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We construct an equation of state for quantum chromodynamics (QCD) at finite temperature and chemical

potentials for baryon number B, electric charge Q, and strangeness S. We use the Taylor expansion method to

the fourth power for the chemical potentials. This requires the knowledge of all diagonal and nondiagonal BQS

correlators up to fourth order: These results recently became available from lattice QCD simulations, albeit only

at a finite lattice spacing Nt = 12. We smoothly merge these results to the hadron resonance gas as model, to be

able to reach temperatures as low as 30 MeV; in the high-temperature regime, we impose a smooth approach to

the Stefan-Boltzmann limit. We provide a parametrization for each one of these BQS correlators as functions of

the temperature. We then calculate pressure, energy density, entropy density, baryonic, strangeness, and electric

charge densities and compare the two cases of strangeness neutrality and μS = μQ = 0. Finally, we calculate the

isentropic trajectories and the speed of sound and compare them in the two cases. Our equation of state can be

readily used as an input of hydrodynamical simulations of matter created at the Relativistic Heavy Ion Collider.
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I. INTRODUCTION

Relativistic heavy-ion collisions have successfully recre-

ated the quark gluon plasma (QGP) in the laboratory at

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory and the Large Hadron Collider (LHC)

at CERN. At low baryon densities, the transition from the

hadron gas phase where quarks and gluons are confined within

hadrons into a deconfined state where quark and gluons are

the main degrees of freedom is a smooth crossover [1–3].

At larger baryon densities, the phase transition is expected

to become stronger, eventually turning into first order. If this

is the case, then there has to be a critical point on the QCD

phase diagram [4–8]. The search for the QCD critical point is

the focus of the second Beam Energy Scan (BES II) at RHIC,

running in 2019 and 2020.

The quark gluon plasma acts as a nearly perfect fluid

and as such can be well described by event-by-event rela-

tivistic viscous hydrodynamical models. The hydrodynamical

description of the fireball has proved to be very successful

in describing the experimental data [9–19]. In order to close

the hydrodynamical equations, an equation of state (EoS)
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is required, which is based on first-principles lattice QCD

calculations. Recently, a Bayesian analysis [20] has provided

an important validation of the lattice QCD equation of state.

This framework, based on a comparison of data from the LHC

to theoretical models, has applied state-of-the-art statistical

techniques to the combined analysis of a large number of

observables while varying the model parameters. The poste-

rior distribution over possible equations of states turned out

to be consistent with results from lattice QCD simulations.

Additionally, the correct description of the QCD equation of

state is needed because differences in the equation can affect

the extraction of transport coefficients [17]. Thus, a lattice-

based QCD equation of state is a fundamental ingredient in

the description of the state of matter created in a heavy-

ion collision. The precise lattice QCD results for several

thermodynamic quantities can thus be used in support of the

heavy-ion experimental program [21].

For a few years, the EoS of QCD at zero baryonic density

has been known with high precision from first principles

[22–24]. The calculation of the equation of state at finite

chemical potential is hindered by the sign problem. Never-

theless, the thermodynamic quantities can be expanded as a

Taylor series in powers of μB/T , for which the coefficients

χn can be simulated on the lattice at μB = 0. From these

Taylor coefficients a variety of lattice QCD-based equations

of state have been reconstructed [25–27] and later used within

relativistic hydrodynamics [25,28–31].

However, baryon number is not the only conserved charge

in a heavy-ion collision: Strangeness and electric charge

are also relevant quantum numbers. In fact, many questions
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FIG. 1. From left to right, top to bottom: Expansion coefficients χB
2 , χ

Q

2 , χ S
2 , χ

BQ

11 , χBS
11 , χ

QS

11 , χB
4 , χ

Q

4 , χ S
4 as functions of temperature. In

each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and the thicker blue line on the

right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

remain regarding a possible separate freeze-out temperature

for strange hadrons [32–35] and separations of electric charge

due to a possible chiral magnetic effect [36], so many in-

teresting questions need to be answered that go beyond just

baryon charge conservation. At the LHC, where the baryonic

chemical potential μB is basically vanishing, the chemical

potentials for strangeness μS and electric charge μQ are also

zero. At RHIC, however, as the baryonic density increases,

the other two chemical potentials have finite values as well.

