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Abstract
In this mostly expository article, we describe some properties of the space of convex
domains in complex Euclidean space (endowed with the local Hausdorff topology).
In particular, we give careful proofs that the Kobayashi metric, the Bergman ker-
nel/metric, and the Kähler–Einstein metric are all continuous on the space of convex
domains. The group of affine automorphisms acts on this space and we also describe
the orbit closures for some special classes of domains.
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1 Introduction

A convex domain � ⊂ C
d is called C-properly convex if every complex affine map

C → � is constant. Let Xd denote the space of all C-properly convex domains in Cd

endowed with the local Hausdorff topology (see Sect. 3). Then let Xd,0 denote the
space of pointed C-properly convex domains, that is

Xd,0 := {(�, z) : � ∈ Xd , z ∈ �} ⊂ Xd ×C
d .

Next let Aff(Cd) denote the group of affine automorphisms of Cd , that is maps A :
C

d → C
d of the form
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The Space of Convex Domains in Complex Euclidean Space 1313

A(z) = b + Mz

where b ∈ C
d and M ∈ GLd(C). Then Aff(Cd) has a natural continuous action on

Xd and Xd,0 given by

A · � = A� and A · (�, z) = (A�, Az).

In this mostly expository article, we will describe some properties of these spaces and
actions.

The space Xd,0 is quite large—by any reasonable definition it has infinitely many
dimensions, while the group Aff(Cd) is a finite dimensional Lie group. Despite this
difference in size, Frankel proved that the action ofAff(Cd) onXd,0 is nearly transitive,
more precisely:

Theorem 1.1 (Frankel [15]) The action of Aff(Cd) on Xd,0 is co-compact, that is
there exists a compact set K ⊂ Xd,0 such that Aff(Cd) · K = Xd,0.

We provide a proof of this theorem in Sect. 4 and construct an explicit compact
subset Kd,0 ⊂ Xd,0 such that Aff(Cd) · Kd,0 = Xd,0.

In Sects. 5 and 6 we give two applications of Frankel’s result. In Sect. 5, we use
Frankel’s co-compactness theorem to construct holomorphic embeddings of convex
domains with certain uniform properties. In Sect. 6, we use these embeddings to
show that convex domains are holomorphic homogeneous regular domains (see Defi-
nition 6.1). This result was established by Frankel [15], but was recently rediscovered
independently by Kim–Zhang [25] and Nikolov–Andreev [32].

One important property of holomorphic homogeneous regular domains is that the
standard invariant metrics are all complete and uniformly bi-Lipschitz to each other. In
particular, given aC-properly convex domain� ⊂ C

d let b�, c�, g�
K E , and k� denote

the Bergman metric, Carathéodory metric, Kähler–Einstein metric, and Kobayashi
metric, respectively. Then we have the following.

Theorem 1.2 For any d ∈ N there exists A = A(d) > 1 such that: if � ⊂ C
d is

a C-properly convex domain, then the metrics b�, c�, g�
K E , and k� induce proper

geodesic metric spaces and are all A-bi-Lipschitz to each other.

Remark 1.3 It appears that Theorem 1.2 was first observed by Frankel [15].

In Sect. 7, we study the Aff(Cd)-orbit closure of certain types of bounded convex
domains � ⊂ C

d . In particular, given a domain � ∈ Xd , let

Aff(Cd) · �
Xd ⊂ Xd

denote the closure of the Aff(Cd)-orbit of � in Xd . We will show that geometric
properties of ∂� canbemagnifiedbyconsidering limits of the form D = limn→∞ An�

where An ∈ Aff(Cd). For instance, wewill show that if� is a bounded convex domain
with C∞ boundary and ∂� contains a point of infinite type in the sense of D’Angelo,
then there exists some

123



1314 H. Gaussier, A. Zimmer

D ∈ Aff(Cd) · �
Xd

such that ∂ D contains a non-trivial holomorphic disk (that is, there exists a non-
constant map D → ∂ D).

Sections 8–11 are devoted to proving that the four standard invariant metrics
(Bergman, Carathéodory, Kähler–Einstein, and Kobayashi) are continuous on the
space of convex domains. The continuity of Kobayashi metric uses standard tech-
niques and is already known, see for instance the Appendix in [5]. The continuity of
the Kähler–Einstein metric follows from a compactness result for families of Kähler
metrics of quasi-bounded geometry established in [5] using tools from [37]. The con-
tinuity of the Bergman metric in the general setting of C-properly convex domains
appears to be new.

In particular, we will prove the following.

Theorem 1.4 Suppose that �n converges to � in Xd . Then

(1) b� = limn→∞ b�n locally uniform on � in the C∞ topology,
(2) c� = limn→∞ c�n locally uniform on � in the C0 topology,
(3) g�

K E = limn→∞ g�n
K E locally uniform on � in the C∞ topology, and

(4) k� = limn→∞ k�n locally uniform on � in the C0 topology.

Remark 1.5 Here “ f = limn→∞ fn locally uniformly on� in theCk topology”means
that for every compact subset K of �, all the derivatives of fn of order less than or
equal to k converge to the corresponding derivative of f , uniformly on K .

Part (1) is established in Sect. 10. Part (2) is a consequence of Part (4) and deep
results of Lempert. Part (3) is established in Sect. 11. Finally, Part (4) is established
in Sects. 8 and 9.

We end the introduction by explaining two situations where studying the space of
convex domains can lead to insight into the complex geometry of a particular convex
domain.

1.1 Domains with Non-compact Automorphism Groups

There has been considerable interest in the following question (see the survey [21]):

Problem Characterize the bounded pseudoconvex domains with smooth boundary
and non-compact automorphism group.

The first major result in this direction is the Wong–Rosay Theorem [35,36] which
characterizes the ball, up to biholomorphism, as the unique strongly pseudoconvex
domain with non-compact automorphism group.

Later, Bedford–Pinchuk [6] established a similar result for finite type convex
domains. In particular, they proved: if � ⊂ C

d is a smoothly bounded convex domain
with finite type with non-compact automorphism group, then � is biholomorphic to
a domain of the form

{(z, w) ∈ C
d−1 ×C : Re(w) + H(z, z) < 0}, (1)
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The Space of Convex Domains in Complex Euclidean Space 1315

where H is “balanced, weighted homogeneous convex polynomial.” Further, in case
d = 2, H(z, z) = |z|2m for some integer m ≥ 0.

In the same vein, Frankel [14] characterized the bounded symmetric domains as the
only C-properly convex domains in C

d admitting a co-compact, free, discrete action
of a subgroup of its automorphism group.

The results of Bedford–Pinchuk and Frankel have the same (implicit) starting point:
one considers a sequence ϕn of automorphisms of� and a point p0 ∈ �where ϕn(p0)
converges to a boundary point. Using Frankel’s co-compactness theorem one can then
select affine maps An ∈ Aff(Cd) such that the set

{An(�, ϕn(p0)) : n ≥ 0} ⊂ Xd,0

is relatively compact. Then by passing to a subsequence one can assume that
An(�, ϕn(p0)) converges to some (�∞, z∞) in Xd,0. A normal family argument
can then be used to show that a subsequence of the maps

fn = Anϕn : � → An�

converges to a biholomorphism � → �∞. In both cases, the domain �∞ can be
chosen to have special structure which is then analyzed (in highly non-trivial ways!).

1.2 Geometric Properties of Domains

Frankel’s co-compactness theorem can also be used as a starting point to study the
interior complex geometry of a particular domain. The general philosophy is as fol-
lows: suppose that you want to show that a convex domain � does not have some
particular property-(�). One can first try to show that if property-(�) holds for �, then
property-(�) holds for every domain in

Aff(Cd) · �
Xd ⊂ Xd .

One then can try and construct a domain in the orbit closure where it is easier to show
that property-(�) does not hold.

This general scheme was the starting point of the following result of the authors
joint work with Bracci.

Theorem 1.6 [5] Suppose � ⊂ C
d is a convex domain and � has a complete Kähler

metric, with pinched negative holomorphic bisectional curvature outside a (possibly
empty) compact subset of �. Then:

(1) � is a C-properly convex domain,
(2) ∂� does not contain an analytic disk (that is, there does not exist a non-constant

holomorphic map D → ∂�), and
(3) if ∂� is a C∞ smooth hypersurface, then ∂� is of finite type in the sense of

D’Angelo.
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1316 H. Gaussier, A. Zimmer

This theorem is a generalization of a classical result ofYang [38]whoproved that the
bidisk does not admit any complete Kähler metric with negative pinched holomorphic
bisectional curvature.

This general scheme was also used by the second author to show that (2) implies
(1) in the following theorem.

Theorem 1.7 [40] Suppose that � ⊂ C
d is a bounded convex domain with C∞ bound-

ary. Then the following are equivalent:

(1) ∂� has finite type in the sense of D’Angelo,
(2) the Kobayashi metric on � is Gromov hyperbolic.

In some cases, one can apply the opposite argument: given a C-properly convex
domain �, if every domain in

Aff(Cd) · �
Xd \ Aff(Cd) · �

has some particular property-(�), then it is sometimes possible to show that � also
has property-(�). For instance, this strategy was used to show that (1) implies (2) in
Theorem 1.7.

1.3 The Purpose of this Article

In order to use the strategies described in the previous two subsection, one needs
to understand the space of convex domains and its basic properties. Of particular
importance is understanding the types of domains which can be found in the orbit
closures

Aff(Cd) · �
Xd ⊂ Xd

and verifying that the “interior complex geometry” of a domain is continuous on the
space of domains Xd . In this article, we explain some aspects of this theory.

More exposition along these lines can be found in [4,13,15,19,23,33].

1.4 Some Notations

Let us first fix some notations.

(1) For z ∈ C
d let ‖z‖ be the standard Euclidean norm.

(2) For z0 ∈ C
d and r > 0, let

Bd(z0; r) =
{

z ∈ C
d : ‖z − z0‖ < r

}
.

Then let Bd = Bd(0; 1) and D = B1.
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The Space of Convex Domains in Complex Euclidean Space 1317

(3) Given a domain � ⊂ C
d and a point z ∈ �, let δ�(z) denote the distance from z

to the boundary of �, that is

δ�(z) = inf{‖z − ξ‖ : ξ ∈ ∂�}.

Given a non-zero vector v ∈ C
d let δ�(z; v) denote the distance from z to the

boundary of � in the complex direction of v, that is

δ�(z; v) = inf{‖z − ξ‖ : ξ ∈ ∂� ∩ (z + C ·v)}.

2 Invariant Metrics

In this section we define the Bergman, Carathéodory, Kähler–Einstein, and Kobayashi
metrics. These metrics are all known to exist and be non-degenerate on bounded
pseudoconvex domains. To obtain that these metrics also exist on C-properly convex
domains we will use the following observation.

Observation 2.1 Suppose � ⊂ C
d is a convex domain. Then � is C-properly convex

if and only if � is biholomorphic to a bounded domain.

Proof If� is biholomorphic to a bounded domain, then every holomorphic mapC →
� is constant. In particular, every complex affine map C → � is constant and so � is
C-properly convex.

If� isC-properly convex, then� is biholomorphic to a bounded domain by Propo-
sition 6.2.

