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I. INTRODUCTION

Vector currents, being intimately related to the flavor SU(3) symmetry of QCD, represent
a fundamental probe for hadron structure as well as for the breaking of SU(3) by quark
masses. This is particularly interesting for baryons, where the electromagnetic current for
nucleons, known empirically to remarkable accuracy [1], along with the magnetic moments
of hyperons allow for an almost complete description of all the SU(3) vector currents to
the order in the low energy expansion considered in the present work. The charged vector
currents are relevant in 5 decays, where both SU(3) breaking in the | AS|= 1 charges and
weak magnetism are still open problems. To the present level of experimental accuracy in
hyperon ( decays, there is not sufficient sensitivity to the SU(3) breaking in the charges
[2]. The reason is that 3 decay has a branching fraction of about 1073, being dominated by
the non-leptonic component. Fortunately, lattice QCD is producing results [3—6] which can
be compared with the predictions of the approach in the present work. The experimental
information on charge form factors is limited to the electric form factors of nucleons and
the charge radius of the ¥7. This is however sufficient to predict the rest of the charge
radii, whose SU(3) breaking effects are, at the order of the present calculation, finite non-
analytic in quark masses. The octet baryons” EM magnetic moments and nucleons’ magnetic
radii give an almost complete prediction for the rest of the currents but for one low energy
constant (LEC) which requires knowledge of at least one weak magnetic moment of a AS =1
current. In the approach followed here, results automatically extend to the vector current
observables of the decuplet baryons and to EM transitions, e.g. the M; transition A —
N7, most of which remain empirically unknown or poorly known. The study of electric
currents in BChPT with inclusion of the spin 3/2 baryons dates back a quarter century
[7, 8], and numerous works have since been produced in various versions of that framework,
among those close in spirit to the present one are found in Refs. [9-15], and works with
additional constraints imposed by consistency with the 1/N,. expansion are those of Refs.
[16-21]. The present work formalizes the combination of BChPT and the 1/N. expansion
[22] for the vector currents following the rigorous power counting scheme of the £ expansion
23, 24] based on the linking O(p) = O(1/N.) = O(£). The combined framework was first
applied to the SU(3) vector charges in Ref. [20], where the & expansion was not strictly

implemented, however for the purpose of calculating the corrections of SU(3) breaking to the



vector charges, restricted by the Ademollo-Gatto theorem (AGT), such omission has no very
significant effect *. Here a complete study is presented to O(£3) and O(£*) (depending on the
observable) of the SU(3) vector currents. The present work provides results for generic V.,
permitting in this way to sort out in particular the large N. behavior of non-analytic terms in
¢ stemming from one loop corrections, which gives additional understanding, as it has been
shown for instance in the case of the Gell-Mann-Okubo relation and the o terms discussed
in Refs. [25, 26]. The subject of magnetic moments has been addressed in the context of the
1/N. expansion in works limited to a tree level expansion in composite operators [27-30],
and in works including one loop corrections in BChPT Refs. [17-19, 21]. In addition to
the BChPT, dispersive approaches implementing constraints of chiral dynamics have been
implemented [31-33] and where in addition consistency with the 1/N, expansion has also
been required [34-38]. Such works naturally give a range of applicability beyond the present
one, which is limited up to the form factor radii.

This work is organized as follows: Section II presents the baryon chiral Lagrangians
needed for the present work, Section III summarizes the one loop corrections to the vector
currents, Section IV presents the analysis of the vector charges and radii, and Section V
does the same for the magnetic moments and radii. A summary is presented in Section VI.
Several appendices are included for the benefit of readers intending to implement similar

calculations.

II. BARYON CHIRAL LAGRANGIAN

This section summarizes the pieces of the Baryon Chiral Lagrangian up to O(£?) relevant
to the calculations in this work. The details on the construction of the Lagrangians and the
notations are given in Ref. [24]. In order to ensure the validity of the OZI rule for the quark
mass dependency of baryon masses, namely, that the non-strange baryon mass dependence

on m, be O(NY?), the following combination of the source x is defined by [24]:

X+ =X+ + Ne XE)H (1)

which is O(N,) but has dependence on m, which is O(N?) for all states with strangeness

O(N?). For convenience a scale A is introduced, which can be chosen to be a typical QCD

! Tn [20] the baryon-GB vertices included higher order terms in 1/N.,..



scale, in order to render most of the LECs dimensionless. In the calculations A = m, will

be chosen. The quark mass matrix is defined by M, = m® + m®2-, where in the physical

1

01 =m, —mg and m® = 7§<mu + mgq — 2my) and the rest of

case m° = z(my +mg +ms), m

the M?® s vanish.
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Collecting the baryons in a spin flavor multiplet denoted by B, and using standard
notation for the chiral building blocks (for details see [24]), the LO O(§) Lagrangian reads:

Clr ~ .
Ly =BH(iD, — ;FS2+§AUWGW+—A +)B, (2)

where the hyperfine mass shifts are given by the second term, G are the spin-flavor gener-
ators (see Appendix A), and the axial coupling is at LO g4 = ggA, being g4 = 1.2732(23)

the nucleon’s axial coupling. The relevant terms in the O(£?) Lagrangian are:

c? = Bf <C2 X+ =L Ot yagia ¢ " pigia 4 ) B, (3)
AX N. 2A

where the flavor SU(3) electric and magnetic fields are denoted by F, and B, and given

by B = FY and B. = Lei*F{* [24]. The term proportional to # gives at LO the magnetic

moments associated with all vector currents. The O(£3) and O(£*) Lagrangians needed for

the one-loop renormalization of the vector currents are the following:

3 _ T a a a
L = B (S5DELT 2AN T+ )B

1 o . . .
£y = Bf ( 3 (0D N+ s DB ST GRY R + %DZBTG“”

+ 2A3 (K2X+Blana+Z/€Ffabc Bi)GZC‘FKDdabCXiBwa“‘/ngistl)
1 iaf O ia ia Qi Qj vja
+ 2AN2(/€4B+{52,G }+/<;5B+SSJG3)+---)B (4)

The LECs ¢; and g9 will be determined by charge radii, the term proportional to g3 gives
electric quadrupole moments for decuplet baryons and for transitions between decuplet to
octet baryons, which will not be discussed here, and the term proportional to k, gives
a contribution to magnetic radii (D*B, = D, D" B, being the covariant divergence of the
magnetic field). The rest are quark mass and higher order in 1/N, corrections to the magnetic
moments.

Throughout, spin-flavor operators in the Lagrangians are scaled by appropriate powers
of 1/N, such that all LECs start at zeroth order in V.. Of course, LECs have themselves an

expansion in 1/N,, kept implicit, which requires information for N. > 3 to be determined. In
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that sense each Lagrangian term has a leading power in 1/N, which is used to assign its order
in the £ power counting, followed by sub-leading terms in 1/N, due to the expansion of the
corresponding LEC. In addition, each term in the Lagrangian is explicitly chiral invariant
and its expansion in powers of the Goldstone Boson fields yields factors 1/F, = O(1/y/N,)
for each additional factor of a GB field.

For convenience the following definition is used:

N Cur A9 c1 .
om = — — X+
m N, oA X+ (5)

Note that dm gives rise to mass splittings between baryons which are the O(1/N,) hyper-
fine term in Eqn.(2) and the O(p*) quark mass term. The O(m,N.) term in X, becomes
immaterial in the loop calculations as only differences of baryon masses appear for which

such terms exactly cancel.

III. ONE LOOP CORRECTIONS TO CURRENTS

The one-loop corrections to the vector currents involve the two sets of gauge invariant
diagrams A and B in Fig. 1, where the vertices are given in Appendix C. The explicit results
are the following:

1
qo — OMypy + 0y,

o 2
VH(A) = z(%—i) 3 GPP, P, G

ni,n2

x (H"(po — 6min,, My) — HY (po + qo — 61y, M,,))
1 .
VEU(Ag) = §{Fua75217l00p}

Fr

1
Vua(Bl) — _ﬁfabc]cbcdrud](o’ 1’ MbQ) (6)

o 2
Vi (Ag) = (g—A> SN GEPLUGIH(py — S, g, My, M,)

7
VHY(By) = g“omfabcbede(QOZK(% My, M) + 4qoK°(q, My, M) + 4K™ (g, My, M,.)),

where P, are projectors onto the corresponding baryon in the loop, pg is the resid-
ual energy of the initial baryon, ¢p is the incoming energy in the current, and I'** =
gHoT* + i%eomj fabe febdgiGid contains both the electric charge and magnetic moment compo-
nents. The one-loop wave function renormalization factor 5214001, can be found in [24], and

the loop integrals I, K, K*, K" H% and HY* are given in Appendix B. Since the temporal
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component of the current can only connect baryons with the same spin, ¢q is equal to the
SU(3) breaking mass difference between them plus the kinetic energy transferred by the
current, which are all O(£?) or higher and must therefore be neglected in this calculation.
In the evaluations one sets py — dm;, and py + go — dMyy. In particular, for diagram Ay,
if it requires evaluation at ¢y = 0 such a limit must be taken in the end of the evaluation.
The U(1) baryon number current can used to check the calculation: only diagrams Aj o

contribute, and as required they cancel each other.

Y

q pa

FIG. 1: Diagrams contributing to the 1-loop corrections to the vector currents.

