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Abstract

A network of cosmic strings would lead to gravitational waves which may be detected by pulsar
timing or future interferometers. The details of the gravitational wave signal depend on the distri-
bution of cosmic string loops, which are produced by intercommutations from the scaling network
of long strings. We analyze the limits imposed by energy conservation, i.e., by the fact that the
total amount of string flowing into loops cannot exceed the amount leaving the long strings. We
show that some recent suggestions for the cosmic string loop production rate and distribution are
ruled out by these limits. As a result, gravitational waves based on such suggestions, in particular
“model 3” used in LIGO data analysis, are not to be expected.
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I. INTRODUCTION

The universe may contain a network of cosmic strings formed at a symmetry breaking
transition in the early universe or by brane inflation in string theory. (For reviews see [1, 2|.)
In the simplest cases, which we will discuss here, strings have neither ends nor vertices, so
the network (in a spatially infinite universe) consists of infinite strings and closed loops.

The strings are continually intercommuting, so that loops may break off of infinite strings
or rejoin to them, and loops may also fragment or join with each other. However, the net
effect is a production of loops, so that string energy leaves the infinite string network and
flows into the loop distribution. Loops then oscillate, emitting gravitational waves and
eventually decaying. These processes allow for the cosmic string network to reach a scaling
regime, in which all linear measures evolve (on average) in a way proportional to the cosmic
time t. The energy density of the scaling network evolves as radiation in the radiation era
and matter in the matter era, so that the string network is always a subdominant component
and does not cause the problems that monopoles would.

Gravitational waves are the leading way to look for a cosmic string network [3-12]. The
observable gravitational waves come mostly from the loop distribution, and therefore it is
of great importance to understand this distribution. Many distributions have been inferred
from simulations or proposed on theoretical grounds. Here we discuss some important
constraints on the rate of loop production and the resulting distribution of loops, arising
from the fact that the energy in loops comes from energy originally in the long string network,
so that energy conservation couples the loop production rate to the loss of energy in the
long strings.

In the next section we discuss the definition of the long string network and the loop
production and distribution functions. In Sec. III, we derive and apply the constraints
resulting from energy conservation in the production of loops and compare with specific
models of loop production. In Sec. IV, we point out that the problem is more general than
a conflict of numerical values but applies to any attempt to derive a rapidly-diverging loop
production functions from a simulation, and in Sec. V we point out that these constraints
apply also to certain loop distribution functions. We conclude in Sec. VI.

A dictionary for translating between the parameters and functions used here and those
in some other papers is given in Appendix A.

II. LOOPS AND LONG STRINGS

The separation between loops and infinite strings is not completely straightforward, be-
cause a sufficiently long loop cannot be cleanly distinguished from an infinite string. Loops
much larger than the horizon are continually reconnecting to infinite strings and breaking
off from them again. A very long loop consists of many causally disconnected segments, and
the dynamics of each segment may connect the loop to an infinite string [13], so the typical
lifetime of such a loop between intercommutations drops inversely with the loop length.

Loops much smaller than the horizon, however, are very unlikely to join with other strings,
because these loops are much smaller than the distance between strings, which grows with
the expansion of the universe. Small loops, once formed, may fragment into smaller loops,
but simulations show that this process does not continue indefinitely but rather yields a



distribution of non-self-intersecting loops.! It is thus possible to make a reasonably clear
distinction between loops, meaning small loops on non-self-intersecting trajectories and that
we do not expect to rejoin larger structures, and long strings, in which we include both
super-horizon loops and strings that really are infinite.

Simulations, of course, have no infinite strings. Simulators generally use periodic bound-
ary conditions, meaning that all strings are in loops. Typically all strings that cross the
horizon are part of a single large loop that crosses through the periodic boundary conditions
many times. Again it is possible to distinguish small loops from long strings, meaning loops
above a certain size. In our simulations [15, 16], we define loops existing at a certain time
as closed strings of any length that will not self-intersect or rejoin in the future,? but the
exact definition will not be important here, especially as we will mainly be concerned with
loops far below the horizon size.