Until now, the equation of state of QCD has only been extrap-

olated to finite μB, either by keeping μS = μQ = 0 or along

a specific trajectory in the four-dimensional (4D) parameter

space, namely imposing that the strangeness density 〈nS〉 = 0

and that the electric charge density 〈nQ〉 = 0.4〈nB〉 to match

the experimental situation.

After the early results for χ2, χ4, and χ6 [37], a continuum

extrapolation for χ2 was published in Ref. [38]; in Ref. [39]

χ4 was shown but only at finite lattice spacing. The continuum

limit for χ6 was published for the first time in Ref. [40] in

the case of strangeness neutrality and later in Ref. [41] for

both cases. In Ref. [42], a first determination of χ8 at two

values of the temperature and Nt = 8 was presented. Finally,

in Ref. [43] a determination of χ8 was presented for the first

time as a function of the temperature, at Nt = 12, keeping

μS = μQ = 0. Recently, the effect of introducing a critical

point in the equation of state of QCD has also been tested [26].

However, a Taylor expansion of the equation of state,

along a direction which satisfies the strangeness-neutrality

condition, is not enough for the hydrodynamics approach,

since the fluid cells have local fluctuations in strangeness

density. Additionally, there is a complicated interplay between

transport coefficients when B, Q, S are considered [44] that

cannot be neglected at large baryon densities. For these rea-

sons, an EoS fully expanded as a Taylor series in powers of

μB/T, μS/T, μQ/T is needed as an input of hydrodynamic

simulations of the matter created at RHIC. In order to perform

such an expansion, all of the diagonal and nondiagonal sus-

ceptibilities of these three conserved charges are needed from

lattice QCD up to the chosen power. In this work, we perform

the Taylor expansion to total power four in the chemical

potentials. These results recently became available [43] on

Nt = 12 lattices.

Alternative approaches to the Taylor-series expansion have

been suggested in Refs. [45,46] and Refs. [47,48], which

have been shown to match well to lattice QCD data for

the Fourier harmonics [49] at imaginary chemical potential.
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FIG. 2. From left to right, top to bottom: Expansion coefficients χ
BQ

31 , χBS
31 , χ

QS

31 , χ
BQ

13 , χBS
13 , χ

QS

13 , χ
BQ

22 , χBS
22 , χ

QS

22 , χ
BQS

211 , χ
BQS

121 , χ
BQS

112 as

functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and

the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish

baryon interactions within a hadron resonance gas (see also

Ref. [50]), specifically for the thermodynamic regime above

T > 150 MeV. We note that here we use lattice QCD data en-

tirely in this regime (our hadron resonance gas model is only

to constrain low temperatures below T � 135 MeV, where no

lattice QCD results are available). However, due to the Taylor

expansion, our approach is limited to chemical potentials

μB � (2–2.5)T . To fully reproduce the Fourier harmonics

we would need to reach μB � πT , for which higher-order

coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for

QCD at finite T, μB, μS, μQ. We build the pressure as a

Taylor series of the three chemical potentials, with coefficients

taken from lattice simulations [43]. At low temperatures,

we perform a smooth merging between the lattice and the

hadron resonance gas model results [51] and ensure conti-

nuity of higher-order derivatives. At high temperatures, we

impose a smooth approach to the Stefan-Boltzmann limit. We

parametrize each one of these coefficients as a ratio of polyno-

mials. From this we obtain the pressure and can then calculate

all other quantities from thermodynamic relationships.
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FIG. 3. Normalized pressure, entropy density, energy density, baryonic, strangeness, and electric charge densities are shown as functions

of temperature along the μB/T = 0.5 (top), μB/T = 1.0 (middle), and μB/T = 2.0 (bottom) lines. In all plots, the solid black curves indicate

the case 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉, whereas the dashed red ones indicate the case μQ = μS = 0.
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II. METHODOLOGY AND RESULTS

The Taylor series of the pressure in terms of the three

conserved charge chemical potentials can be written as

p(T, μB, μQ, μS )

T 4
=

∑

i, j,k

1

i! j!k!
χ

BQS

i jk

(μB

T

)i(μQ

T

) j(μS

T

)k

.