For a generic current vertex I', the combined UV divergent and polynomial piece of

diagrams A;,o can be written as:

o) 1 -& ? 1 1aQ %
M = o () (G0+ vaien, 611
1

T3

(Ae +2) (2[[G™, T, [6rn, [61n, G™]]] + ([T, [6770, G™]], [077e, G"“H)) . (7)

where \, = % — v+ log4m. The first term is proportional to quark masses through the GB
mass-square matrix M?% = m%§® + %dabcmc, and the second involves the baryon hyperfine
mass splittings dm which are O(1/N,) and, following the strict £ power counting, the O(p?)
terms due to SU(3) breaking in dm are disregarded. The consistency with the 1/N,. power

counting can be readily checked. Diagrams As and B, are separately consistent with the



1/N. power counting. Their polynomial contributions are the following:

V,ua(A )Poly — _ 1 é_A ? 1 ifabc
’ (47)2 \ F,

(0 (Oute + J00-+ DRI = 3970+ 1)) 64,6

— ¢ (A +2) (5[0“2 G, o), o)) — [[G™, 81, (G, 3]

g0+ 2) (5011, G, 0] + 297 BIGH, [P, 6] + [[G”,G’“b],ém])))
1

V(B = (W(Ae ¥ >2F2 fepete THe A
1 3 uO 0 ppa 1 abc, b puc
1 1
V,ua(B2)Poly — _W)‘64F2 (guoq —l—gl q q )Ta - g“ovoa(Bl)POIy

Reduction formulas that can be found in [25] are used to express the above in a base of

irreducible operators, Eqns.(9) and (12) below.

IV. VECTOR CHARGES

In this section the SU(3) vector current charges and corresponding radii are analyzed.
The SU(3) breaking corrections to the charges already presented in [20] and [24] are discussed
for completeness. At lowest order the charges are represented by the flavor generators 7.
The one-loop corrections are UV finite at Q* = —¢* = 0, and since up to O(£%) the AGT
is satisfied, the corrections to the charges are unambiguously given by UV finite one-loop
contributions. Note that the AGT applies to the whole baryon spin-flavor multiplet. On
the other hand, at finite ? the one-loop correction has an UV divergent piece which is
independent of quark masses and is renormalized via the terms g; and g, in Lp, one of them
removes the UV divergence (g1) and the other one is a finite counterterm (gs).

Combining the polynomial pieces in Eqns.(7) and (8) and using that, [07h,T%] =
[0rh, G2 = [0rh, GPT*G™®] = 0 one obtains the polynomial loop contributions to vector

charges, which are proportional to Q? = ¢*:

a [e) AE - 3 g a
fi(Ary243)® Vo= (47)2 ( A) Q*T

[H(Biya)? = — — T 9)

(8)



where f{ = V0%,

The corrections to the | AS |= 1 charges, already discussed in [20], are evaluated using
the physical values g4 = g x 1.27 and F; = 92 MeV, however one needs to be aware that
their values are effected by the NLO corrections, leading to a theoretical uncertainty. With
the usual notation for those charges [20], evaluating the ratios df1/f1 in the large N, limit
one finds that df;/f1 = O(1/N,). However, this behavior sets in rather slowly at N, ~ 20,
emphasizing the fact that the non commutativity of the low energy and 1/N, expansions is
very important at the physical N, = 3. The results are shown in Table I, where the errors
are estimated from the above mentioned theoretical uncertainty. The agreement with recent

LQCD calculations [4] is encouraging, and further improvement in the precision of those

calculations would be very useful.

df1

i

One-loop LQCD
Ap  —0.067(15)  —0.05(2)
Y n —0.025(10)  —0.02(3)
=E7A —0.053(10)  —0.06(4)
=-%% —0.068(17) —0.05(2)

TABLE I: SU(3) breaking corrections to the AS =1 vector charges. The LQCD results are from
Ref. [4].

For the charge radii the loop contributions are from diagrams Az and B, and the renor-
malization is provided by the LECs ¢g; and g5 in Eg) and Eg) respectively, of which only ¢;
is required for canceling the loop UV divergence according to Eqn. (9) 2. As is the case with
form factors in ChPT, the charge radii depend logarithmically in the GB masses. They can
be determined by fitting to the known electric charge radii of proton, neutron and 7, or
simply fixed using the first two. If one wishes to study also the large NV, limit, an assignment
at generic N, of the quark electric charges has to be done. One such an assignment that
respects all gauge and gauge-gravitational anomaly cancellations in the Standard Model is

is given by [39] Q = T® + \%Ts + %’—]\JZCB . The last term comes from the baryon number

2 In Ref. [24] the finite term proportional to g, was overlooked.



charge B, and can be implemented by simply adding to the Lagrangians the corresponding
terms with an SU(3) singlet vector source field. This charge operator gives for the states
identified with the physical octet and decuplet the same electric charges as the physical ones
for any NN.. The analysis of the charge radii in the present framework is revealing: in the
strict large N, limit one finds that the non-analytic loop contributions to the 7% charge ra-
dius of nucleons by Diagram Aj is O(N?), where the contribution is driven by the hyperfine
mass splitting term, i.e, for Cyr — 0 the contribution becomes O(1/N,), and Diagram B,
gives only contributions O(1/N.). For the charge T® the loop contributions are O(N?). One
however notes that for the physical 7 and K meson masses the non-analytic terms join the
large N, scaling at rather large N.. The charge radii of the neutral baryons receive only UV
finite loop contributions and are renormalized only by the finite g, term.

