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ABSTRACT: We developed a new optical method to determine the rate of reverse intersystem crossing (k,sc) in thermally
activated delayed fluorescent (TADF) organic chromophores using time-resolved transient absorption spectroscopy. We successfully
correlated the k5 of the TADF-chromophores with device perfformance. Specifically, we focused on the external quantum efficiency
(Mgqg) and the stability of the device at high brightness levels. It is believed that by obtaining a large kg one may reduce the
possibility of triplet—triplet annihilation (TTA) and increase the long-term stability of organic light emitting diodes (OLEDs)
devices at high brightness levels (qEQE roll-off). In this contribution, we investigate the photophysical mechanism in a series of
TADEF-chromophores based on carbazole or acridine derivatives as donor moieties, and triazine or benzonitrile derivatives as the
acceptor moieties. We found a relationship between large k;gc values and high 7o values at low operating voltages for the TADE-
chromophores investigated. In addition, those chromophores with a larger k,isc illustrated a smaller 57z roll-off (higher stability) at
high operating voltages. These features are beneficial for superior OLEDs performing devices. Contrarily, we found that if a
chromophore has a k,5c < 10%s7" its Neqe is £5%. Such a small k;gc suggests that there is no TADF effect operating in these organic
systems and the molecule is not efficient in harvesting triplet excitons. Emission lifetime-based methodologies for determining the
kasc were included for comparison but failed to predict the devices performance of the investigated TADF-chromophores to the
same extent of our proposed methodology.

rganic light emitting diodes (OLEDs) based on or the influence of the host material if the measurements are
chromophores with thermally activated delayed fluo- conducted in solid state.>'*~*°
rescence (TADF) characteristics have captivated the attention New methodologies applied to this problem, such as
of the scientific community as a potential replacement for their nanosecond transient absorption spectroscopy (ns TAS), can
organometallic phosphors counterparts.' ® This is due to provide a powerful tool to examine the photophysical
improvements including the devices’ processability and ease of properties of organic chromophores with TADF character-
fabrication, synthetic flexibility for optical tuning, and cost- istics. It is interesting to note that while there have been

efficiency.””* In addition, these TADE-based OLEDs are able reports of studies investigating the quenching effect of
to emulate the high internal quantum efficiencies (thE ~ 100) molecular oxygen (O,) in the emissive properties of highly
offered by their Phosphors-OLED counterparts.””” However, efficient and well-known TADF systems, there have not been
the key challenge hampering their commercialization is their any detailed ns TAS O, quenching studies of these promising

poor device efficiency at high brightness levels, an effect known materials.”"”** O, has been used for decades as a fundamental
as efficiency roll-off.' ! molecule for excited state sensitization.””>~>* The ns TAS is a

The high 7qe has been ascribed to the conversion of time-resolved spectroscopic technique that can detect and
nonemissive triplets into emissive singlets (T, — S,) in a resolve the dynamics of nonemissive intermediates contribu-
reverse intersystem crossing process (rISC), which is made ting to the excited state gg EL‘ESE chromophores in relatively
possible by the small energy gap between the singlet—triplet long time scales (>10 ns).”"" " These nonemissive conformers
manifolds (AE;).>'% The field has primarily used steady-state are detected as positive A absorption bands, namely excited

. 21,30,33,35-37 . .
measurements and microsecond spectroscopy to illustrate and state absorption (ESA). By coupling O, with the ns

calculate their ke, under the premise that it may help to
predict device performances."””"*'* Specifically, it is believed Received: February 8, 2020
that obtaining a high k;sc is critical for reducing the triplet— Published: April 15, 2020
triplet annihilation (TTA) mechanism that causes ngqg roll-

oft.*'>'5 However, these indirect methods require a combina-

tion of selected tools and do not exclude the parallel

coexistence of phosphorescence in the TADE-chromophore
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Figure 1. Molecular structure of the investigated TADF-active chromophores.

TAS technique, we aim to identify and characterize the ESA
bands with O, sensitivity, which in these time scales, should be
observed in a significant ESA decay lifetime lengthening
attributed to triplets. In this publication, we present the first
results of ns TAS spectroscopy to determine the k,gc in
organic chromophores with TADF characteristics by direct
triplet state characterization. A series of chromophores with
diverse molecular structures were investigated to demonstrate
our methodology (Figure 1). Emission lifetime-based method-
ologies for estimating the k gc were included for comparison.

To demonstrate our ns TAS methodology, the well-known
2CzPN and BCC-TPTA were used as standards (Figure 24A;
Figure 2B). For the 2CzPN system, two ESA bands were
detected. These bands have been previously reported and
attributed to triplet state conformations.””*® As we previously
reported for BCC-TPTA, we did not detect long-lived ESA
bands that are consistent with triplet density.”" This was true
despite detecting fast decaying ESA (singlets) for BCC-TPTA
by the fs transient absorption technique (Figure S11). This is
because our ns TAS technique operates at time scales longer
than the time scales in where typical singlets conformation
occurs, allowing us to discriminate between transient singlet
and transient triplet conformations. In contrast to the BCC-
TPTA chromophore, similar long-lived ESA bands to those
obtained for the 2CzPN system were found for the remaining
investigated chromophores. Therefore, oxygen sensitization
experiments were carried out to further characterize the
relaxation pathways of these long-lived ESA bands, namely
triplets.