We will describe loops at time ¢ by a loop distribution function, n(l,t), that gives the
density of loops per unit volume per unit loop length existing at time ¢. We will describe
loop production by a function f(I,t) giving the number of loops produced per unit time per
unit volume per unit loop length. Loops in self-intersecting trajectories are excluded from
both of these functions. We also exclude loops that will join to long strings or other loops,
but this is of little consequence for loops much smaller than the typical interstring distance,
because it is very unlikely that they will find any other string to join.

All lengths here are invariant, i.e., a loop of length [ has energy ul, where p is the energy
per unit length (tension) of the string, and we work in units where the speed of light is set
to 1. The energy density in long strings (i.e., everything that is not counted in n(l,t)) will
be denoted pno.

III. ENERGY CONSERVATION

The breaking off of loops conserves energy, so that the total invariant length of string
before and after an intercommutation is the same.? This leads to a constraint [17], because
the energy flowing into loops must flow out of long strings. The long-string energy density
also decreases due to dilution of strings and redshifting of the string velocity due to the
expansion of the universe. The resulting evolution equation for the energy density of long

I Fragmentation is less common than one might at first think. Loops are formed by the combination of
right-moving and left-moving excitations on the string. When a loop forms, many small excitations have
already passed through each other without forming loops, so they will not do so on future oscillations.
Others have not yet passed, and may thus form a smaller loop in the first oscillation, but this loop forms
with no causal dependence on the fact that it is part of a larger loop at the time of formation. The only
small loops that form because of being on a larger loop are those which include at least one of the kinks

arising from the larger loop’s formation [14]. Simulations show this phenomenon to be quite rare.
After a loop has oscillated three times, we remove it from the simulation, so we would miss rejoinings

after that stage. But we have experimented with allowing many more oscillations before removal, and this
makes no significant difference to any quantity reported by the simulation. We run long enough beyond
the reported simulation ending time to allow loops of up to half the horizon size to undergo the necessary

number of oscillations to be correctly classified as loops.
We neglect a tiny amount of particle radiation here. Taking account of it would only strengthen our

conclusions.



strings is

‘Z’_:O:_QH(1+<UgO>)pOO—u/ooolf(l,t)dl, (1)

where H is the Hubble constant and (v2) is the rms average velocity of the long strings.
Equation (1) constrains the total rate of loop production.

In this paper, the parameter [ refers to the invariant length of the loop at the time of
production, i.e., its total energy divided by u. Some of this energy is in the overall kinetic
energy of the loop (with respect to the Hubble flow). If the loop is long-lived compared to
the Hubble time, this kinetic energy will be lost to redshifting, so what matters is the rest
energy [16]. For very short loops, which will be of most concern to us here, [ is the natural
variable.?

No model of the string network is necessary for Eq. (1), but we can go further if we
assume that the network is in a scaling regime in a cosmological era where the scale factor
a o t” so that ¥ = 1/2 in the radiation era and 2/3 in the matter era. In that case we define
a scaling measure of the loop length, z = [/t, and define n(x) = t*n(l,t) to be the number of
loops per unit x in volume 3, f(x) = t°f(I,t) to be the number of loops per unit x produced
in time ¢ in volume 3, and the “interstring distance” v = \/11/poo/t. In a scaling regime, ~y
is constant, and n(x) and f(z) depend only on x and not on ¢. In that description, Eq. (1)
becomes

/OOOIf(ZE)dZL'Z%(l—V(1+<’U§O>))EB. (2)

Any proposed scaling loop production function f(z) must obey Eq. (2). In our simula-
tions® [15] (values from other groups are very similar), we find v = 0.30 and (v2) = 0.40 in
the radiation era, and v = 0.51 and (v%) = 0.35 in the matter era, so°

B~ (3)

6.7  radiation,
0.77 matter.
Reference [18] discusses loop production functions (further analyzed as part of Ref. [19])
which grow rapidly toward small scales until they are cut off at some value ., which is
intended to represent the effect of gravitational smoothing on long strings. Specifically, they
consider the possibility that”

