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We construct a family of equations of state for QCD in the temperature range 30 MeV � T � 800 MeV

and in the chemical potential range 0 � μB � 450 MeV. These equations of state match available lattice QCD

results up to O(μ4
B ) and in each of them we place a critical point in the three-dimensional (3D) Ising model

universality class. The position of this critical point can be chosen in the range of chemical potentials covered

by the second Beam Energy Scan at the Relativistic Heavy Ion Collider. We discuss possible choices for the free

parameters, which arise from mapping the Ising model onto QCD. Our results for the pressure, entropy density,

baryon density, energy density, and speed of sound can be used as inputs in the hydrodynamical simulations

of the fireball created in heavy ion collisions. We also show our result for the second cumulant of the baryon

number in thermal equilibrium, displaying its divergence at the critical point. In the future, comparisons between

RHIC data and the output of the hydrodynamic simulations, including calculations of fluctuation observables,

built upon the model equations of state that we have constructed may be used to locate the critical point in the

QCD phase diagram, if there is one to be found.

DOI: 10.1103/PhysRevC.101.034901

I. INTRODUCTION

The search for a possible QCD critical point is receiving

increasing attention, which will culminate in the second Beam

Energy Scan (BES-II) at the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory. The main goal of

the BES-II program is to discover a critical point, or constrain

its location, on the phase diagram of strongly interacting mat-

ter. One of the central questions that these experiments aim

to answer is whether the continuous crossover [1] between

quark-gluon plasma and hadronic matter that occurs as a

function of decreasing T at μB = 0 turns into a first-order

phase transition above some critical point at a nonzero μB,

corresponding to heavy ion collisions below some collision

energy [2,3].
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Lattice QCD simulations cannot currently be performed at

finite density. For this reason, a first principle prediction of

the existence and position of the critical point is still missing.

Several QCD-based models predict its location on the phase

diagram, which naturally depends on the model parameters

and approximations (for a review, see, e.g., Ref. [4]). This

aspect makes the critical point search challenging, and is at the

basis of the systematic scan in collision energies performed

at RHIC. We anticipate that nonmonotonous dependence of

specific observables on collision energy will indicate the pres-

ence of the critical point as the freezeout point traverses the

critical region [5,6]. As the BES-II approaches, it is therefore

important to predict the effects of the critical point on several

observables.

One of the main theoretical approaches to pursue this goal

is represented by hydrodynamical simulations of the evolution

of the fireball produced in heavy ion collisions (see, e.g.,

Ref. [7] and references therein). While modifications of the

hydrodynamical approach itself are needed in the vicinity of

the critical point [8–11], the equation of state (EoS) used as

an input in these simulations needs to reflect all theoretical

knowledge currently available as well as contain the singular-

ity associated with the QCD critical point at a parametrically

controllable location. Thus, the purpose of this paper is to
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produce a family of model equations of state for QCD, each

of which contains a critical point somewhere in the region of

the phase diagram covered by the BES-II at RHIC, and all of

which respect what we know from lattice QCD calculations

up to O(μ4
B). Previous hydrodynamical calculations at finite

μB have either incorporated models for the contribution from

a critical point (for example, see Refs. [12–15]) or have

used the Taylor-expanded equation of state from lattice QCD

calculations to describe a crossover [16–18]. Our study is the

first to incorporate both, and in addition correctly captures the

universal physics near the hypothesized critical point.

At chemical potential μB = 0, the EoS of QCD is known

with high precision, in the case of 2 + 1 [19–21] and 2 + 1 +

1 [22] quark flavors. Extensions to finite chemical potential

are usually performed through a Taylor series in powers of

μB/T [23–27] or an analytic continuation from imaginary

μB [28–35]. The Taylor expansion of the pressure in μB/T

around μB = 0 can be written as

P(T, μB) = T 4
∑

n

c2n(T )
(μB

T

)2n

, (1)

where the coefficients of the expansion are the susceptibilities

of the baryon number:

cn(T ) =
1

n!

∂nP/T 4

∂ (μB/T )n

∣

∣

∣

∣

μB=0

=
1

n!
χn(T ). (2)

After the early results for c2, c4 and c6 [24], the first con-

tinuum extrapolated results for c2 were published in Ref. [36];

in Ref. [37] c4 was shown, but only at finite lattice spacing.

The continuum limit for c6 was published for the first time

in Ref. [38], and later in Ref. [39]. In Ref. [40], a first deter-

mination of c8, at two values of the temperature and Nt = 8

was presented. More recently, an estimate for c8 as a function

of the temperature for Nt = 12 was presented in Ref. [41].

The advantage of the Taylor expansion method is that all

the quantities are calculated at vanishing baryon chemical

potential, where lattice QCD simulations do not suffer from

the fermion sign problem. Moreover, the knowledge of the

expansion coefficients can in principle provide information

on the location of the critical point, under the assumption

that such point is the closest singularity to μB = 0 in the

complex-μB plane. Unfortunately, the fact that only a few

coefficients are known makes this task extremely hard, leading

to just an indication that the region corresponding to μB � 2 T

in the phase diagram cannot contain the critical point [39].

In addition to this, the knowledge of the equation of state

of QCD beyond the critical point (i.e., for μB > μBC) could

not come from a Taylor expansion, as a singularity cannot be

reproduced in this method.

In this paper, we produce an equation of state which

matches everything we know from lattice QCD simulations

up to O(μ4
B) (for a recent review, see, e.g., Ref. [42]) in the

region where they are applicable, and which shows the correct

singular behavior at and around the hypothesized critical

point. The latter can be inferred from the fact that the critical

point of QCD is expected to be in the same universality class

as the one of the 3D Ising model [43–47]. Our approach is

similar to the one presented in Refs. [48,49], but in our case

the critical contribution is built on top of a first-principle result

for the EoS, instead of relying on models such as the MIT bag

or the quasiparticle model.