As it can be observed for 2CzPN in Figure 2E, a lengthening
in its ESA relaxation dynamics was obtained when the
measurements were conducted in O,-free environments. A
similar monoexponential decay constant of ~1.7 us (kTﬂPlet =
5.8 X 10° s') was obtained for both ESA bands regardless of
the solvent used. It is important to note that the lengthening in
these ESA bands (triplets) lifetimes correlate well with the
lengthening in the long-lived emissive lifetime of 2CzPN
(Figure 3A) and with the significant quantum yield enhance-
ment after purging oxygen (®rapg). The @r,pp is quantified
by the difference in @ of the chromophore before and after
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purging oxygen. This ®,pp value is widely used to determine
the kysc in emission lifetime-based methodologies."”'”** We
need to highlight that the ESA decay rate of 2CzPN is
magnitudes higher than the reported rates of phosphorescence
(Kp) in chromophores with TADF characteristics determined
at low temperatures.” One can expect that this rate (K,) will
not get any larger at high temperatures. Therefore, we can rule
out the possibility of room-temperature phosphorescence.

In the case of BTAcTT, there are two ESA bands (see Figure
2C) present. The ESA 2 band showed a higher sensitivity to
the presence of 0,.”*” A lengthening in the monoexponential
decay of ~310 ns (krypie = 3.2 X 10° s™') was obtained for the
ESA 2 conformation in toluene (Figure 2G) and 183 ns (anPlet

= 5.6 X 10° s7') in chloroform (Figure S7) after purging
oxygen. The lengthening in these ESA band lifetimes of
BTAcTr correlates well with its ®p,pr and with the
lengthening in its long-lived emissive lifetime (Figure 3B).
Similar behavior was obtained for the BFAcTr system in
chloroform (Figure S7). A lengthening in the monoexponential
decay with a time constant of 244 ns (kTriPlet =42 x 10%71)
was obtained for the ESA 2 band in O,-free environments.
Under these circumstances, we can attribute the ESA 2 band to
triplet state conformations. This assignment became more
evident when a lack of ESA bands is observed by the ns TAS
for BFACTT in toluene solution (Figure S6). This lack of ESA
bands correlates well with the BFAcTr lack of a long-lived
emissive component when toluene is used as the solvent
(Figure 3C). In the case of BFACPN (Figure 2D), multiple
ESA bands were detected with ESA 2 and ESA 3 showing a
similar decay profile and time decay of ~1.1 us (ke = 9.1 X
10° s7') regardless of the solvent used. As with the 2CzPN,
BTAcTr, and BFACTr systems, the ESA band lifetime
lengthening of BFACPN in O,-free environments correlates
well with its @,pp and with the lengthening in its long-lived
emissive lifetime.

Despite the fact that O, is a fairly nondiscriminatory excited-
state quencher, the overwhelming evidence obtained from
multiple spectroscopic techniques connects the @p,pr (Table
S4) of these systems with (1) an increase in their long-lived
ESA band lifetime and (2) an increase in their long-lived
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Figure 2. Time-resolved absorption spectra of 2CbzPN (A), BCC-TPTA (B), BTAcTr (C), and BFAcPN (D). ESA decay relaxation profiles of

2CbzPN (E), BCC-TPTA (F), BTACTr (G), and BFACPN (H).

emissive lifetime. Under these circumstances and time scales, it
becomes evident that purging oxygen from the solution
resulted in mostly unquenched triplet excited states that may
contribute to the long-lived emissive lifetime of the
investigated chromophores, as it was recently reported for
some of these, and others, TADF-active systems.22 Con-
sequently, these results strongly suggest that at least part of the
nonemissive triplet density is converted into emissive singlets
through the rISC mechanism. Here, we proposed quantifying
the amount of nonemissive triplets converted into emissive
singlets, namely the k,j5c, by multiplying the deactivation rates
of these ESA bands (kpypes) in O,-free environments by the
Dpypr factor (eq 1):

(1)

Rates of 3.5 X 10°s71, 9.8 x 10°s7}, 4.1 X 107 s™}, and 7.2 X
107 s7! were obtained for 2CzPN, BFAcPN, BFAcTTr, and
BTACTT, respectively (Table 1). These k,gc magnitudes seem
to concur to some extent with the quantum chemical