2.1 The Kobayashi Metric

Definition 2.2 Let z, z′ be two points in a complex manifold M and v ∈ Tz M , where
Tz M is the space of tangent vectors at z.

• The infinitesimal Kobayashi (pseudo-)metric kM (z; v) is given by

kM (z; v) = inf {|α| : ∃ f ∈ Hol(D, M), f (0) = z, d f0α = v} .

• The Kobayashi (pseudo-)distance is the length function defined by

KM (z, z′) = inf

{∫ 1

0
kM (γ (t); γ ′(t))dt

}
,

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → M , joining
z to z′.

The Kobayashi (pseudo-)metric is a complex Finsler (pseudo-)metric that has only
weak regularity in general. It is the largest complex Finsler metric on a complex
manifold that coincides with the Poincaré metric on the unit disk D ⊂ C and that is
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1318 H. Gaussier, A. Zimmer

decreasing under the composition by holomorphic maps, meaning that if f : M → N
is holomorphic, then for every z ∈ M and every v ∈ Tz M ,

kN ( f (z), d fz(v)) ≤ kM (z, v).

When � ⊂ C
d is a bounded domain, it is fairly easy to show that K� is a non-

degenerate metric, but in general it is very difficult to determine if K� is a Cauchy
complete metric. In the convex case, things are easier and we have the following result
of Barth.

Theorem 2.3 (Barth [3]) Suppose � ⊂ C
d is a convex domain. Then the following are

equivalent:

(1) � is C-properly convex,
(2) K� is a non-degenerate metric on �,
(3) (�, K�) is a proper geodesic metric space.

Remark 2.4 Recall that a metric space is called proper if closed bounded sets are
compact. A proper metric space is always Cauchy complete. A metric space (X , d) is
called geodesic if every two points can be joined by a geodesic segment, i.e., for all
x, y ∈ X there exists a map σ : [0, T ] → X with σ(0) = x , σ(T ) = y, and

d(σ (s), σ (t)) = |s − t |
for all s, t ∈ [0, T ].

2.2 The Carathéodory Metric

Definition 2.5 Let z, z′ be two points in a complex manifold M and v ∈ Tz M .

• The infinitesimal Carathéodory (pseudo-)metric kM (z; v) is given by

cM (z; v) = sup {|d fz(v)| : f ∈ Hol(M,D), f (z) = 0} .

• The Carathéodory (pseudo-)distance is the length function defined by

CM (z, z′) = inf

{∫ 1

0
cM (γ (t); γ ′(t))dt

}
,

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → M , joining
z to z′.
Notice that by definition cM ≤ kM and hence CM ≤ KM . A deep result of Lem-

pert [26] shows that on C-properly convex domains the Carathéodory and Kobayashi
metrics coincide.

Theorem 2.6 (Lempert [26]) If � ⊂ C
d is aC-properly convex domain, then c� = k�.

Remark 2.7 To be precise, in [26] the above theorem is only established for bounded
convex domains, but a simple argument extends the result to all C-properly convex
domains (see for instance [8, Lemma 3.1]).
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2.3 The BergmanMetric

Let � be a domain in C
d and let

H2(�) :=
{

f ∈ Hol(�,C) :
∫

�

| f |2dμ < +∞
}

,

where dμ denotes the Lebesgue measure on C
d . If H2(�) �= {0}, then it is a non-

trivial Hilbert space, equipped with the L2-inner product. The Bergman kernel of �,
denoted by κ�, is the function defined on � × � by

κ�(z, w) =
∑
j≥0

φ j (z)φ j (w),

where {φ j , j = 1, 2, . . .} is an orthonormal basis of the Hilbert space H2(�). It is
uniquely defined and does not depend on the choice of an orthonormal basis ofH2(�),
see [22, Chapter 12].

The Bergman (pseudo-)metric is then defined as follows.

Definition 2.8 Suppose � ⊂ C
d is a domain and κ�(z, z) > 0 for all z ∈ �. Then the

Bergman (pseudo-)metric on � is the smooth (1,1)-Hermitian form

b�(z; ·, ·) :=
n∑

j,k=1

b�

jk
(z)dz j ⊗ dzk

where

b�

jk
(z) := ∂2(ζ �→ log κ�(ζ, ζ ))

∂ζ j∂ζk
(z).

According to [22, Corollary 12.7.6, p. 486], b�(z; ·, ·) defines a metric (i.e., is
positive definite), if for every v ∈ C

d \{0}, there exists f ∈ H2(�) such that d fz(v) �=
0. This is the case, for instance, if � is biholomorphic to a bounded domain in Cd .

In the rest of this subsection, we will recall some basic properties of the Bergman
metric and kernel.

We first explain why this definition is invariant under biholomorphisms. When
� : �1 → �2 is a biholomorphism and {φ j , j = 1, 2, . . .} is an orthonormal basis of
the Hilbert space H2(�2), then {J (�)φ j ◦ �, j = 1, 2, . . .} is an orthonormal basis
of the Hilbert space H2(�1), where J (�)(z) := det(∂�i/∂z j (z))i j . Hence

κ�2(�(z),�(w))J (�)(z)J (�)(w) = κ�1(z, w) (2)

for all z, w ∈ �1. Using Eq. (2) it is straightforward to show that

b�2(�(z); d(�)zv, d(�)zw) = b�1(z; v,w)
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1320 H. Gaussier, A. Zimmer

for all z ∈ �1 and v,w ∈ C
d . Thus the Bergman metric is invariant under biholomor-

phisms.
We next state some basic estimates. The Bergman kernel is a reproducing kernel

(see [22, Chapter 12]) and hence

f (z) =
∫

�

f (w)κ�(z, w)dμ(w). (3)

for every f ∈ H2(�) and every z ∈ �. In particular,

κ�(z, z) =
∫

�

κ�(w, z)κ�(z, w) dμ(w) =
∫

�

|κ�(·, z)|2dμ = ‖κ�(·, z)‖22 (4)

for every z ∈ �. Further, if z1, z2 ∈ �, then the Cauchy–Schwarz inequality implies
that

|κ�(z1, z2)| =
∣∣∣∣
∫

�

κ(w, z1)κ(z2, w)dμ(w)

∣∣∣∣ ≤ ‖κ�(·, z1)‖2 ‖κ�(·, z2)‖2

and hence

|κ�(z1, z2)|2 ≤ κ�(z1, z1)κ�(z2, z2). (5)

Next we describe how κ�(·, z) is the solution to a certain optimization problem.
For every z ∈ �, let

I �
0 (z) := inf

{∫

�

| f |2dμ : f ∈ H2(�), f (z) = 1

}

with the convention I �
0 (z) = ∞ if

{
f ∈ H2(�) : f (z) �= 0

} = ∅.
The following lemma gives the existence and the uniqueness, for every z ∈ �, of

a function f ∈ H2(�) such that f (z) = 1 and I �
0 (z) = ∫

�
| f |2dμ.

Lemma 2.9 Suppose � ⊂ C
d is domain, z ∈ �, κ�(z, z) > 0, and f ∈ H2(�). Then

f (z) = 1 and
∫
�

| f |2 dμ = I �
0 (z) if and only if

f = 1

κ�(z, z)
κ�(·, z).

In particular,

κ�(z, z) = 1

I �
0 (z)

.
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The Space of Convex Domains in Complex Euclidean Space 1321

Proof Notice that if f ∈ H2(�) and f (z) = 1, then

1 = f (z) =
∫

�

f (w)κ�(w, z)dμ(w) ≤ ‖ f ‖2 ‖κ�(·, z)‖2 = ‖ f ‖2 κ�(z, z).

Hence

I �
0 (z) ≥ 1

κ�(z, z)
. (6)

(⇐): Define

fz := 1

κ�(z, z)
κ�(·, z).

Then fz(z) = 1. Further Eqs. (6) and (4) imply

I �
0 (z) ≤

∫

�

| fz |2 dμ = 1

κ�(z, z)2

∫

�

|κ�(·, z)|2 dμ = 1

κ�(z, z)
≤ I �

0 (z).

So
∫
�

| fz |2 dμ = I �
0 (z).

(⇒): Suppose that f ∈ H2(�), f (z) = 1, and
∫
�

| f |2 dμ = I �
0 (z). Consider h =

1
2 ( f + fz). Then h(z) = 1 and

I �
0 (z) ≤

∫

�

|h|2 dμ = 1

4

(
‖ f ‖22 + ‖ fz‖22 + 2Re 〈 f , fz〉

)

≤ 1

4

(
‖ f ‖22 + ‖ fz‖22 + 2 ‖ f ‖2 ‖ fz‖2

)
= I �

0 (z).

So we are in the equality case in the Cauchy–Schwarz inequality. Hence f = λ fz for
some λ ∈ C. Since f (z) = 1 = fz(z) we must have λ = 1 and so f = fz .

As a consequence of Lemma 2.9 we have the following estimate.

Lemma 2.10 If �1 ⊂ �2 ⊂ C
d are domains, then

κ�2(z, z) ≤ κ�1(z, z) (7)

for every z ∈ �1.

We end our discussion of Bergman kernel by recalling a classical result of
Ramadanov (see [22, Theorem 12.1.23, p. 428] for the case where � is unbounded).

Theorem 2.11 (Ramadanov [34]) Suppose that

�1 ⊂ �2 ⊂ · · ·
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1322 H. Gaussier, A. Zimmer

is an increasing sequence of domains and � := ∪n≥1�n. Then

κ� = lim
n→∞ κ�n ,

locally uniformly in the C∞ topology on � × �.

2.4 The Kähler–Einstein Metric

Let g := (gi j )i j be a Hermitian metric on a complex manifold M , of class C∞, and
let ωg be the associated symplectic form given in local holomorphic coordinates by

ωg := √−1
n∑

i, j=1

gi j̄dzi ∧ dz̄ j .

The Ricci form of ωg , denoted Ric(ωg), is the (1, 1)-form defined by

Ric(ωg) := −√−1∂∂̄ log(det(gi j )).

Definition 2.12 Let g be a Hermitian metric on a complex manifold M . We say that

• g is aKähler metric (or equivalently that (M, ωg) is aKähler manifold) if dωg = 0
on M ,

• g is an Einstein metric if there exists λ ∈ R such that Ric(ωg) = λωg and we call
λ the Ricci curvature (or Ricci constant) of the Einstein metric g,

• g is a Kähler–Einstein metric if it is both a Kähler and an Einstein metric.

It is a deep result of Cheng and Yau [9] and Mok and Yau [31] that any bounded
pseudoconvex domain � ⊂ C

d admits a unique Kähler–Einstein metric with Ricci
constant equal to −(d + 1) (and hence a unique Kähler–Einstein metric with Ricci
constant λ for every λ < 0).

Since every C-properly convex domain is biholomorphic to a bounded pseudocon-
vex domain, the following definition makes sense.

Definition 2.13 If � ⊂ C
d is a C-properly convex domain, then let g�

K E denote the
unique Kähler–Einstein metric with Ricci constant equal to −(d + 1).

3 Topology onXd

In this section we describe the local Hausdorff topology on the set of C-properly
convex domains.