(1)

We limit our calculation to i + j + k � 4. The coefficients

χ
BQS

i jk
=

∂ i+ j+k (p/T 4)

∂
(

μB

T

)i
∂
(μQ

T

) j
∂
(

μS

T

)k

∣

∣

∣

∣

∣

μB,μQ,μS=0

(2)

have recently been published from lattice QCD simulations

on 483 × 12 lattices [43] in the temperature range (135

MeV) < T < (220 MeV). Since this is not enough to cover

the hydrodynamical evolution of the system, we smoothly

merge each coefficient at low temperature with the hadron

resonance gas model result, while at high temperature we

calculate the Stefan-Boltzman limit for each one of them

and assume that their value at T = 800 MeV is ∼10%

away from the respective Stefan-Boltzmann limit. To sim-

plify the notation, whenever i, j, k are zero, we only write

the nonzero indices and only the corresponding conserved

charges: For example, χ
BQS
200 becomes χB

2 , χ
BQS
301 becomes

χBS
31 , and so on. In order to provide a smooth pressure

which can be easily derived to obtain the other thermody-

namic quantities, we parametrize each coefficient by means

of a ratio of up-to-ninth-order polynomials in the inverse

temperature:

χ
BQS

i jk
(T ) =

ai
0 + ai

1/t + ai
2/t2 + ai

3/t3 + ai
4/t4 + ai

5/t5 + ai
6/t6 + ai

7/t7 + ai
8/t8 + ai

9/t9

bi
0 + bi

1/t + bi
2/t2 + bi

3/t3 + bi
4/t4 + bi

5
/t5 + bi

6/t6 + bi
7/t7 + bi

8/t8 + bi
9/t9

+ c0.

Only χB
2 requires a different parametrization:

χ2(T ) = e−h1/t ′−h2/t ′2
f3[1 + tanh( f4t ′ + f5)]. (3)

In both equations above, t = T/154 MeV and t ′ =
T/200 MeV [52]. The values of the parameters for each

coefficient are given in the Appendix, together with the

respective Stefan-Boltzmann limits. Figures 1 and 2 show

all of the Taylor expansion coefficients as functions of the

temperature. The black dots are the HRG model results, the

red triangles correspond to the lattice QCD results, and the

thick blue line indicates the Stefan-Boltzmann limit.

Making use of this parametrization, we construct the pres-

sure from Eq. (1). The other thermodynamic quantities are

then derived from the pressure as follows:

s

T 3
=

1

T 3

∂ p

∂T

∣

∣

∣

∣

μi

,
ε

T 4
=

s

T 3
−

p

T 4
+

∑

i

μi

T

ni

T 3

ni

T 3
=

1

T 3

∂ p

∂μi

∣

∣

∣

∣

T,μ j

, c2
s =

∂ p

∂ε

∣

∣

∣

∣

ni

+
∑

i

ni

ε + p

∂ p

∂ni

∣

∣

∣

∣

ε,n j

. (4)

Everywhere in the above equation, i �= j is intended.

In Fig. 3 we show the dependence of the normalized pres-

sure, entropy density, energy density, baryonic, strangeness,

and electric charge densities on the temperature, along lines

of constant μB/T = 0.5, 1, 2, with both 〈nS〉 = 0, 〈nQ〉 =
0.4〈nB〉 (solid black lines) and in the case of μS = μQ = 0

(dashed red lines). We find that the thermodynamic quantities

that are less sensitive to the chemical composition of the

system do not show large discrepancies between the two sce-

narios for all three values of μB/T . On the other hand, when

realistic conditions on the global chemical composition of the

system are imposed, the baryon density is largely affected and

substantially decreased; the opposite effect is visible for the

electric charge density, which is heavily enhanced.

