact}
is compact in the Hausdorff topology. So we can find nested subsequences

(n],j)?il D (”Q,j)?il Do
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such that

lim Q, . NBLO0; m) = Cp,

; N, j

where Cy, is a closed convex domain. Then ﬁnm,m
topology to C :=U>°_ Cp,.

Let Qo denote the interior of C. Since D-e; C 2, for every n, we see that
D-e; C C. So C has non-empty interior. So Q2 is non-empty and Qo = C. Then
Qy,,,, converges to Qo in the local Hausdorff topology.

We claim that Q4 € K. Since each 2, is in Ky, we see that D -e; C Q4 and

converges in the local Hausdorff

(ej +Span(c{ej+1,...,ed}) NQeo =0

forall j =1, ..., d. So we just have to show that Q,, € X;. To show this it is enough
to show that every affine map C — Q4 is constant. Let £ : C — Q4 be such a map.
Then £(z) = a + bz for some a, b € C?. Since Qo 18 open, convex, and 0 € Q we
then see that bz € Q4 for every z € C.

Since

(61 + Spanc{ey, ..., Ed}) NQoo =0
we must have b; = 0. Then since
(62 + Spanc{es, .. ., ed}) NQoo =0

we must have b, = 0. Repeating the same argument shows thatbs = by = --- = by =
0. Thus £ is constant and since £ was an arbitrary affine map, we see that Q, € Xj.
O

Proposition 4.5 For every (2,z) € Xy.0, there exists an affine map A € Aff(CY)
such that A(2, z) € Ky.0.

Proof Fix (2, z) € X40. By applying an initial affine automorphism we can assume
that z = 0.

We begin by picking points &1, ...,&; € 9 as follows: first let £ be a point
in Q2 closest to 0. Then assuming &1, ..., &; have already been selected, let V;
be the maximal complex linear subspace through 0 orthogonal to the complex lines
C-&,...,C-&;. Thenlet &;, be a pointin V; N 9<2 closest to 0.

Notice that by construction D -§; C Q,

( +Vis)nQ =4,
and

Vi1 = Spanc {&j41, ..., &4}
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forevery 1 < j <d.
Once &1, ..., &, have been selected let 7; = Héj H for 1 < i < d and define
A € GL4(C) to be the linear map

Next let U be the unitary map such that
AUE) = e;.
Notice that if Q" = (AU)L2, thenD-¢; C " and
(ej + Spanc{ejyi.....ea) NQ =10

forall 1 < j <d.Hence (AU)(£2,0) € Ky,0.

5 Uniform Bounded Embeddings

In this section we show that every C-properly convex domain is biholomorphic to a
bounded domain (in a uniform way).

5.1 Supporting Vectors
Given a convex domain Q2 € K, we say that vectors (vy, ..., vg) are Q-supporting if
ej +Spang{eji1,...,eq} C{z € ce - Re(z, vj) =1}
and
QC{zeC’:Re(z,v) <1}

forevery j =1,...,d.
Lemma 5.1 If 2 € Ky, then there exist Q-supporting vectors.

Proof Fix 1 < j < d. Since
(e./ + Spanc{ejt1, ..., ed}) NR=40¢
and €2 is convex, there exists a real hyperplane H; such that

(ej +Span(c{ej+1,...,ed}) C H;
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and H; N Q = ¢. Then there exists a vector v; = (vj 1, ..., Vj ) such that
={ze€C? :Re(z,v;) =Re(ej, vj)} = {z € C? : Re(z,v;) = Re v; ;}
and
Q C{zeC?:Re(z,v;) <Rev; ;}

Since 0 € 2, we see that 0 < Re v; ;. Sov; ;j #0.Since D -e; C £,

Vi
|vj,j|=Re —==e;,vj ) <Rewj ;.
[vi.J]
So we must have v; ; € (0, 00) and then we can scale v; so that v; ; = 1. Then
={zeC?:Refz,vj) =1}
and

QC{zeC?:Re(z,v;) < 1}.

Proposition 5.2 The set
{(R2,v1,...,v9) : Qe Ky, (vi,...,vq) is Q -supporting}
is compact in X4 X ce.

Since K is compact in X, to prove Proposition 5.2 it is enough to establish uniform
bounds on the supporting vectors. This is accomplished in the next lemma.

Lemma 5.3 Suppose that Q € Ky and (vy, ..., vg) are Q-supporting. Then

D v ;=1
) vjxk=0ifk>j,
3) |vj,k| <1whenk < j.

Proof Since
ejefzeC?:Refz,v;)=1)

we see that Re(v; ;) = 1. Since D -e; C 2 we see that

1=Re(vj,j)§|vj,j}=Re<|Uj |e],v]> 1.
Vjj

@ Springer



The Space of Convex Domains in Complex Euclidean Space 1329

Hence v; j = 1.
If £ > j, then

ej + ey € {z e C?:Re(z,v;) = 1}
for every A € C. So
1 =Re(ej + Aeg, vj> =1+Avj;

and hence v; ; = 0.
Ifk < j,thenD-e, C Q and so

1> Re(kek,vj):)»ij,k
for every A € . So |vj | < 1. O

5.2 Uniform Bounded Embeddings

Now we use these supporting vectors to provide nice bounded embeddings.

Proposition 5.4 Supposethat2 € KgandV = (vy, ..., vg) are Q-supporting. Define
the function Fqy : Q — C4 by

Fg,v(z)=< (z,v1) (z,vq) )

2—{z,v1)" 2~ (z,va)

Then Fq.v is a holomorphic embedding and Fq v(2) C DY, Moreover; there exists
€ > 0, independent of 2 and V, such that B4(0; €) C Fq v ().

Proof Define H := {z € C: Re(z) < 1}. Then the map f : H — DD given by

Z
Q=5
is a biholomorphism. By Lemma 5.3 the vectors (vy, ..., vg) form a basis of 4. So
the map g : Q@ — H9 given by
8@ =z, v1),...,(z,va))
is a holomorphic embedding. So Fo v = (f o g1,..., f o g4) is a holomorphic

embedding of € into D¢,
The “moreover” part follows from the fact that the set

{(,v1,...,v9) : QeKy, (vq,...,vg) is Q -supporting}
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is compact in Xy x C and each domain in € contains the set

ConvHull e, U---UDey). 0

Notice that in the context of the last proposition, if z,, € € is a sequence with
lim,, o |24 ]| = o0, then there exists some component of Fg v (z,) that converges
to —1. The next result provides a uniform version of this behavior for convergent
sequences in Xy 0.

