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I. INTRODUCTION

Vector currents, being intimately related to the flavor SU(3) symmetry of QCD, represent

a fundamental probe for hadron structure as well as for the breaking of SU(3) by quark

masses. This is particularly interesting for baryons, where the electromagnetic current for

nucleons, known empirically to remarkable accuracy [1], along with the magnetic moments

of hyperons allow for an almost complete description of all the SU(3) vector currents to

the order in the low energy expansion considered in the present work. The charged vector

currents are relevant in β decays, where both SU(3) breaking in the |∆S |= 1 charges and

weak magnetism are still open problems. To the present level of experimental accuracy in

hyperon β decays, there is not sufficient sensitivity to the SU(3) breaking in the charges

[2]. The reason is that β decay has a branching fraction of about 10−3, being dominated by

the non-leptonic component. Fortunately, lattice QCD is producing results [3–6] which can

be compared with the predictions of the approach in the present work. The experimental

information on charge form factors is limited to the electric form factors of nucleons and

the charge radius of the Σ−. This is however sufficient to predict the rest of the charge

radii, whose SU(3) breaking effects are, at the order of the present calculation, finite non-

analytic in quark masses. The octet baryons’ EM magnetic moments and nucleons’ magnetic

radii give an almost complete prediction for the rest of the currents but for one low energy

constant (LEC) which requires knowledge of at least one weak magnetic moment of a ∆S = 1

current. In the approach followed here, results automatically extend to the vector current

observables of the decuplet baryons and to EM transitions, e.g. the M1 transition ∆ →
Nγ, most of which remain empirically unknown or poorly known. The study of electric

currents in BChPT with inclusion of the spin 3/2 baryons dates back a quarter century

[7, 8], and numerous works have since been produced in various versions of that framework,

among those close in spirit to the present one are found in Refs. [9–15], and works with

additional constraints imposed by consistency with the 1/Nc expansion are those of Refs.

[16–21]. The present work formalizes the combination of BChPT and the 1/Nc expansion

[22] for the vector currents following the rigorous power counting scheme of the ξ expansion

[23, 24] based on the linking O(p) = O(1/Nc) = O(ξ). The combined framework was first

applied to the SU(3) vector charges in Ref. [20], where the ξ expansion was not strictly

implemented, however for the purpose of calculating the corrections of SU(3) breaking to the
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vector charges, restricted by the Ademollo-Gatto theorem (AGT), such omission has no very

significant effect 1. Here a complete study is presented to O(ξ3) and O(ξ4) (depending on the

observable) of the SU(3) vector currents. The present work provides results for generic Nc,

permitting in this way to sort out in particular the large Nc behavior of non-analytic terms in

ξ stemming from one loop corrections, which gives additional understanding, as it has been

shown for instance in the case of the Gell-Mann-Okubo relation and the σ terms discussed

in Refs. [25, 26]. The subject of magnetic moments has been addressed in the context of the

1/Nc expansion in works limited to a tree level expansion in composite operators [27–30],

and in works including one loop corrections in BChPT Refs. [17–19, 21]. In addition to

the BChPT, dispersive approaches implementing constraints of chiral dynamics have been

implemented [31–33] and where in addition consistency with the 1/Nc expansion has also

been required [34–38]. Such works naturally give a range of applicability beyond the present

one, which is limited up to the form factor radii.

This work is organized as follows: Section II presents the baryon chiral Lagrangians

needed for the present work, Section III summarizes the one loop corrections to the vector

currents, Section IV presents the analysis of the vector charges and radii, and Section V

does the same for the magnetic moments and radii. A summary is presented in Section VI.

Several appendices are included for the benefit of readers intending to implement similar

calculations.

II. BARYON CHIRAL LAGRANGIAN

This section summarizes the pieces of the Baryon Chiral Lagrangian up to O(ξ4) relevant

to the calculations in this work. The details on the construction of the Lagrangians and the

notations are given in Ref. [24]. In order to ensure the validity of the OZI rule for the quark

mass dependency of baryon masses, namely, that the non-strange baryon mass dependence

on ms be O(N0
c ), the following combination of the source χ+ is defined by [24]:

χ̂+ ≡ χ̃+ +Nc χ
0
+, (1)

which is O(Nc) but has dependence on ms which is O(N0
c ) for all states with strangeness

O(N0
c ). For convenience a scale Λ is introduced, which can be chosen to be a typical QCD

1 In [20] the baryon-GB vertices included higher order terms in 1/Nc.
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scale, in order to render most of the LECs dimensionless. In the calculations Λ = mρ will

be chosen. The quark mass matrix is defined by Mq = m0 +ma λa

2
, where in the physical

case m0 = 1
3
(mu +md +ms), m

3 = mu −md and m8 = 1√
3
(mu +md − 2ms) and the rest of

the Ma s vanish.

Collecting the baryons in a spin flavor multiplet denoted by B, and using standard

notation for the chiral building blocks (for details see [24]), the LO O(ξ) Lagrangian reads:

L(1)
B = B†(iD0 −

CHF

Nc

Ŝ2 + g̊Au
iaGia +

c1
2Λ

χ̂+)B, (2)

where the hyperfine mass shifts are given by the second term, Gia are the spin-flavor gener-

ators (see Appendix A), and the axial coupling is at LO g̊A = 6
5
gA, being gA = 1.2732(23)

the nucleon’s axial coupling. The relevant terms in the O(ξ2) Lagrangian are:

L(2)
B = B†

(
c2
Λ
χ0
+ +

CA
1

Nc

uiaSiT a +
κ

2Λ
Bia

+Gia + · · ·
)
B, (3)

where the flavor SU(3) electric and magnetic fields are denoted by E+ and B+ and given

by Ei
+ = F 0i

+ and Bi
+ = 1

2
εijkF jk

+ [24]. The term proportional to κ gives at LO the magnetic

moments associated with all vector currents. The O(ξ3) and O(ξ4) Lagrangians needed for

the one-loop renormalization of the vector currents are the following:

L(3)
B = B†

( g1
Λ2

DiE
a
+iT

a +
κ1

2ΛNc

Bia
+SiT a + · · ·

)
B

L(4)
B = B†

(
1

NcΛ2
(g2DiE

a
+iS

jGja + g3DiE
a
+j{Si, Gja}`=2) +

κr

Λ3
D2Bia

+Gia

+
1

2Λ3
(κ2χ

0
+B

ia
+Gia + iκFf

abcχa
+B

ib
+G

ic + κDd
abcχa

+B
ib
+G

ic + κ3χ
a
+B

ia
+Si)

+
1

2ΛN2
c

(κ4B
ia
+ {Ŝ2, Gia}+ κ5B

ia
+SiSjGja) + · · ·

)
B (4)

The LECs g1 and g2 will be determined by charge radii, the term proportional to g3 gives

electric quadrupole moments for decuplet baryons and for transitions between decuplet to

octet baryons, which will not be discussed here, and the term proportional to κr gives

a contribution to magnetic radii (D2B+ ≡ DµD
µB+ being the covariant divergence of the

magnetic field). The rest are quark mass and higher order in 1/Nc corrections to the magnetic

moments.

Throughout, spin-flavor operators in the Lagrangians are scaled by appropriate powers

of 1/Nc such that all LECs start at zeroth order in Nc. Of course, LECs have themselves an

expansion in 1/Nc, kept implicit, which requires information for Nc > 3 to be determined. In
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that sense each Lagrangian term has a leading power in 1/Nc which is used to assign its order

in the ξ power counting, followed by sub-leading terms in 1/Nc due to the expansion of the

corresponding LEC. In addition, each term in the Lagrangian is explicitly chiral invariant

and its expansion in powers of the Goldstone Boson fields yields factors 1/Fπ = O(1/
√
Nc)

for each additional factor of a GB field.

For convenience the following definition is used:

δm̂ ≡ CHF

Nc

Ŝ2 − c1
2Λ

χ̂+. (5)

Note that δm̂ gives rise to mass splittings between baryons which are the O(1/Nc) hyper-

fine term in Eqn.(2) and the O(p2) quark mass term. The O(mqNc) term in χ̂+ becomes

immaterial in the loop calculations as only differences of baryon masses appear for which

such terms exactly cancel.

III. ONE LOOP CORRECTIONS TO CURRENTS

The one-loop corrections to the vector currents involve the two sets of gauge invariant

diagrams A and B in Fig. 1, where the vertices are given in Appendix C. The explicit results

are the following:

V µa(A1) = i

(
g̊A
Fπ

)2 ∑

n1,n2

GibPn2
ΓµaPn1

Gjb 1

q0 − δmn2
+ δmn1

×
(
H ij(p0 − δmn1

,Mb)−H ij(p0 + q0 − δmn2
,Mb)

)

V µa(A2) =
1

2
{Γµa, δẐ1−loop}

V µa(A3) =

(
g̊A
Fπ

)2

fabc
∑

n

GibPnG
jcH ijµ(p0 − δmn, q,Mb,Mc)

V µa(B1) = − i

2F 2
π

fabcf bcdΓµdI(0, 1,M2
b ) (6)

V µa(B2) = gµ0
i

4F 2
π

fabcf bcdT d(q0
2K(q,Mb,Mc) + 4q0K

0(q,Mb,Mc) + 4K00(q,Mb,Mc)),

where Pn are projectors onto the corresponding baryon in the loop, p0 is the resid-

ual energy of the initial baryon, q0 is the incoming energy in the current, and Γµa =

gµ0T a+ i κ
Λ
ε0µijfabcf cbdqiGjd contains both the electric charge and magnetic moment compo-

nents. The one-loop wave function renormalization factor δẐ1−loop can be found in [24], and

the loop integrals I, K, Kµ, Kµν , H ij and H ijµ are given in Appendix B. Since the temporal
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component of the current can only connect baryons with the same spin, q0 is equal to the

SU(3) breaking mass difference between them plus the kinetic energy transferred by the

current, which are all O(ξ2) or higher and must therefore be neglected in this calculation.

In the evaluations one sets p0 → δmin and p0 + q0 → δmout. In particular, for diagram A1,

if it requires evaluation at q0 = 0 such a limit must be taken in the end of the evaluation.

The U(1) baryon number current can used to check the calculation: only diagrams A1+2

contribute, and as required they cancel each other.

p0p0p0
q µaq µa

A1 A2

p0

q µa
B2

p0

q µa
A3

p0
q µa

B1

q µa

FIG. 1: Diagrams contributing to the 1-loop corrections to the vector currents.

For a generic current vertex Γ, the combined UV divergent and polynomial piece of

diagrams A1+2 can be written as:

Γ(A1+2)
poly =

1

(4π)2

(
g̊A
Fπ

)2(
1

2
(λε + 1)M2

ab[G
ia, [Gib,Γ]]

+
1

3
(λε + 2)

(
2[[Gia,Γ], [δm̂, [δm̂,Gia]]] + [[Γ, [δm̂,Gia]], [δm̂,Gia]]

))
, (7)

where λε =
1
ε
− γ + log 4π. The first term is proportional to quark masses through the GB

mass-square matrix M2
ab = m0δab + 1

2
dabcmc, and the second involves the baryon hyperfine

mass splittings δm̂ which are O(1/Nc) and, following the strict ξ power counting, the O(p2)

terms due to SU(3) breaking in δm̂ are disregarded. The consistency with the 1/Nc power

counting can be readily checked. Diagrams A3 and B1,2 are separately consistent with the
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1/Nc power counting. Their polynomial contributions are the following:

V µa(A3)
Poly = − 1

(4π)2

(
g̊A
Fπ

)2
1

6
ifabc

×
(
gµ0
(
(λεq

iqj +
1

2
(λε + 1)q2gij)δbd − 3gij(λε + 1)M2

bd

)
[Gid, Gjc]