Let A and B be two sets inCd . The Hausdorff distance between A and B is defined
by

dH (A, B) = max

{
sup
a∈A

inf
b∈B

‖a − b‖ , sup
b∈B

inf
a∈A

‖a − b‖
}

.
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The Space of Convex Domains in Complex Euclidean Space 1323

Despite the name, this does not yield a distance on the set of all sets. For instance,

dH
(
D,D

) = dH (D \{0},D) = dH
(
D \{0},D) = 0.

However, when restricted to compact subsets we do obtain a distance.

Theorem 3.1 LetK be the set of all compact subsets ofCd . Then (K, dH ) is a complete
metric space.

The Hausdorff distance also does not behave very well on the set of all closed sets.
For instance, if

Cn := {x + iy ∈ C : |x | ≤ n and y ≥ 0},

then one would hope that the sequence Cn converges to

C := {x + iy ∈ C : y ≥ 0}.

However,

dH (C, Cn) = ∞

for every n ≥ 0.
These types of examples can be handled by considering the local Hausdorff semi-

norm. For R > 0 and A a closed set in C
d , define A(R) := A ∩ Bd(0; R). Then, we

define the local Hausdorff semi-norms by

d(R)
H (A, B) := dH

(
A(R), B(R)

)
.

Then we say that a sequence Cn of closed sets converges in the local Hausdorff
topology to a closed set C if there exists R0 ≥ 0 such that

lim
n→∞ d(R)

H (Cn, C) = 0

for all R ≥ R0.
Since an open convex domain is completely determined by its closure, we can use

the local Hausdorff topology to obtain a topology on the set of all convex domains.

Definition 3.2 (1) A sequence �n in Xd converges to � in Xd if �n converges to �

in the local Hausdorff topology.
(2) A sequence (�n, zn) in Xd,0 converges to (�, z) in Xd,0 if �n converges to � in

the local Hausdorff topology and zn converges to z.

The following facts about this notion of convergence will be useful.

Proposition 3.3 Suppose that �n converges to � in Xd . Then:

123



1324 H. Gaussier, A. Zimmer

(1) If K ⊂ � is compact, then there exists N ≥ 0 such that K ⊂ �n for all n ≥ N.
(2) If zn ∈ �n and limn→∞ zn = z, then z ∈ �.
(3) If zn ∈ C

d \�n and limn→∞ zn = z, then z ∈ C
d \�.

Proof Part (2) and (3) are immediate from the definition. To provePart (1) fix a compact
set K ⊂ �. Assume for a contradiction that there exist nk → ∞ and xnk ∈ K such
that xnk /∈ �nk for every k ≥ 0. Up to passing to a subsequence we may assume that
limk→∞ xnk = x∞ ∈ K . Since each�nk is convex, each�nk is contained in a real half
space passing through xnk . In particular, if ε > 0 is such that Bd(x∞; ε) ⊂ �, then for
k sufficiently large there is a point ynk ∈ Bd(x∞; ε) such that dEuc(ynk ,�nk ) ≥ ε/2.

Now fix R > ‖x∞‖ + ε so that

lim
n→∞ d(R)

H (�n,�) = 0.

Since ynk ∈ Bd(x∞; ε) ⊂ � and dEuc(ynk ,�nk ) ≥ ε/2, we see that

d(R)
H (�n,�) ≥ ε/2,

which is impossible.

4 Frankel’s Co-compactness Theorem

In this section we show that the action of Aff(Cd) on Xd,0 is proper and co-compact.

Proposition 4.1 The group Aff(Cd) acts properly on Xd,0, that is if K ⊂ Xd,0 is
compact, then the set

{
A ∈ Aff(Cd) : AK ∩ K �= ∅

}

is compact in Aff(Cd).

Proof Suppose not, then there exists a compact set K ⊂ Xd,0 such that the set

{
A ∈ Aff(Cd) : AK ∩ K �= ∅

}

is not compact in Aff(Cd). Then we can find sequences (�n, zn) ∈ K and An ∈
Aff(Cd) such that

(1) An → ∞ in Aff(Cd) (that is, the sequence An leaves every compact subset of
Aff(Cd)),

(2) (�n, zn) converges to some (U1, u1) in K , and
(3) An(�n, zn) converges to some (U2, u2) in K .

For (�, z) ∈ Xd,0 let

I (�, z) = {v ∈ C
d : v = 0 or ‖v‖ ≤ δ�(z; v)}.
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Notice that this is always a compact set.
Since (�n, zn) and An(�n, zn) are both convergent sequences in Xd,0 there exists

0 < c < C such that

cBd ⊂ I (�n, zn) ⊂ C Bd

and

cBd ⊂ I (An�n, Anzn) ⊂ C Bd

for all n ≥ 0.
Now suppose that An(z) = bn + gn(z) where bn ∈ C

d and gn ∈ GLd(C). Then

gn I (�n, zn) = I (An�, Anzn)

and so

c

C
Bd ⊂ gn Bd ⊂ C

c
Bd

for n ≥ 0. Hence {gn : n ∈ N} is relatively compact in GLd(C). Then since zn → u1
and Anzn → u2 we see that {bn : n ∈ N} must be relatively compact in C

d . So
{An : n ∈ N} is relatively compact in Aff(Cd). Hence we have a contradiction.

Theorem 4.2 (Frankel [15]) There exists a compact set K ⊂ Xd,0 such that Aff(Cd) ·
K = Xd,0.

Then rest of the section is devoted to a proof of Frankel’s theorem.

Definition 4.3 Let (e1, . . . , ed) denote the standard basis of Cd . Then, let Kd ⊂ Xd

denote the set of convex domains � ⊂ C
d where D ·e j ⊂ � and

(
e j + SpanC{e j+1, . . . , ed}) ∩ � = ∅

for all j = 1, . . . , d. Also, define

Kd,0 = {(�, 0) : � ∈ Kd}.

Proposition 4.4 The set Kd is a compact subset of Xd .

Proof Suppose �n is a sequence in Kd . For each m, the set

{
K ⊂ Bd(0; m) : K is compact

}

is compact in the Hausdorff topology. So we can find nested subsequences

(n1, j )
∞
j=1 ⊃ (n2, j )

∞
j=1 ⊃ · · ·
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such that

lim
j→∞ �nm, j ∩ Bd(0; m) = Cm,

where Cm is a closed convex domain. Then �nm,m converges in the local Hausdorff
topology to C := ∪∞

m=1Cm .
Let �∞ denote the interior of C . Since D ·e j ⊂ �n for every n, we see that

D ·e j ⊂ C . So C has non-empty interior. So �∞ is non-empty and �∞ = C . Then
�nm,m converges to �∞ in the local Hausdorff topology.

We claim that �∞ ∈ Kd . Since each �n is in Kd , we see that D ·e j ⊂ �∞ and

(
e j + SpanC{e j+1, . . . , ed}) ∩ �∞ = ∅

for all j = 1, . . . , d. So we just have to show that �∞ ∈ Xd . To show this it is enough
to show that every affine map C → �∞ is constant. Let � : C → �∞ be such a map.
Then �(z) = a + bz for some a, b ∈ C

d . Since �∞ is open, convex, and 0 ∈ � we
then see that bz ∈ �∞ for every z ∈ C.

Since

(
e1 + SpanC{e2, . . . , ed}) ∩ �∞ = ∅

we must have b1 = 0. Then since

(
e2 + SpanC{e3, . . . , ed}) ∩ �∞ = ∅

wemust have b2 = 0. Repeating the same argument shows that b3 = b4 = · · · = bd =
0. Thus � is constant and since � was an arbitrary affine map, we see that �∞ ∈ Xd .

Proposition 4.5 For every (�, z) ∈ Xd,0, there exists an affine map A ∈ Aff(Cd)

such that A(�, z) ∈ Kd,0.

Proof Fix (�, z) ∈ Xd,0. By applying an initial affine automorphism we can assume
that z = 0.

We begin by picking points ξ1, . . . , ξd ∈ ∂� as follows: first let ξ1 be a point
in ∂� closest to 0. Then assuming ξ1, . . . , ξ j have already been selected, let Vj

be the maximal complex linear subspace through 0 orthogonal to the complex lines
C ·ξ1, . . . ,C ·ξ j . Then let ξ j+1 be a point in Vj ∩ ∂� closest to 0.

Notice that by construction D ·ξ j ⊂ �,

(
ξ j + Vj+1

) ∩ � = ∅,

and

Vj+1 = SpanC
{
ξ j+1, . . . , ξd

}
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for every 1 ≤ j ≤ d.
Once ξ1, . . . , ξd have been selected let τ j = ∥∥ξ j

∥∥ for 1 ≤ i ≤ d and define
� ∈ GLd(C) to be the linear map

⎛
⎜⎝

τ−1
1

. . .

τ−1
d

⎞
⎟⎠ .

Next let U be the unitary map such that

�U (ξi ) = ei .

Notice that if �′ = (�U )�, then D ·e j ⊂ �′ and
(
e j + SpanC{e j+1, . . . , ed}) ∩ � = ∅

for all 1 ≤ j ≤ d. Hence (�U )(�, 0) ∈ Kd,0.

5 Uniform Bounded Embeddings

In this section we show that every C-properly convex domain is biholomorphic to a
bounded domain (in a uniform way).

5.1 SupportingVectors

Given a convex domain � ∈ Kd , we say that vectors (v1, . . . , vd) are �-supporting if

e j + SpanC{e j+1, . . . , ed} ⊂ {z ∈ C
d : Re 〈z, v j

〉 = 1}

and

� ⊂ {z ∈ C
d : Re 〈z, v j

〉
< 1}

for every j = 1, . . . , d.

Lemma 5.1 If � ∈ Kd , then there exist �-supporting vectors.

Proof Fix 1 ≤ j ≤ d. Since

(
e j + SpanC{e j+1, . . . , ed}) ∩ � = ∅

and � is convex, there exists a real hyperplane Hj such that

(
e j + SpanC{e j+1, . . . , ed}) ⊂ Hj
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1328 H. Gaussier, A. Zimmer

and Hj ∩ � = ∅. Then there exists a vector v j = (v j,1, . . . , v j,d) such that

Hj = {z ∈ C
d : Re 〈z, v j

〉 = Re
〈
e j , v j

〉} = {z ∈ C
d : Re 〈z, v j

〉 = Re v j, j }

and

� ⊂ {z ∈ C
d : Re 〈z, v j

〉
< Re v j, j }

Since 0 ∈ �, we see that 0 < Re v j, j . So v j, j �= 0. Since D ·e j ⊂ �,

∣∣v j, j
∣∣ = Re

〈
v j, j∣∣v j, j

∣∣e j , v j

〉
≤ Re v j, j .

So we must have v j, j ∈ (0,∞) and then we can scale v j so that v j, j = 1. Then

Hj = {z ∈ C
d : Re 〈z, v j

〉 = 1}

and

� ⊂ {z ∈ C
d : Re 〈z, v j

〉
< 1}.

Proposition 5.2 The set

{(�, v1, . . . , vd) : � ∈ Kd , (v1, . . . , vd) is � -supporting}

is compact in Xd ×C
d .

SinceKd is compact inXd , to prove Proposition 5.2 it is enough to establish uniform
bounds on the supporting vectors. This is accomplished in the next lemma.

Lemma 5.3 Suppose that � ∈ Kd and (v1, . . . , vd) are �-supporting. Then

(1) v j, j = 1,
(2) v j,k = 0 if k > j ,
(3)

∣∣v j,k
∣∣ ≤ 1 when k < j .