Finally, we compare (i) the isentropic trajectories, (ii) the

temperature dependence of the speed of sound along lines of

constant μB/T , and (iii) the behavior of the speed of sound

along parametrized chemical freeze-out lines between these

two cases. The isentropic trajectories are shown in Fig. 4 for

selected values of s/nB, which correspond to the indicated

collision energies [40]. In the upper panel of Fig. 5 we show

the speed of sound as a function of the temperature along lines

with μB/T = 0.5, 1, 2; the different colors correspond to

different values of μB/T . In the lower panel of Fig. 5 we show

the behavior of the speed of sound along two parametrized

chemical freeze-out lines. These two freeze-out lines are

shifted from the one presented in Ref. [53], and have the form:

TFO(μB) = T0 + bμ2
B + cμ4

B, (5)

FIG. 4. Isentropic trajectories in the (T, μB ) plane, for s/nB =
420, 144, 70, 30, corresponding to collision energies

√
sNN =

200, 62.4, 27, 14.5 GeV, respectively. The solid black lines cor-

respond to 〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed red lines to

μS = μQ = 0.
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FIG. 5. Upper panel: Temperature dependence of the speed of

sound along lines of constant μB/T . The solid lines correspond to

〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed ones to μS = μQ = 0.

The curves for values of μB/T = 0.5, 1, 2 are shown in black, blue

(darker gray) (this line stops at T = 450 MeV) and pink (lighter

gray) (this line stops at T = 225 MeV), respectively. Lower panel:

Behavior of the speed of sound along parametrized chemical freeze-

out lines as in Eq. (5), with TFO(μB = 0) = 160 MeV [pink (lighter

gray lines)] and TFO(μB = 0) = 150 MeV [dark blue (darker gray

lines)]. As in the upper panel, solid and dashed lines correspond to

the cases with and without strangeness neutrality, respectively.

with b = −1.39 × 10−4 MeV−2 and c = −5.3 ×
10−11 MeV−3; the two lines we show have TFO(μB =
0) = 160 MeV and TFO(μB = 0) = 150 MeV. Both

in Fig. 4 and in Fig. 5, the solid lines correspond

to 〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed lines to

μS = μQ = 0.

Since the EoS constructed in this work is a Taylor ex-

pansion carried out from lattice-QCD-calculated expansion

coefficients, it is important to have an idea of the range of

the validity of such expansion. It has been shown from lattice

QCD simulations that the Taylor expansion of the equation

of state up to O(μ4
B) converges for μB/T � 2–2.5 [41] and

the same can be said for our EoS. This roughly corresponds

to a collision energy of
√

s � 10 GeV [53]. In order to have

B /T = 0.5

B /T = 1.0

B /T = 1.5

B /T = 2.0

B /T = 2.5

B /T = 3.0

60 80 100 120 140 160 180 200
0

2

4

6

8

T [MeV]

Q
,S

N
[M

e
V

]

FIG. 6. Temperature dependence of the electric chemical poten-

tial along lines of constant μB/T = 0.5–3 in the case of strangeness

neutrality.

a better idea of where a possible breakdown of its validity

occurs, we show in Fig. 6 the behavior of the electric chemical

potential in the case with strangeness neutrality, along lines of

constant μB/T = 0.5–3. We see that a nonmonotonic behav-

ior appears around and above μB/T ∼ 2.5. This is in line with

the expectation that the convergence of the Taylor series is

guaranteed in the regime μB/T � 2.5. We note again that with

the Taylor expansion approach used here, we do not expect

to fully incorporate the constraints from imaginary μB—and

thus reproduce the Fourier harmonics from Ref. [49]—since

for them the coverage of the region μB/T � π would be

required. Applying the constraints from imaginary μB can be

done in the near future to further improve our modeling of the

QCD EoS, possibly concurrently with the inclusion of new

continuum extrapolated lattice results.