− gµ0 (λε + 2)
(1
2
[Gib, [[Gic, δm̂], δm̂]]− [[Gib, δm̂], [Gic, δm̂]]

)

+ gµi (λε + 2)
(1
2
gjkqi[[Gkb, Gjc], δm̂] + 2gijqk(3[Gkb, [Gjc, δm̂]] + [[Gjc, Gkb], δm̂])

))

V µa(B1)
Poly =

1

(4π)2
(λε + 1)

1

2F 2
π

fabdf cde ΓµeM2
bc

= − 1

(4π)2
3

F 2
π

(λε + 1)gµ0B0(m
0 Γµa +

1

4
dabcmb Γµc)

V µa(B2)
Poly = − 1

(4π)2
λε

1

4F 2
π

(gµ0 ~q 2 + gµi q
iq0)T

a − gµ0V 0a(B1)
Poly (8)

Reduction formulas that can be found in [25] are used to express the above in a base of

irreducible operators, Eqns.(9) and (12) below.

IV. VECTOR CHARGES

In this section the SU(3) vector current charges and corresponding radii are analyzed.

The SU(3) breaking corrections to the charges already presented in [20] and [24] are discussed

for completeness. At lowest order the charges are represented by the flavor generators T a.

The one-loop corrections are UV finite at Q2 ≡ −q2 = 0, and since up to O(ξ3) the AGT

is satisfied, the corrections to the charges are unambiguously given by UV finite one-loop

contributions. Note that the AGT applies to the whole baryon spin-flavor multiplet. On

the other hand, at finite Q2 the one-loop correction has an UV divergent piece which is

independent of quark masses and is renormalized via the terms g1 and g2 in LB, one of them

removes the UV divergence (g1) and the other one is a finite counterterm (g2).

Combining the polynomial pieces in Eqns.(7) and (8) and using that, [δm̂, T a] =

[δm̂, Ĝ2] = [δm̂,GibT aGib] = 0 one obtains the polynomial loop contributions to vector

charges, which are proportional to Q2 = ~q 2:

fa
1 (A1+2+3)

poly =
λε − 3

(4π)2

(
g̊A
4Fπ

)2

Q2 T a

fa
1 (B1+2)

poly = −λε + 1

(4π)2
Q2

4F 2
π

T a, (9)
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where fa
1 ≡ V 0a.

The corrections to the | ∆S |= 1 charges, already discussed in [20], are evaluated using

the physical values g̊A = 6
5
× 1.27 and Fπ = 92 MeV, however one needs to be aware that

their values are effected by the NLO corrections, leading to a theoretical uncertainty. With

the usual notation for those charges [20], evaluating the ratios δf1/f1 in the large Nc limit

one finds that δf1/f1 = O(1/Nc). However, this behavior sets in rather slowly at Nc ∼ 20,

emphasizing the fact that the non commutativity of the low energy and 1/Nc expansions is

very important at the physical Nc = 3. The results are shown in Table I, where the errors

are estimated from the above mentioned theoretical uncertainty. The agreement with recent

LQCD calculations [4] is encouraging, and further improvement in the precision of those

calculations would be very useful.

δf1
f1

One-loop LQCD

Λp −0.067(15) −0.05(2)

Σ−n −0.025(10) −0.02(3)

Ξ−Λ −0.053(10) −0.06(4)

Ξ−Σ0 −0.068(17) −0.05(2)

TABLE I: SU(3) breaking corrections to the ∆S = 1 vector charges. The LQCD results are from

Ref. [4].

For the charge radii the loop contributions are from diagrams A3 and B2 and the renor-

malization is provided by the LECs g1 and g2 in L(3)
B and L(4)

B respectively, of which only g1

is required for canceling the loop UV divergence according to Eqn. (9) 2. As is the case with

form factors in ChPT, the charge radii depend logarithmically in the GB masses. They can

be determined by fitting to the known electric charge radii of proton, neutron and Σ−, or

simply fixed using the first two. If one wishes to study also the large Nc limit, an assignment

at generic Nc of the quark electric charges has to be done. One such an assignment that

respects all gauge and gauge-gravitational anomaly cancellations in the Standard Model is

is given by [39] Q̂ = T 3 + 1√
3
T 8 + 3−Nc

6Nc
B. The last term comes from the baryon number

2 In Ref. [24] the finite term proportional to g2 was overlooked.
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charge B, and can be implemented by simply adding to the Lagrangians the corresponding

terms with an SU(3) singlet vector source field. This charge operator gives for the states

identified with the physical octet and decuplet the same electric charges as the physical ones

for any Nc. The analysis of the charge radii in the present framework is revealing: in the

strict large Nc limit one finds that the non-analytic loop contributions to the T 3 charge ra-

dius of nucleons by Diagram A3 is O(N0
c ), where the contribution is driven by the hyperfine

mass splitting term, i.e, for CHF → 0 the contribution becomes O(1/Nc), and Diagram B2

gives only contributions O(1/Nc). For the charge T
8 the loop contributions are O(N0

c ). One

however notes that for the physical π and K meson masses the non-analytic terms join the

large Nc scaling at rather large Nc. The charge radii of the neutral baryons receive only UV

finite loop contributions and are renormalized only by the finite g2 term.

Using the three known charge radii, g1,2 are determined modulo the main uncertainty

stemming from the value used for g̊A. At the renormalization scale µ = mρ, using the value

of g̊A ∼ 1 obtained by the analysis of the axial couplings [24], CHF ∼ 200 MeV, and with

Λ = mρ one finds g1 ' 1.33 and g2 ' 0.74. g2 is sensitive to CHF , which is understood as

a result that the non-analytic contributions to the neutron radius is very important, and

thus sensitive to that parameter, while g1 is not. One also observes that both LECs are

crucial for obtaining a good description of the radii. For the used value of µ, the fraction

of the loop contribution to 〈r2〉 of the proton is 15%, and for the neutron it is about 60%.