Using the three known charge radii, g;2 are determined modulo the main uncertainty
stemming from the value used for gs. At the renormalization scale u = m,, using the value
of g4 ~ 1 obtained by the analysis of the axial couplings [24], Cyr ~ 200 MeV, and with
A = m, one finds g; ~ 1.33 and go ~ 0.74. go is sensitive to Cyp, which is understood as
a result that the non-analytic contributions to the neutron radius is very important, and
thus sensitive to that parameter, while g; is not. One also observes that both LECs are
crucial for obtaining a good description of the radii. For the used value of u, the fraction
of the loop contribution to (r?) of the proton is 15%, and for the neutron it is about 60%.
The short distance contributions are thus very important in both cases. The dominant
non-analytic contributions to the radii are proportional to log m,, with other non-analytic
terms involving the LEC Cypr giving almost negligible contributions, making the results
insensitive to it. Table II shows the results for the charge radii of the baryon octet along
with the contributions by the CTs. The latter contributions to (r?) satisfy the exact linear
relation, in obvious notation: aA+p+X*+3z(a—4)(n+X°+E")+X" 42" = 0 valid for any
a and resulting from the electric charge being a U-spin singlet; it is violated only by finite
SU(3) breaking loop contributions. The isotriplet nucleon charge radius is O(N?), while
the isosinglet one receives loop and go contributions O(N?) and a g; contribution O(N.,),
where the O(N,) term contribution to the EM charge radius must be cancelled by adding
to the Lagrangian a finite charge-radius CT proportional to baryon number and weighted
according to the electric charge assignment at arbitrary /N. mentioned above.

At the present order in the £ expansion, the curvature of the form factors, proportional



(r2)[fm?]
Full CcT Exp

p 0.707 0.596 0.7071(7)
n —0.116 —0.049 —0.116(2)
A —0.029 —0.024
¥t 0.742  0.596
»0 0.029 0.024
¥~ 0.683  0.548 0.608(156)
20 —0.016 —0.049
E- 0.633  0.548

TABLE II: Electric charge radii of octet baryons. The proton and neutron radii are inputs. The
proton radius used is the one resulting from the muonic Hydrogen Lamb shift [40]. The second
column shows the contribution by contact terms g1 2 for u = m,,.

to (rt) = 60(;;—{1)2, is given by the one-loop non-analytic terms with contributions that are
inversely proportional to quark masses. The curvature is nominally an effect O(£?) in the
form factor, which therefore receives contributions from terms O(£%) in the Lagrangian,
and only in the limit of sufficiently small quark masses will the non-analytic contributions
obtained here be dominant. In the recent work of Ref. [38] the electric charge higher
moments have been studied, where t-channel elastic unitarity has been implemented in
the EFT along with the constraints of the 1/, expansion [34-38]. In particular, for the
curvature they find (r*)? = 0.735(35) fm* and (r*)" = —0.540(35) fm?, to be compared with
the one-loop contributions found here, 0.032 and —0.021 fm* respectively, roughly a factor
25 smaller in magnitude in each case. Clearly the description of the curvature must be
primarily given by higher order contact terms, and to the order of the expansion followed
here, the failure to account for the curvature limits the present description of charge form

factors to the expected range given by the radii, Q? < 0.05 GeV?.
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V. MAGNETIC MOMENTS

As mentioned earlier, at lowest order the magnetic moments of all vector currents are
given in terms of the single LEC k. In particular, using the EM current the LO value of §
can be fixed from the proton’s magnetic moment i, in units of the nuclear magneton py,
namely e 5% = j, = 2.7928 py. Also, the M, radiative decay width of the A at LO is given
by:

2

e K\2m
Fasny = o7 (K) m—Zw?’, (10)

where w is the photon energy. Using the above result for ¥ gives Ko, no = 0.38 MeV, to be
compared with the experimental value 0.70 £0.06 MeV. In terms of the transition magnetic
moment, the LO result is pa+, = %ﬁ i, while the experimental one from Eqn.(10) and from
the helicity N — A photo-couplings [41] are 3.58(10)un and 3.46(3)un respectively. This
shows the need for a significant spin-symmetry breaking effect of 30% to be accounted for
by the higher order corrections.

The LO magnetic moment operator G* is proportional to the LO axial currents, and the
NLO effects stem from quark masses and spin symmetry breaking. In the strict large N,
limit those corrections scale as follows: SU(3) breaking corrections O((ms—m)N,.), i.e. the
same scaling in N, as the LO term, and spin symmetry breaking corrections O(1/N,), i.e.
O(1/N?) with respect to the LO term, well known from tree level analyses in Refs. [42, 43].

The experimentally available magnetic moment ratios and the corresponding LO results
are represented in Table III. It is evident that there are significant SU(3) breaking effects,
which together with the important spin-symmetry breaking observed. in particular in the
AN M; amplitude indicate the relevance of the NNLO calculation. Note that all weak
magnetic moments, i.e., magnetic moments associated with the AS = 1 currents are also
fixed at LO, as they are empirically unknown. In the case of the neutron [ decay the
weak magnetic term is obtained from the isovector part of the EM magnetic moments of
proton and neutron, which in this case, due to isospin symmetry, is quite accurate. On
the other hand, in hyperon beta decay the effect of weak magnetism is too small to be at
present experimentally accessible. Fortunately the advent of LQCD calculations of magnetic
moments with increasing accuracy will allow the study of weak magnetism.