We will adopt the following strategy:

(i) Choose a location in the (μB, T ) plane at which to put

a critical point;

(ii) make use of a suitable parametrization to describe the

universal scaling behavior of the EoS in the 3D Ising

model near the critical point;

(iii) map the 3D Ising model phase diagram onto the one

of QCD via a parametric, non-niversal change of

variables;

(iv) use the thermodynamics of the Ising model EoS to

estimate the critical contribution to the expansion

coefficients up to O(μ4
B) from lattice QCD;

(v) reconstruct the full pressure, matching lattice QCD up

to O(μ4
B) at μB = 0 and including the correct critical

behavior.

It is important to notice that our approach is based on

the assumption that the critical point of QCD is the closest

singularity to μB = 0 on the real μB axis. Only in this case

are we allowed to merge the contributions of the lattice and 3D

Ising approaches in the way detailed below. The result of this

procedure will be an equation of state that meets our require-

ments and depends on the parameters of the nonuniversal map

between Ising variables and QCD coordinates [50]. These

parameters include the coordinates of the critical point. The

ultimate goal of this project is to provide a family of model

equations of state that can be used as inputs to future hydrody-

namic calculations and calculations of fluctuation observables

that can then be compared to experimental data from the

BES-II program, resulting in constraints on the parameters in

the map that we have constructed, in particular the parameters

representing the location of the critical point. We will follow

up on this discussion in the following sections. Note that we

place a critical point in each of our equations of state entirely

by construction; our calculation in isolation is therefore not

a path toward determining whether the phase diagram of

QCD features a critical point and where it lies. But, by

comparing experimental data to predictions obtained by using

our family of equations of state within future calculations of

hydrodynamics and fluctuations progress toward this goal can

be realized.

The family of model equations of state that we construct

can also be used directly to illustrate the divergence of

quantities in the vicinity of the critical point, in particular

the cumulants of the baryon number. We show in Sec. VI A

our result for the second cumulant, which can be related

to the variance of the net-proton distribution in heavy-ion

collision experiments assuming thermal equilibrium [51]. In

order to make contact with experiment, investigating out-of-

equilibrium physics is important because of critical slowing

down in the dynamics near a critical point and because the

matter produced in a heavy-ion collision does not spend

a long time near the critical point [52–54]. Simulations of

hydrodynamics and fluctuations that are built upon the family
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FIG. 1. Map of the parametrization in Eqs. (3)–(5). (Left) Lines of constant h and r are shown in the θ -R plane with solid and dashed lines

respectively. (Right) Lines of constant θ and R are shown in the h-r plane with dashed and solid lines respectively.

of equations of state that we have constructed would be a good

next step in this direction.

II. SCALING EOS IN THE 3D ISING MODEL

The first ingredient for this work is a parametrization of

the Ising model equation of state in the vicinity of the critical

point, which corresponds to a map between two variables

(R, θ ) to Ising variables (r, h), where r is the reduced tem-

perature r = (T − Tc)/Tc and h is the magnetic field. The

map needs to accommodate the correct behavior of the order

parameter M (the magnetization) as a function of r and h

themselves. The following form for the parametrization meets

the requirements [48,49,55,56]:

M = M0Rβθ, (3)

h = h0Rβδ h̃(θ ), (4)

r = R(1 − θ2). (5)

where M0, h0 are normalization constants, h̃(θ ) = θ (1 +

aθ2 + bθ4) with a = −0.76201, b = 0.00804. β � 0.326 and

δ � 4.80 are 3D Ising critical exponents, and the parameters

take on the values R � 0, |θ | � θ0 � 1.154, θ0 being the

first nontrivial zero of h̃(θ ). The values of the normalization

constants are such that M(r = −1, h = 0+) = 1 and M(r =

0, h) ∝ sgn(h)|h|1/δ: this yields M0 � 0.605, h0 � 0.394. Fig-

ure 1 shows a pictorial representation of the parametrization:

the lines of constant h and r in the θ -R plane (left panel) and

the lines of constant θ and R in the h-r plane (right panel).

Starting from this parametrization, it is possible to define

the Gibbs free energy density:

G(h, r) = F (M, r) − Mh, (6)

where F (M, r) is the free energy density, defined as

F (M, h) = h0M0R2−αg(θ ), (7)

where α � 0.11 is another critical exponent of the 3D Ising

model [also, the relation 2 − α = β(δ + 1) holds]. The func-

tion g(θ ) is fixed by noticing that h = (∂F/∂M )h and solving

the following differential equation:

h̃(θ )(1 − θ2 + 2βθ2) = 2(2 − α)θg(θ ) + (1 − θ2)g′(θ ), (8)

which results in

g(θ ) = c0 + c1(1 − θ2) + c2(1 − θ2)2 + c3(1 − θ2)3, (9)

with

c0 =
β

2 − α
(1 + a + b),

c1 = −
1

2

1

α − 1
{(1 − 2β )(1 + a + b) − 2β(a + 2b)},

c2 = −
1

2α
{2βb − (1 − 2β )(a + 2b)},

c3 = −
1

2(α + 1)
b(1 − 2β ).

Now everything is determined, and one can build an ex-

pression for the pressure in the 3D Ising model in the scaling

regime, noticing that the Gibbs free energy density equals the

pressure up to a minus sign: G = −P, and hence

PIsing(R, θ ) = h0M0R2−α[θ h̃(θ ) − g(θ )]. (10)

Notice that this pressure is dimensionless. Besides, this ex-

pression is completely analytic in (R, θ ) in the whole range of

parameter values. However, the map (R, θ ) �−→ (r, h) is not

globally invertible.

III. NONUNIVERSAL MAP FROM ISING TO QCD

The next step is to build a map from Ising variables to QCD

coordinates, so that Eq. (10) that we derived for the pressure

becomes useful for our purpose. We want to map the phase

diagram of the 3D Ising model onto the one of QCD, so that

the critical point of the Ising model r = h = 0 corresponds

to the one of QCD, and that the lines of first-order phase

transition and crossover in the Ising model are mapped onto

those of QCD.

The simplest way to do so is through a linear map as

follows [57]:

T − TC

TC

= w(rρ sin α1 + h sin α2), (11)

μB − μBC

TC

= w(−rρ cos α1 − h cos α2), (12)
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FIG. 2. Nonuniversal map from Ising variables (r, h) to QCD coordinates (T, μB ).

which can be visualized in Fig. 2. This map makes use of

six parameters, two of which correspond to the location of

the critical point on the QCD phase diagram, two are the

angles that the r and h axes form with the T = const. lines,

and (w, ρ) are scale factors for the variables r and h. While

w represents a global scaling for the Ising variables, namely

determining the size of the critical region, ρ represents a

relative scaling of r and h, thus roughly determining the shape

of it.