The short distance contributions are thus very important in both cases. The dominant

non-analytic contributions to the radii are proportional to logmq, with other non-analytic

terms involving the LEC CHF giving almost negligible contributions, making the results

insensitive to it. Table II shows the results for the charge radii of the baryon octet along

with the contributions by the CTs. The latter contributions to 〈r2〉 satisfy the exact linear

relation, in obvious notation: aΛ+p+Σ++ 1
3
(a−4)(n+Σ0+Ξ0)+Σ−+Ξ− = 0 valid for any

a and resulting from the electric charge being a U-spin singlet; it is violated only by finite

SU(3) breaking loop contributions. The isotriplet nucleon charge radius is O(N0
c ), while

the isosinglet one receives loop and g2 contributions O(N0
c ) and a g1 contribution O(Nc),

where the O(Nc) term contribution to the EM charge radius must be cancelled by adding

to the Lagrangian a finite charge-radius CT proportional to baryon number and weighted

according to the electric charge assignment at arbitrary Nc mentioned above.

At the present order in the ξ expansion, the curvature of the form factors, proportional
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〈r2〉[fm2]

Full CT Exp

p 0.707 0.596 0.7071(7)

n −0.116 −0.049 −0.116(2)

Λ −0.029 −0.024 · · ·

Σ+ 0.742 0.596 · · ·

Σ0 0.029 0.024 · · ·

Σ− 0.683 0.548 0.608(156)

Ξ0 −0.016 −0.049 · · ·

Ξ− 0.633 0.548 · · ·

TABLE II: Electric charge radii of octet baryons. The proton and neutron radii are inputs. The

proton radius used is the one resulting from the muonic Hydrogen Lamb shift [40]. The second

column shows the contribution by contact terms g1,2 for µ = mρ.

to 〈r4〉 = 60 d2f1
d(Q2)2

, is given by the one-loop non-analytic terms with contributions that are

inversely proportional to quark masses. The curvature is nominally an effect O(ξ4) in the

form factor, which therefore receives contributions from terms O(ξ6) in the Lagrangian,

and only in the limit of sufficiently small quark masses will the non-analytic contributions

obtained here be dominant. In the recent work of Ref. [38] the electric charge higher

moments have been studied, where t-channel elastic unitarity has been implemented in

the EFT along with the constraints of the 1/Nc expansion [34–38]. In particular, for the

curvature they find 〈r4〉p = 0.735(35) fm4 and 〈r4〉n = −0.540(35) fm4, to be compared with

the one-loop contributions found here, 0.032 and −0.021 fm4 respectively, roughly a factor

25 smaller in magnitude in each case. Clearly the description of the curvature must be

primarily given by higher order contact terms, and to the order of the expansion followed

here, the failure to account for the curvature limits the present description of charge form

factors to the expected range given by the radii, Q2 . 0.05 GeV2.
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V. MAGNETIC MOMENTS

As mentioned earlier, at lowest order the magnetic moments of all vector currents are

given in terms of the single LEC κ. In particular, using the EM current the LO value of κ
Λ

can be fixed from the proton’s magnetic moment µp in units of the nuclear magneton µN ,

namely e κ
2Λ

= µp = 2.7928 µN . Also, the M1 radiative decay width of the ∆ at LO is given

by:

Γ∆→Nγ =
e2

9π

(κ
Λ

)2 mN

m∆

ω3, (10)

where ω is the photon energy. Using the above result for κ
Λ
gives ΓLO

∆→Nγ = 0.38 MeV, to be

compared with the experimental value 0.70± 0.06 MeV. In terms of the transition magnetic

moment, the LO result is µ∆+p =
2
√
2

3
µp while the experimental one from Eqn.(10) and from

the helicity N − ∆ photo-couplings [41] are 3.58(10)µN and 3.46(3)µN respectively. This

shows the need for a significant spin-symmetry breaking effect of 30% to be accounted for

by the higher order corrections.

The LO magnetic moment operator Gia is proportional to the LO axial currents, and the

NLO effects stem from quark masses and spin symmetry breaking. In the strict large Nc

limit those corrections scale as follows: SU(3) breaking corrections O((ms− m̂)Nc), i.e. the

same scaling in Nc as the LO term, and spin symmetry breaking corrections O(1/Nc), i.e.

O(1/N2
c ) with respect to the LO term, well known from tree level analyses in Refs. [42, 43].

The experimentally available magnetic moment ratios and the corresponding LO results

are represented in Table III. It is evident that there are significant SU(3) breaking effects,

which together with the important spin-symmetry breaking observed. in particular in the

∆N M1 amplitude indicate the relevance of the NNLO calculation. Note that all weak

magnetic moments, i.e., magnetic moments associated with the ∆S = 1 currents are also

fixed at LO, as they are empirically unknown. In the case of the neutron β decay the

weak magnetic term is obtained from the isovector part of the EM magnetic moments of

proton and neutron, which in this case, due to isospin symmetry, is quite accurate. On

the other hand, in hyperon beta decay the effect of weak magnetism is too small to be at

present experimentally accessible. Fortunately the advent of LQCD calculations of magnetic

moments with increasing accuracy will allow the study of weak magnetism.

The one loop corrections to the magnetic moments are obtained from the spatial compo-

nents of the vector currents depicted in Fig. 1, where the contributions stem from diagrams
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Exp LO

p/n −1.46 −1.5

Σ+/Σ− −2.12 −3

Λ/Σ+ −0.25 −1
3

p/Σ+ 1.14 1

Ξ0/Ξ− 1.92 2

p/Ξ0 −2.23 −1.5

∆++/∆+ 1.4(2.8) 2

Ω−/∆+ −0.75 −1

p/∆+ 1.03 1

p/(∆+p) 0.78 3
2
√
2

p/(Σ∗0Λ) 1.02
√

3
2

p/(Σ∗+Σ+) −0.88 − 3
2
√
2

TABLE III: LO ratios of magnetic moments.