The one loop corrections to the magnetic moments are obtained from the spatial compo-

nents of the vector currents depicted in Fig. 1, where the contributions stem from diagrams
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Exp LO
p/n —1.46 —1.5
»t/n- -212 -3
A/Tt -025 -1
p/ot 1.14 1
=0/=- 1.92 2
p/=0 -2.23 —15
ATH/AT 1.4(28) 2
Q /AT -0.75 -1
p/AT 1.03 1
p/(ATp) 0.78 2%5
p/(Z0A) 1.02 3
p/(Z*FET)  —0.88 —%

TABLE III: LO ratios of magnetic moments.

A and B;. Diagrams A, involve I' G, which is similar to the axial currents already
analyzed in Ref. [24]. The loop contributions to the Q? dependence of the magnetic form
factors stem from diagram As.

The UV divergencies of the one loop diagrams contributing to the magnetic moments
after reduction of the corresponding expressions Eqns.(7) and (8) using a basis of spin-flavor

operators read as follows:

e 14\ ik 23 11 5
i (g_A> Ez]kqj (_BO <_m0Gka + _dabcmkac + _maSk>

Vﬁig(Am)UV =1 5 o 13

2 2 . 11
+ 3 (CHF> ((NC(NC +6) — 3)GM + 8{9%, GM} 4 85k SmG™e — 5 (Net S)SkT“))
A

! (—N; el QSkT“)

o 2
a Uv _ . e ga Cur
V]\/}ag(Ai%) — Z<47T)2 (E) Nc €

o 3
_Ez]kq]Bo (6 mOGka + §dabcmkac> 7

(47T)2ﬂF7$ (11)

V]@Zg<Bl)UV = —1
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adding up to:

uvee i)\ﬁqjeijk 1 11 02 b ke jabe 02 0 ~ka 502 a Qk
VMag = m —EKJBO (ZgA +9>m G"*d + (23gA +36) m G + ggAm S

02 A
+ C;;\?gf (2 k Crr((No(N, + 6) — 3)G** + 8{S?, G*}) + BAN,(N. + 3)G*

+ 16/{SmeaSk — SkTa(ll /QCHF(NC + 3) + 12ANC))) (12)

The renormalization of the magnetic moments is provided by the Lagrangians with the
LECs kppi,. 5, and the magnetic radii receive only finite one-loop contributions and a
finite renormalization by the term x,.. The [ functions of the magnetic LECs resulting from

Eqn.(12) are shown in Table IV.

LEC B x F?

B A‘é%CNLCF(%(Nc+3)+%(Nc(Nc+6)_3)%011\??)
1 —A§ Cp (2 + 5 (Ve + 3>%Cf5’f)

Ko —A%k 3+ 2 4%)

KD —A%2k (%—F}T}géi)

KF 0

K3 _AQ'%%E&

K4 %éiHCIQJF

K5 %fﬁx’iCIQJF

Ko 0

TABLE IV: g functions of LECs associated with magnetic moments and radii. The renormalized

LECs are defined according to X = X (u) + (fTX)? -

For N. = 3 the set of local terms that contribute to the magnetic moments remains
linearly independent. If one only considers the EM current, the term proportional to kg
does not contribute, and for the known magnetic moments together with the information
on the M transition A — N+~ one can fit the rest of the LECs. Note that in the absence
of information on the SU(3) singlet quark mass m° dependence, the LEC k5 is subsumed
into x, and the lack of knowledge on the AS = 1 weak magnetic moments does prevents at

present a determination of Kp.
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The results of the fits are shown in Table V. Since the input magnetic moments have
errors (much) smaller than the theoretical error of the present calculation estimated to be of
the order of NNNLO corrections or about 5%, the x? has been normalized for estimating the
LECs’ errors. Important correlation is found between the following pairs of LECs: k4 — ks,

Ka — kg and K5 — Kg.

HLO HMNNLO HExp

p 2.691 2.797 2.7928(23) HLO HKNNLO HEzp

LECx ™Y LO NNLO n —1.794 —1.929 —1.9130(45) A*TT 5381 5.979 3.7-7.5

K 2.80 2.87(2) ¥t 2.691 2.359 2.46(1) AT 2691 3.027 2.7(1.2)

k1 0 318 (10) X 0.897 0.834 AP 0  0.074
ke 0 0. ¥~ —0.897 —0.691 —1.16(3) A~ —2.691 —2.879
kp 0 046 (5) A —0.897 —0.595 —0.613(4) X*t 2691 3.163
kp 0 =0 —1.794 —1.245 —1.250(14) ¥*0 0  0.315
k3 0 0.51(6) O —0.897 —0.657 —0.6507(25) X*~ —2.691 —2.534
ke 0 —2.84(40) Atp 2537 3.580 3.58(10)  E* 0 0.496
ks 0 1.19(20) XA 1.553 1.562  1.61(8) = —2.691 —2.242

YA 2197 2.685  2.73(25)% Q —2.691 —2.005 —2.02(5)

Y*Hut —2.537 —2.326 —3.17(36)P

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear
magneton py. The renormalization scale was set to 4 = A = m,. Kk requires AS = 1 weak

magnetic moments to be determined. Empirical results from PDG and references #[44], P[45].