Letl1=(1,...,1)and for§ > 0 let

Zs :Uj(:1 {(zl,...,zd) eD’: |zj — (=D)| Salo

Notice that each Z; is a star shaped set with center —1 and {Zs}s~¢ is a neighborhood
basis of

ZO={(zl,...,zd)Eﬁd:zjz—lforsomel§j§d}

. =d
inD .

Corollary 5.5 Suppose that (2, z,,) converges to (200, Zoo) in Xg,0. Then there exist
holomorphic embeddings F, : Q, — DA and functions t+ : (0, 1] — [0, 0o) such
that Fy(z,) = 0 and

Q, NBa(0: 7_(8)) C Fn_l(]D)d \za) C Qp NBa(0: 74.(8))

forall § € (0, 1] and n € NU{oo}.

Proof Using Proposition 4.5, we can find a sequence A, € Aff (C?) such that
An(R2n,z0) € Kg0. Since Aff((Cd) acts properly on X, 0, the set {A, : n € N}
must be relatively compact in Aff(C?). Thus there exist @ > 1, 8 > 0 such that

1
S Il =B = llAnzll = elizll + B ®)

foralln > 0 and z € C4.
For each n, let V, = (vf"), . (")) be (A,2,)-supporting. Then let F, =
Fa,0,.v, © Ay. Then by construction F,(z,) = 0. Since

A

e (—)‘—2

12 — Al

when A € C\{2}, the existence of the desired functions 7+ : (0, 1] — [0, co) follows
from Eq. (8) and Lemma 5.3. O
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6 The HHR Condition and Applications

In this section we recall the definition of HHR domains and their basic properties. We
then observe, from Frankel’s co-compactness theorem, that convex domains are HHR
domains.

Definition 6.1 (Liu et al. [27,28]) A domain © C C is said to be holomorphic homo-
geneous regular (HHR) if there exists s > 0 with the following property: for every
z € Q there exists a holomorphic embedding ¢ : Q2 — €4 such that ¢(z) =0 and

sBs C o(2) C By,

where B; C C¢ is the unit ball.

A HHR domain is sometimes called a domain with the uniform squeezing property,
see for instance [39].
Examples of HHR domains include:

(1) Ty, the Teichmiiller space of hyperbolic surfaces with genus g and n punctures
(271,

(2) bounded convex domains or more generally bounded C-convex domains [15,25,
32],

(3) bounded domains where Aut(£2) acts co-compactly on €2, and

(4) strongly pseudoconvex domains [10,11].

Yeung proved that every HHR domain is pseudoconvex [39, Theorem 1] but not
every pseudoconvex domain is an HHR domain. For instance, Fornaess and Rong have
constructed smoothly bounded pseudoconvex domains in C* which are not HHR [12].

As a consequence of Frankel’s co-compactness theorem, convex domains satisfy
the HHR condition.

Proposition 6.2 (Frankel [15], Kim—Zhang [25]) For every d € N, there exists s4 > 0
such that: if Q is a C-properly convex domain, then Q2 is a HHR domain with parameter
S = S4.

Proof Fix a holomorphic embedding G : D? — By such that G(0) = 0. Lete > 0
be the constant from Proposition 5.4. Then fix s > O such that s By C G (e By).

We claim that if @ c C¢ is a C-properly convex domain and z € 2, then there
exists a holomorphic embedding ¢ : € — C¢ such that ¢(z) = 0 and

sBg C () C By .

First by Proposition 4.5 there exists an affine transformation A such that A(€2, z) €
K4 0. Then by Proposition 5.4, there exists a holomorphic embedding F : AQ — D4
such that F(0) =0 and e B; C F(AS). Then simply set¢p = G o F. O

The HHR condition is useful because it implies that the various important interior
geometries on a HHR domain exist and are well behaved.
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Theorem 6.3 (Yeung [39]) If 2 C C“ is a HHR domain, then

(1) Q is pseudoconvex,
(2) the Bergman, Kobayashi, and Kdhler—Einstein metric are proper (and hence com-
plete) geodesic metrics on SQ.

Theorem 6.4 (Liu et al. [27], Yeung [39]) For any s € (0, 1] and d € N there exists
A > 0 such that: if Q C C? is a HHR domain with parameter at least s, then the
Kobayashi, Bergman, and Kdhler—Einstein metrics are A-bi-Lipschitz on .

Theorem 6.5 (Yeung [39]) For any s € (0,1] and d € N there exist I > 0 and
{Cylgen such that: if Q@ C C? is a HHR domain with parameter at least s and g is
either the Bergman or Kdhler—Einstein metric, then:

(1) The injectivity radius of g is at least I,
(2) Foranyq € N

sup ||VqR”g <Cy
Q

where R is the curvature tensor of g.

7 Examples of Orbit Closures

Given a domain 2 € X, let
— Xy
Aff(ChH - Q " c Xy

denote the closure of the Aff ((Cd)—orbit of Q in Xj. In this section we compute this
orbit closure for some special examples. We also consider a special subset of this orbit
closure which we call the affine limits.

Definition 7.1 Suppose 2 € X;.
(1) A domain D € Xy is an affine limit of 2 if there exists A; € Aff (C4) such that

(a) Aj — ooin Aff (CY) (that is, the sequence A, leaves every compact subset of
Aff(Ch)),
(b) A;Q converges to D in Xy.

—X
(2) Let AL(Q) C Aff(C%) - Q ‘ denote the set of all affine limits of 2.
Notice that when Q2 € X,; we have
d % d
Aff(CY - Q@ = (Aff((C ) - Q) U AL(£2).
When €2 is bounded this is a disjoint union, but when 2 is unbounded it is possible

for the sets to have non-empty intersection.
We first observe that the set of affine limits is non-empty.
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Proposition 7.2 Suppose Q@ C C¢ is a bounded convex domain. If z, € S2is a sequence
with limy,— 00 8@ (2,) = O, then there exists a subsequence (z, /.) >0 and affine maps
Aj € Aff(Cd) such that A;(L2, znj) converges to some (U, u) in Xy4,0. Further,
U € AL(R2) and hence AL(R2) # 0.

Proof This is a simple consequence of Frankel’s co-compactness theorem: by Theo-
rem 4.2 we can find a sequence A, € Aff (C4) such that the set

{An(€2,20) :n =0} C Xy o

is relatively compact in X, 0. Then by passing to a subsequence we can suppose that
A, (82, z,,) converges to some (U, u) in Xy 0.

It remains to show that U € AL(S2) or equivalently that {A, : n > 0} is unbounded
in Aff(C%). Suppose A, (-) = b, + g,(-) where b, € C“ and g, € GL4(C). Then

SA,,Q(AnZn) < llgn “op 80 (zn)-

Then, since lim,,_, o §q(z,) = 0 and

SU(M) = lim 5A’IQ(A,,Z") > O,
n—oo
we must have lim, o [gnllop = +00. Hence {A, : n > 0} is unbounded in Aff(CY).
O

The next two results show that passing to the affine limit “magnifies” certain good
and bad properties.