A and B1. Diagrams A1,2 involve Γ ∝ Gia, which is similar to the axial currents already

analyzed in Ref. [24]. The loop contributions to the Q2 dependence of the magnetic form

factors stem from diagram A3.

The UV divergencies of the one loop diagrams contributing to the magnetic moments

after reduction of the corresponding expressions Eqns.(7) and (8) using a basis of spin-flavor

operators read as follows:

V µa
Mag(A1+2)

UV = i
λε

(4π)2
κ

2Λ

(
g̊A
Fπ

)2

εijkqj
(
−B0

(23
6
m0Gka +

11

24
dabcmbGkc +

5

18
maSk

)

+
2

3

(
CHF

Nc

)2 (
(Nc(Nc + 6)− 3)Gka + 8{Ŝ2, Gka}+ 8SkSmGma − 11

2
(Nc + 3)SkT a

))

V µa
Mag(A3)

UV = i
λε

(4π)2

(
g̊A
Fπ

)2
CHF

Nc

εijkqj
(
Nc + 3

2
Gka − 2SkT a

)

V µa
Mag(B1)

UV = −i
λε

(4π)2
κ

2Λ

1

F 2
π

εijkqjB0

(
6m0Gka +

3

2
dabcmbGkc

)
, (11)
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adding up to:

V UV µa

Mag =
iλεq

jεijk

16π2Fπ
2Λ

(
− 1

12
κB0

(
(
11

4
g̊2A + 9)mbGkcdabc +

(
23̊g2A + 36

)
m0Gka +

5

3
g̊2Am

aSk

)

+
CHF g̊

2
A

6Nc
2

(
2κCHF ((Nc(Nc + 6)− 3)Gka + 8{Ŝ2, Gka}) + 3ΛNc(Nc + 3)Gka

+ 16κSmGmaSk − SkT a(11κCHF (Nc + 3) + 12ΛNc)
))

(12)

The renormalization of the magnetic moments is provided by the Lagrangians with the

LECs κD,F,1,··· ,5, and the magnetic radii receive only finite one-loop contributions and a

finite renormalization by the term κr. The β functions of the magnetic LECs resulting from

Eqn.(12) are shown in Table IV.

LEC β × F 2
π

κ Λ g̊2A
CHF

Nc

(
1
2(Nc + 3) + 1

3(Nc(Nc + 6)− 3) κΛ
CHF

Nc

)

κ1 −Λ g̊2ACHF

(
2 + 11

6 (Nc + 3) κΛ
CHF

Nc

)

κ2 −Λ2 κ
(
3 + 23

12 g̊
2
A

)

κD −Λ2 κ
(
3
4 + 11

48 g̊
2
A

)

κF 0

κ3 −Λ2 κ 5
36 g̊

2
A

κ4
8
3 g̊

2
A κC2

HF

κ5
8
3 g̊

2
A κC2

HF

κr 0

TABLE IV: β functions of LECs associated with magnetic moments and radii. The renormalized

LECs are defined according to X = X(µ) + βX

(4π)2
λε.

For Nc = 3 the set of local terms that contribute to the magnetic moments remains

linearly independent. If one only considers the EM current, the term proportional to κF

does not contribute, and for the known magnetic moments together with the information

on the M1 transition ∆ → Nγ one can fit the rest of the LECs. Note that in the absence

of information on the SU(3) singlet quark mass m0 dependence, the LEC κ2 is subsumed

into κ, and the lack of knowledge on the ∆S = 1 weak magnetic moments does prevents at

present a determination of κF .
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The results of the fits are shown in Table V. Since the input magnetic moments have

errors (much) smaller than the theoretical error of the present calculation estimated to be of

the order of NNNLO corrections or about 5%, the χ2 has been normalized for estimating the

LECs’ errors. Important correlation is found between the following pairs of LECs: κ4 − κ5,

κ4 − κ6 and κ5 − κ6.

LEC×mN

Λ LO NNLO

κ 2.80 2.87(2)

κ1 0 3.18 (10)

κ2 0 0.

κD 0 0.46 (5)

κF 0 · · ·

κ3 0 0.51(6)

κ4 0 −2.84(40)

κ5 0 1.19(20)

µLO µNNLO µExp

p 2.691 2.797 2.7928(23)

n −1.794 −1.929 −1.9130(45)

Σ+ 2.691 2.359 2.46(1)

Σ0 0.897 0.834 · · ·

Σ− −0.897 −0.691 −1.16(3)

Λ −0.897 −0.595 −0.613(4)

Ξ0 −1.794 −1.245 −1.250(14)

Ξ− −0.897 −0.657 −0.6507(25)

∆+p 2.537 3.580 3.58(10)

Σ0Λ 1.553 1.562 1.61(8)

Σ∗0Λ 2.197 2.685 2.73(25)a

Σ∗+Σ+ −2.537 −2.326 −3.17(36)b

µLO µNNLO µExp

∆++ 5.381 5.979 3.7− 7.5

∆+ 2.691 3.027 2.7(1.2)

∆0 0 0.074 · · ·

∆− −2.691 −2.879 · · ·

Σ∗+ 2.691 3.163 · · ·

Σ∗0 0 0.315 · · ·

Σ∗− −2.691 −2.534 · · ·

Ξ∗0 0 0.496 · · ·

Ξ∗− −2.691 −2.242 · · ·

Ω −2.691 −2.005 −2.02(5)

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear

magneton µN . The renormalization scale was set to µ = Λ = mρ. κF requires ∆S = 1 weak

magnetic moments to be determined. Empirical results from PDG and references a[44], b[45].