III. CONCLUSIONS

In this paper, we constructed an equation of state for

QCD at finite temperature and B, Q, S chemical potentials,

based on a Taylor series up to fourth power in the chemical

potentials. Our methodology is based on a smooth merging

between the HRG model and lattice QCD results for each one

of the Taylor expansion coefficients; for all coefficients except

χB
2 , the parametrization function is a ratio of up-to-ninth-order

polynomials. We provide all parameters in Tables I, II, and

III, so that our EoS can be readily used in the community.

Furthermore, the code to generate the EoS and the tables for

the thermodynamic quantities as functions of T, μB, μS, μQ

is available at the link provided in Ref. [54].

The equation of state presented in this paper is impor-

tant for the hydrodynamic description of the system cre-

ated in heavy-ion collisions at RHIC. There are numerous

outstanding questions that remain to be understood at finite

baryon densities that are influenced both by electric charge

and strangeness. One recent surprise that arose from the

first Beam Energy Scan was � polarization, which indicates

that the quark gluon plasma may be the most vortical fluid

known to humanity [55]. However, considering that �’s are
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TABLE I. Parameters a0–a9 for the parametrization of the temperature dependence of all coefficients χ
BQS

i jk (T ), with the functional form shown in Eq. (3). The “–” symbols in

the table indicate that, for most of the coefficients, it is enough to consider a ratio of polynomials of order lower than seven.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

χ0(T ) 7.53891 −6.18858 −5.37961 7.0875 −0.97797 0.0302636 – – – –

χ
Q

2 (T ) −1.254 13.7781 −20.8361 11.4637 −1.52145 0.0563044 – – – –

χ S
2 (T ) 0.728917 −1.73212 1.61219 −0.706361 0.192223 −0.0164219 −0.0040308 0.00044212 – –

χ
BQ

11 (T ) 0.611997 0.260951 0.439882 4.04624 −0.492197 −0.479177 0.108023 −0.000271088 – –

χBS
11 (T ) −3.42744 0.0807472 0.155933 1.76331 −0.350538 −0.547143 0.0641196 −0.000271926 – –

χ
QS

11 (T ) 0.975914 −2.2118 1.99441 −0.710665 0.100002 −0.00437518 – – – –

χB
4 (T ) 0.0697892 −0.0759267 0.0270699 −0.00183789 −0.00102026 0.000248834 −0.0000205803 5.78113·10−7 – –

χ
Q

4 (T ) 0.519384 −2.61484 6.99796 −9.37407 5.50677 −0.933273 0.0628049 −0.00149075 – –

χ S
4 (T ) 3.99178 −10.8564 11.4807 −5.56961 1.43254 −0.204083 0.0152834 −0.00047076 – –

χ
BQ

31 (T ) 0.000214078 −0.00277202 0.0107602 −0.0189801 0.0163346 −0.00649086 0.00102683 −0.0000118454 – –

χBS
31 (T ) −0.606637 0.940635 −0.609091 0.211817 −0.0423212 0.0048043 −0.000283315 6.59604·10−6 – –

χ
QS

31 (T ) 1.39052 −2.95215 2.99901 −1.3976 0.337495 −0.0441243 0.0029685 −0.0000804859 – –

χ
BQ

13 (T ) 1.33817 −0.36966 −7.73766 12.6268 −7.54688 2.27058 −0.380023 0.0357606 −0.00175991 0.0000349795

χBS
13 (T ) −0.0853497 0.09878 −0.0477156 0.0124373 −0.00188339 0.000165099 −7.72499·10−6 1.47927 · 10−7 – –

χ
QS

13 (T ) 0.23137 −0.607108 0.574083 −0.232842 0.0476026 −0.00514917 0.000279883 −5.97476·10−6 – –

χ
BQ

22 (T ) 0.131897 −0.151923 0.0728375 −0.0188047 0.00281673 −0.000244096 0.0000112936 −2.14344·10−7 – –

χBS
22 (T ) 0.0481773 −0.0633491 0.034631 −0.0101557 0.00171648 −0.000166247 8.49007·10−6 −1.75132·10−7 – –