Theorem 7.3 Suppose Q@ C C? is a bounded convex domain.

(1) If Q is strongly pseudoconvex domain with c? boundary and D € AL(S), then
there exists A € Aff(C?) such that

d
AD = {(z1,...,24) G(Cd:Im(zl) > Z|Zj|2 .
j=2

2) IfQ2 C C4 has C*® boundary of finite type in the sense of D’Angelo and D €
AL(S), then there exist A € Aff(C?) and a non-degenerate non-negative convex
polynomial P : C?~! — R such that P(0) = 0 and

AD = {(zl,...,zd) e C?: Im(z)) > P(Zz,...,Zd)}.

3 IfQ2 C C4 has C! boundary and D € AL(S2), then Aut(D) contains a one-
parameter subgroup.
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Part (1) is due to Pinchuk [33], Part (2) is due to Bedford—Pinchuk [6], and Part (3)
follows from work of Frankel [14]. In Appendix A we sketch the argument.
For the next result, let

H:={z € C:Im(z) > 0}.

Theorem 7.4 Suppose Q C C? is a bounded convex domain. If either

(1) there exists a non-constant holomorphic map ¢ : D — 092 or
(2) Q has C° boundary and 92 contains a point of infinite type,

then there exists a domain D € AL(Q) such that
D N{(z1,22,0,...,0) : 21,220 € C} = H x H x{(0,...,0)}.

This result follows from arguments in [40] and [5]. In Appendix A we give the
complete argument.

8 Estimates on the Kobayashi Metric

In this section we state and prove some standard estimates for the Kobayashi metric
on a convex domain.
We begin by considering the following example.

Example 8.1 If H := {z € C : Im(z) > 0}, then

[v]
21Im(z)

ky(z;v) =

and

Ky (z Z)—larcosh 1+M
220 =5 2Im(z;) Im(z2)

forz1,z0 € Hand v € C.
Using this simple example and linear projections we establish the next two lemmas.
Theorem 8.2 (Graham [18, Theorem 5]) Suppose 2 C C¢ is a convex domain. Then

lv] ]
— <k Z;0) <
Da ) ~ @V S

for any z € Q and non-zero v € ce.

Proofs of this estimate can also be found in [6, Theorem 4.1] and [15, Theorem
2.2].

@ Springer



The Space of Convex Domains in Complex Euclidean Space 1335

Proof The second inequality is valid without the convexity assumption and simply
follows from considering the map ¢ : D — C defined by

) =z +

v.
3a(z; v)

The first inequality is a consequence of the supporting hyperplane property of
convex domains. Let L := z+C -vand pick & € 0QNL suchthat ||§ — x| = dq(z; v).
Let H be a real hyperplane through & which does not intersect 2. By rotating and

translating we may assume & = 0, z = (z1,0,...,0), H = {(wy, ..., wy) € ce .
Im(w;) = 0}, and Q C {(wy,...,wg) € C? : Im(w;) > 0}. With this choice of
normalization v = (vy, 0, ..., 0) for some v; € C.

Then if P : C? — C is the projection onto the first component we have

|v1] [vi]
ko(z;v) > k 215 v1) = ky(z1; v1) = = '
ez v) = kp) (213 v1) = kp(zis v1) 2Im(z1) — 2|z1]
Since [z1] = ll€ — 2| = da(z; v) and |v1| = ||v]| this completes the proof. -

Essentially the same argument provides a lower bound on the Kobayashi distance.

Lemma 8.3 Suppose Q2 C C? is a convex domain and x, y € Q are distinct. If L is
the complex line containing x, y and & € L \ L N 2, then

L] (e =zl
=1 Kao(x,y).
3 foe (=g )| = Karo

Proof Notice that since x, y, & are all co-linear, both sides of the desired inequality
are invariant under affine transformations. In particular, we can replace 2 by AQ
for some affine map A. Now let H be a real hyperplane through & which does not
intersect €2. Using an affine transformation we may assume § = 0, x = (x1,0,...,0),
y=01,0,...,0),H ={(z1,...,24) e :Im(z1) =0}, and Q2 C {(z1,...,24) €
C? : Im(zy) > 0).

Then if P : C? — C is the projection onto the first coordinate, we have

1 lx; — y1?
Kao(x,y) = Kp)(x1, y1) = Ky (x1, y1) = Earcosh (1 o

>
2Im(xy) Im(yy)
1 —|y1Dh? 1
= L arcosh <1 L (al=1nb > _ —arcosh( bl Il )
2 2 x| Iyl 2 2yl 20x]
3 o (151
= —|log| — ||
2 Iyl
Since ||x — &|| = |x1] and ||y — &|| = |y1| the lemma follows. ]
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9 Continuity of the Kobayashi Metric
Theorem 9.1 If Q,, converges to Q in Xy, then
nli)nolokgn = kg and nll)rréo Kq, = Kq,
locally uniformly on compact sets of Q x C? and Q@ x Q, respectively.

The rest of the section is devoted to the proof of Theorem 9.1. So fix a sequence
€2,, which converges to some 2 in Xy. Let S := {v € e - [lv]| = 1}. To prove the
Theorem, it is enough to prove the uniform convergence of the Kobayashi metrics kg,
on compact subsets of 2 x S.

Fix a compact subset K C €. Then since K x S is compact, it is enough to consider
a sequence (p,, v,) € K x S with

lim (p,, v,) = (p, v)
n—0oo
and show that
lim kg, (pn; va) = ka(p; v).
n—oo

Notice that Proposition 3.3 implies that p, € 2, for n sufficiently large and hence
kg, (Pn; vy) is well defined for n sufficiently large.