As mentioned earlier, the AN~ amplitude at LO is too small by roughly 30%, a manifesta-
tion of an important spin-symmetry breaking effect. The effect receives a small non-analytic
contribution (at p = m,), and the contributions from the contact terms are as follows:
kp : O((ms —m)N,), and k4 : O(1/N,). From the fit one finds a modest contribution from
kp and a dominant contribution from k4. Since the latter is a 1/N?2 correction with respect
to the LO magnetic moment, it seems to be unnaturally large. This is a bit surprising as
a similar kind of effect in the AN axial vector coupling is actually unnaturally small. This

contrast remains to be understood. Finally, a fit where the AN transition is not an input
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shows an enhancement but only by about half of what is needed.

An interesting case is the magnetic moment of X*°: all LO and NLO tree level and quark
mass independent contributions vanish, receiving only NNLO tree and loop contributions
which vanish in the SU(3) symmetry limit. On the other hand, the experimental value of
the magnetic moment of ¥~ quoted as average by the PDG [40] cannot be described: U-spin
symmetry implies that it must be equal to the magnetic moment of the == up to NNLO
SU(3) breaking by quark masses. The experimental results imply a very large effect which
is very difficult to reconcile with the other U-spin multiplets, where the effect is between
12% and 25% per unit of strangeness, while for the pair ¥~ =~ case it is 44%!.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-
Glashow (CG) relation, namely p, — pin, — pis+ + - + pt=o — p=z— = 0. This relation remains
valid at tree level NNLO and receives only a finite correction from the one loop contributions.
Explicit calculation gives the deviation with estimated theoretical error Acg = 1.09£0.25 puy
to be compared with the experimental deviation 0.49 +0.03 uy, affected however by the X~
issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on
the LEC kr which does not appear in the EM case. The result for the LECs from the EM case
gives the predictions: jis-, = (0.516—0.180 rp) 52— and pupp = (—1.41+0.66 £r)5L—, where

g = e/sinfy. At LO one has the large hierarchy pa,/ps—n = —1/27/2. A determination of

kp will require a LQCD calculation.

A. Magnetic radii

The magnetic radii are theoretically very constrained at the order of the present calcu-
lation. For all the vector currents and baryons they are determined only by UV finite loop
contributions and the single available finite counterterm fixed by the LEC k.. Since only
the magnetic radii of proton and neutron are experimentally known, one can use these to fit
that LEC leading to the results shown in Table VI. The rest of the radii are then predictions
which can hopefully be tested in the future with LQCD calculations. Note that the lion
share of the magnetic radii is from the short distance terms proportional to x, with the loop
contribution from diagram As in Fig. 1 giving up to 20% for proton, neutron and ¥~ and

less than 10% for the rest.
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Ky = —2.63 (r?)[fm?]
Exp Th Loop

p 0.724 0.718  0.134
n 0.746 0.747  0.179
ut - 0.766  0.100
¥0 -~ 0.698  0.061
i 0922  0.189
A -+ 0.895  0.079
=0 - 0.872  0.081
= <o 0796 0.035
Atp o 0875 0.226

TABLE VI: Magnetic radii from a fit to nucleons.

Finally, a calculation of the curvature of the EM magnetic moments yields: (rt)? =
0.38 fm* and (r*)" = 0.54fm?* to be compared with those obtained in Ref. [38], which are
respectively 1.72(6) and 2.04(1) fm*, leading to a similar assessment as in the case of the

electric charge already discussed, although less dramatic.

VI. SUMMARY

This work presented the study of the SU(3) vector currents in baryons based on the
combined chiral and 1/N, expansion. It was carried out in the context of the £ power
counting to one-loop. This corresponds to a calculation of the charges, magnetic moments
and their radii for both octet and decuplet baryons. The calculations have been provided for
generic N, which permits an exploration of the behavior of those observables with respect
to the number of colors. Only two LECs are needed to determine all SU(3) charge radii,
while the magnetic moments need to be renormalized involving eight LECs, of which all
but two can be fixed solely in terms of the known EM magnetic moments. Of the two
remaining LECs, one needs information about AS = 1 weak magnetic moments and the
second requires knowledge of magnetic moments at different values of quark masses, which

can be obtained from LQCD calculations. Finally the magnetic radii are all determined in
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terms of a single LEC. The fits indicate that the values LECs are within the range of natural
magnitude, although there is a puzzling issue, namely the unnaturally large spin-symmetry
breaking required for the description of the AN transition magnetic moment. Finally, the
curvature of form factors is given at the order of the calculation by non-analytic terms in m,,
which turn out to be very small, and therefore requiring for their description an extension

of the present work to higher order.
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Appendix A: Spin-flavor algebra