Proof Since

e j ∈ {z ∈ C
d : Re 〈z, v j

〉 = 1}

we see that Re(v j, j ) = 1. Since D ·e j ⊂ � we see that

1 = Re(v j, j ) ≤ ∣∣v j, j
∣∣ = Re

〈
v j, j∣∣v j, j

∣∣e j , v j

〉
≤ 1.
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Hence v j, j = 1.
If k > j , then

e j + λek ∈
{

z ∈ C
d : Re 〈z, v j

〉 = 1
}

for every λ ∈ C. So

1 = Re
〈
e j + λek, v j

〉 = 1 + λv j,k

and hence v j,k = 0.
If k < j , then D ·ek ⊂ � and so

1 > Re
〈
λek, v j

〉 = λv j,k

for every λ ∈ D. So
∣∣v j,k

∣∣ ≤ 1.

5.2 Uniform Bounded Embeddings

Now we use these supporting vectors to provide nice bounded embeddings.

Proposition 5.4 Suppose that� ∈ Kd and V = (v1, . . . , vd)are�-supporting. Define
the function F�,V : � → C

d by

F�,V (z) =
( 〈z, v1〉
2 − 〈z, v1〉 , . . . ,

〈z, vd〉
2 − 〈z, vd〉

)
.

Then F�,V is a holomorphic embedding and F�,V (�) ⊂ D
d . Moreover, there exists

ε > 0, independent of � and V , such that Bd(0; ε) ⊂ F�,V (�).

Proof Define H := {z ∈ C : Re(z) < 1}. Then the map f : H → D given by

f (z) = z

2 − z

is a biholomorphism. By Lemma 5.3 the vectors (v1, . . . , vd) form a basis of Cd . So
the map g : � → Hd given by

g(z) = (〈z, v1〉 , . . . , 〈z, vd〉)

is a holomorphic embedding. So F�,V = ( f ◦ g1, . . . , f ◦ gd) is a holomorphic
embedding of � into Dd .

The “moreover” part follows from the fact that the set

{(�, v1, . . . , vd) : � ∈ Kd , (v1, . . . , vd) is � -supporting}
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is compact in Xd ×C
d and each domain in � contains the set

ConvHull (D e1 ∪ · · · ∪ D ed) .

Notice that in the context of the last proposition, if zn ∈ � is a sequence with
limn→∞ ‖zn‖ = ∞, then there exists some component of F�,V (zn) that converges
to −1. The next result provides a uniform version of this behavior for convergent
sequences in Xd,0.

Let 1 = (1, . . . , 1) and for δ ≥ 0 let

Zδ = ∪d
j=1

{
(z1, . . . , zd) ∈ D

d : ∣∣z j − (−1)
∣∣ ≤ δ

}
.

Notice that each Zδ is a star shaped set with center −1 and {Zδ}δ>0 is a neighborhood
basis of

Z0 =
{
(z1, . . . , zd) ∈ D

d : z j = −1 for some 1 ≤ j ≤ d
}

in D
d
.

Corollary 5.5 Suppose that (�n, zn) converges to (�∞, z∞) in Xd,0. Then there exist
holomorphic embeddings Fn : �n → D

d and functions τ± : (0, 1] → [0,∞) such
that Fn(zn) = 0 and

�n ∩ Bd(0; τ−(δ)) ⊂ F−1
n

(
D

d \Zδ

)
⊂ �n ∩ Bd(0; τ+(δ))

for all δ ∈ (0, 1] and n ∈ N∪{∞}.
Proof Using Proposition 4.5, we can find a sequence An ∈ Aff(Cd) such that
An(�n, zn) ∈ Kd,0. Since Aff(Cd) acts properly on Xd,0, the set {An : n ∈ N}
must be relatively compact in Aff(Cd). Thus there exist α > 1, β > 0 such that

1

α
‖z‖ − β ≤ ‖Anz‖ ≤ α ‖z‖ + β (8)

for all n ≥ 0 and z ∈ C
d .

For each n, let Vn =
(
v

(n)
1 , . . . , v

(n)
d

)
be (An�n)-supporting. Then let Fn =

FAn�n ,Vn ◦ An . Then by construction Fn(zn) = 0. Since

∣∣∣∣
λ

2 − λ
− (−1)

∣∣∣∣ = 2
1

|2 − λ|

when λ ∈ C \{2}, the existence of the desired functions τ± : (0, 1] → [0,∞) follows
from Eq. (8) and Lemma 5.3.
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6 The HHR Condition and Applications

In this section we recall the definition of HHR domains and their basic properties. We
then observe, from Frankel’s co-compactness theorem, that convex domains are HHR
domains.

Definition 6.1 (Liu et al. [27,28]) A domain � ⊂ C
d is said to be holomorphic homo-

geneous regular (HHR) if there exists s > 0 with the following property: for every
z ∈ � there exists a holomorphic embedding ϕ : � → C

d such that ϕ(z) = 0 and

s Bd ⊂ ϕ(�) ⊂ Bd ,

where Bd ⊂ C
d is the unit ball.

A HHR domain is sometimes called a domain with the uniform squeezing property,
see for instance [39].

Examples of HHR domains include:

(1) T g,n , the Teichmüller space of hyperbolic surfaces with genus g and n punctures
[27],

(2) bounded convex domains or more generally bounded C-convex domains [15,25,
32],

(3) bounded domains where Aut(�) acts co-compactly on �, and
(4) strongly pseudoconvex domains [10,11].

Yeung proved that every HHR domain is pseudoconvex [39, Theorem 1] but not
every pseudoconvex domain is an HHR domain. For instance, Fornæss and Rong have
constructed smoothly bounded pseudoconvex domains inC3 which are not HHR [12].

As a consequence of Frankel’s co-compactness theorem, convex domains satisfy
the HHR condition.

Proposition 6.2 (Frankel [15], Kim–Zhang [25]) For every d ∈ N, there exists sd > 0
such that: if � is aC-properly convex domain, then � is a HHR domain with parameter
s ≥ sd .

Proof Fix a holomorphic embedding G : Dd → Bd such that G(0) = 0. Let ε > 0
be the constant from Proposition 5.4. Then fix s > 0 such that s Bd ⊂ G(ε Bd).

We claim that if � ⊂ C
d is a C-properly convex domain and z ∈ �, then there

exists a holomorphic embedding ϕ : � → C
d such that ϕ(z) = 0 and

s Bd ⊂ ϕ(�) ⊂ Bd .

First by Proposition 4.5 there exists an affine transformation A such that A(�, z) ∈
Kd,0. Then by Proposition 5.4, there exists a holomorphic embedding F : A� → D

d

such that F(0) = 0 and ε Bd ⊂ F(A�). Then simply set ϕ = G ◦ F .

The HHR condition is useful because it implies that the various important interior
geometries on a HHR domain exist and are well behaved.
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Theorem 6.3 (Yeung [39]) If � ⊂ C
d is a HHR domain, then

(1) � is pseudoconvex,
(2) the Bergman, Kobayashi, and Kähler–Einstein metric are proper (and hence com-

plete) geodesic metrics on �.

Theorem 6.4 (Liu et al. [27], Yeung [39]) For any s ∈ (0, 1] and d ∈ N there exists
A > 0 such that: if � ⊂ C

d is a HHR domain with parameter at least s, then the
Kobayashi, Bergman, and Kähler–Einstein metrics are A-bi-Lipschitz on �.

Theorem 6.5 (Yeung [39]) For any s ∈ (0, 1] and d ∈ N there exist I > 0 and
{Cq}q∈N such that: if � ⊂ C

d is a HHR domain with parameter at least s and g is
either the Bergman or Kähler–Einstein metric, then:

(1) The injectivity radius of g is at least I ,
(2) For any q ∈ N

sup
�

∥∥∇q R
∥∥

g ≤ Cq

where R is the curvature tensor of g.

7 Examples of Orbit Closures

Given a domain � ∈ Xd , let

Aff(Cd) · �
Xd ⊂ Xd

denote the closure of the Aff(Cd)-orbit of � in Xd . In this section we compute this
orbit closure for some special examples. We also consider a special subset of this orbit
closure which we call the affine limits.

Definition 7.1 Suppose � ∈ Xd .

(1) A domain D ∈ Xd is an affine limit of � if there exists A j ∈ Aff(Cd) such that

(a) A j → ∞ in Aff(Cd) (that is, the sequence An leaves every compact subset of
Aff(Cd)),

(b) A j� converges to D in Xd .

(2) Let AL(�) ⊂ Aff(Cd) · �
Xd

denote the set of all affine limits of �.

Notice that when � ∈ Xd we have

Aff(Cd) · �
Xd = (Aff(Cd) · �

) ∪ AL(�).

When � is bounded this is a disjoint union, but when � is unbounded it is possible
for the sets to have non-empty intersection.

We first observe that the set of affine limits is non-empty.
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Proposition 7.2 Suppose � ⊂ C
d is a bounded convex domain. If zn ∈ � is a sequence

with limn→∞ δ�(zn) = 0, then there exists a subsequence (zn j ) j≥0 and affine maps

A j ∈ Aff(Cd) such that A j (�, zn j ) converges to some (U , u) in Xd,0. Further,
U ∈ AL(�) and hence AL(�) �= ∅.

Proof This is a simple consequence of Frankel’s co-compactness theorem: by Theo-
rem 4.2 we can find a sequence An ∈ Aff(Cd) such that the set

{An(�, zn) : n ≥ 0} ⊂ Xd,0

is relatively compact in Xd,0. Then by passing to a subsequence we can suppose that
An(�, zn) converges to some (U , u) in Xd,0.

It remains to show thatU ∈ AL(�) or equivalently that {An : n ≥ 0} is unbounded
in Aff(Cd). Suppose An(·) = bn + gn(·) where bn ∈ C

d and gn ∈ GLd(C). Then

δAn�(Anzn) ≤ ‖gn‖op δ�(zn).

Then, since limn→∞ δ�(zn) = 0 and

δU (u) = lim
n→∞ δAn�(Anzn) > 0,

we must have limn→∞ ‖gn‖op = +∞. Hence {An : n ≥ 0} is unbounded in Aff(Cd).

The next two results show that passing to the affine limit “magnifies” certain good
and bad properties.

Theorem 7.3 Suppose � ⊂ C
d is a bounded convex domain.

(1) If � is strongly pseudoconvex domain with C2 boundary and D ∈ AL(�), then
there exists A ∈ Aff(Cd) such that

AD =
⎧
⎨
⎩(z1, . . . , zd) ∈ C

d : Im(z1) >

d∑
j=2

∣∣z j
∣∣2
⎫
⎬
⎭ .

(2) If � ⊂ C
d has C∞ boundary of finite type in the sense of D’Angelo and D ∈

AL(�), then there exist A ∈ Aff(Cd) and a non-degenerate non-negative convex
polynomial P : Cd−1 → R such that P(0) = 0 and

AD =
{
(z1, . . . , zd) ∈ C

d : Im(z1) > P(z2, . . . , zd)
}

.