As mentioned earlier, the ∆Nγ amplitude at LO is too small by roughly 30%, a manifesta-

tion of an important spin-symmetry breaking effect. The effect receives a small non-analytic

contribution (at µ = mρ), and the contributions from the contact terms are as follows:

κD : O((ms − m̂)Nc), and κ4 : O(1/Nc). From the fit one finds a modest contribution from

κD and a dominant contribution from κ4. Since the latter is a 1/N2
c correction with respect

to the LO magnetic moment, it seems to be unnaturally large. This is a bit surprising as

a similar kind of effect in the ∆N axial vector coupling is actually unnaturally small. This

contrast remains to be understood. Finally, a fit where the ∆N transition is not an input
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shows an enhancement but only by about half of what is needed.

An interesting case is the magnetic moment of Σ∗0: all LO and NLO tree level and quark

mass independent contributions vanish, receiving only NNLO tree and loop contributions

which vanish in the SU(3) symmetry limit. On the other hand, the experimental value of

the magnetic moment of Σ− quoted as average by the PDG [40] cannot be described: U-spin

symmetry implies that it must be equal to the magnetic moment of the Ξ− up to NNLO

SU(3) breaking by quark masses. The experimental results imply a very large effect which

is very difficult to reconcile with the other U-spin multiplets, where the effect is between

12% and 25% per unit of strangeness, while for the pair Σ− Ξ− case it is 44%!.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-

Glashow (CG) relation, namely µp−µn−µΣ+ +µΣ− +µΞ0 −µΞ− = 0. This relation remains

valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Explicit calculation gives the deviation with estimated theoretical error ∆CG = 1.09±0.25µN

to be compared with the experimental deviation 0.49± 0.03µN , affected however by the Σ−

issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on

the LEC κF which does not appear in the EM case. The result for the LECs from the EM case

gives the predictions: µΣ−n = (0.516−0.180 κF )
g

2mN
and µΛp = (−1.41+0.66 κF )

g

2mN
, where

g = e/ sin θW . At LO one has the large hierarchy µΛp/µΣ−n = −
√
27/2. A determination of

κF will require a LQCD calculation.

A. Magnetic radii

The magnetic radii are theoretically very constrained at the order of the present calcu-

lation. For all the vector currents and baryons they are determined only by UV finite loop

contributions and the single available finite counterterm fixed by the LEC κr. Since only

the magnetic radii of proton and neutron are experimentally known, one can use these to fit

that LEC leading to the results shown in Table VI. The rest of the radii are then predictions

which can hopefully be tested in the future with LQCD calculations. Note that the lion

share of the magnetic radii is from the short distance terms proportional to κr with the loop

contribution from diagram A3 in Fig. 1 giving up to 20% for proton, neutron and Σ− and

less than 10% for the rest.
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κr = −2.63 〈r2〉[fm2]

Exp Th Loop

p 0.724 0.718 0.134

n 0.746 0.747 0.179

Σ+ · · · 0.766 0.100

Σ0 · · · 0.698 0.061

Σ− · · · 0.922 0.189

Λ · · · 0.895 0.079

Ξ0 · · · 0.872 0.081

Ξ− · · · 0.796 0.035

∆+p · · · 0.875 0.226

TABLE VI: Magnetic radii from a fit to nucleons.

Finally, a calculation of the curvature of the EM magnetic moments yields: 〈r4〉p =

0.38 fm4 and 〈r4〉n = 0.54 fm4 to be compared with those obtained in Ref. [38], which are

respectively 1.72(6) and 2.04(1) fm4, leading to a similar assessment as in the case of the

electric charge already discussed, although less dramatic.

VI. SUMMARY

This work presented the study of the SU(3) vector currents in baryons based on the

combined chiral and 1/Nc expansion. It was carried out in the context of the ξ power

counting to one-loop. This corresponds to a calculation of the charges, magnetic moments

and their radii for both octet and decuplet baryons. The calculations have been provided for

generic Nc, which permits an exploration of the behavior of those observables with respect

to the number of colors. Only two LECs are needed to determine all SU(3) charge radii,

while the magnetic moments need to be renormalized involving eight LECs, of which all

but two can be fixed solely in terms of the known EM magnetic moments. Of the two

remaining LECs, one needs information about ∆S = 1 weak magnetic moments and the

second requires knowledge of magnetic moments at different values of quark masses, which

can be obtained from LQCD calculations. Finally the magnetic radii are all determined in
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terms of a single LEC. The fits indicate that the values LECs are within the range of natural

magnitude, although there is a puzzling issue, namely the unnaturally large spin-symmetry

breaking required for the description of the ∆N transition magnetic moment. Finally, the

curvature of form factors is given at the order of the calculation by non-analytic terms in mq,

which turn out to be very small, and therefore requiring for their description an extension

of the present work to higher order.
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Appendix A: Spin-flavor algebra

The 4N2
f − 1 generators of the spin-flavor group SU(2Nf ) consist of the three spin gener-

ators Si, the N2
f − 1 flavor SU(Nf ) generators T

a, and the remaining 3(N2
f − 1) spin-flavor

generators Gia. The commutation relations are:

[Si, Sj] = iεijkSk, [T a, T b] = ifabcT c, [T a, Si] = 0 ,

[Si, Gja] = iεijkGka, [T a, Gib] = ifabcGic ,

[Gia, Gjb] = i
4
δijfabcT c + i

2Nf
δabεijkSk + i

2
εijkdabcGkc . (A1)

In spin-flavor representations with Nc indices corresponding to baryons, the genera-

tors Gia have matrix elements O(Nc) on states with S = O(N0
c ). The ground state

baryons furnish the totally symmetric irreducible representation of SU(6) with Nc Young

boxes, which decomposes into the following SU(2)spin × SU(3) irreducible representations:

[S, (p, q)] = [S, (2S, 1
2
(Nc−2S))], S = 1/2, · · · , Nc/2 (assumed Nc is odd). The baryon states

can then be denoted by: |SS3, Y II3〉, where the spin S of the baryon determines its SU(3)

multiplet.