At this point, we have a double map between coordinates:

(R, θ ) �−→ (r, h) ←→ (T, μB), (13)

where the second step is globally invertible. We will now ap-

ply the thermodynamics we developed in the previous section

for the Ising model, making use of the additional variables

(R, θ ), to the QCD phase diagram, in a parametrized form

given by Eqs. (11) and (12).

In order to do this analytically, we would need the map

(R, θ ) �−→ (T, μB), which unfortunately cannot be globally

inverted. Therefore, it is necessary to solve the following

relations numerically:

T (R, θ ) − Ti = 0, (14)

μB(R, θ ) − μBi = 0, (15)

for each value of (T, μB) needed in the QCD phase diagram.

We proceed in the following way: We choose a range of

interest for T and μB, and given a choice of the parameters in

the Ising-QCD map, we solve Eqs. (14) and (15) numerically

for a two-dimensional grid in T and μB in the desired range,

thus providing a discrete inverse map (T, μB) �−→ (R, θ ).

With this solution, although not analytic, it is possible to

transport the thermodynamics of the Ising model [written in

terms of (R, θ )], into the QCD phase diagram, given a choice

of parameters for the map.

IV. THERMODYNAMICS

A. Strategy

The strategy we wish to pursue in order to produce an equa-

tion of state for QCD which meets the requirements stated in

Sec. I is the following. Starting from the Taylor expansion

coefficients up to O(μ4
B) in Eq. (1), available from lattice

QCD simulations, we rewrite them as a sum of an “Ising”

contribution coming from the critical point of QCD and a

“non-Ising” contribution, which would contain the regular

part as well as any other possible criticality present in the

region of interest:

T 4cLAT
n (T ) = T 4cnon-Ising

n (T ) + f (T, μB = 0)cIsing
n (T ), (16)

where f (T, μB) is a regular function of the temperature and

chemical potential, with dimension of energy to the fourth

power. Away from the critical regime, f just reshuffles the

regular terms and can be chosen arbitrarily. Near the critical

point, the choice for f is almost arbitrary, with the only

requirement being that it must not add any leading singular

behavior. In general, though, any term in f beyond a constant

introduces sub-leading behavior in the vicinity of the critical

point. For this reason, the simplest choice is to take f to be a

constant, with the appropriate dimension. This also ensures

that no subleading behavior is introduced near the critical

point, which cannot be predicted through universality. Note

that Eq. (16) is to be understood as a definition for the c
non-Ising
n

coefficients.

Once these coefficients are obtained, we will build a

Taylor expansion in μB analogous to the lattice one, using

the “non-Ising” coefficients. The latter have the advantage

that the critical behavior coming from the critical point has

been removed, so that the expansion can be pushed to larger

values of μB. This provides an expression for the “non-Ising”

pressure over a broad region of the QCD phase diagram. The

assumption here is that the Ising critical point contribution to

the Taylor coefficients from lattice QCD can be reproduced
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upon imposing the correct scaling behavior in the vicinity of

the critical point.

Once this expansion is carried out, the full pressure is then

reconstructed simply by adding the critical contribution at any

(T, μB) to the Taylor expanded “non-Ising” one:

P(T, μB) = T 4
∑

n

c
non-Ising

2n (T )
(μB

T

)2n

+ P
QCD
crit (T, μB). (17)

Note that in Eq. (17), the critical pressure is obtained from

Eq. (10) with the use of the relation in Eq. (13) and the

multiplication by the regular function f (T, μB) in Eq. (16):

P crit
QCD(T, μB) = f (T, μB)PIsing(R(T, μB), θ (T, μB)), (18)

which is extremely easy to calculate using the above relations.

We will hereafter consider the following choice for the func-

tion f (T, μB):

f (T, μB) = T 4
C .

The prescription we follow in order to enforce the match-

ing of our EoS to lattice QCD at vanishing chemical potential

should not be understood as a way to force a critical point

in the QCD phase diagram without direct relation to the

thermodynamics. Although we can, for any choice of the

parameters, ensure that the coefficients at μB = 0 coincide

with lattice, this does not guarantee that the resulting EoS is

thermodynamically stable. An essential step of our procedure

is to check that thermodynamic inequalities are satisfied by the

EoS we generate. Thanks to this, given a choice of parameters

in the Ising-to-QCD map, we can ensure that the resulting

EoS realizes a merging with lattice QCD without leading to

pathological behavior of the thermodynamic quantities. In

Sec. VI B (see Fig. 13), we show an example of such an

analysis using our EoS when varying two of the parameters

in the Ising-to-QCD map, holding the others fixed.

B. Taylor coefficients in the Ising model

The other quantities we need to calculate from the

parametrization of the Ising model thermodynamics are the

contributions to the expansion coefficients of the pressure,

which are simply the derivatives of the latter with respect to

the baryonic chemical potential at fixed temperature:

cIsing
n (T ) =

1

n!
T n ∂nPIsing

∂μn
B

∣

∣

∣

∣

μB=0

=
1

n!
χ Ising

n (T ). (19)

Unfortunately, the expression for the critical pressure is

given in terms of the additional variables (R, θ ) and not as a

function of (r, h) or (T, μB). In order to obtain the derivatives

we need, we will have to use the rules for the derivative of the

inverse and for the multivariate chain rule in order to be able

to express everything analytically as a function of (R, θ ), and

convert to QCD coordinates only at the end.

We have to calculate expressions such as

χn(T, μB = 0) = −T n

(

∂nG

∂μn
B

)

T

, (20)

which we will have to rewrite as (n = 1 as an example)

χ1(T )

T
= −

(

∂G

∂μB

)

T

= −

(

∂G

∂r

)

h

∂r

∂μB

−

(

∂G

∂h

)

r

∂h

∂μB

,

(21)

where
(

∂G

∂r

)

h

=
∂G

∂R

(

∂R

∂r

)

h

+
∂G

∂θ

(

∂θ

∂r

)

h

,

(

∂G

∂h

)

r

=
∂G

∂R

(

∂R

∂h

)

r

+
∂G

∂θ

(

∂θ

∂h

)

r

.