Lemma 9.2

lim sup kg, (pn; vn) < ko(p; v).

n—oo

Proof Fix some r € (0, 1) and let D, := {¢ € C: |¢| < r}. Then the set
K ={g(¢): g : D — Q2 holomorphic, g(0) € K, and ¢ € D, )
is compact in €2 since the Kobayashi distance is proper. By Proposition 3.3 there exists
some N, > O suchthat K C ,, foralln > N,.
For every n, let g, : D — € be a holomorphic map and «, € C be such that
&n(0) = py, g;,(O)Otn = v, and
lotn | = k@ (pu» vn)-

Since g,(D;) C I?, we have g,(D,) C , foralln > N,.Thendefineg, , : D — ,
by gn,r(Z) = gn(rz). Then gn,r(o) = DPn and

ap
G 0% = v,
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So

oty |

1
kg, (P vn) < = ;kQ(pn; Up)

whenn > N,.
Since the Kobayashi distance on €2 is proper, €2 is a taut complex manifold. So kg
is continuous by [1, Proposition 2.3.34]. Hence
lim ko(pp: vn) = ka(p; v)
n—oo

and so

. 1. 1
limsup kg, (pn; vp) < —limsupkq(pn, va) = ;ksz(p; V).

|
n—00 ¥ n—oo

Then since r € (0, 1) is arbitrary,

lim sup kg, (pn; vn) < ka(p; v).

n—oo

Lemma 9.3
kqo(p; v) < liminf kg, (pu; va).
n—oo

Proof Let f,, : D — 2, be a holomorphic map and «,, € C be such that f,,(0) = p,,
fn(©@a, = v,, and

lan| = kg, (Pns vn).
Next pick n; — oo such that
o := liminf kg, (pn: vn) = ,-hféo ke, (Pnji vn)) = jlirrgo |otn, |-
Notice that Lemma 9.2 implies

a = liminf kg, (py; v,) < limsup kg, (pn; va) < ko(p; v) < +00.
n—oo n—00

Claim After passing to a subsequence (if necessary), we may assume that fn; con-
verges locally uniformly to a holomorphic map f : D — Q.

Proof of the Claim By Montel’s theorem, it is enough to fix a compact set ¥ C ID and
show that

supsup | fu, ()| < +oo.
yeY j=0
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By Corollary 5.5, there exists holomorphic embedding G, : €, — D? with
G (pn) = 0 and functions 74 : (0, 1] — [0, co) such that

Q, NBy(0; 7—(8)) € G, (D\Zs) € @,y N B4(0; 74(8))

forall§ € (0, 1]and n € N.
Now

sup sup Kpa (G, (fu, (), 0) < sup Kp(y, 0) < +00
yey j=0 yeY

since Gp; (f;(0)) = Gp; (pn;) = 0.Since Ky is a proper distance on D4 this implies
that there exists § > 0 such that

{Gn, (fa, ) 1 j 20,y €Y} CcDI\Z,.
Then

sup sup || f; )| < 74(8) < +o0.
yey j=0

Thus by Montel’s theorem and passing to a subsequence if necessary, we may assume
that f,,; converges locally uniformly to a holomorphic map f : D — €.
Then
f'O)a = lim f, (O)a,, = lim v,, = v.
j—oo " J Jj—>00 J
So

ko(p:v) < la| = lim |ay,| = liminf kg, (pa: va).

Finally, it follows from Lemmas 9.2 and 9.3 that

lim kg, (pn; va) = ka(p; v).
n—oo

10 Continuity of the Bergman Kernel and Metric

The aim of this section is to prove the following.

Theorem 10.1 If 2, converges to Q2 in Xy, then
lim KQ, = KQ
n—o0

locally uniformly on Q x Q in the C* topology.
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As an immediate corollary we obtain

Corollary 10.2 If 2,, converges to Q2 in X, then
lim bq, = bg
n— oo

locally uniformly on Q in the C*° topology.

The main idea in the proof of Theorem 10.1 is to establish uniform estimates on
the Bergman kernel on subdomains of the polydisk and then use the embeddings con-
structed in Sect. 5 to establish uniform estimates on our sequence of convex domains.
The main reason to consider bounded realizations is so that Hsrmander’s L2-estimates
for solutions to the 3-equation can be used.

10.1 Subdomains of the Polydisk
As before,let1 = (1,...,1) and for § > 0 let
—d
Zs=Ul_ @z €D g — 1] < 8]

Notice again that each Z; is a star shaped set with center —1 and {Zs}5~¢ is a neigh-
borhood basis of

Zo=[(z1,...,Zd)Gﬁdizjz_lforsome] ijd}

. —d
inl .
IfDcD%sa domain, then Ramadanov’s theorem (Theorem 2.11) implies that

lim KD\Zs = KD
§—0F

uniformly on compact subsets of D. The next proposition gives a uniform version of
this convergence over all subdomains of .

o —d .
Proposition 10.3 For any compact set K C D"\ Zo and any € > 0 there exists § > 0
such that K C ﬁd \ Zs and

kp(z,2) < kp\z5(z,2) < (1 +€)xp(z, 2)

for all pseudoconvex domains D C DY and z € K N D.
Remark 10.4 The first inequality follows immediately from Eq. (7).

Proposition 10.3 requires the following lemma.
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Lemma 10.5 For any € > 0 there exists r € (0, 1) such that: if D c D¢ is a pseudo-
convex domain and z € By (1; r) N D, then

kp\z,(z,2) < (1 +€)kp(z, 2).
The following argument is a modification of the proof of [24, Theorem 4].
Proof Consider the holomorphic function  : C¢ — C given by

d

I+z;
h(z) = L
63} H 5
j=1
Then 2(1) = 1 and
lh(z)l <274

forevery z € Z;. -
Let V be an open neighborhood of 1 with VN Z; = ¥. Fix x € C;° (CY) satisfying
x=1lonV,0<x <1 on(Cd,andx = 0on Z;. Then fix rg € (0, 1) such that

Bs(1;r9) C V.
Next let
_ 2 d
c:= sup sup |3x(z)|
2D \V ¢eBa(Tiro) Iz =<l
and
a:= max |h(z)|.
zeﬁd\v

Notice that a < 1 since V is an open neighborhood of 1. Then let £k > 1 be a positive
integer such that

(1 +2cd9H?* < (1 +)'/?
and let r € (0, ro) be such that
h@* > (1+e)71/2

forall z € By(1; r).
Now fix a pseudoconvex domain D C D?. We claim that

kp\z,(z,2) < (1 +€)kp(z, 2).
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forallz €e DNB;A;r). If DNBy(1;r) = @ there is nothing to prove, so we may
assume that D N By (1; r) # @.

Fix ¢ € DNBy(1;r). Let f € H>(D \ Z;) be such that £(¢) = 1 and
1@ = 1f 1z, -
Then define o := 5( xf hk)l p. Then « is a smooth closed (1, 0)-form on D with
supp(e) C D\ (Z1 U V).

Since D C D¢, Theorem 4.4.2 in [20] with the plurisubharmonic weight

$(2) = 2d log (”Z . “')

implies that there exists a solution  to the equation du = o on D such that

/ lu(@)* e *@du < 4/ la ()2 e ?@dpu.
b D

Since ¢ <0onD? anda = 0 on Z; UV we have

llull?, < f lu(2))? e ?@dp < 4 f 19x @1 1f @) 1h(z)[* e ?@dp
D D\(Z,UV)
<4cta® || flpz, < +oo. )

Notice that, since

2 2d
/ lu(z)? (—) dp = / lu(z)|? e ?Pdpu < 400,
D lz—¢ll D

we must have u(¢) = 0.