— *
krISC - kTriplet <I)TADF
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simulations (QCS) presented here (Supporting Information)
and with those published by Brédas.” We used the kygsc
determined by our methodology and correlated them with
their device performance under the same device architectures.
We obtained a proportional relationship between the k5c and
Neqe (Figure 4), with TADF chromophores with the larger
kgsc showing higher #gqp. Specifically, #gqr of 9%, 14.1%,
20.4%, and 21.8% for 2CzPN, BFAcPN, BFAcTr, and BTAcTr
systems were reported, respectively. To further validate our
methodology, we used it to determine the k;sc of some well-
known TADF chromophores from the limited transient
absorption data published in the literature. A relationship
between the k;gc and the 7pqp was obtained for systems such
as 4CzIPN and 4CzPN. Specifically, a k,sc of 2.2 X 107 s™! and
7.0 X 10° s7! correlating well with Neqe Vvalues of 19.3% and
17.8% were observed, respectively.”*" It is interesting to note
that if the chromophore (0-CzBN, m-CzBN, p-CzBN) possess
a kysc < 10° 7!, an #7pqe < S% is obtained (Table S2). These
results suggest the minimum k,sc that a TADF chromophore

https://dx.doi.org/10.1021/jacs.0c01225
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Figure 3. Emissive lifetime characterization of 2CbzPN (A), BTAcTr (B), BFACTr (C), and BFACPN (D).

Table 1. k,;5c Comparison and Device Performances
Summary of the TADF-Active Systems”

kasc kusc
Chromophore 107s! EQEmax 107s?!
(Our-Method) (Emission lifetime-

based)

BTAcTr 7.2 214 7.65
BFAcTr 4.6 20.4 4 1.03
4CzIPN 22 19.3 24 1.4%
4CzPN 0.70 17.8 24 0.047
BFAcPN 0.98 14.15up-Info 1.45
2CzPN 0.35 92 0.060

“EQEjax = maximum EQE value at low operating voltages.

25
é
<20 ° < hd
¥ 2CzPN
G15 * @ BTAcTr
o > <« BFAcTr
c » BFACPN
S 10 @ 4CzIPN
" y o % 4CzPN
S 5 — ® m-3CzPN
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krISC (10 )

Figure 4. Correlating the device EQE with the k.

must possess to be able to harvest triplet excitons in the device
via an rISC process and be a TADF-active emitter.

It is believed that TADF emitters with a large k;qc may
reduce the TTA mechanism responsible for the #gqg roll-off in
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OLEDs."*'%%° In the case of the chromophores with triazine
as acceptor, a reduced #zqp roll-off was observed for BTAcTr
(5%) while the higher Ngqe roll-off was observed for BCC-
TPTA (76%); its lack of ESA bands suggests minimal triplet
exciton conversion to singlet excitons.”’ In the case of the
TADF chromophores with benzonitrile functionalities as the
acceptor, reduced #gqy roll-offs were found for 4CzIPN (6%),
BFACPN (8.5%), and 4CzPN (10%) in comparison with that
of 2CzPN (55%).”*' These observations are also consistent
with obtaining a large k;sc and reducing the 7y roll-offs
(Figure S2).

Emission lifetime-based methodologies for calculating the
k.sc were included for comparison.'”'”** Rates of 6.0 X 10°
s7!, 145 x 107 57", 1.03 x 10" s7), and 7.65 X 107 s™" were
obtained for 2CzPN, BFAcPN, BFAcTr, and BTACcTr,
respectively. Unlike the case for our methodology, no trends
between the krISC determined by emission lifetime-based
methodologies and the #7EQE were obtained. This was also
true when the published emissive lifetime data for well-known
TADF-chromophores were taken into consideration. It is
interesting to note that npqgy < 5%, which implies TADF-
inactive emitters,”® were reported for some chromophores (o-
CzBN and p-CzBN, Table S2) whose kg determined by
emission lifetime-based methods were within the same order of
magnitude (>10* s™') as with TADF-active emitters. Contra-
rily, our methodology showed that these TADF-inactive
chromophores possess kg (<10° s7'), highlighting the
minimal kggc magnitude that a TADF chromophore must
possess to be TADF-active. These observations were not
achieved when traditional emission lifetime-based methods
were employed.

In conclusion, we developed a new optical strategy for the
direct determination of the kg in organic chromophores with
TADF characteristics. Our methodology allowed us to (a)

https://dx.doi.org/10.1021/jacs.0c01225
J. Am. Chem. Soc. 2020, 142, 8074—8079
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directly characterize the triplet state dynamics for determining
the k¢ in organic TADF chromophores and (b) highlight the
correlation of a large k¢ with a high 7o value and its device
stability for TADF-OLEDs at high operating voltages. We also
illustrated the correlation of obtaining a kysc> 10%7' for
efficient TADF-active molecules. These structure—function
relationships were not possible by using emission lifetime-
based methodologies. This work may facilitate the excited-state
characterization of organic chromophores with TADF
characteristics and will help to discover top TADF candidates
for superior OLEDs device performance.
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