The 4N} — 1 generators of the spin-flavor group SU(2Ny) consist of the three spin gener-
ators S°, the N7 — 1 flavor SU(Ny) generators T, and the remaining 3(N7 — 1) spin-flavor

generators G**. The commutation relations are:

[Si, S]} — iEiijk, [T“,Tb] — ifabCTc, [Ta, Sz] =0 ,
[Si, Gja] — iﬁijkaa, [Ta’ sz] — Z'fachic ,
[Gia7Gjb] — iéijfabcTc + ﬁaabezjk‘gk + %Eijkdachkc ) (Al)

In spin-flavor representations with N, indices corresponding to baryons, the genera-
tors G have matrix elements O(N,) on states with S = O(N?). The ground state
baryons furnish the totally symmetric irreducible representation of SU(6) with N. Young
boxes, which decomposes into the following SU(2)spin % SU(3) irreducible representations:
1S, (p.q)] =[S, (25, 3(N.—28))], S =1/2,--+ ,N./2 (assumed N, is odd). The baryon states
can then be denoted by: |SSs, Y II3), where the spin S of the baryon determines its SU(3)
multiplet.

1. Matrix elements of the SU(6) generators

In general the matrix elements of a SU(2)spin X SU(3) C SU(6) tensor operator be-
tween baryons ground state baryons are given by the Wigner-Eckart theorem, with obvious

notation:

1
S'SLRY'T'IL| 0% |SSs, RYIL) =
55 | Onip, 155 RN Wy

o R R R
XY (S, R|| O% |5, R), < >
i
X

(553, lls |5'S5)  (A2)

YIIYITI|Y I'I
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where R represents the SU(3) multiplet of the baryon, and ~ indicates the possible recou-

plings in SU(3). The matrix elements of interest are then given by:

<S,Sé,yljllé |Sm |SSg,Y]Ig> = 635’5YY’5II’5131§ S(S + 1)<883, 1m |S/Sé>

rQl NITT iis 1
(895, Y'I'Iy | TV |SS3,YII;) = 555/553553 (S T1S)
\/dim(25, 1(N, - 29))

X
Y II Yiis Y'I'' I}
y 1 ' Qr
(S'S4, Y'T'Ly | G | S8y, YII) = (953, Im | 5'5%) (A3)
m\/dim(%’, L(N, - 25))
Y II Yils Y'I''I§

x Y (S G|S),

v=1,2

where the reduced matrix elements are (here p = 25, ¢ = (N, — 25)):

(SITIS) = vdim(p,q)Ca(p, q)
V(28 +1)(Ne — 25 + 2)(Ne + 25 + 4)(N.(N. + 6) + 125(S + 1))

46
it S=—§+1: —Y G (e P A (e P =457
(s'| G |S)ye1 =14 if S=58"—1: 7\/(4S(S+2)+3)(Nc—2S)(Nc8—;§+2)(Nc+2S+4)(NC+25+6) (A4)
if §=25": sign(N, — 25 — 0™) (Ne+3)(25+1)y/S(5+1)(No—25+2) (N 25+4)
. s V/6Ne(Ne+6)+125(5+1)

(25 4+ 1)/(N. — 25) (N, + 25 + 6) (N, + 2)2 — 452) (N, + 4)2 — 452)
8v2y/N.(N, + 6) + 125(S + 1)

(S"[| G ||S)r=2 = —dss

Appendix B: Loop integrals

The one-loop integrals needed in this work are provided here. The definition ddk = dik /(2m)¢

is used.
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The scalar and tensor one-loop integrals are:

— E2n . 1 F(n+d)r(a_n_ d) a4
n, o = dl, " — j(=1)" 2 2 2 2
I(n, o, A) dik (A% (—1) =r @) (A%)
1 sH2n — k o k 2n  __ n—o 1 1 F(a_n d) n— a+2
(e, A) = / Ak Gz = (D il ) (4%)

X 29“01“02 © Gpog, 1 ooy, (B1)
g

~ 4np! F(n+%) ™ - ooy " Jpog, 1hoo, >

where o are the permutations of {1,---,2n}.

The Feynman parametrizations needed when heavy propagators are in the loop are as follows:

1 o) 1
— omr i dhn | day---dapd(l — a1 — - — an
A ---A.B,---B, (m+")/0 1 /0 ap - dand(l — )
1

(2)\1141 +---+2)\mAm+041B1+~--+aan)m+N’

where the A; are heavy particle static propagators denominators, and the B; are relativistic ones.