Since we do not have explicit expressions for the depen-

dence of (R, θ ) on (r, h), we need to proceed in the following

way:

(i) Use the rule for the derivative of the inverse, so that

we can express derivatives of (R, θ ) with regard to

(wrt) (r, h) as combinations of derivatives of (r, h) wrt

(R, θ );

(ii) Use the rule for derivatives of a function holding

another function constant.

1. Derivatives of the inverse

Naming Qn the nth derivative of an invertible function

y = y(x):

Qn =
dny

dxn
,

we can exploit the recursive relationship

Q2n − 1
1

dnx

dyn
= Pn, with Pn+1 = Q1P′

n − (2n − 1)Q2Pn, (22)

where the Pn are polynomials in {Qk} and P1 = 1. P′ indicates

derivation with respect to x.

For example, one can find

(

∂2R

∂r2

)

h

= −

(

∂2r

∂R2

)

h

(

∂r

∂R

)−3

h

.

2. Derivatives with functions held constant

We will have to use the following:

(

∂

∂x1

)

y1

y2 =

(

∂

∂x1

+

(

dx2

dx1

)

y1

∂

∂x2

)

y2, (23)

where, in our case (x1, x2) = (R, θ ) and (y1, y2) = (r, h).

For example, one has
(

∂h

∂R

)

r

=

[

∂

∂R
+

(

dR

dθ

)

r

∂

∂θ

]

h

=
h0R−1+βδ

2θ

1 − θ2

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
.

The sequential application of Eq. (23) gives the correct

expression for higher order derivatives. The explicit expres-

sions increase in complexity extremely fast when higher or-

der derivatives are considered, but they remain completely

analytic in terms of the variables (R, θ ), and allow us to
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FIG. 3. The critical pressure for the choice of parameters in Sec. V A 1 (left), and for a smaller value of w = 0.25 (right), obtained with

the mapping from the 3D Ising model and symmetrized around μB = 0. The critical point is located at μBC = 350 MeV and TC � 143.2 MeV

in both cases. The singular behavior is evident for μB > μBC, where the first-order transition occurs. We can see that a smaller value of the

scaling parameter w corresponds to a larger “Ising” contribution to the pressure.

have any of these derivatives defined at any point in the

QCD phase diagram, provided a choice of parameters for

the transformation map is given, with the only step to be

performed numerically being the solution of Eqs. (14) and

(15).

C. Critical pressure

Our procedure reduces to the use of Eqs. (10) and (20),

because the dependence on (R, θ ) is well defined and the

numerical inversion allows us to transport any quantity to any

point in the QCD phase diagram. A remark is in order at this

point.

Because of the charge conjugation symmetry, in QCD the

partition function needs to be an even function of the baryon

chemical potential:

Z (T,−μB) = Z (T, μB), (24)

as well as the pressure. Thus, QCD must possess a critical

point at both μBC and −μBC. To achieve this, we need to write

Eq. (25) below. This form does not modify the singular critical

behavior at the critical point(s) and automatically ensures

that the odd-power coefficients in the Taylor expansion in μB

vanish, as they should:

P crit
QCD(T, μB) = 1

2
f (T, μB)PIsing

symm[R(T, μB), θ (T, μB)]

= 1
2

f (T, μB){PIsing[R(T, μB), θ (T, μB)].

+ PIsing[R(T,−μB), θ (T,−μB)]}, (25)

which will have the effect of slightly changing the form of

the critical pressure (the main one being that now the pressure

at the critical point is nonzero, whereas it would be zero in

the straightforward definition) but not its singular behavior,

leaving all the even order derivatives unchanged. Figure 3

shows the symmetrized form of the critical pressure for the

choice of parameters in Sec. V A 1 (left panel) and for a

smaller value of w = 0.25 (right panel).

V. METHODOLOGY AND PARAMETER CHOICE

With the prescription exposed in Sec. IV C, we now have

a well-defined procedure to produce an expression for the

pressure that meets all our requirements, needing only to make

a choice for the parameters in the Ising-to-QCD map.

A. Acceptable parameter values

The choice of parameters is a key part of the procedure,

because it can provide physical information, e.g., indications

on the location of the critical point through comparison with

experimental data. In general, the linear map we introduced

has a total of six parameters. As we will detail below, most of

them are not arbitrary.

Some indication or constraint on this choice comes from

our current knowledge of the QCD phase diagram. For exam-

ple, since the chiral/deconfinement transition temperature is

T � 155 MeV at μB = 0 [1,58–61], and the curvature of the

transition line is negative [16,62,63], we can safely expect the

temperature of the critical point to be TC � 155 MeV. Other

works have also shown that the presence of the critical point

in the region μB � 2T appears to be strongly disfavored [39].

From the fact that the curvature of the transition line is

negative and extremely small, we can easily argue that the

angle α1 in the map needs to be positive and very small

as well. The choice of the second angle is rather arbitrary,

because no argument of symmetry can be made to guide the

choice. For simplicity, we will consider parameter sets in

which the r and h axes are orthogonal.

For the chemical potential at the critical point μBC, al-

though not required by any physical argument, we will restrict

ourselves to values that are within reach of the BES-II pro-

gram, namely μBC � 450 MeV.

The choice of the scale factors w and ρ is definitely less

intuitive. When we consider the contribution from the pressure

and its derivatives at μB = 0, the effect of changing the scale

factor w, keeping μBC fixed, is the same as moving away

or toward the critical point. In particular, since ∂μB
∼ 1/w,

reducing w would result in a larger “Ising” contribution to

the pressure and its derivatives at μB = 0, and a larger critical
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TABLE I. Parameters for the temperature dependence of χ0(T ) and χ4(T ) for the functional form in Eq. (30).