(3) If � ⊂ C
d has C1 boundary and D ∈ AL(�), then Aut(D) contains a one-

parameter subgroup.
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Part (1) is due to Pinchuk [33], Part (2) is due to Bedford–Pinchuk [6], and Part (3)
follows from work of Frankel [14]. In Appendix A we sketch the argument.

For the next result, let

H := {z ∈ C : Im(z) > 0}.

Theorem 7.4 Suppose � ⊂ C
d is a bounded convex domain. If either

(1) there exists a non-constant holomorphic map ϕ : D → ∂� or
(2) � has C∞ boundary and ∂� contains a point of infinite type,

then there exists a domain D ∈ AL(�) such that

D ∩ {(z1, z2, 0, . . . , 0) : z1, z2 ∈ C} = H×H×{(0, . . . , 0)}.

This result follows from arguments in [40] and [5]. In Appendix A we give the
complete argument.

8 Estimates on the Kobayashi Metric

In this section we state and prove some standard estimates for the Kobayashi metric
on a convex domain.

We begin by considering the following example.

Example 8.1 IfH := {z ∈ C : Im(z) > 0}, then

kH(z; v) = |v|
2 Im(z)

and

KH(z1, z2) = 1

2
arcosh

(
1 + |z1 − z2|2

2 Im(z1) Im(z2)

)

for z1, z2 ∈ H and v ∈ C.

Using this simple example and linear projections we establish the next two lemmas.

Theorem 8.2 (Graham [18, Theorem 5]) Suppose � ⊂ C
d is a convex domain. Then

‖v‖
2δ�(z; v)

≤ k�(z; v) ≤ ‖v‖
δ�(z; v)

for any z ∈ � and non-zero v ∈ C
d .

Proofs of this estimate can also be found in [6, Theorem 4.1] and [15, Theorem
2.2].
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Proof The second inequality is valid without the convexity assumption and simply
follows from considering the map ϕ : D → C defined by

ϕ(λ) = z + λ

δ�(z; v)
v.

The first inequality is a consequence of the supporting hyperplane property of
convex domains. Let L := z+C ·v and pick ξ ∈ ∂�∩L such that ‖ξ − x‖ = δ�(z; v).
Let H be a real hyperplane through ξ which does not intersect �. By rotating and
translating we may assume ξ = 0, z = (z1, 0, . . . , 0), H = {(w1, . . . , wd) ∈ C

d :
Im(w1) = 0}, and � ⊂ {(w1, . . . , wd) ∈ C

d : Im(w1) > 0}. With this choice of
normalization v = (v1, 0, . . . , 0) for some v1 ∈ C.

Then if P : Cd → C is the projection onto the first component we have

k�(z; v) ≥ kP(�)(z1; v1) ≥ kH(z1; v1) = |v1|
2 Im(z1)

≥ |v1|
2 |z1| .

Since |z1| = ‖ξ − z‖ = δ�(z; v) and |v1| = ‖v‖ this completes the proof.

Essentially the same argument provides a lower bound on the Kobayashi distance.

Lemma 8.3 Suppose � ⊂ C
d is a convex domain and x, y ∈ � are distinct. If L is

the complex line containing x, y and ξ ∈ L \ L ∩ �, then

1

2

∣∣∣∣log
(‖x − ξ‖

‖y − ξ‖
)∣∣∣∣ ≤ K�(x, y).

Proof Notice that since x, y, ξ are all co-linear, both sides of the desired inequality
are invariant under affine transformations. In particular, we can replace � by A�

for some affine map A. Now let H be a real hyperplane through ξ which does not
intersect�. Using an affine transformation wemay assume ξ = 0, x = (x1, 0, . . . , 0),
y = (y1, 0, . . . , 0), H = {(z1, . . . , zd) ∈ C

d : Im(z1) = 0}, and� ⊂ {(z1, . . . , zd) ∈
C

d : Im(z1) > 0}.
Then if P : Cd → C is the projection onto the first coordinate, we have

K�(x, y) ≥ K P(�)(x1, y1) ≥ KH(x1, y1) = 1

2
arcosh

(
1 + |x1 − y1|2

2 Im(x1) Im(y1)

)

≥ 1

2
arcosh

(
1 + (|x1| − |y1|)2

2 |x1| |y1|
)

= 1

2
arcosh

( |x1|
2 |y1| + |y1|

2 |x1|
)

= 1

2

∣∣∣∣log
( |x1|

|y1|
)∣∣∣∣ .

Since ‖x − ξ‖ = |x1| and ‖y − ξ‖ = |y1| the lemma follows.
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1336 H. Gaussier, A. Zimmer

9 Continuity of the Kobayashi Metric

Theorem 9.1 If �n converges to � in Xd , then

lim
n→∞ k�n = k� and lim

n→∞ K�n = K�,

locally uniformly on compact sets of � × C
d and � × �, respectively.

The rest of the section is devoted to the proof of Theorem 9.1. So fix a sequence
�n which converges to some � in Xd . Let S := {v ∈ C

d : ‖v‖ = 1}. To prove the
Theorem, it is enough to prove the uniform convergence of the Kobayashi metrics k�n

on compact subsets of � × S.
Fix a compact subset K ⊂ �. Then since K ×S is compact, it is enough to consider

a sequence (pn, vn) ∈ K × S with

lim
n→∞(pn, vn) = (p, v)

and show that

lim
n→∞ k�n (pn; vn) = k�(p; v).

Notice that Proposition 3.3 implies that pn ∈ �n for n sufficiently large and hence
k�n (pn; vn) is well defined for n sufficiently large.

Lemma 9.2

lim sup
n→∞

k�n (pn; vn) ≤ k�(p; v).

Proof Fix some r ∈ (0, 1) and let Dr := {ζ ∈ C : |ζ | < r}. Then the set

K̂ = {g(ζ ) : g : D → � holomorphic, g(0) ∈ K , and ζ ∈ Dr
}

is compact in� since the Kobayashi distance is proper. By Proposition 3.3 there exists
some Nr ≥ 0 such that K̂ ⊂ �n for all n ≥ Nr .

For every n, let gn : D → � be a holomorphic map and αn ∈ C be such that
gn(0) = pn , g′

n(0)αn = vn , and

|αn| = k�(pn, vn).

Since gn(Dr ) ⊂ K̂ , we have gn(Dr ) ⊂ �n for all n ≥ Nr . Then define gn,r : D → �n

by gn,r (z) = gn(r z). Then gn,r (0) = pn and

g′
n,r (0)

αn

r
= vn .
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So

k�n (pn; vn) ≤ |αn|
r

= 1

r
k�(pn; vn)

when n ≥ Nr .
Since the Kobayashi distance on � is proper, � is a taut complex manifold. So k�

is continuous by [1, Proposition 2.3.34]. Hence

lim
n→∞ k�(pn; vn) = k�(p; v)

and so

lim sup
n→∞

k�n (pn; vn) ≤ 1

r
lim sup

n→∞
k�(pn, vn) = 1

r
k�(p; v).

Then since r ∈ (0, 1) is arbitrary,

lim sup
n→∞

k�n (pn; vn) ≤ k�(p; v).

Lemma 9.3

k�(p; v) ≤ lim inf
n→∞ k�n (pn; vn).

Proof Let fn : D → �n be a holomorphic map and αn ∈ C be such that fn(0) = pn ,
f ′
n(0)αn = vn , and

|αn| = k�n (pn; vn).

Next pick n j → ∞ such that

α := lim inf
n→∞ k�n (pn; vn) = lim

j→∞ k�n j
(pn j ; vn j ) = lim

j→∞
∣∣αn j

∣∣ .

Notice that Lemma 9.2 implies

α = lim inf
n→∞ k�n (pn; vn) ≤ lim sup

n→∞
k�n (pn; vn) ≤ k�(p; v) < +∞.

Claim After passing to a subsequence (if necessary), we may assume that fn j con-
verges locally uniformly to a holomorphic map f : D → �.

Proof of the Claim By Montel’s theorem, it is enough to fix a compact set Y ⊂ D and
show that

sup
y∈Y

sup
j≥0

∥∥ fn j (y)
∥∥ < +∞.
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1338 H. Gaussier, A. Zimmer

By Corollary 5.5, there exists holomorphic embedding Gn : �n → D
d with

Gn(pn) = 0 and functions τ± : (0, 1] → [0,∞) such that

�n ∩ Bd(0; τ−(δ)) ⊂ G−1
n

(
D

d \Zδ

) ⊂ �n ∩ Bd(0; τ+(δ))

for all δ ∈ (0, 1] and n ∈ N.
Now

sup
y∈Y

sup
j≥0

K
D

d

(
Gn j ( fn j (y)), 0

) ≤ sup
y∈Y

KD(y, 0) < +∞

since Gn j ( fn j (0)) = Gn j (pn j ) = 0. Since K
D

d is a proper distance onDd this implies
that there exists δ > 0 such that

{
Gn j ( fn j (y)) : j ≥ 0, y ∈ Y

} ⊂ D
d \Zδ.

Then

sup
y∈Y

sup
j≥0

∥∥ fn j (y)
∥∥ ≤ τ+(δ) < +∞.

Thus by Montel’s theorem and passing to a subsequence if necessary, we may assume
that fn j converges locally uniformly to a holomorphic map f : D → �.

Then

f ′(0)α = lim
j→∞ f ′

n j
(0)αn j = lim

j→∞ vn j = v.

So

k�(p; v) ≤ |α| = lim
j→∞

∣∣αn j

∣∣ = lim inf
n→∞ k�n (pn; vn).

Finally, it follows from Lemmas 9.2 and 9.3 that

lim
n→∞ k�n (pn; vn) = k�(p; v).

10 Continuity of the Bergman Kernel andMetric

The aim of this section is to prove the following.

Theorem 10.1 If �n converges to � in Xd , then

lim
n→∞ κ�n = κ�

locally uniformly on � × � in the C∞ topology.

123



The Space of Convex Domains in Complex Euclidean Space 1339

As an immediate corollary we obtain

Corollary 10.2 If �n converges to � in Xd , then

lim
n→∞ b�n = b�

locally uniformly on � in the C∞ topology.

The main idea in the proof of Theorem 10.1 is to establish uniform estimates on
the Bergman kernel on subdomains of the polydisk and then use the embeddings con-
structed in Sect. 5 to establish uniform estimates on our sequence of convex domains.
Themain reason to consider bounded realizations is so that Hörmander’s L2-estimates
for solutions to the ∂-equation can be used.

10.1 Subdomains of the Polydisk

As before, let 1 = (1, . . . , 1) and for δ ≥ 0 let

Zδ = ∪d
j=1

{
(z1, . . . , zd) ∈ D

d : ∣∣z j − (−1)
∣∣ ≤ δ

}
.

Notice again that each Zδ is a star shaped set with center −1 and {Zδ}δ>0 is a neigh-
borhood basis of

Z0 =
{
(z1, . . . , zd) ∈ D

d : z j = −1 for some 1 ≤ j ≤ d
}

in D
d
.

If D ⊂ D
d is a domain, then Ramadanov’s theorem (Theorem 2.11) implies that

lim
δ→0+ κD\Zδ = κD

uniformly on compact subsets of D. The next proposition gives a uniform version of
this convergence over all subdomains of Dd .