Next consider the function Fy, = x fh* — u. By construction F is holomorphic on
D. Further, using Eq. (9) we have

1Fellp < x|+ lullp < (1 +26a) 1f Iz -

Finally, let g = Fi/h*(¢). Then g € H?(D) and g(¢) = 1. Further,

(1 4 2ca*)? 17l 0+ 2ca*)?
1h(2)2 TIPS
<1 +I2V (@)

2@ < lgl3 < 2@
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Thus

kp\z,(¢,¢) < (1 +€)kp(¢, ).
Since ¢ € D N B, (1; r) was arbitrary, this completes the proof of the lemma. O

Proof of Proposition 10.3 Let a; : D — DD be the one-parameter group of biholomor-
phisms given by

cosh(t)z + sinh(¢)
ar(z) = p .
sinh(¢)z + cosh(¢)
Then a; extends smoothly to D and a;(+ 1) = £ 1. Moreover, if z € D \ {—1}, then

lim a;(z) =1
1—00

and the convergence is uniform on compact subsets of D \ {—1}.
Next let v, : DY — D9 be the one-parameter group

Y =(a,...,a).
Then ¥ extends smoothly to D" and ¥, (& 1) = = 1. Further, if z € D \ Zo, then

lim ¥,(z) =1
—00

and the convergence is uniform on compact subsets of ﬁd \ Zo.
Suppose that K C D \ Zj is compact and € > 0. By Lemma 10.5 there exists

r € (0, 1) such that: if D C D?isa pseudoconvex domain and z € B, (1; r) N D, then
kp\z,(2,2) < (1 + €)kp(z, 2).
Since K C ﬁd \ Zy is compact there exists 7 > 0 such that
Yr(K) C Ba(1; 7).
Further ¥ _7(Z1) is a neighborhood of Zj in ﬁd. So there exists § > 0 such that
Zs Cy-1(Z1).

Now suppose that D C D is a pseudoconvex domain and z € K N D. Then by
Egs. (7) and (2)

kp\z5(2,2) S kp\y_r(z1)(2,2) = |J(¢T)(Z)|2KW(D)\Z. W7 (2), ¥r(2)).
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By construction ¥7(z) € B;(1; r) so by our choice of r and Eq. (2)

Kkp\z5 (2, 2) < [T W)@ (1 + kyp () (VT (2), Y7 (2))
=(1+6ekpl(z,2). O

10.2 Proof of Theorem 10.1

The proof will require a series of lemmas. We start with establishing the result when
2 is bounded.

Lemma 10.6 Suppose that 2, converges to Q2 in Xg. If Q is bounded, then
lim KQ, = KQ
n—o0

locally uniformly on Q x Q in the C* topology.

Proof Without loss of generality we can assume that 0 € 2 and each 2, is bounded.
Then we can pick a sequence r,, € (0, 1) such that lim,_, 7, = 1 and S C Q.
Then the domains D, := r,2, also converge to 2 in X;. Further, the sequence
D, = r,2, is eventually increasing, that is for every n > 0 there exists N > 0 such
that D,, C Dy, forallm > N.So we can apply Ramadanov’s theorem (Theorem 2.11)
and deduce that

lim KD, = KQ
n—od
locally uniformly on € x €2 in the C* topology. However, according to Eq. (2)

2d
kQ, (2, W) = kp, (ryz, raw)r,

and hence
lim KQ, = KQ
n—o0
locally uniformly on € x €2 in the C* topology. O

Lemma 10.7 Suppose that 2,, converges to Q2 in Xg. If K C Q is compact, then

lim sup sup |KQ” (z, w)| < +o00.
n—-oo z,wek

Proof Since K C €2 is compact, there exists € > 0 such that

E::{zeCdzllz—kll < € for some k € K}
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is contained in 2. By Proposition 3.3 there exists N > 0 such that K c Q, for all
n > N. Then Egs. (5), (7), and (2) imply that

2
e, (2, w)|” < kq, (2, kg, (W, W) < KBy o) (2, 2DKBywe) (W, W)
= KBy(0;¢)(0, 0)*

foralln > Nandz, w € K.
So

limsup sup |kgq, (2, w)| < kBy©;6)(0, 0) < +00.
n—-oo zwek

a

Lemma 10.8 Suppose that 2, converges to Q in Xy4. If K C Q is compact and € > 0,
then there exist N, R > 0 such that

k@, (2, 2) < KkQ,nBy0:r) (2, 2) < (1 + €k, (2, 2).

foralln > N,r > R,and z € K.
Proof Fix

Ro > max ||z]| .
zeK

Proposition 3.3 implies that there exists No > 0 such that K C €2, for all n > Nj.
Then Eq. (7) implies that

kQ,(2,2) < kQ,nB,0;r) (2, 2)

for all n > Ng and r > Ry. This gives the left inequality.
For the right inequality, fix holomorphic embeddings F;, : ©2,, — D9 with F,,(z,) =
0 and a function 74 : (0, 1] — [0, c0) satisfying Corollary 5.5. Since F),(z,) = 0 for

alln and K C @, for n > Ny, Montel’s theorem implies that there exists a compact
set K C D9 such that

U F,(K) C K.

n>Ny
By Proposition 10.3 there exists § > 0 such that: KcC ﬁd \ Zs and
kp(z,2) <kp\z5(z,2) < (1 +€)xp(z, 2) (10)
for all domains D D¢ and z € K N D. Define

R := max{Ry, t4(38)}.
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Thenif n > N and r > R, then
F N DN\Zs5) € 2, NB4(0; 7).
Soif z € K, then Egs. (7), (2), and (10) imply

KQnﬂBd(O;")(Z’ 7) < KFH*I(]D)d \Zg)(z’ 7) = |](Fn)(1)|2 KFn(Qn)\Zg(Fn(Z)s Fy(2))

< [J(ED @ (1 + €)k, ) (Fu(2), Fu(2))
= (1 +e)kq,(z,2).

This gives the right inequality. i

Lemma 10.9 Suppose that 2, converges to 2 in X4. Then
lim kg, (z,2) = kq(z, 2)
n—oo

for every z € Q.

Proof Fix z € Q and some Ry > ||z||. Using Proposition 3.3 and passing to a tail of
the sequence (£2,,), N, We can assume that z € €2, for every n. By possibly increasing
Ry we can assume that €2, N B, (0; R) converges to 2 N B, (0; R) for every R > Ry.