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5

χ0(T ) 7.53891 −6.18858 −5.37961 7.08750 −0.977970 0.0302636 2.24530 −6.02568 15.3737 −19.6331 10.2400 0.799479

χ4(T ) 0.0148438 −0.0371572 0.0313008 −0.0101907 0.00144661 −0.000159877 0.0673273 3.33723 −13.6747 20.4745 −13.6013 3.39819

region. This can be seen in Fig. 3: A smaller value of w

increases the value of the “Ising” contribution to the pressure.

Moreover, the pressure grows faster both in the T and μB

directions. As for the other scale parameter ρ, its role is

to govern the behavior in the pressure and its derivatives

when moving away from the critical point in the temperature

direction. Since we do not know what the scaling should look

like in the temperature direction relative to the one in the

chemical potential direction, the choice of ρ remains mainly

arbitrary.

1. Reducing the number of parameters

In practice, although the most general linear map between

Ising variables and QCD coordinates requires the use of

six parameters, it is possible to impose some constraint in

the choice by making use of additional arguments for the

location of the critical point. For example, the curvature of

the transition line at μB = 0 has been estimated in lattice

simulations [16,62,63]. The shape of such transition line can

be approximated with a parabola,

T = T0 + κ T0

(

μB

T0

)2

+ O
(

μ4
B

)

, (26)

where T0 and κ are the transition temperature and curvature

of the transition line at μB = 0, respectively. The number of

parameters is thus reduced to four, the angle α1 also being

fixed by

α1 = tan−1

(

2
κ

T0

μBC

)

. (27)

In the following, remembering that the aim of the EoS is

to be employed in hydrodynamic simulations for heavy-ion

collisions in the BES-II program, we will consider a choice

of the baryonic chemical potential which is μBC = 350 MeV,

resulting in

TC � 143.2 MeV , α1 � 3.85 ◦. (28)

In addition, the axes are chosen to be orthogonal, as we

already mentioned, so that α2 � 93.85 ◦. Finally, the scaling

parameters are initially chosen as

w = 1, ρ = 2. (29)

Later we will explore different choices for w and ρ, trying to

reduce their acceptable range on the basis of physical condi-

tions for the thermodynamic quantities. For completeness, in

Appendix B we show the results for the EoS obtained with

other allowed parameter choices.

B. Lattice results

Recalling Eq. (16), we can see that the other defining

ingredients for our procedure, besides the calculation of the

Ising model thermodynamics and its “translation” to QCD,

are the Taylor coefficients from lattice QCD. In the following,

we will use data from the Wuppertal-Budapest Collaboration

[20,64] for the pressure and its derivatives at μB = 0.

Before actually using the lattice results, we need to address

a couple of issues:

(i) The range of temperatures of the available lattice

results is not sufficient to provide an equation of state

as needed in hydrodynamical simulations, namely for

temperature values 30 MeV � T � 800 MeV.

(ii) The dependence of such quantities on the temperature

needs to be smooth enough such that when we take

derivatives of the thermodynamic quantities wrt to T

and μB (to calculate, e.g., entropy density and baryon

density) they do not present an unphysical wiggly

behavior.

To solve these issues, we took the following steps:

(i) Generate data for temperatures below the reach of

lattice (T � 135 MeV in this case) using the HRG

model.

(ii) Provide a parametrization of the temperature depen-

dence of the pressure and its derivatives in the desired

temperature range.

The parametrizations of χ0(T ) and χ4(T ) were performed

through a ratio of fifth-order polynomials in the inverse tem-

perature:

χi(T ) =
ai

0 + ai
1/t + ai

2/t2 + ai
3/t3 + ai

4/t4 + ai
5/t5

bi
0 + bi

1/t + bi
2/t2 + bi

3/t3 + bi
4/t4 + bi

5/t5
, (30)

while for χ2(T ), a different expression was used:

χ2(T ) = e−h1/t ′−h2/t ′2

· f3 · (1 + tanh( f4/t ′ + f5)) (31)

where t = T/154 MeV and t ′ = T/200 MeV ([65]). The

parametrizations were obtained with lattice data/HRG model

results in the range T = 5–500 MeV, but extrapolated to the

range T = 5–800 MeV.

The values of the parameters are given in Tables I and II.

In Fig. 4, we can see the comparison between the lattice

data (and the extension with the HRG model) and the resulting

parametrization. The HRG model employed to calculate the

pressure does not contain any interaction, and makes use of

TABLE II. Parameters for the temperature dependence of χ2(T )

for the functional form in Eq. (31).

h1 h2 f3 f4 f5

χ2(T ) −0.325372 0.497729 0.148987 6.66388 −5.07725
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FIG. 4. Parametrization of baryon susceptibilities from lattice QCD [20,64] and HRG model calculations.

the most up-to-date particle list available from the Particle

Data Group [66] (list PDG2016+ in Ref. [67]).

The smooth curves obtained from the parametrization will

be the cLAT
n (T ) coefficients in Eq. (16), thus defining the

c
Non-Ising
n (T ) coefficients that will be used for the Taylor ex-

pansion. Figure 5 shows the comparison of the “Ising” and

“non-Ising” contributions to the parametrized lattice/HRG

model results.

VI. RESULTS

At this point, we have all the ingredients in Eq. (17):

P(T, μB) = T 4

2
∑

n=0

c
non-Ising

2n (T )
(μB

T

)2n

+ T 4
C P Ising

symm(T, μB),

(32)

which is now straightforward. However, although the overall

behavior is correct, at low temperatures and in particular

in regions where the ratio μB/T is very large, the pressure

becomes negative, and so do other observables as well. This is

due to the fact that, given our choice of the function f (T, μB)

in Eq. (17), the “Ising” coefficients at low temperature follow

a power law, whereas the full ones from lattice calculations

fall off exponentially; hence, there will always be a value of T

for which one or more of the c
non-Ising
n (T ) falls below zero, and

thus a value of μB/T large enough that the pressure from the

Taylor expansion in Eq. (17) is large and negative, resulting

in unphysical values for the thermodynamic observables. The

recipe to cure this problem is to make use of the fact that one

can reasonably expect the system to find itself in a hadron gas

state in that region of the phase diagram and find a way to

smoothly merge the pressure coming from the procedure we

developed so far with the one from the HRG model.