Proposition 10.3 For any compact set K ⊂ D
d \ Z0 and any ε > 0 there exists δ > 0

such that K ⊂ D
d \ Zδ and

κD(z, z) ≤ κD\Zδ (z, z) ≤ (1 + ε)κD(z, z)

for all pseudoconvex domains D ⊂ D
d and z ∈ K ∩ D.

Remark 10.4 The first inequality follows immediately from Eq. (7).

Proposition 10.3 requires the following lemma.
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1340 H. Gaussier, A. Zimmer

Lemma 10.5 For any ε > 0 there exists r ∈ (0, 1) such that: if D ⊂ D
d is a pseudo-

convex domain and z ∈ Bd(1; r) ∩ D, then

κD\Z1(z, z) ≤ (1 + ε)κD(z, z).

The following argument is a modification of the proof of [24, Theorem 4].

Proof Consider the holomorphic function h : Cd → C given by

h(z) =
d∏

j=1

1 + z j

2
.

Then h(1) = 1 and

|h(z)| ≤ 2−d

for every z ∈ Z1.
Let V be an open neighborhood of 1with V ∩ Z1 = ∅. Fix χ ∈ C∞

o (Cd) satisfying
χ = 1 on V , 0 ≤ χ ≤ 1 on C

d , and χ = 0 on Z1. Then fix r0 ∈ (0, 1) such that

Bd(1; r0) ⊂ V .

Next let

c := sup
z∈Dd \V

sup
ζ∈Bd (1;r0)

∣∣∂̄χ(z)
∣∣
(

2

‖z − ζ‖
)d

and

a := max
z∈Dd\V

|h(z)| .

Notice that a < 1 since V is an open neighborhood of 1. Then let k ≥ 1 be a positive
integer such that

(1 + 2cak)2 ≤ (1 + ε)1/2

and let r ∈ (0, r0) be such that

|h(z)|2k ≥ (1 + ε)−1/2

for all z ∈ Bd(1; r).
Now fix a pseudoconvex domain D ⊂ D

d . We claim that

κD\Z1(z, z) ≤ (1 + ε)κD(z, z).
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for all z ∈ D ∩ Bd(1; r). If D ∩ Bd(1; r) = ∅ there is nothing to prove, so we may
assume that D ∩ Bd(1; r) �= ∅.

Fix ζ ∈ D ∩ Bd(1; r). Let f ∈ H2(D \ Z1) be such that f (ζ ) = 1 and

I D\Z1
0 (ζ ) = ‖ f ‖2D\Z1

.

Then define α := ∂(χ f hk)|D . Then α is a smooth closed (1, 0)-form on D with

supp(α) ⊂ D \ (Z1 ∪ V ).

Since D ⊂ D
d , Theorem 4.4.2 in [20] with the plurisubharmonic weight

φ(z) = 2d log

(‖z − ζ‖
2

)

implies that there exists a solution u to the equation ∂u = α on D such that

∫

D
|u(z)|2 e−φ(z)dμ ≤ 4

∫

D
|α(z)|2 e−φ(z)dμ.

Since φ < 0 on D
d and α ≡ 0 on Z1 ∪ V we have

‖u‖2D ≤
∫

D
|u(z)|2 e−φ(z)dμ ≤ 4

∫

D\(Z1∪V )

|∂̄χ(z)|2 | f (z)|2 |h(z)|2k e−φ(z)dμ

≤ 4c2a2k ‖ f ‖2D\Z1
< +∞. (9)

Notice that, since

∫

D
|u(z)|2

(
2

‖z − ζ‖
)2d

dμ =
∫

D
|u(z)|2 e−φ(z)dμ < +∞,

we must have u(ζ ) = 0.
Next consider the function Fk = χ f hk − u. By construction Fk is holomorphic on

D. Further, using Eq. (9) we have

‖Fk‖D ≤
∥∥∥χ f hk

∥∥∥
D

+ ‖u‖D ≤ (1 + 2cak) ‖ f ‖D\Z1
.

Finally, let g = Fk/hk(ζ ). Then g ∈ H2(D) and g(ζ ) = 1. Further,

I D
0 (ζ ) ≤ ‖g‖2D ≤ (1 + 2cak)2

|h(ζ )|2k
‖ f ‖D\Z1

= (1 + 2cak)2

|h(ζ )|2k
I D\Z1
0 (ζ )

≤ (1 + ε)I D\Z1
0 (ζ ).
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1342 H. Gaussier, A. Zimmer

Thus

κD\Z1(ζ, ζ ) ≤ (1 + ε)κD(ζ, ζ ).

Since ζ ∈ D ∩ Bd(1; r) was arbitrary, this completes the proof of the lemma.

Proof of Proposition 10.3 Let at : D → D be the one-parameter group of biholomor-
phisms given by

at (z) =
(
cosh(t)z + sinh(t)

sinh(t)z + cosh(t)

)
.

Then at extends smoothly to D and at (± 1) = ± 1. Moreover, if z ∈ D \ {−1}, then

lim
t→∞ at (z) = 1

and the convergence is uniform on compact subsets of D \ {−1}.
Next let ψt : Dd → D

d be the one-parameter group

ψt = (at , . . . , at ).

Then ψt extends smoothly to D
d
and ψt (± 1) = ± 1. Further, if z ∈ D

d \ Z0, then

lim
t→∞ ψt (z) = 1

and the convergence is uniform on compact subsets of D
d \ Z0.

Suppose that K ⊂ D
d \ Z0 is compact and ε > 0. By Lemma 10.5 there exists

r ∈ (0, 1) such that: if D ⊂ D
d is a pseudoconvex domain and z ∈ Bd(1; r)∩ D, then

κD\Z1(z, z) ≤ (1 + ε)κD(z, z).

Since K ⊂ D
d \ Z0 is compact there exists T > 0 such that

ψT (K ) ⊂ Bd(1; r).

Further ψ−T (Z1) is a neighborhood of Z0 in D
d
. So there exists δ > 0 such that

Zδ ⊂ ψ−T (Z1).
Now suppose that D ⊂ D

d is a pseudoconvex domain and z ∈ K ∩ D. Then by
Eqs. (7) and (2)

κD\Zδ (z, z) ≤ κD\ψ−T (Z1)(z, z) = |J (ψT )(z)|2 κψT (D)\Z1(ψT (z), ψT (z)).
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By construction ψT (z) ∈ Bd(1; r) so by our choice of r and Eq. (2)

κD\Zδ (z, z) ≤ |J (ψT )(z)|2 (1 + ε)κψT (D)(ψT (z), ψT (z))

= (1 + ε)κD(z, z).

10.2 Proof of Theorem 10.1

The proof will require a series of lemmas. We start with establishing the result when
� is bounded.

Lemma 10.6 Suppose that �n converges to � in Xd . If � is bounded, then

lim
n→∞ κ�n = κ�

locally uniformly on � × � in the C∞ topology.

Proof Without loss of generality we can assume that 0 ∈ � and each �n is bounded.
Then we can pick a sequence rn ∈ (0, 1) such that limn→∞ rn = 1 and rn�n ⊂ �.
Then the domains Dn := rn�n also converge to � in Xd . Further, the sequence
Dn := rn�n is eventually increasing, that is for every n ≥ 0 there exists N ≥ 0 such
that Dn ⊂ Dm for all m ≥ N . So we can apply Ramadanov’s theorem (Theorem 2.11)
and deduce that

lim
n→∞ κDn = κ�

locally uniformly on � × � in the C∞ topology. However, according to Eq. (2)

κ�n (z, w) = κDn (rnz, rnw)r2d
n

and hence

lim
n→∞ κ�n = κ�

locally uniformly on � × � in the C∞ topology.

Lemma 10.7 Suppose that �n converges to � in Xd . If K ⊂ � is compact, then

lim sup
n→∞

sup
z,w∈K

∣∣κ�n (z, w)
∣∣ < +∞.

Proof Since K ⊂ � is compact, there exists ε > 0 such that

K̂ := {z ∈ C
d : ‖z − k‖ ≤ ε for some k ∈ K }
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1344 H. Gaussier, A. Zimmer

is contained in �. By Proposition 3.3 there exists N ≥ 0 such that K̂ ⊂ �n for all
n ≥ N . Then Eqs. (5), (7), and (2) imply that

∣∣κ�n (z, w)
∣∣2 ≤ κ�n (z, z)κ�n (w,w) ≤ κBd (z;ε)(z, z)κBd (w;ε)(w,w)

= κBd (0;ε)(0, 0)2

for all n ≥ N and z, w ∈ K .
So

lim sup
n→∞

sup
z,w∈K

∣∣κ�n (z, w)
∣∣ ≤ κBd (0;ε)(0, 0) < +∞.

Lemma 10.8 Suppose that �n converges to � in Xd . If K ⊂ � is compact and ε > 0,
then there exist N , R > 0 such that

κ�n (z, z) ≤ κ�n∩Bd (0;r)(z, z) ≤ (1 + ε)κ�n (z, z).

for all n ≥ N, r ≥ R, and z ∈ K .

Proof Fix

R0 > max
z∈K

‖z‖ .

Proposition 3.3 implies that there exists N0 ≥ 0 such that K ⊂ �n for all n ≥ N0.
Then Eq. (7) implies that

κ�n (z, z) ≤ κ�n∩Bd (0;r)(z, z)

for all n ≥ N0 and r ≥ R0. This gives the left inequality.
For the right inequality, fix holomorphic embeddings Fn : �n → D

d with Fn(zn) =
0 and a function τ+ : (0, 1] → [0,∞) satisfying Corollary 5.5. Since Fn(zn) = 0 for
all n and K ⊂ �n for n ≥ N0, Montel’s theorem implies that there exists a compact
set K̂ ⊂ D

d such that

⋃
n≥N0

Fn(K ) ⊂ K̂ .

By Proposition 10.3 there exists δ > 0 such that: K̂ ⊂ D
d \ Zδ and

κD(z, z) ≤ κD\Zδ (z, z) ≤ (1 + ε)κD(z, z) (10)

for all domains D ⊂ D
d and z ∈ K̂ ∩ D. Define

R := max{R0, τ+(δ)}.

123



The Space of Convex Domains in Complex Euclidean Space 1345

Then if n ≥ N and r ≥ R, then

F−1
n (Dd \Zδ) ⊂ �n ∩ Bd(0; r).

So if z ∈ K , then Eqs. (7), (2), and (10) imply

κ�n∩Bd (0;r)(z, z) ≤ κF−1
n (Dd \Zδ)

(z, z) = |J (Fn)(z)|2 κFn(�n)\Zδ
(Fn(z), Fn(z))

≤ |J (Fn)(z)|2 (1 + ε)κFn(�n)(Fn(z), Fn(z))

= (1 + ε)κ�n (z, z).

This gives the right inequality.

Lemma 10.9 Suppose that �n converges to � in Xd . Then

lim
n→∞ κ�n (z, z) = κ�(z, z)

for every z ∈ �.

Proof Fix z ∈ � and some R0 > ‖z‖. Using Proposition 3.3 and passing to a tail of
the sequence (�n)n∈N, we can assume that z ∈ �n for every n. By possibly increasing
R0 we can assume that �n ∩ Bd(0; R) converges to � ∩ Bd(0; R) for every R ≥ R0.