Now fix € > 0. By Lemma 10.8, passing to a tail of the sequence (£2,,),en, and
increasing Ro again we can assume that

kg, (2,2) < kQ,nBy0:R) (2, 2) < (1 +€)kq,(z,2)

for all» > 0 and R > Rp. By Ramadanov’s theorem (Theorem 2.11), Eq. (7), and
possibly increasing Ry again, we can also assume that

kQ(z,2) < kanBy©:R) (2, 2) < (1 +€)kq(z, 2)

forall R > Ry.
Now Lemma 10.6 implies that

nllj;o KQ,NBy(0:R) (2, 2) = KQnB,(0:R) (2, 2)

and so

limsupkg,(z,2) < ka(z,z) < (1 +€)liminf kg, (z, 2).
1+€ noo0 n—0o0
Then since € > 0 was arbitrary we see that

lim kg, (z,2) = ka(z, 2).

n—oo

O
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Proof of Theorem 10.1 Notice that the real and imaginary parts of each kg, are har-
monic on €2, x £2,, further Lemma 10.7 implies that the sequence kg, is locally
bounded in the following sense: for every compact set K C € there exists N > 0
such that

sup max |KQn(Z, w)| < 4o00.
n>N LWEK

Then by the Lebesgue dominated convergence theorem and the mean value property
of harmonic functions, to show that kg, converges to kg locally uniformly on € x
in the C* topology, it is enough to verify that kg, converges pointwise to kq.

Fix (zo, wo) € © x . Then pick n; — o0 such that

lim sup |k, (20, wo) — ko (20, wo)| = lim ‘KQ,,.(ZO» wo) — k(20, wo)| -
n—o0 Jj—>00 J

Since the real and imaginary parts of each kg, are harmonic on €, x €, and the
sequence kg, is locally bounded (in the sense above), we can replace n; by a subse-
quence and assume that K, converges to some k locally uniformly on 2 x €2 in the

C° topology (see for instance [2, Theorem 2.6]).
Now consider the functions f; := KQ, (-, wo) and

fi=K(,wy) = lerr;OKQn./ (-, wp).
Then Lemma 10.9 implies
fwo) = jlglgo K, (Wo, wo) = ko (wo, wo). (11D
Further

/Q |fj}2du = kg, (wo, wo) = fj(wo).

nj

So Fatou’s lemma and Eq. (11) imply
. 2 .
[ 1P < timin [ |57 d = timint £ w0) = £ (w0) = k(o wo)
Q J=70 JQ,. j—00
J

In particular, f € H%(S2). Then if g = mf we have g(wo) = 1 and

1 1
f gl dp = —zf R —
Q kq(wo, wo)* Jo kg (wo, wo)
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Then Lemma 2.9 implies that « (-, wg) = f = «xq(:, wp). So

lim sup |k, (20, wo) — ka (20, wo)| = lim ‘KQ,,,(ZO, wo) — k (20, wo)
n—00 Jj—oo /

= |k (z0, wo) — kq(z0, wo)| = 0.

So
lim «gq, (20, wo) = kq (20, Wo).
n—0oo

Since (zo, wo) € 2 x  was arbitrary, we see that kg, converges pointwise to kq.
Then by the remarks at the start of the proof, kg, converges to kg locally uniformly
on 2 x  in the C* topology. O
11 Continuity of the Kdhler-Einstein Metric
Recall that if 2 ¢ C¢ is a C-properly convex domain, then glgg g denotes the unique
Kihler-Einstein metric on 2 with Ricci constant —(d + 1). This section is devoted to

the proof of the following result.

Theorem 11.1 If 2, converges to Q in Xy, then

: Q _  Q
nli)ngo 8kE = 8KE
locally uniformly on Q2 in the C* topology.

Theorem 11.1 is a direct application of the following result.

Proposition 11.2 [5, Proposition 6.1] Let 2, converge to 2 in Xy. Suppose that for
every n, g, is a Kdhler metric on 2, such that:

(1) there exists A > 1, independent of n, such that

1
stzn (z;v) = Ven(@,v) < Akg,(z;v)

forall z € Q, and v € C%,
(2) forevery q > O there exists Cy; > 0, independent of n, such that

sup [ VIR (s, = €.

Then after passing to a subsequence the metrics g, converge locally uniformly in the
C topology to a metric g on Q2.
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Proof of Theorem 11.1 1t is enough to show that every subsequence of (g%};) o
n=

admits a subsequence that converges to g% g locally uniformly on €, in the C*°
topology.
Q;
Fix a subsequence <g KB ) . It follows from Proposition 6.2, Theorems 6.4 and
Jj=0
Q;
6.5 that the metrics g,/ satisfy the assumptions of Proposition 11.2. Hence, there is

Q

a subsequence of (g KB ) that converges locally uniformly in the C* topology to
Jj=0

a complete Kihler metric g, on 2. Further

Qn i Q'l i
Ric = lim Ric(gpp) = lim —(d + 1 ! =—d+1 .
(8o0) e (gKE) e d+ )gKE (d+1go
S0 gco is the unique complete Kidhler—Einstein metric g% £ on £ with Ricci curvature

—(d +1). O

Acknowledgements We thank the referees for a number of comments and corrections which improved the
present work.

Appendix A: Computing Orbit Closures

In this appendix we sketch the proof of Theorem 7.3 and prove Theorem 7.4. We begin
by making the following observation.

Proposition A.1 Suppose 2 C C? is a bounded convex domain and z, € Q, A, €
Aff((Cd) are sequences where A, (2, z,) converges to some (D, 7o) in Xg,0. Then
the following are equivalent:

(1) A, — oo in Aff(CY) (that is, the sequence A, leaves every compact subset of
Aff(CY)),
(2) ba(zn) — 0.
Proof With Q € X; fixed, for any € > 0 the set
{(©2,2) : da(z) = €}

is compact in Xz, 0. So the proposition follows immediately from the fact that the
action of Aff ((Cd) on Xy o is continuous and proper. O

A.1 Strongly Pseudoconvex and Finite Type Domains
It will be convenient to introduce the notion of line type.

Given a function f : C — R with f(0) = 0let v(f) denote the order of vanishing
of f atO.
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Definition A.2 Suppose that 2 c C? is a bounded convex domain with C" boundary
andr: C? > Risa defining function for 2, that is r is a C"* function, Q = {r < 0},
and Vr # 0 in a neighborhood of 2. Then the line type of x € Q2 is

(2, x) := sup {u(r 00):£:C — C? is anon-trivial affine map with £(0) = x} .
Then the line type of Q2 is

sup £(€2, x).
x€dQ2

McNeal [29] proved that if €2 is a bounded convex domain with C*° boundary, then
x € 0K2 has line type m if and only if the DAngelo type at x is also m (see also [7]).