4 If we let m be loop rest energy, the total rest mass appearing in loops is fooo mf(m,t)dm, which is less

than p [ 1f(1,t) dl, leading to a stronger constraint on f(m,t) than on f(l,t).
5 The definition of loops and loop production used in our simulations is exactly as described above. However,

it would be difficult to report long string statistics in a way which depends on the future evolution of the
string. Instead we report our po, and (v2 ) including all string that has not been identified as being in
non-self-intersecting loops. Some string in loops may later rejoin, and some string is in loops that we have
not yet identified. However, we can recognize both of these phenomena later. The maximum error they

could have introduced is less than 1%.
Reference [15] defined scaling quantities in terms of the horizon distance and consequently the B found

there was larger by factor (1 — v)~3. See Appendix A.
Equation (2.15) of Ref. [19] includes a second term representing reduced but nonzero production of loops

at scales below z.. Including it would increase the energy flow into loops and so make the conflict here

worse.



fla) = ca POz —x.), (4)
with § > 2. Integrating Eq. (4) gives

/Oooxf(:c)dx:

Following Ref. [20], Refs. [18, 19] say that we should take

<
(8 -2l

ze = T(Gu)*™", (6)

with T ~ 20, and suggest that we choose 5 and ¢ to match the results of Ref. [21]. Thus
= 2.6 in the radiation era and 2.4 in the matter era.® With Gu = 10~7 as suggested by
Ref. [19], Eq. (6) gives x, &~ 3x 107Y (radiation), 1 x 107! (matter). To find a corresponding
value of ¢ we use Eq. (2.22) of Ref. [19],° which in our notation gives

__ ¢ -8
n(z) = , 7
(x) ﬁ - ﬁcritx ( )
where St = 4 — 3v = 5/2 (radiation), 2 (matter). Our n(z) corresponds to
(1-— 1/)4—5(0?) =(1-v)*'Coa Pt (8)

in the notation of Ref. [21], where Cjy = 0.21 (radiation), 0.09 (matter). In our notation,
n(z) = (1 —v)"PCox™" . 9)
Setting Eqs. (7) and (9) equal gives
c= (B — Buit)Co(1 — v)*F (10)

and the numbers above give ¢ = 0.008 in the radiation era and 0.006 in the matter era.
Putting these values in Eq. (5) gives

o 2 . .
/ of () do ~ 000 radiation, (1)
0 200 matter.

larger than the values in Eq. (3) by a factor more than 200 in both cases. In fact the
situation is much worse than that, because non-observation of gravitational waves limits G
to be no more than of order 107! [7, 9, 10, 22|, and then the discrepancy is 6 x 10° in the
radiation era and 9 x 10* in the matter era.

Thus it is impossible to have the loop production function of Eq. (4) with parameters at
all similar to those used by Refs. [18, 21] and discussed in Ref. [19].

8 These are the central values given in Ref. [21]. For other possibilities see Appendix B.
9 Since we are matching Ref. [21], where there is no gravitational backreaction, we do not need the more

general form of Eq. (2.17) of Ref. [19].



IV. NETWORKS WITHOUT GRAVITATIONAL SMOOTHING

Suppose we had a huge computer and could run large simulations (without gravitational
effects) for as long as we wished. We could continue deep into the scaling regime,'® and
discover the scaling loop production function. What could it be? Suppose it were a power
law for small z. There would be no gravitational cutoff. So we would have just f(z) = cz="
and if 3 > 2, [ f(z)dz would diverge at x = 0. Such a scenario would violate any energy
conservation bound, so no such result is possible. We cannot evade this conclusion by
proposing cutoffs due to gravitational scales, because the hypothesized simulation does not
include gravitation.

Our hypothetical simulation would have to give some f(x) that obeyed energy conserva-
tion and so did not rise too quickly at small scales. It would give an n(z) that would go as
Pt at small 2. If we had such a simulation, we could then apply gravitational effects to
give an updated n(z), which would then go as x =Pt down to some x where gravitational
effects became important, and then fall below that line.