Now fix ε > 0. By Lemma 10.8, passing to a tail of the sequence (�n)n∈N, and
increasing R0 again we can assume that

κ�n (z, z) ≤ κ�n∩Bd (0;R)(z, z) ≤ (1 + ε)κ�n (z, z)

for all n ≥ 0 and R ≥ R0. By Ramadanov’s theorem (Theorem 2.11), Eq. (7), and
possibly increasing R0 again, we can also assume that

κ�(z, z) ≤ κ�∩Bd (0;R)(z, z) ≤ (1 + ε)κ�(z, z)

for all R ≥ R0.
Now Lemma 10.6 implies that

lim
n→∞ κ�n∩Bd (0;R)(z, z) = κ�∩Bd (0;R)(z, z)

and so

1

1 + ε
lim sup

n→∞
κ�n (z, z) ≤ κ�(z, z) ≤ (1 + ε) lim inf

n→∞ κ�n (z, z).

Then since ε > 0 was arbitrary we see that

lim
n→∞ κ�n (z, z) = κ�(z, z).
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Proof of Theorem 10.1 Notice that the real and imaginary parts of each κ�n are har-
monic on �n × �n , further Lemma 10.7 implies that the sequence κ�n is locally
bounded in the following sense: for every compact set K ⊂ � there exists N ≥ 0
such that

sup
n≥N

max
z,w∈K

∣∣κ�n (z, w)
∣∣ < +∞.

Then by the Lebesgue dominated convergence theorem and the mean value property
of harmonic functions, to show that κ�n converges to κ� locally uniformly on � × �

in the C∞ topology, it is enough to verify that κ�n converges pointwise to κ�.
Fix (z0, w0) ∈ � × �. Then pick n j → ∞ such that

lim sup
n→∞

∣∣κ�n (z0, w0) − κ�(z0, w0)
∣∣ = lim

j→∞

∣∣∣κ�n j
(z0, w0) − κ�(z0, w0)

∣∣∣ .

Since the real and imaginary parts of each κ�n are harmonic on �n × �n and the
sequence κ�n is locally bounded (in the sense above), we can replace n j by a subse-
quence and assume that κ�n j

converges to some κ locally uniformly on � × � in the
C∞ topology (see for instance [2, Theorem 2.6]).

Now consider the functions f j := κ�n j
(·, w0) and

f := κ(·, w0) = lim
j→∞ κ�n j

(·, w0).

Then Lemma 10.9 implies

f (w0) = lim
j→∞ κ�n j

(w0, w0) = κ�(w0, w0). (11)

Further

∫

�n j

∣∣ f j
∣∣2 dμ = κ�n j

(w0, w0) = f j (w0).

So Fatou’s lemma and Eq. (11) imply

∫

�

| f |2 dμ ≤ lim inf
j→∞

∫

�n j

∣∣ f j
∣∣2 dμ = lim inf

j→∞ f j (w0) = f (w0) = κ�(w0, w0).

In particular, f ∈ H2(�). Then if g = 1
κ�(w0,w0)

f we have g(w0) = 1 and

∫

�

|g|2 dμ = 1

κ�(w0, w0)2

∫

�

| f |2 dμ ≤ 1

κ�(w0, w0)
.
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Then Lemma 2.9 implies that κ(·, w0) = f = κ�(·, w0). So

lim sup
n→∞

∣∣κ�n (z0, w0) − κ�(z0, w0)
∣∣ = lim

j→∞

∣∣∣κ�n j
(z0, w0) − κ�(z0, w0)

∣∣∣
= |κ(z0, w0) − κ�(z0, w0)| = 0.

So

lim
n→∞ κ�n (z0, w0) = κ�(z0, w0).

Since (z0, w0) ∈ � × � was arbitrary, we see that κ�n converges pointwise to κ�.
Then by the remarks at the start of the proof, κ�n converges to κ� locally uniformly
on � × � in the C∞ topology.

11 Continuity of the Kähler–Einstein Metric

Recall that if � ⊂ C
d is a C-properly convex domain, then g�

K E denotes the unique
Kähler–Einstein metric on � with Ricci constant −(d + 1). This section is devoted to
the proof of the following result.

Theorem 11.1 If �n converges to � in Xd , then

lim
n→∞ g�n

K E = g�
K E

locally uniformly on � in the C∞ topology.

Theorem 11.1 is a direct application of the following result.

Proposition 11.2 [5, Proposition 6.1] Let �n converge to � in Xd . Suppose that for
every n, gn is a Kähler metric on �n such that:

(1) there exists A > 1, independent of n, such that

1

A
k�n (z; v) ≤ √gn(z)(v, v) ≤ Ak�n (z; v)

for all z ∈ �n and v ∈ C
d ,

(2) for every q ≥ 0 there exists Cq > 0, independent of n, such that

sup
�n

∥∥∇q R(gn)
∥∥

gn
≤ Cq .

Then after passing to a subsequence the metrics gn converge locally uniformly in the
C∞ topology to a metric g∞ on �.
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Proof of Theorem 11.1 It is enough to show that every subsequence of
(

g�n
K E

)
n≥0

admits a subsequence that converges to g�
K E locally uniformly on �, in the C∞

topology.

Fix a subsequence

(
g

�n j
K E

)

j≥0
. It follows from Proposition 6.2, Theorems 6.4 and

6.5 that the metrics g
�n j
K E satisfy the assumptions of Proposition 11.2. Hence, there is

a subsequence of

(
g

�n j
K E

)

j≥0
that converges locally uniformly in the C∞ topology to

a complete Kähler metric g∞ on �. Further

Ric(g∞) = lim
j→∞Ric(g

�n j
K E ) = lim

j→∞ −(d + 1)g
�n j
K E = −(d + 1)g∞.

So g∞ is the unique complete Kähler–Einstein metric g�
K E on � with Ricci curvature

−(d + 1).
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Appendix A: Computing Orbit Closures

In this appendix we sketch the proof of Theorem 7.3 and prove Theorem 7.4.We begin
by making the following observation.

Proposition A.1 Suppose � ⊂ C
d is a bounded convex domain and zn ∈ �, An ∈

Aff(Cd) are sequences where An(�, zn) converges to some (D, z∞) in Xd,0. Then
the following are equivalent:

(1) An → ∞ in Aff(Cd) (that is, the sequence An leaves every compact subset of
Aff(Cd)),

(2) δ�(zn) → 0.

Proof With � ∈ Xd fixed, for any ε > 0 the set

{(�, z) : δ�(z) ≥ ε}

is compact in Xd,0. So the proposition follows immediately from the fact that the
action of Aff(Cd) on Xd,0 is continuous and proper.

A.1 Strongly Pseudoconvex and Finite Type Domains

It will be convenient to introduce the notion of line type.
Given a function f : C → R with f (0) = 0 let ν( f ) denote the order of vanishing

of f at 0.
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Definition A.2 Suppose that � ⊂ C
d is a bounded convex domain with Cm boundary

and r : Cd → R is a defining function for �, that is r is a Cm function, � = {r < 0},
and ∇r �= 0 in a neighborhood of ∂�. Then the line type of x ∈ ∂� is

�(�, x) := sup
{
μ(r ◦ �) : � : C → C

d is a non-trivial affine map with �(0) = x
}

.

Then the line type of � is

sup
x∈∂�

�(�, x).

McNeal [29] proved that if � is a bounded convex domain with C∞ boundary, then
x ∈ ∂� has line type m if and only if the DAngelo type at x is also m (see also [7]).

Proposition A.3 Suppose m is a positive integer and � ⊂ C
d is a bounded convex

domain with line type m (in particular, � has Cm boundary). If D ∈ AL(�), then
there exists A ∈ Aff(Cd) such that

AD =
{
(z1, . . . , zd) ∈ C

d : Im(z1) > P(z2, . . . , zd)
}

,

where P : Cd−1 → R is non-degenerate non-negative convex polynomial with P(0) =
0 and deg(P) ≤ m.

For a careful proof of Proposition A.3 see for instance [40, Theorem 10.1] which
is based on arguments in [6,17,30].

Using Proposition A.3, one can deduce the following.

Proposition A.4 Suppose � ⊂ C
d is a bounded convex domain with strongly pseudo-

convex boundary. If D ∈ AL(�), then there exists A ∈ Aff(Cd) such that

AD =
⎧⎨
⎩(z1, . . . , zd) ∈ C

d : Im(z1) >

d∑
j=2

∣∣z j
∣∣2
⎫⎬
⎭ .

Proof Notice that � has line type 2 so we can use Proposition A.3. Suppose that
D ∈ AL(�). By Proposition A.3 there exists A0 ∈ Aff(Cd) such that

A0D =
{
(z1, . . . , zd) ∈ C

d : Im(z1) > P(z2, . . . , zd)
}

,

where P : C
d−1 → R is non-degenerate non-negative convex polynomial with

P(0) = 0 and deg(P) ≤ 2.
Since P is non-negative and P(0) = 0, we must have ∇ P(0) = 0. So P is a

homogeneous polynomial of degree two. Since P is real valued, it must be Hermitian
and since P is non-degenerate, it must be positive definite. So by changing A we may
assume that P(z) =∑d

j=2

∣∣z j
∣∣2.
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A.2 Smoothly Bounded Domains

Proposition A.5 Suppose � ⊂ C
d is a bounded convex domain. If � ⊂ C

d has C1
boundary and D ∈ AL(�), then Aut(D) contains a one-parameter subgroup.

The following argument is essentially due to Frankel [14].

Proof We will show that there exists z0 ∈ D and a non-zero vector v ∈ C
d such that

z0 + R ·v ⊂ D. Then, since D is open and convex,

z + R ·v ⊂ D

for every z ∈ D. So Aut(D) contains the one-parameter group

ut (z) = z + tv.

By definition there exists a sequence An ∈ Aff(Cd) such that An → ∞ in Aff(Cd)

and An� converges to D in Xd . Fix some z0 ∈ D. By passing to tail of (An)n∈N we
can assume that z0 ∈ An� for every n. Then define zn := A−1

n (z0) ∈ �. Notice that
Proposition A.1 implies that limn→∞ δ�(zn) = 0.

Next pick ξn ∈ ∂� such that ‖ξn − zn‖ = δ�(zn). Notice that the real affine line

ξn + R ·i(ξn − zn)

is tangent to ∂� at ξn . Then, since�n has C1 boundary, there exists rn → ∞ such that

{zn + i t(ξn − zn) : t ∈ (−rn, rn)} ⊂ �.

Let

vn := i

‖An(ξn) − z0‖ (An(ξn) − z0).

By passing to a subsequence we can assume that limn→∞ vn = v. We claim that
z0 + R ·v ⊂ D. Since An is a complex affine transformation

An

(
zn + i t(ξn − zn)

)
= An(zn) + i t An(ξn) − i t An(zn) = z0 + i t(An(ξn) − z0)

= z0 + t ‖An(ξn) − z0‖ vn .

Since Anξn ∈ ∂ An� we have

0 < δD(z0) = lim
n→∞ δAn�(z0) ≤ lim inf

n→∞ ‖An(ξn) − z0‖ .

So

ε := inf
n≥1

‖An(ξn) − z0‖
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is positive and

{z0 + tvn : t ∈ (−rnε, rnε)} ⊂ An�.