Proposition A.3 Suppose m is a positive integer and @ C C? is a bounded convex
domain with line type m (in particular, Q has C™ boundary). If D € AL(R), then
there exists A € Aff(C?) such that

AD = {(zl,...,zd) eC?: Im(z1) > P(zz,...,zd)},

where P : C~1 — Ris non-degenerate non-negative convex polynomial with P (0) =
0 and deg(P) < m.

For a careful proof of Proposition A.3 see for instance [40, Theorem 10.1] which
is based on arguments in [6,17,30].
Using Proposition A.3, one can deduce the following.

Proposition A.4 Suppose Q2 C C? is a bounded convex domain with strongly pseudo-
convex boundary. If D € AL(S), then there exists A € Aff (C4Y such that

d
AD =1 G-z €€ im@) > Y |5]7 Y
j=2

Proof Notice that € has line type 2 so we can use Proposition A.3. Suppose that
D e AL(L2). By Proposition A.3 there exists Ag € Aff ((Cd) such that

AoD = [(zl,...,zd) e C?:Im(z) > P(Zz,-.-,Zd)},

where P : C¥7! - Ris non-degenerate non-negative convex polynomial with
P(0) =0 and deg(P) < 2.

Since P is non-negative and P(0) = 0, we must have VP(0) = 0. So P is a
homogeneous polynomial of degree two. Since P is real valued, it must be Hermitian
and since P is non-degenerate, it must be positive definite. So by changing A we may

assume that P(z) = 2?22 |Zj |2- -
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A.2 Smoothly Bounded Domains

Proposition A.5 Suppose 2 C C¢ is a bounded convex domain. If @ C C? has C!
boundary and D € AL(S), then Aut(D) contains a one-parameter subgroup.

The following argument is essentially due to Frankel [14].

Proof We will show that there exists zg € D and a non-zero vector v € €4 such that
zo + R-v C D. Then, since D is open and convex,

z+RwvCD
for every z € D. So Aut(D) contains the one-parameter group
u;(z) =z +to.
By definition there exists a sequence A, € Aff (C%) such that A,, — oo in Aff(C%)
and A, 2 converges to D in Xy . Fix some zg € D. By passing to tail of (A,),en We
can assume that zo € A, for every n. Then define z,, := A, l(z9) € €. Notice that

Proposition A.1 implies that lim,_, o o (z,) = O.
Next pick &, € 02 such that [|§, — z, || = da(z,). Notice that the real affine line

En +R-i(§, —z,)
is tangent to €2 at &,. Then, since €2, has C 1 boundary, there exists r,, — oo such that
{zn +it6n —zn) it € (—ry, 1)} C Q.

Let

l
n = ————— (A, (&) — .
U G = 2o )~ 20)

By passing to a subsequence we can assume that lim,_,~, v, = v. We claim that
z0 + R-v C D. Since A, is a complex affine transformation

An(2n + it = 20)) = An(zn) + it An(E) = itAn(z0) = 20 + i1 (An(En) — 20)
=z0+ 1 1An(8n) — zoll vn-

Since A, &, € 0A,,2 we have
0 < dp(zo) = lim 84,0(z0) < liminf [|A,(§,) — zoll .
n— 00 n—00
So

€ := inf [|A,(5,) — zoll
n>1
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is positive and
{zo+tv, 1 t € (—rye, rpe)} C ApQ.

Thus zp + R -v C D which completes the proof by the remarks above. O

A.3 Proof of Theorem 7.4

A result of Frankel will allow us to reduce to lower dimensional cases.

Theorem A.6 (Frankel [15, Theorem 9.3]) Suppose Q2 € Xy and V is a complex
affine k-plane intersecting Q2. Let D = Q NV and suppose there exists affine maps
A, € Aff(V) such that A,(D) converges to a C-properly convex domain Dy, in V
in the local Hausdorf{f topology. Then there exist affine maps B, € Aff (C?) such that
B, (2) converges to Qo in Xy with

Qoo NV = Dy

We will also use the following observation of Fu and Straube.

Lemma A.7 (Fu-Straube [16, Theorem 1.1]) Suppose Q € X,. If there exists a non-
constant holomorphic map I — 9K, then there exists a non-constant affine map

D — 2Q.
LemmaA.8 If Q2 C Cis convex and Q # C, then H C AL(R2).

Proof Since the boundary is differentiable almost everywhere, by applying an initial
affine transformation we can assume that 0 € 92 is a C' point of 32 and the real
axis is tangent to Q at 0. Then let A, € Aff(C) be the affine map z — nz. Then
A, = nQ converges to H in X. O

Proposition A.9 Suppose Q € X, and there exists a non-constant holomorphic map
¢ : D — 0Q, then there exists a domain D € AL(2) such that

DN{(z1,22,0,...,0): 21,220 € C} = H x H x{(0, ..., 0)}.

The following argument comes from [5, Sect. 5].

Proof By Lemma A.7 there exists a non-constant affine map D — 9. Then we can
find a complex affine 2-plane V intersecting €2 such that there exist a non-constant
affine map D — 9(2 N V). Then by Theorem A.6 we can assume that d = 2.

By applying an initial affine transformation to €2, we can assume that

(1) @ C{(z1,22) € C* : Im(z1) > 0},
(2) {0} x D C 3%, and
3) (1,0) € Q.
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For every n, let z,, = (i /n, 0) € Q. Then pick
&, e ({i/n} xC)Noa
such that
160 — zall = inf {[I§ — zall - § € ({i/n} x C) N 92},
Since € contains no complex affine line, we must have

lim sup (1§, — zall < +o00.
n—00

Suppose &, = (i/n, a,). By passing to a subsequence we can suppose that a, — a.
Then

lim [|§, — z,[ = lim |a,| = |af
n— 00 n—oo

and (0, a) € 9. Since {0} x D C 92 and 2 is convex, we also have |a| > 1.
Then consider the matrix
n 0
An= (0 an‘l)'

Let T € Aff(C?) be the affine map

T(z1,22) = (i(z1 — 1), 22).

By construction, T A, (L2, z,,) € K, where Ky C X is the subset from Proposition 4.4.
So by passing to a subsequence we can assume that A, €2 converges to some €21 in X.
Let C2 C C be the open convex set such that

{0} x C, = ({0} x C) N 3.