1. Matrix elements of the SU(6) generators

In general the matrix elements of a SU(2)spin × SU(3) ⊂ SU(6) tensor operator be-

tween baryons ground state baryons are given by the Wigner-Eckart theorem, with obvious

notation:

〈S ′S ′
3, R

′ Y ′I ′I ′3 | O``3

R̃Ỹ Ĩ Ĩ3
|SS3, R Y II3〉 =

1√
2S ′ + 1

√
dimR′

〈SS3, ``3 |S ′S ′
3〉 (A2)

×
∑

γ

〈S ′, R′ || O`

R̃
||S,R〉γ

〈
R R̃

Y I I3 Ỹ Ĩ Ĩ3

∣∣∣∣∣∣
R′

Y ′ I ′ I ′3

〉

γ

,
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where R represents the SU(3) multiplet of the baryon, and γ indicates the possible recou-

plings in SU(3). The matrix elements of interest are then given by:

〈S ′S ′
3, Y

′I ′I ′3 |Sm |SS3, Y II3〉 = δSS′δY Y ′δII′δI3I′3

√
S(S + 1)〈SS3, 1m |S ′S ′

3〉

〈S ′S ′
3, Y

′I ′I ′3 | T yii3 |SS3, Y II3〉 = δSS′δS3S
′

3

1√
dim(2S, 1

2
(Nc − 2S))

〈S || T ||S〉

×
〈

(2S, 1
2
(Nc − 2S)) (1, 1)

Y I I3 yii3

∣∣∣∣∣∣
(2S, 1

2
(Nc − 2S))

Y ′ I ′ I ′3

〉

γ=1

〈S ′S ′
3, Y

′I ′I ′3 | Gm,yii3 |SS3, Y II3〉 =
〈SS3, 1m |S ′S ′

3〉√
2S ′ + 1

√
dim(2S, 1

2
(Nc − 2S))

(A3)

×
∑

γ=1,2

〈S ′ || G ||S〉γ
〈

(2S, 1
2
(Nc − 2S)) (1, 1)

Y I I3 yii3

∣∣∣∣∣∣
(2S, 1

2
(Nc − 2S))

Y ′ I ′ I ′3

〉

γ

where the reduced matrix elements are (here p = 2S, q = 1
2
(Nc − 2S)):

〈S || T ||S〉 =
√
dim(p, q)C2(p, q)

=

√
(2S + 1)(Nc − 2S + 2)(Nc + 2S + 4)(Nc(Nc + 6) + 12S(S + 1))

4
√
6

〈S′ || G ||S〉γ=1 =





if S = S′ + 1 : −
√

(4S2−1)((Nc+2)2−4S2)((Nc+4)2−4S2)

8
√
2

if S = S′ − 1 : −
√

(4S(S+2)+3)(Nc−2S)(Nc−2S+2)(Nc+2S+4)(Nc+2S+6)

8
√
2

if S = S′ : sign(Nc − 2S − 0+)
(Nc+3)(2S+1)

√
S(S+1)(Nc−2S+2)(Nc+2S+4)√

6Nc(Nc+6)+12S(S+1)

(A4)

〈S′ || G ||S〉γ=2 = −δSS′

(2S + 1)
√

(Nc − 2S)(Nc + 2S + 6) ((Nc + 2)2 − 4S2) ((Nc + 4)2 − 4S2)

8
√
2
√
Nc(Nc + 6) + 12S(S + 1)

Appendix B: Loop integrals

The one-loop integrals needed in this work are provided here. The definition d̃dk ≡ ddk/(2π)d

is used.
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The scalar and tensor one-loop integrals are:

I(n, α,Λ) ≡
∫

d̃dk
k2n

(k2 − Λ2)α
= i(−1)n−α 1

(4π)
d
2

Γ(n+ d
2)Γ(α− n− d

2)

Γ(d2)Γ(α)

(
Λ2
)n−α+ d

2

Iµ1,··· ,µ2n(α,Λ) ≡
∫

d̃dk
kµ1

· · · kµ2n

(k2 − Λ2)α
= i(−1)n−α 1

(4π)
d
2

1

4nn!

Γ(α− n− d
2)

Γ(α)

(
Λ2
)n−α+ d

2

×
∑

σ

gµσ1
µσ2

· · · gµσ2n−1
µσ2n

(B1)

=
1

4nn!

Γ(d2)

Γ(n+ d
2)

I(n, α,Λ)
∑

σ

gµσ1
µσ2

· · · gµσ2n−1
µσ2n

,

where σ are the permutations of {1, · · · , 2n}.

The Feynman parametrizations needed when heavy propagators are in the loop are as follows:

1

A1 · · ·AmB1 · · ·Bn
= 2mΓ(m+ n)

∫ ∞

0
dλ1 · · · dλm

∫ 1

0
dα1 · · · dαnδ(1− α1 − · · · − αn)

× 1

(2λ1A1 + · · ·+ 2λmAm + α1B1 + · · ·+ αnBn)m+n
, (B2)

where the Ai are heavy particle static propagators denominators, and the Bi are relativistic ones.