The smooth merging can be obtained through a hyperbolic

tangent as

PFinal(T, μB)

T 4
=

P(T, μB)

T 4

1

2

[

1 + tanh

(

T − T ′(μB)


T ′

)]

+
PHRG(T, μB)

T 4

1

2

[

1 − tanh

(

T − T ′(μB)


T ′

)]

,

(33)

where T ′(μB) works as the “switching temperature” and 
T ′

is roughly the size of the “overlap region” where both pres-

sures contribute to the sum. The dependence on the baryon

chemical potential of the “switching temperature” is chosen

to be parabolic and parallel to the chiral transition line we

assumed in Eq. (26):

T ′(μB) = T0 +
κ

T0

μ2
B − T ∗,

where T0 and κ are the transition temperature and curvature

of the transition line at μB = 0, and we choose T ∗ = 23 MeV

and in Eq. (33) 
T ′ = 17 MeV.
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FIG. 5. Comparison of critical (blue, dot-dashed) and “non-Ising” (red, dashed) contributions to baryon susceptibilities up to O(μ4
B ) with

the parametrized lattice data (black, solid).

A. Full thermodynamic description

In order to complete the thermodynamic description of

the finalized equation of state obtained in Eq. (33), we can

compute various thermodynamic observables of interest. In

addition to the pressure, we compute the entropy density,

baryon density, energy density, and speed of sound normalized

by the correct power of the temperature:

P(T, μB)

T 4
,

S(T, μB)

T 3
=

1

T 3

(

∂P

∂T

)

μB

,

nB(T, μB)

T 3
=

1

T 3

(

∂P

∂μB

)

T

,

ε(T, μB)

T 4
=

S

T 3
−

P

T 4
+

μB

T

nB

T 3
,

c2
s (T, μB) =

(

∂P

∂ε

)

S/nB

. (34)

When working in the (T, μB) phase diagram, it is not ad-

vantageous to perform the calculation for the speed of sound

directly from the definition; however, it is possible to rewrite

the expression for this observable in terms of derivatives of

the pressure with respect to the temperature or the chemical

potential only [68]:

c2
s =

n2
B∂2

T P − 2SnB∂T ∂μB
P + S2∂2

μB
P

(ε + P)
[

∂2
T P∂2

μB
P − (∂T ∂μB

P)2
] . (35)

In Figs. 6–10, we show the pressure, entropy density, baryon

density, energy density, and speed of sound in the range

of temperatures T = 30–800 MeV and chemical potentials

μB = 0–450 MeV for the EoS that we have constructed, with

parameters as specified in Sec. V A 1 and merged with the

HRG model pressure at low temperatures as described in

Eq. (33).

We note that, at large values of μB, small wiggles appear

in the thermodynamic observables, in particular the speed of

sound. This is due to the truncation in the Taylor expansion of

the non-Ising contribution to the pressure. In general, these

FIG. 6. Pressure for the choice of parameters in Sec. V A 1, after

merging with HRG.
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FIG. 7. Entropy density for the choice of parameters in

Sec. V A 1, after merging with HRG.

wiggles are only appearing at the edge of the allowed μB

region and only for some parameter choices (see Appendix B

for other choices in which they are not present). Besides, their

magnitude is very small so we are confident that they will not

affect the results of the hydrodynamic simulations. However,

in order to extend our EoS to larger values of μB, we need

to devote future work to incorporate higher order terms in the

Taylor expansion into the construction of model equations of

state in order to improve their behavior at higher μB.

Although not very evident from the pressure, the critical

point manifests itself clearly in first-order derivatives (entropy,

baryon, and energy density), where the discontinuity due to

a first-order phase transition is clearly visible at μB > μBC.

Furthermore, the speed of sound shows a clear dip at the

critical point, as well as a (less evident) discontinuity at μB >

μBC. Figure 11 shows the trajectories at constant S/nB in the

QCD phase diagram.

In addition to the thermodynamic quantities mentioned

above, it is possible to calculate observables that are more

sensitive to critical fluctuations: In Fig. 12, we show the

second cumulant of the baryon number χB
2 = T −2 ∂2P

∂μ2
B

for the

choice of parameters in Sec. V A 1. In heavy-ion collision

experiments, it is possible to measure related quantities, con-

structed from moments of the event-by-event distribution of

the measured number of protons in a given acceptance. The

FIG. 8. Baryon density for the choice of parameters in

Sec. V A 1, after merging with HRG.

FIG. 9. Energy density for the choice of parameters in

Sec. V A 1, after merging with HRG.

critical contribution to χB
2 diverges at the critical point like ξ 2,

where ξ is the correlation length of the order parameter fluctu-

ations. Higher, non-Gaussian, moments of the proton number

distribution (or the baryon number distribution) receive larger

contributions from critical fluctuations, with the third and

fourth cumulants diverging like ξ 9/2 and ξ 7 respectively [69],

making these observables more sensitive to the presence of

a critical point [70–73] and motivating their experimental

measurement in the RHIC Beam Energy Scan [74–78], as

well as the future investigations of higher moments of the nB

distribution in this model.

B. Exploration of parameter space

By requiring thermodynamic stability, i.e., positivity of

pressure, entropy density, baryon density, energy density, and

speed of sound, and causality, i.e., c2
s < 1, over the whole

phase diagram, it is possible to reduce the range of acceptable

parameters in the nonuniversal Ising �→ QCD map. By keep-

ing the location of the critical point fixed (μBC = 350 MeV,

TC � 143 MeV), as well as the orientation of the axes (α1 �

3.85◦, α2 − α1 = 90◦), we investigated the role of the scaling

parameters w, ρ. In Fig. 13, we can see in red the points

corresponding to pathological parameter choices, while the

blue dots correspond to acceptable ones. We notice that, while

most commonly specific parameter choices are unacceptable

FIG. 10. Speed of sound for the choice of parameters in

Sec. V A 1, after merging with HRG.
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FIG. 11. Lines of constant S/nB (from left to right S/nB =

68, 50, 42, 35, 28, 25, 23, 21, 18, 16) in the QCD phase diagram.

The blue dot indicates the location of the critical point, whereas in

cyan is shown the chiral transition line in Eq. (26).

because of the negativity of nB, for very low w (w = 0.25) we

observe violation of causality as well (c2
s > 1).