Then define D, = a1 - C,.
Claim {0} x Dy, C 921 and Q| C 'H x D». O

Proof of Claim If (x, y) € 1, then there exists (x,, y,) € € such that A, (x,, y,) —
(x,y). Thus nx, — x and y,/a, — y.Sox, — Oand y, — ay. Thusy e a~' - C».
So Q) € C xD5. Since 2 C 'H x C we also have Q1 € H x C. So

Qi C(CxDy)N(HxC)="HxD;.
Sincea, ' -Cy x {0} C A,dQanda, ! — a~', the definition of the local Hausdorff

topology implies that {0} x D, C Q. Since Q1 C 'H x D>, we must have {0} x D, C
09]. O
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Let C; C C be the open convex set such that
Cy x {0} = (C x{0}) N Q.

Nextdefine D; = U322 ,nCy. Then Dy is anon-empty convex open cone since 0 € 3C.
Claim: D1 x Dy C ;.

Proof of Claim By construction
nC; x {0} C A,

50, by the definition of the local Hausdorff topology, D1 x {0} C 1. Now suppose
that (x, y) € Dy x D». Since_D1 isacone, (nx, 0) € | for all n. Further, the previous
claim implies that (0, y) € 1. Thus by convexity

1 —1 _
(x,y) = lim ~(nx,0) + —— (0, y) € Q.
n—oon n

Thus D x D, C Q. Since © has complex dimension 2, D; x D C . O

n 0
= (3 0)

Then since D and H are cones we have

Next consider the matrices

Dy x Dy C B,Q21 C 'H xD».
So by passing to a subsequence we can assume that B, 2 converges to some €2, in

X5.
Claim: Qy = D x Ds.

Proof of Claim Notice that D x D, C €2, since D; x D, C B, for any n.
For every z € D> let S; C C be the convex open set such that

S; x {z} = (Cx{z}) N Q.

Then define C; = |J,,cy 7 - S¢- Then C; is a convex open cone since 0 € S.. Further
C, x{z} = (C x{z}) N Q1.

Since D x Dy C Q2 weseethat Dy C (_Zz. Suppose, for a contradiction, that D; * EZ

for some z € D;. Then there exists some w € C,; \D;.Then (tw, z) € 2, forallt > 0.
Then by convexity

1 1 _
(w,0) = lim ~(nw, 2) + ——(0,0) € Q.
n—oon n
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So w € Dj. So we have a contradiction. Thus C, = Dy for all z € D, and hence
Qy = Dy x Dj. O

Next Lemma A.8 implies that H € AL(D;) for j = 1,2. So H x H € AL(Q2).
Then, since

AL(S22) C AL(€21) C AL(L),

we see that H x ‘H € AL(2). O

Proposition A.10 If Q2 C C4 is a bounded convex domain, 3S2 is C*, and there exists
a point of infinite type in 0S2, then there exists a domain D € AL(R2) such that

DN{(z1,22,0,...,0): 21,220 € C} = H x H x{(0, ..., 0)}.

The following argument comes from [40, Sect. 6].

Proof Using Theorem A.6, it is enough to consider the case when d = 2 and show
that

HxH e AL(2).
We first show that there exists a domain
——X
Q e Aff(CY) - @ *

with a non-constant holomorphic map D — 9.
Let

B:={x+iy:|x| <1 |yl<1}cC.

By applying an initial affine transformation to €2, we can assume that 0 € 99 is
a point of infinite type, R x C is tangent to € at 0, and there exists a function f :
[—1,1] x B — [0, 1] such that f(0) = 0 and

QNBxB)={(x+iy,2):y> f(x,2)}.

Since R x C is tangent to €2 at 0, we see that ie; is the inward pointing normal vector
of 02 at 0. Then, since 02 is c2 smooth, there exists » > 0 such that

riet + (rD)-e; C Q.
By scaling €2 we can assume that

iej +D-e; C Q. (12)
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Since 2 is convex and R x C is tangent to Q2 at 0 we have
RxC)NQ=4. (13)
Finally since 0 € 0€2 is a point of infinite type, for every m € N

i O

=0 [z|™
Then we can pick w,, € B\ {0} and €,, — 0 such that | £ (0, w;;)| = €, |w,, | and
[£(0,2)] < é€plz|™ forall |z] < |wpy|.
If €,, = 0 for some m, then f (0, z) = 0 for |z| < |w,,| and so 32 contains the disk
{0,2) : |zl = [wml}.

Then

Wm

1
ze]D)—><0,—z>eaQ

is a non-constant holomorphic map and we can simply define | := Q.
It remains to consider the case when €, > 0 for all m. Let T € Aff(C?) be the
affine map

T(z1,22) = (i(z1 — 1), 22).

Then consider the affine maps A,, € Aff(C?) given by

1 1
Ap(z1,22) = <— —zz> )

21,
70, w) " wy,

We claim that T A,,Q2 € K, for every m, that is

(1) ie; +D-e; C ApQand (C-e3) N ApQ =0,
(2) ie; +D-er C ApQand (i, 1) € dALQ.

First, by Eq. (12)
iey +D-e1 = Ap(f(O0, wyier + f(0, wy) D-e1) C Ay(ier +D-e1) C A2

and by Eq. (13)

(C-e) N ApQ = Ay, (((C ) N sz) —g.

@ Springer



1356 H. Gaussier, A. Zimmer

Since
110, 2] < emlzl™ < e lwml™ = £(0, wn)
when |z| < |w,,| we see that
O, wpier + (wn| D) - e2 C Q.
Since f(0, wy,)ie; € 2, convexity then implies that
FO, wy)ier + (lwy| D) - ex C 2.
Thus
ie1 +D-ey = Ay, (f(o, wpier + (1w D) -e2> C AQ.
Finally, by definition (f (w;,)i, wy) € 92 so
(i, 1) = Ap(f(wp)i, wy) € 0A,22.
Thus TA,,Q2 € K.
Since K> is compact in X;, we can pass to a subsequence and suppose that A,, 2
converges to 1 in X,. We claim that {0} x D C 9. Notice that
(ApQN(BxB)={(x+iy,z2) € BxB:y> fulx,2)},

where

Fulx,2) = f(f(o, W)X, wmz).

LN
f(()a wm)

In particular, if |z| < 1, then

1200, 2) = m]‘(& wmz) - mf(o, wp2)
AL lwz|™ = 1z]™ .
So
Gy, 21zl < 1, |z" <y < 1} C ApQ
and thus

{Gy,2) 1|zl <1, 0 <y <1} C Q.
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In particular, {0} x D C Q4. Since (C-e3) N A2 = @ for all m, we also have
(C-ep) N Q21 = @. Hence {0} x D C 0921.

Now Proposition A.9 implies that H x ‘H € AL(21). Since

AL(21) C AL(R),

we see that H x H € AL(2). O
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