(B2)

The integration over a Feynman parameter X is of the general form:
J(Co, 1, Ny d, ) = / (Co+ Cr(A — A)?) "4, (B3)
0

which satisfies the recurrence relation:
—Xo(Co + Cl)\%)l_y+% + (B3+d—2v)J(Cy, C1, Ao, d, v —1)

J(Cchla)\(bd?V) = (d—2y+2)00

d—v
= B — 1 _
J(C(),Cl,AO,d,V) C()d o +1J(C()7017)\07d71/+ ) d— 2 +1

Integrals with factors of A in the numerator are obtained by using

(Co + Cl)\o)* . (B4)

J(Co,C1, Mo, d,v,n=1) = / (A= X0)""HCo+ C1 (N — )\0)2)’”+%d)\
0

1 g
= — Co+ C1A3)2 v, B5
201(g+1—u)( b+ 1) (B5)

and the recurrence relations
1
J(Co, 01, )\0, d, v, n) = E(J(C(), Cl, )\Q, d, vV — 1, n — 1) - CQJ(C(), Cl, )\0, d, v,n— 2)) (B6)
1
For convenience in some of the calculations for the currents, the following integral is defined:

J(Co,C1, Mo, d, v, 1) = J(Co, C1, Xo, d, v, 1) + Mg J (Co, C1, Ao, d, V) (B7)

For the calculations in this work the following integrals are needed at d = 4 — 2e:

1 /C1
J(Cy, C1, X0, d,3) = tan(\
(Co, C1, Mo ) m( + arctan(Ag C()))
J(C()701,)\0,d,2) -

m(xo(co + (JlAg)%*2 +(d — 4)CoJ (Co, C1, Mo, d, 3))

1
J(C(]a 017 )‘07 da 1) = d— ()‘O(CO + Cl)\())

d_
2

+ (d —2)J(Co, Cy, Ao, d,2)) (B8)
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Specific integrals

Here a summary of relevant one-loop integrals for the calculations in this work is provided for
the convenience of the reader.

1) Loop integrals involving only relativistic propagators

10,1,M) = ——1(1 = $yare-2
(ami 2
10,2, M) = ——1(2— 4ppi-s
(mi 2
— 1 1
K(g, Mo, My) = [ ddk = | da 10,2, A(
(4 +) (k2 — M2 + ie)((k + q)2 — M2 + ic) /0 a 10,2, A@))
— foH 1
KH(q, Mo, M) = | ddk do (o — 1) " 1(0,2, A
(q7 as b) / (kQ—M3+2€)((k+q>2—Mz,2+2€ /0 @ OZ q ( ) 4y ( ))
K™ (q, My, My) = /cﬁ% WK
e 2) = (k2 = M2+ ie)((k + q)% — MZ + ie)
1 uv
= [ da (- e ety 10.2.00) + L1012, A0), (59)
0

where:

Af) = \JaM2 + (1 — a)MZ — a(1 - a)g?

2) Loop integrals involving one heavy propagator

d1 1
H M) = ddk
(por 20) / (po — ko + i€)(k? — M? + ie)
2 d
= (2 - 5)J(M? — p3,1,p0,d,2)
(4m)2 2
ij L kikJ
H7(po, M) = [ do
(por 10) (po — ko + i€)(k? — M2 + ie)
J d
— L gIT(1 = 5)J(M? = P21, po,d, 1) (B10)
(4m)2 2
g N ; i .
H9"(po, q, Mo, My) = [ dik k' (k + )7 (2k + q)

(po — ko +i€) (k2 — M2 + ie)((k + q)2 — M + ie)

4 1 1 d. .
= 3 y / daoq—=T3B - 2)¢'¢a(l —a)
5 2 2

(4m)
x (1= 20)g"(Co, C1, 20, d,3) = 29"T(Co, C1, 20,d,3, 1))
d g . .
+ 02— 5) ((=(1 = 20)g7¢" + 2(ag”’e’ ~ (1= a)gq)J (Co, C1, Ao, d,2)

_l_

297g".J(Co, C1, 20, ,2,1)) },
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where:

Co = aM2+ (1 - a)M7 — pf —2(1 — a)poao — (1 — a)(aq® + (1 — a)gd)

Cp =1

Ao = po+ (1= a)g. (B11)

The polynomial pieces of the integrals are as follows:

H (po, M)PVY =

HY (po, M )P

Hiju(p()a q, Ma7 Mb)p01y

i

(471')22190()\6 + 2)
—((BM~* —2pj)Ae + TM* — —

i
9672
24" (3po + 20)g"™ + 2¢° ((3po + q0)g" + ¢'g"°))

(Xe (97 (g"° (=3(M2 + M) +12po(po + q0) + ¢* + 4¢3) — q0q")

97 (¢ (=3(M + M) + 24 po(po + q0) + ¢* + 845) — 2q0q")

44¢'(3po + 290)9" + 4¢’ (3po + 90)9") , (B12)

where the UV divergence is given by the terms proportional to Ac = 1/e¢ — v + log4m, where

d=14— 2e.

Appendix C: Interaction and vector current vertices needed in loop calculations

The interaction and currents vertices needed in the one-loop calculations are given for com-

pleteness.
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FIG. 2: The vector current vertices indicated with a square are the magnetic ones. The momentum

q is incoming, and I'*¢ = gt0T® 4 ix Omig fabe febd gi jd,
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