χ
QS

22 (T ) 1.03006 −2.50946 2.44698 −1.00851 0.207566 −0.0225078 0.00122422 −0.000026132 – –

χ
BQS

211 (T ) 0.146608 −0.533936 0.834892 −0.645642 0.260112 −0.0540238 0.00527256 −0.000182156 – –

χ
BQS

121 (T ) −1.27191 2.11351 −1.4598 0.538497 −0.113414 0.0134801 −0.000826188 0.0000197941 – –

χ
BQS

112 (T ) −2.61752 4.37997 −3.00258 1.08514 −0.221478 0.0253053 −0.00148533 0.0000342702 – –
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TABLE II. Parameters b0–b9 and c0 for the parametrization of the temperature dependence of all coefficients χ
BQS

i jk (T ), with the functional form shown in Eq. (3). The “–”

symbols in the table indicate that, for most of the coefficients, it is enough to consider a ratio of polynomials of order lower than nine.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 c0

χ0(T ) 2.2453 −6.02568 15.3737 −19.6331 10.24 0.799479 – – – – –

χ
Q

2 (T ) −2.08695 22.3712 −33.4035 19.9497 −6.67937 4.1127 – – – – –

χ S
2 (T ) 0.634185 −0.484646 −3.02879 7.29526 −5.94029 0.954829 0.782178 0.0848009 – – 0.00083

χ
BQ

11 (T ) 506.969 2.07112 −1310.73 −47.3907 1855.62 207.417 −2635.03 1616.16 – – –

χBS
11 (T ) 8.81578 4.53879 70.1272 −212.977 −287.925 1688.03 −2130.95 901.004 – – –

χ
QS

11 (T ) 2.94254 −5.97226 4.37484 0.723152 −4.3139 3.70245 – – – – 0.00012

χB
4 (T ) 3.3139 −2.34182 −3.05239 0.281088 3.36387 −1.47861 0.232943 −0.00920141 – – –

χ
Q

4 (T ) 2.78757 −7.70015 7.34828 5.60254 −16.5647 10.1847 −1.46422 0.258243 – – –

χ S
4 (T ) 7.26105 −25.0961 41.2002 −31.1539 −3.87268 19.7369 −9.31673 2.02404 – – –

χ
BQ

31 (T ) 0.628355 −1.27107 −0.0555062 0.801392 0.649844 −0.248501 −1.16057 0.662302 – – −0.00007

χBS
31 (T ) 22.8266 −19.1507 −33.6479 25.4636 17.3853 −0.671223 −19.7378 9.96533 – – –

χ
QS

31 (T ) 52.129 −92.6007 24.1788 32.9419 −12.5404 −1.67767 1.02439 0.502227 – – –

χ
BQ

13 (T ) 32.3922 −36.2407 −44.2609 31.2543 50.794 17.5211 −7.80941 −13.3867 −118.309 93.7845 –

χBS
13 (T ) 0.285383 0.769297 −3.15803 1.59797 3.54785 −0.652119 −6.48277 4.28691 – – –

χ
QS

13 (T ) 1.12154 −2.86563 2.35378 −0.14257 −0.827056 0.35061 −0.0544297 0.125906 – – –

χ
BQ

22 (T ) 2.46229 −1.78965 3.86743 −3.007 −4.28013 0.190242 3.36159 −0.215634 – – –

χBS
22 (T ) 0.505109 0.555159 −2.50987 0.346874 2.47285 0.611415 −3.84829 2.02716 – – –

χ
QS

22 (T ) 15.1999 −40.1845 44.1416 −19.6254 −13.5991 25.2683 −12.6079 2.72985 – – –

χ
BQS

211 (T ) 5.80204 −15.5399 5.25306 18.444 −1.81185 −20.1787 −4.61059 13.9429 – – –

χ
BQS

121 (T ) 56.5761 −106.452 123.146 −162.408 94.5282 51.273 −77.7255 29.3669 – – –

χ
BQS

112 (T ) 43.2755 −108.526 180.836 −134.256 −38.6051 46.669 6.94258 17.7581 – – –

0
6
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TABLE III. Parameters for the parametrization of the tempera-

ture dependence of all coefficients χ
BQS

i jk (T ), with the functional form

shown in Eq. (3). The “–” symbols in the table indicate that, for most

of the coefficients, it is enough to consider a ratio of polynomials of

order lower than seven.