But we do not have such a simulation. Instead we must make do by extrapolation from
smaller simulations. In Ref. [21], the authors fit n(z) to a power law over the range where
they felt n(x) was accurately determined. What can we do with this information? It would
be an error to extrapolate this power law and conclude that in a much larger simulation it
would continue forever, because we know that is impossible. Neither would it make sense to
extrapolate the power law until some gravitational cutoff, because the simulation does not
include gravitation. We know that in the nongravitational world, there will eventually be
some new behavior, but we don’t know what it is. Since it is wrong to extrapolate the power
law form of n(z) in the simulated world, it would be wrong to extrapolate in the real world.
Thus it does not make sense to use the power law n(z) from a simulation to derive n(x) in
the real universe at any smaller x than those where the simulation finds scaling behavior.

V. CONSTRAINTS ON THE LOOP DISTRIBUTION

The argument above constrains not only the loop production function but also the loop
distribution. The number of loops can be found by integrating the production function,
accounting for the decrease in loop size due to gravitational backreaction. In a scaling
regime [16],

[ (@’ + DG (') da
(;(; + FG,U/)BCM

n(z) = (12)

For z > I'Gy,
u _ fxoo xlﬁcrit_lf(x,)dx,

xﬁcrit

n(x) (13)
If the integral in the numerator does not depend on the lower limit as x — 0, we find
n(z) ~ x=P=ie,. If n(x) diverges more rapidly than this as  decreases, the divergence must
come partly from the numerator. The only way to have n(z) ~ 277 with 3 > B is to have

10 Without gravitational effects we cannot have true scaling, because energy will collect in tiny loops. But
we would expect scaling in the long string network and in loops above some continually decreasing lower
limit size.



f(x) ~ 277, In other words, a distribution n(z) ~ z~%=it may arise from loops produced at
earlier times, but n(z) may only diverge more rapidly than this if the tiny loops in question
were produced very recently by a similarly diverging production function. But no argument
based on simulation could support such a production function.

More directly, any scaling loop production function must obey Eq. (3) to conserve energy,
so the integral in that equation must converge. In a simulation that does not include
gravitational radiation effects, the relationship between f(x) and n(z) is given by Eq. (13).
Since feiy > 2, the integral in the numerator of Eq. (13) must also converge even if z is
taken to 0. Thus for small enough z, n(z) ~ 2Pt and cannot diverge any faster.

Thus no simulation can find n(x) ~ 277 with 8 > Buy for arbitrarily small z. The loop
distribution suggested in Ref. [18] with 8 = 2.6 in the radiation era’ cannot be supported
by the simulations of Ref. [21]. Therefore there is no reason to use gravitational-wave
predictions based on this spectrum, in particular “model 3” of Ref. [9].

This criticism does not affect “model 1”7 and “model 2” of Ref. [9]. Both of these models
involve a loop production function which is peaked at a certain range of scales not depending
on any gravitational cutoff. In such a model, Eq. (5) gives some finite number independent
of z., and the only issue is that that number should agree with Eq. (2). In “model 17,
loops are all produced at the same scale (relative to the the age of the universe), and the
production rate is adjusted to make Eq. (2) hold. “Model 2”7 takes the loop density from
Ref. [16], which is based on the production function found in Ref. [15], and we checked in
Ref. [15] that indeed the f(z) found there obeys Eq. (2).

VI. CONCLUSION

To predict observable signals, such as gravitational waves, from a cosmic string network
requires knowledge of the distribution of loops at times when the signals may be emitted.
To obtain that knowledge we use simulations, but we cannot simulate the cosmologically
necessary range of scales, so we must extrapolate from simulations. However, it does not
make sense to use loop production functions that do not conserve energy, nor to use loop
distributions that can result only from such unrealistic production functions.