The integration over a Feynman parameter λ is of the general form:

J(C0, C1, λ0, d, ν) ≡
∫ ∞

0
(C0 + C1(λ− λ0)

2)−ν+ d
2 dλ, (B3)

which satisfies the recurrence relation:

J(C0, C1, λ0, d, ν) =
−λ0(C0 + C1λ

2
0)

1−ν+ d
2 + (3 + d− 2ν)J(C0, C1, λ0, d, ν − 1)

(d− 2ν + 2)C0

J(C0, C1, λ0, d, ν) = C0
d− ν

d− 2ν + 1
J(C0, C1, λ0, d, ν + 1) +

λ0

d− 2ν + 1
(C0 + C1λ

2
0)

d
2
−ν . (B4)

Integrals with factors of λ in the numerator are obtained by using

J(C0, C1, λ0, d, ν, n = 1) ≡
∫ ∞

0
(λ− λ0)

n=1(C0 + C1(λ− λ0)
2)−ν+ d

2 dλ

= − 1

2C1 (
d
2 + 1− ν)

(C0 + C1λ
2
0)

d
2
+1−ν , (B5)

and the recurrence relations

J(C0, C1, λ0, d, ν, n) =
1

C1
(J(C0, C1, λ0, d, ν − 1, n− 1)− C0J(C0, C1, λ0, d, ν, n− 2)). (B6)

For convenience in some of the calculations for the currents, the following integral is defined:

J̃(C0, C1, λ0, d, ν, 1) ≡ J(C0, C1, λ0, d, ν, 1) + λ0J(C0, C1, λ0, d, ν) (B7)

For the calculations in this work the following integrals are needed at d = 4− 2ε:

J(C0, C1, λ0, d, 3) =
1√
C0C1

(
π

2
+ arctan(λ0

√
C1

C0
)

)

J(C0, C1, λ0, d, 2) =
1

d− 3
(λ0(C0 + C1λ

2
0)

d
2
−2 + (d− 4)C0J(C0, C1, λ0, d, 3))

J(C0, C1, λ0, d, 1) =
1

d− 1
(λ0(C0 + C1λ

2
0)

d
2
−1 + (d− 2)J(C0, C1, λ0, d, 2)) (B8)
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Specific integrals

Here a summary of relevant one-loop integrals for the calculations in this work is provided for

the convenience of the reader.

1) Loop integrals involving only relativistic propagators

I(0, 1,M) = − i

(4π)
d
2

Γ(1− d

2
)Md−2

I(0, 2,M) =
i

(4π)
d
2

Γ(2− d

2
)Md−4

K(q,Ma,Mb) ≡
∫

d̃dk
1

(k2 −M2
a + iε)((k + q)2 −M2

b + iε)
=

∫ 1

0
dα I(0, 2,Λ(α))

Kµ(q,Ma,Mb) ≡
∫

d̃dk
kµ

(k2 −M2
a + iε)((k + q)2 −M2

b + iε)
=

∫ 1

0
dα (α− 1) qµ I(0, 2,Λ(α))

Kµν(q,Ma,Mb) ≡
∫

d̃dk
kµkν

(k2 −M2
a + iε)((k + q)2 −M2

b + iε)

=

∫ 1

0
dα ((1− α)2 qµqν I(0, 2,Λ(α)) +

gµν

d
I(1, 2,Λ(α))), (B9)

where:

Λ(α) =
√
αM2

a + (1− α)M2
b − α(1− α)q2

2) Loop integrals involving one heavy propagator

H(p0,M) ≡
∫

d̃dk
1

(p0 − k0 + iε)(k2 −M2 + iε)

=
2i

(4π)
d
2

Γ(2− d

2
)J(M2 − p20, 1, p0, d, 2)

H ij(p0,M) ≡
∫

d̃dk
kikj

(p0 − k0 + iε)(k2 −M2 + iε)

= − i

(4π)
d
2

gijΓ(1− d

2
)J(M2 − p20, 1, p0, d, 1) (B10)

H ijµ(p0, q,Ma,Mb) ≡
∫

d̃dk
ki(k + q)j(2k + q)µ

(p0 − k0 + iε)(k2 −M2
a + iε)((k + q)2 −M2

b + iε)

= i
4

(4π)
d
2

∫ 1

0
dα

{
−1

2
Γ(3− d

2
)qiqjα(1− α)

×
(
(1− 2α)qµJ(C0, C1, λ0, d, 3)− 2 gµ0J̃(C0, C1, λ0, d, 3, 1)

)

+ Γ(2− d

2
)
(
(−(1− 2α)gijqµ + 2(αgµiqj − (1− α)gµjqi))J(C0, C1, λ0, d, 2)

+ 2gijgµ0J̃(C0, C1, λ0, d, 2, 1)
)}

,
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where:

C0 = αM2
a + (1− α)M2

b − p20 − 2(1− α)p0q0 − (1− α)(α q2 + (1− α)q20)

C1 = 1

λ0 = p0 + (1− α)q0. (B11)

The polynomial pieces of the integrals are as follows:

H(p0,M)poly =
i

(4π)2
2p0(λε + 2)

H ij(p0,M)poly =
i

(4π)2
p0
3
((3M2 − 2p20)λε + 7M2 − 16

3
p20)

H ijµ(p0, q,Ma,Mb)
poly =

i

96π2

(
λε

(
gij
(
gµ0
(
−3(M2

a +M2
b ) + 12 p0(p0 + q0) + q2 + 4q20

)
− q0q

µ
)

− 2qi(3p0 + 2q0)g
µj + 2qj((3p0 + q0)g

µi + qigµ0)
)

+ gij
(
gµ0
(
−3(M2

a +M2
b ) + 24 p0(p0 + q0) + q2 + 8q20

)
− 2q0q

µ
)

− 4qi(3p0 + 2q0)g
µj + 4qj(3p0 + q0)g

µi
)
, (B12)

where the UV divergence is given by the terms proportional to λε ≡ 1/ε − γ + log 4π, where

d = 4− 2ε.

Appendix C: Interaction and vector current vertices needed in loop calculations

The interaction and currents vertices needed in the one-loop calculations are given for com-

pleteness.

22



g̊A
Fπ

kiGia

if abc(k1 + k2)
µ

k a k1 a k2 b

1

2F 2
π

(k02 − k01)f
abcT c

q µ a

k1 b k2 c

q µ a

k2 c

1

2F 2
π

f acdf dbe
Γ
µe

k1 b
Γ
µa

q µ a

FIG. 2: The vector current vertices indicated with a square are the magnetic ones. The momentum

q is incoming, and Γµa = gµ0T a + i κΛ ε0µij fabcf cbd qiGjd.
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