h1 h2 f3 f4 f5

χB
2 (T ) −0.325372 0.497729 0.148987 6.66388 −5.07725

simultaneously both strange particles and baryons, polariza-

tion studies should be done in hydrodynamic simulations that

also consider all three conserved charges because of this inter-

play between strangeness and baryon number. As previously

mentioned, this BQS equation of state can help shed light

on the possible flavor hierarchy of freeze-out temperatures

as well as the chiral magnetic effect. A variety of dynamical

observables of conserved charges (e.g., kaon flow harmonics)

have already been measured at the Beam Energy Scan I and

many others are planned for the Beam Energy Scan II, which

may help to further constrain the location of a possible critical

point.

Finally, we point out that strange hadrons make up roughly

10% of all measured hadrons (assuming the kaon to pion ratio

is a reasonable estimate for the ratio of all final state hadrons)

and we can primarily only measure charged particles.1 Thus,

a BQS equation of state is required for a fully consistent

description of the quark gluon plasma at finite densities.

Relativistic hydrodynamics in the presence of multiple con-

served charges obtains cross terms that affect the transport

coefficients [44,56,57]. Thus, it is misleading to extract trans-

port coefficients at finite baryon densities only considering

finite baryon number and not also finite strangeness and elec-

tric charge. Furthermore, transport coefficients of different

conserved charges have different characteristic temperatures,

which further complicates the picture at large densities [58].

The consequences are still under development, but it is certain

that a BQS equation of state is a vital first step to take into

account any of these effects.

At this point, our reconstructed BQS equation of state only

consists of a crossover transition. Unlike a previous work

where an equation of state at finite μB was coupled to the 3D

Ising model in order to study criticality [26], such an endeavor

with three conserved charges would be significantly more

complicated. While the term “critical point” is used, there

might actually be a critical line or even critical plane once

1Some neutral particles can be reconstructed from their daughter

particles, e.g., π 0 → γ γ .

one considers the full three-dimensional space of μB, μS , and

μQ. Since there are large fluctuations in T, μB, μS , and μQ

throughout the evolution of a single event [59–61], certain

elements of the fluid might pass through a critical region at

an entirely different combination of T, μB, μS , and μQ.

Note added in proof. We recently became aware of

Ref. [62], which constructs a similar equation of state as the

one presented here. One major difference is that we match

lattice QCD susceptibilities with the hadron resonance gas

model before reconstructing the equation of state, whereas in

Ref. [62] the matching with the HRG model is performed for

the Taylor-reconstructed pressure.
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APPENDIX

We list the values of the parameters in Eq. (3) for each

Taylor expansion coefficient in Table I. The Stefan-Boltzmann

limit for the coefficients have the following values:

p(T, 0, 0, 0)

T 4
=

19π2

36
,

χB
2 =

1

3
, χ

Q
2 =

2

3
, χS

2 = 1,

χ
BQ
11 = 0, χBS

11 = −
1

3
, χ

QS
11 =

1

3
,

χB
4 =

2

9π2
, χ

Q
4 =

4

3π2
, χS

4 =
6

π2
,

(A1)

χ
BQ
31 = 0, χBS

31 = −
2

9π2
, χ

QS
31 =

2

9π2
,

χ
BQ
13 =

4

9π2
, χBS

13 = −
2

π2
, χ

QS
13 =

2

π2

χ
BQ
22 =

4

9π2
, χBS

22 =
2

3π2
, χ

QS
22 =

2

3π2

χ
BQS
211 =

2

9π2
, χ

BQS
121 = −

2

9π2
, χ

BQS
112 = −

2

3π2
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