VII. CONCLUSIONS

In this paper, we presented a procedure to construct a

family of model equations of state for QCD, each of which

features a critical point in the 3D Ising model universality

class. A parametrization of the scaling equation of state in

such a model, together with a parametrized map from Ising

variables to QCD coordinates, yields explicit expressions for

the critical contribution to thermodynamic quantities in QCD.

The comparison with lattice results at vanishing chemical

potential allows us to estimate the possible size of the crit-

ical contribution and reconstruct the equation of state in a

way that on the one hand contains critical behavior in the

correct universality class, and on the other hand matches

lattice QCD results up to O(μ4
B) exactly at zero chemical

potential. Our result can be readily utilized in hydrodynamic

FIG. 12. The second cumulant of the baryon number χB
2 =

T −2 ∂2P

∂μ2
B

, for the choice of parameters in Sec. V A 1, after merging

with HRG (the rather jagged behavior close to the critical point is

due to the finite size in the graphics grid used to make the figure).

FIG. 13. Plane of w and ρ parameter values. In red (squares), the

points corresponding to pathological choices of parameters, and in

blue (dots), the acceptable ones.

simulations of heavy ion collisions at the energies reached in

the BES-II program. We also show the second cumulant of the

baryon number, a quantity that diverges at the critical point

and can be related to experimentally measurable net-proton

fluctuations.

Higher order cumulants, which are expected to display

a more pronounced divergence at the critical point, will be

investigated in future work. We also leave to future work

the inclusion of strangeness and electric charge chemical

potentials, which play an important role in heavy-ion collision

physics. The main reason for this is that the same universality

arguments we employ in this work cannot be used to answer

the question of how the critical behavior in the (T, μB)

plane would vary with the two additional chemical potentials.

Because of this, such an exercise would require a great deal

of additional modeling, which is beyond the scope of this

work.

The requirement that the resulting equation of state does

not violate thermodynamic inequalities (positivity of pressure,

entropy density, baryon density, energy density, speed of

sound, and causality, i.e., c2
s < 1), together with the compar-

ison between experimental data and results obtained through

simulations that employ such an equation of state, can help

constrain the values of the parameters in the equation of state;

in so doing, we hope, constraining the location of a possible

critical point in the QCD phase diagram.
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APPENDIX A

The following relations will be used in Eq. (23):

dR

dθ

∣

∣

∣

∣

r

=
2θR

(1 − T h2)
,

dR

dθ

∣

∣

∣

∣

h

= −
Rh̃′(θ )

βδh̃(θ )
,

and hence

dθ

dR

∣

∣

∣

∣

r

=
(1 − T h2)

2θR
,

dθ

dR

∣

∣

∣

∣

h

= −
βδh̃(θ )

Rh̃′(θ )
.

1. First order

Derivatives of G(R, θ ) wrt (R, θ ) are

∂G

∂R
= (2 − α)h0M0R1−α[g(θ ) − θ h̃(θ )],

∂G

∂θ
= h0M0R2−α[g′(θ ) − h̃(θ ) − θ h̃′(θ )].

Derivatives of (r, h) wrt (R, θ ) are
(

∂r

∂R

)

h

= (1 − θ2) + 2βδθ
h̃(θ )

h̃′(θ )
,

(

∂h

∂R

)

r

= h0Rβδ−1

(

βδh̃(θ ) +
(1 − θ2)

2θ
h̃′(θ )

)

,

(

∂r

∂θ

)

h

= −
R

βδ

(

2βδθ + (1 − θ2)
h̃′(θ )

h̃(θ )

)

,

(

∂h

∂θ

)

r

= h0Rβδ

(

2βδθ

1 − θ2
h̃(θ ) + h̃′(θ )

)

,

and hence, derivatives of (R, θ ) wrt (r, h) are
(

∂R

∂r

)

h

=
h̃′(θ )

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
,

(

∂R

∂h

)

r

=
1

h0Rβδ−1

2θ

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
,

(

∂θ

∂r

)

h

= −
βδ

R

h̃(θ )

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
,

(

∂θ

∂h

)

r

=
1

h0Rβδ

1 − θ2

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
,

Derivatives of G(R, θ ) wrt (r, h) are
(

∂G

∂r

)

h

=
∂G

∂R

(

∂R

∂r

)

h

+
∂G

∂θ

(

∂θ

∂r

)

h

=
h0M0R1−α

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
{(2 − α)h̃′(θ )(g(θ ) − θ h̃(θ )) − βδh̃(θ )(g′(θ ) − h̃(θ ) − θ h̃′(θ ))},

(

∂G

∂h

)

r

=
∂G

∂R

(

∂R

∂h

)

r

+
∂G

∂θ

(

∂θ

∂h

)

r

=
M0Rβ

2βδθ h̃(θ ) + (1 − θ2)h̃′(θ )
{2θ (2 − α)(g(θ ) − θ h̃(θ )) + (1 − θ2)(g′(θ ) − h̃(θ ) − θ h̃′(θ ))},

Finally, the derivatives of G(R, θ ) wrt (T, μB) are con-

structed as
(

∂G

∂μB

)

T

=
∂h

∂μB

(

∂G

∂h

)

r

+
∂r

∂μB

(

∂G

∂r

)

h

(

∂G

∂T

)

μB

=
∂h

∂T

(

∂G

∂h

)

r

+
∂r

∂T

(

∂G

∂r

)

h

2. Second order

The relationships start to become more complicated at the

second order.

Derivatives of G(R, θ ) wrt (R, θ ) are

∂2G

∂R2
= (2 − α)(1 − α)h0M0R−α[g(θ ) − θ h̃(θ )],

∂2G

∂θ2
= h0M0R2−α[g′′(θ ) − 2h̃′(θ ) − θ h̃′′(θ )],

∂2G

∂R∂θ
= (2 − α)(1 − α)h0M0R−α[g′(θ ) − h̃(θ ) − θ h̃′(θ )].
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FIG. 14. Upper panels: pressure (left) and entropy density (right); middle panels: baryonic density (left) and energy density (right); lower

panels: speed of sound (left) and χ2 (right) as functions of T and μB. All panels correspond to the same location of the CP and angles presented

in the main text, but with w = 4 and ρ = 1.