Of particular concern are loop production functions of the form cz™® with g > 2. If
not cut off, such a function leads to an infinite flow of energy into loops. A cutoff will
make the flow finite, but the actual gravitationally-based cutoffs proposed for this purpose
yield an energy flow much larger than is available from the scaling network of long strings.
With modern limits on G, the discrepancy is more than 105. This is much too large to be
explained by any effects such as small-scale structure or field-theoretic excitations on long
strings. Thus loop production functions of this form, and loop distribution functions arising
from them, should not be used to calculate observable effects.

1 Note that n(z) ~ 272 is within the error bars of Ref. [21], and if that is the true shape of n(z), there
is no problem with energy conservation. But the conclusion in that case is very different. We can get

n(x) ~ =25 from a wide range of loop production functions, even a d-function [1, 16, 19].



this paper| BOS [15] RSB [21] ARSS [19]

W W U U string tension
x (1—-v)lz (1-v)ta v loop length
~ (1—-v)"ly Yoo interstring distance

flx) [(1—-v)°f(x) 5P loop creation rate

n(z) |(1—v)*n(z)|(1 —-v)iS(a)/a tAF loop distribution
B p+1 3 —2x |exponent in loop creation/distribution
B (1—v)3P energy flow into loops

TABLE I. Notations used here and in some recent papers. The quantities in the different columns
in each row are the same when evaluated using the conventions and notation of the papers listed.
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Appendix A: Dictionary of notations

Different papers use different symbols to denote the same concept, and furthermore even
when the concept is the same, some papers use the cosmic time t to define scaling units,
while others use the horizon distance dj, = t/(1 —v). As a result, powers of 1 — v are needed
to convert between values given in the different papers. Table I lists the notations and the
conversion factors for this paper and several recent works.

Appendix B: Range of exponents in n(x)

Reference [21] gave error bars on the possible exponents derived from their simulation.
In our notation,

B1
2411008 matter. (B1)

5 {2.601’81%}, radiation
In the main text we considered only the central values of this parameter; here we will
consider whether other possibilities for the exponent will allow these distributions to escape
the bounds above.



First consider the radiation era. The error bars above allow the possibility that g = 2.5.
If that is correct, n(z) could arise from a wide range of distribution functions including those
discussed in Refs. [15, 16]. We cannot then include gravitational effects without knowing
more about the loop production function. In particular, such an n(x) from simulations can-
not be used as evidence for a diverging loop distribution in the real universe with gravitation.

Another possibility is that § = 5/2+ € with € < 1. From Eq. (10) it appears that ¢ would
be very small and so the energy conservation bounds could be obeyed. However, in such
a regime we should consider the loop production function more carefully. Without gravity,
the relationship between n(x) and f(x) in the radiation era is [15]

n(z) = z7°/* /00 22 f (') da' (B2)

in our notation. As we discussed in Sec. II above, loops larger than the horizon rarely survive
and should not be counted in f(x). Thus Eq. (7) must be modified. For 1 > z > x. we have
[19]

1
n(zx) = cx_5/2/ 232y = & [277 — SL’_5/2] . (B3)
- €
When we match this to Eq. (9), we find
C
= gf-1 0 B4
¢ 1—ac (B4)

This depends on the value of x used to determine c¢. To attempt to comply with energy
conservation bounds, we would like to make ¢ the smallest possible. Since c is an increasing
function of x, we will use the smallest = in the range used in Ref. [21] to determine [, which
is about 5 x 1073,

As we decrease €, ¢ will decrease, but never below its € — 0 limit, —Cj/(2v/2Inz). With
r=5x10"% and Cy = 0.21, we find'? ¢ = 0.014. Putting this in Eq. (5) with 8 = 2.5 gives'?
J° f (x) do ~ 1000 for Gu = 1077, still many times larger than the value in Eq. (3).

In the matter era, the situation is different, because the power of x that multiplies f(x)
in the energy flow is the same one that multiplies f(x) in the calculation of n(x). If we make
[ small enough, it is indeed possible to obey the energy conservation constraint. However,
the requisite (3 is about 2.15 if we take Gu = 1077 or 2.10 if we take Gu = 107! (including
only a finite range of = makes little difference here). These /3 lie far outside the range given
by Eq. (B1).
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