Thus z0 + R ·v ⊂ D which completes the proof by the remarks above.

A.3 Proof of Theorem 7.4

A result of Frankel will allow us to reduce to lower dimensional cases.

Theorem A.6 (Frankel [15, Theorem 9.3]) Suppose � ∈ Xd and V is a complex
affine k-plane intersecting �. Let D = � ∩ V and suppose there exists affine maps
An ∈ Aff(V ) such that An(D) converges to a C-properly convex domain D∞ in V
in the local Hausdorff topology. Then there exist affine maps Bn ∈ Aff(Cd) such that
Bn(�) converges to �∞ in Xd with

�∞ ∩ V = D∞.

We will also use the following observation of Fu and Straube.

Lemma A.7 (Fu-Straube [16, Theorem 1.1]) Suppose � ∈ Xd . If there exists a non-
constant holomorphic map D → ∂�, then there exists a non-constant affine map
D → ∂�.

Lemma A.8 If � ⊂ C is convex and � �= C, then H ⊂ AL(�).

Proof Since the boundary is differentiable almost everywhere, by applying an initial
affine transformation we can assume that 0 ∈ ∂� is a C1 point of ∂� and the real
axis is tangent to � at 0. Then let An ∈ Aff(C) be the affine map z → nz. Then
An� = n� converges toH in X1.

Proposition A.9 Suppose � ∈ Xd and there exists a non-constant holomorphic map
ϕ : D → ∂�, then there exists a domain D ∈ AL(�) such that

D ∩ {(z1, z2, 0, . . . , 0) : z1, z2 ∈ C} = H×H×{(0, . . . , 0)}.

The following argument comes from [5, Sect. 5].

Proof By Lemma A.7 there exists a non-constant affine map D → ∂�. Then we can
find a complex affine 2-plane V intersecting � such that there exist a non-constant
affine map D → ∂(� ∩ V ). Then by Theorem A.6 we can assume that d = 2.

By applying an initial affine transformation to �, we can assume that

(1) � ⊂ {(z1, z2) ∈ C
2 : Im(z1) > 0},

(2) {0} × D ⊂ ∂�, and
(3) (i, 0) ∈ �.
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For every n, let zn = (i/n, 0) ∈ �. Then pick

ξn ∈ ({i/n} × C) ∩ ∂�

such that

‖ξn − zn‖ = inf {‖ξ − zn‖ : ξ ∈ ({i/n} × C) ∩ ∂�} .

Since � contains no complex affine line, we must have

lim sup
n→∞

‖ξn − zn‖ < +∞.

Suppose ξn = (i/n, an). By passing to a subsequence we can suppose that an → a.
Then

lim
n→∞ ‖ξn − zn‖ = lim

n→∞ |an| = |a|

and (0, a) ∈ ∂�. Since {0} × D ⊂ ∂� and � is convex, we also have |a| ≥ 1.
Then consider the matrix

An =
(

n 0
0 a−1

n

)
.

Let T ∈ Aff(C2) be the affine map

T (z1, z2) = (i(z1 − i), z2).

By construction, T An(�, zn) ∈ K2 whereK2 ⊂ X2 is the subset fromProposition 4.4.
So by passing to a subsequence we can assume that An� converges to some�1 inX2.

Let C2 ⊂ C be the open convex set such that

{0} × C2 = ({0} × C) ∩ ∂�.

Then define D2 = a−1 · C2.
Claim {0} × D2 ⊂ ∂�1 and �1 ⊂ H×D2.

Proof of Claim If (x, y) ∈ �1, then there exists (xn, yn) ∈ � such that An(xn, yn) →
(x, y). Thus nxn → x and yn/an → y. So xn → 0 and yn → ay. Thus y ∈ a−1 · C2.
So �1 ⊂ C×D2. Since � ⊂ H×C we also have �1 ⊂ H×C. So

�1 ⊂ (C×D2) ∩ (H×C) = H×D2.

Since a−1
n ·C2×{0} ⊂ An∂� and a−1

n → a−1, the definition of the local Hausdorff
topology implies that {0}× D2 ⊂ �1. Since �1 ⊂ H×D2, we must have {0}× D2 ⊂
∂�1.
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Let C1 ⊂ C be the open convex set such that

C1 × {0} = (C×{0}) ∩ �.

Next define D1 = ∪∞
n=1nC1. Then D1 is a non-empty convex open cone since 0 ∈ ∂C1.

Claim: D1 × D2 ⊂ �1.

Proof of Claim By construction

nC1 × {0} ⊂ An�

so, by the definition of the local Hausdorff topology, D1 × {0} ⊂ �1. Now suppose
that (x, y) ∈ D1× D2. Since D1 is a cone, (nx, 0) ∈ �1 for all n. Further, the previous
claim implies that (0, y) ∈ �1. Thus by convexity

(x, y) = lim
n→∞

1

n
(nx, 0) + n − 1

n
(0, y) ∈ �1.

Thus D1 × D2 ⊂ �1. Since �1 has complex dimension 2, D1 × D2 ⊂ �1.

Next consider the matrices

Bn =
(

n 0
0 1

)
.

Then since D1 and H are cones we have

D1 × D2 ⊂ Bn�1 ⊂ H×D2.

So by passing to a subsequence we can assume that Bn�1 converges to some �2 in
X2.
Claim: �2 = D1 × D2.

Proof of Claim Notice that D1 × D2 ⊂ �2 since D1 × D2 ⊂ Bn�1 for any n.
For every z ∈ D2 let Sz ⊂ C be the convex open set such that

Sz × {z} = (C×{z}) ∩ �1.

Then define Cz =⋃n∈N n · Sz . Then Cz is a convex open cone since 0 ∈ Sz . Further

Cz ×{z} = (C×{z}) ∩ �2.

Since D1× D2 ⊂ �2 we see that D1 ⊂ Cz . Suppose, for a contradiction, that D1 �= Cz

for some z ∈ D2. Then there exists somew ∈ Cz \D1. Then (tw, z) ∈ �2 for all t > 0.
Then by convexity

(w, 0) = lim
n→∞

1

n
(nw, z) + n − 1

n
(0, 0) ∈ �2.
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So w ∈ D1. So we have a contradiction. Thus Cz = D1 for all z ∈ D2 and hence
�2 = D1 × D2.

Next Lemma A.8 implies that H ∈ AL(D j ) for j = 1, 2. So H×H ∈ AL(�2).
Then, since

AL(�2) ⊂ AL(�1) ⊂ AL(�),

we see that H×H ∈ AL(�).

Proposition A.10 If � ⊂ C
d is a bounded convex domain, ∂� is C∞, and there exists

a point of infinite type in ∂�, then there exists a domain D ∈ AL(�) such that

D ∩ {(z1, z2, 0, . . . , 0) : z1, z2 ∈ C} = H×H×{(0, . . . , 0)}.

The following argument comes from [40, Sect. 6].

Proof Using Theorem A.6, it is enough to consider the case when d = 2 and show
that

H×H ∈ AL(�).

We first show that there exists a domain

�1 ∈ Aff(Cd) · �
Xd

with a non-constant holomorphic map D → ∂�1.
Let

B := {x + iy : |x | ≤ 1, |y| ≤ 1} ⊂ C .

By applying an initial affine transformation to �, we can assume that 0 ∈ ∂� is
a point of infinite type, R×C is tangent to � at 0, and there exists a function f :
[−1, 1] × B → [0, 1] such that f (0) = 0 and

� ∩ (B × B) = {(x + iy, z) : y > f (x, z)} .

Since R×C is tangent to � at 0, we see that ie1 is the inward pointing normal vector
of ∂� at 0. Then, since ∂� is C2 smooth, there exists r > 0 such that

rie1 + (r D) · e1 ⊂ �.

By scaling � we can assume that

ie1 + D ·e1 ⊂ �. (12)
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Since � is convex and R×C is tangent to � at 0 we have

(R×C) ∩ � = ∅. (13)

Finally since 0 ∈ ∂� is a point of infinite type, for every m ∈ N

lim
z→0

| f (0, z)|
|z|m = 0.

Then we can pick wm ∈ B \ {0} and εm → 0 such that | f (0, wm)| = εm |wm |m and

| f (0, z)| ≤ εm |z|m for all |z| ≤ |wm | .

If εm = 0 for some m, then f (0, z) = 0 for |z| ≤ |wm | and so ∂� contains the disk

{(0, z) : |z| ≤ |wm |}.

Then

z ∈ D →
(
0,

1

wm
z

)
∈ ∂�

is a non-constant holomorphic map and we can simply define �1 := �.
It remains to consider the case when εm > 0 for all m. Let T ∈ Aff(C2) be the

affine map

T (z1, z2) = (i(z1 − i), z2).

Then consider the affine maps Am ∈ Aff(C2) given by

Am(z1, z2) =
(

1

f (0, wm)
z1,

1

wm
z2

)
.

We claim that T Am� ∈ K2 for every m, that is

(1) ie1 + D ·e1 ⊂ Am� and (C ·e2) ∩ Am� = ∅,
(2) ie1 + D ·e2 ⊂ Am� and (i, 1) ∈ ∂ Am�.

First, by Eq. (12)

ie1 + D ·e1 = Am( f (0, wm)ie1 + f (0, wm)D ·e1) ⊂ Am(ie1 + D ·e1) ⊂ Am�

and by Eq. (13)

(C ·e2) ∩ Am� = Am

(
(C ·e2) ∩ �

)
= ∅.
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Since

| f (0, z)| ≤ εm |z|m ≤ εm |wm |m = f (0, wm)

when |z| ≤ |wm | we see that

f (0, wm)ie1 + (|wm |D) · e2 ⊂ �.

Since f (0, wm)ie1 ∈ �, convexity then implies that

f (0, wm)ie1 + (|wm |D) · e2 ⊂ �.

Thus

ie1 + D ·e2 = Am

(
f (0, wm)ie1 + (|wm |D) · e2

)
⊂ Am�.

Finally, by definition ( f (wm)i, wm) ∈ ∂� so

(i, 1) = Am( f (wm)i, wm) ∈ ∂ Am�.

Thus T Am� ∈ K2.
Since K2 is compact in X2, we can pass to a subsequence and suppose that Am�

converges to �1 in X2. We claim that {0} × D ⊂ ∂�1. Notice that

(Am�) ∩ (B × B) = {(x + iy, z) ∈ B × B : y > fm(x, z)} ,

where

fm(x, z) = 1

f (0, wm)
f
(

f (0, wm)x, wm z
)
.

In particular, if |z| < 1, then

fn(0, z) = 1

f (0, wm)
f
(
0, wm z

)
= 1

εm |wm |m f
(
0, wm z

)

≤ 1

εm |wm |m εm |wm z|m = |z|m .

So

{
(iy, z) : |z| < 1, |z|m < y < 1

} ⊂ Am�

and thus

{(iy, z) : |z| < 1, 0 < y < 1} ⊂ �1.
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In particular, {0} × D ⊂ �1. Since (C ·e2) ∩ Am� = ∅ for all m, we also have
(C ·e2) ∩ �1 = ∅. Hence {0} × D ⊂ ∂�1.

Now Proposition A.9 implies that H×H ∈ AL(�1). Since

AL(�1) ⊂ AL(�),

we see that H×H ∈ AL(�).
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