Derivatives of G(R, θ ) wrt (T, μB) are constructed as

(

∂2G

∂μ2
B

)

T

=

(

∂h

∂μB

)2(
∂2G

∂h2

)

r

+

(

∂r

∂μB

)2(
∂2G

∂r2

)

h

+ 2
∂h

∂μB

∂r

∂μB

∂2G

∂r∂h

(

∂2G

∂T 2

)

μB

=

(

∂h

∂T

)2(
∂2G

∂h2

)

r

+

(

∂r

∂T

)2(
∂2G

∂r2

)

h

+ 2
∂h

∂T

∂r

∂T

∂2G

∂r∂h

where the terms with second derivatives of (r, h) wrt (T, μB) have been dropped, since the transformation between the two sets

is linear.
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FIG. 15. Upper panels: pressure (left) and entropy density (right); middle panels: baryonic density (left) and energy density (right); lower

panels: speed of sound (left) and χ2 (right) as functions of T and μB. All panels correspond to the same location of the CP and angles presented

in the main text, but with w = 0.75 and ρ = 2.

Derivatives of G(R, θ ) wrt (r, h) are

(

∂2G

∂r2

)

h

=
∂2G

∂R2

(

∂R

∂r

)2

h

+
∂G2

∂θ2

(

∂θ

∂r

)2

h

+
∂G

∂R

(

∂2R

∂r2

)

h

+
∂G

∂θ

(
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FIG. 16. Upper panels: pressure (left) and entropy density (right); middle panels: baryonic density (left) and energy density (right); lower

panels: speed of sound (left) and χ2 (right) as functions of T and μB. All panels correspond to μBC = 400 MeV, α1 � 4.40◦, α2 − α1 = 90◦,

and w = 2, ρ = 2.

Derivatives of (R, θ ) wrt (r, h) are
(
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= −
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r

(

∂θ

∂h

)3

,

where the expression for the derivatives of (r, h) wrt (R, θ ) are already quite long.

APPENDIX B

In this Appendix, we present a few more results for the

EoS, obtained with different parameter choices in the allowed

ranges discussed in the main text. We mainly aim at exploring

the effect of a different size for the critical region and a

different location for the critical point. Figure 14 shows our

EoS for the same location of the CP and angles presented

in the main text, but for w = 4 and ρ = 1. This choice was

made to show that the size of the critical region can be made

arbitrarily small by increasing w. This is evident by the fact

that the discontinuity in entropy, energy, and baryonic density
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FIG. 17. Isotherms in the plane of pressure vs baryon density

for T = 145 MeV (blue, solid line), T = 144 MeV (red, dashed

line), and T = 143–138 MeV (solid, black lines), for the choice of

parameters in Sec. V A 1.

is much reduced in this case, as well as the dip in the speed of

sound and peak in χ2.
Figure 15 shows our EoS for the same location of the CP

and angles presented in the main text, but for w = 0.75 and
ρ = 2. With this choice of parameters, in particular with a
smaller w, the size of the critical region and the effect of the
critical point become larger. This is evident by the fact that the
discontinuity in entropy, energy, and baryonic density is larger
in this case, as well as the dip in the speed of sound and peak
in χ2.

In Fig. 16, we change the location of the CP to μBC = 400

MeV, the angles become α1 � 4.40◦, α2 − α1 = 90◦, and we

set w = 2 and ρ = 2. When the data from the second beam

energy scan at RHIC become available, it will be possible to

perform a Bayesian analysis to systematically scan the param-

eter region (in a similar fashion as presented in this Appendix,

but for many more parameter sets) and test the results of

hydrodynamic simulations with this family of EoSs as input

against the data. We hope this will help to constrain the size

of the critical region and the location of the critical point.

APPENDIX C

1. Treatment of the phase coexistence region

The first-order phase transition appearing at chemical po-

tentials larger than the critical one leads to a phase coexistence

region in the plane of pressure versus net-baryon density. The

knowledge of the EoS in such a region, even though it does

not correspond to a stable state of the system, can be needed

in hydrodynamic simulations [79–83].

Because our treatment is carried out in the temperature

versus chemical potential plane, our EoS does not contain

information about the coexistence region. In order to use the

standard Maxwell construction, we would need a thermody-

namic potential defined even in the unphysical region, but this

is unfortunately unavailable in our approach. Thus, we take

a phenomenological approach to reconstruct the EoS in this

region. In Fig. 17, the isothermal curves in the pressure versus

baryon density plane are shown, with the same choice of

parameters as in Sec. V A 1: The solid blue line corresponds to

a temperature T > TC and shows only a slight inflection, while

the solid black lines correspond to temperatures T < TC , and

display a clear discontinuity; the dashed red line corresponds

to T � TC , and shows the insurgence of the discontinuous

behavior.

Since the thermodynamic conditions for the coexistence of

two phases (thermal, chemical, and mechanical equilibrium)

are all fulfilled by construction in our procedure, what is

needed is a continuous curve connecting the two branches

of each discontinuous isotherm. The phenomenological ap-

proach we follow here is to construct a form that is similar

to many other analytic theories (e.g., real gases) and presents

the typical double lobe structure. We perform a polynomial

fit to the two branches of each isotherm and the middle

point in the discontinuity. In the left panel of Fig. 18, the

FIG. 18. Left panel: the isotherm at T = 142 MeV is shown (black solid) along with the points (dark pink) utilized to generate the curve

in the coexistence region (pink dashed). Right panel: the same isotherms as in Fig. 17, with the modeled dependence of the pressure on the

baryon density in the phase coexistence region.
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original, discontinuous isotherm at T = 142MeV is shown

(black solid), along with the points used to generate the

curve in the coexistence region (dark pink) and the resulting

function inside the coexistence region (pink dashed).

The results of this treatment are shown in the right panel

of Fig. 18: The gap in the (P, nB) phase diagram correspond-

ing to the coexistence region between two phases is now

filled by a phenomenological dependence of P(nB) along the

isotherms. This will allow one to use our EoS in hydrody-

namic codes inside the phase coexistence region emerging

from the presence of a first-order chiral/deconfiment phase

transition.
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