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We study the nonparametric maximum likelihood estimator (NPMLE)
for estimating Gaussian location mixture densities in d-dimensions from in-
dependent observations. Unlike usual likelihood-based methods for fitting
mixtures, NPMLEs are based on convex optimization. We prove finite sample
results on the Hellinger accuracy of every NPMLE. Our results imply, in par-
ticular, that every NPMLE achieves near parametric risk (up to logarithmic
multiplicative factors) when the true density is a discrete Gaussian mixture
without any prior information on the number of mixture components. NPM-
LEs can naturally be used to yield empirical Bayes estimates of the oracle
Bayes estimator in the Gaussian denoising problem. We prove bounds for the
accuracy of the empirical Bayes estimate as an approximation to the oracle
Bayes estimator. Here our results imply that the empirical Bayes estimator
performs at nearly the optimal level (up to logarithmic factors) for denois-
ing in clustering situations without any prior knowledge of the number of
clusters.

1. Introduction. In this paper, we study the performance of the nonparametric maxi-
mum likelihood estimator (NPMLE) for estimating a Gaussian location mixture density in
multiple dimensions. We also study the performance of the empirical Bayes estimator based
on the NPMLE for estimating the oracle Bayes estimator in the problem of Gaussian denois-
ing.

By a Gaussian location mixture density in R
d, d ≥ 1, we refer to a density of the form

(1.1) fG(x) :=
∫

φd(x − θ) dG(θ)

for some probability G on R
d where φd(z) := (2π)−d/2 exp(−‖z‖2/2) is the standard d-

dimensional normal density (‖z‖ is the usual Euclidean norm of z). Note that fG is the density
of the random vector X = θ + Z where θ and Z are independent d-dimensional random
vectors with θ having distribution G (i.e., θ ∼ G) and Z having the Gaussian distribution
with zero mean and identity covariance matrix (i.e., Z ∼ N(0, Id)). We let M to be the class
of all Gaussian location mixture densities, that is, densities of the form fG as G varies over
all probability measures on R

d .
Given n independent d-dimensional data vectors X1, . . . ,Xn (throughout the paper, we

assume that n ≥ 2) generated from an unknown Gaussian location mixture density f ∗ ∈
M, we study the problem of estimating f ∗ from X1, . . . ,Xn. This problem is fundamental
to the area of estimation in mixture models to which a number of books (see, e.g., Everitt
and Hand [21], Titterington, Smith and Makov [55], Lindsay [34], Böhning [7], McLachlan
and Peel [41], Schlattmann [50]) and papers have been devoted. We focus on the situation
where d is small or moderate, n is large and where no specific prior information is available
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about the mixing measure corresponding to f ∗. Consistent estimation in the case where d

is comparable in size to n needs simplifying assumptions on f ∗ (such as that the mixing
measure is discrete with a small number of atoms and that it is concentrated on a set of sparse
vectors in R

d ) which we do not make in this paper. Let us also note here that we focus on the
problem of estimating f ∗ and not on estimating the mixing measure corresponding to f ∗.

There are two well-known likelihood-based approaches to estimating Gaussian location
mixtures: (a) the first approach involves fixing an integer k and performing maximum like-
lihood estimation over Mk which is the collection of all densities fG ∈ M where G is dis-
crete and has at most k atoms, and (b) the second approach involves performing maximum
likelihood estimation over the entire class M. This results in the nonparametric maximum
likelihood estimator (NPMLE) for f ∗ and is the focus of this paper.

The first approach (maximum likelihood estimation over Mk for a fixed k) is quite popu-
lar. However, it suffers from the two well-known issues: choosing k is nontrivial and, more-
over, maximizing likelihood over Mk results in a nonconvex optimization problem. This
nonconvex algorithm is usually approximately solved by the EM algorithm (see, e.g., Demp-
ster, Laird and Rubin [14], McLachlan and Krishnan [42], Watanabe and Yamaguchi [58]).
Recent progress on obtaining a theoretical understanding of the behaviour of the noncon-
vex EM algorithm has been made by Balakrishnan et al. [2]. Analyzing these estimators for
data-dependent choices of k is well known to be difficult. Maugis and Michel [39] (see also
Maugis-Rabusseau and Michel [40]) proposed a penalization likelihood criterion to choose k

by suitably employing the general theory of nonasymptotic model selection via penalization
due to Birgé and Massart [5], Barron, Birgé and Massart [3] and Massart [37] and, moreoever,
Maugis and Michel [39] established nonasymptotic risk properties of the resulting estimator.
The computational aspects of their estimator are quite involved however (see Maugis and
Michel [38]) as their estimators are based on solving multiple nonconvex optimization prob-
lems.

The present paper studies the second likelihood-based approach involving nonparametric
maximum likelihood estimation of f ∗. This method is unaffected by nonconvexity and the
need for choosing k. Formally, by an NPMLE, we mean any maximizer f̂n of

∑n
i=1 logf (Xi)

as f varies over M:

(1.2) f̂n ∈ argmax
f ∈M

1

n

n∑
i=1

logf (Xi).

Note that because the maximization is over the entire class M of all Gaussian location mix-
tures (and not on any nonconvex subset such as Mk), the optimization in (1.2) is a convex
problem. Indeed, the objective function in (1.2) is concave in f and the constraint set M is a
convex class of densities.

The idea of using NPMLEs for estimating mixture densities has a long history (see, e.g.,
the classical references Kiefer and Wolfowitz [27], Lindsay [32–34], Böhning [7]). The op-
timization problem (1.2) and its solutions have been studied by many authors. It is known
that maximizers of f �→ ∑n

i=1 logf (Xi) exist over M which implies that NPMLEs ex-
ist. Maximizers are nonunique, however, so there exist multiple NPMLEs. Nevertheless,
for every NPMLE f̂n, the values f̂ (Xi) for i = 1, . . . , n are unique (this is essentially be-
cause the objective function in the optimization (1.2) only depends on f through the values
f (X1), . . . , f (Xn)). Proofs of these basic facts can be found, for example, in Böhning [7],
Chapter 2.

There exist many algorithms in the literature for approximately solving the optimization
(1.2) (note that though (1.2) is a convex optimization problem, it is infinite-dimensional which
is probably why exact algorithms seem to be unavailable). These algorithms range from: (a)
vertex direction methods and vertex exchange methods (see the review papers Böhning [6],



740 S. SAHA AND A. GUNTUBOYINA

Lindsay and Lesperance [35] and the references therein), (b) EM algorithms (see Laird [29]
and Jiang and Zhang [25]) and (c) modern large-scale interior point methods (see Koenker
and Mizera [28] and Feng and Dicker [22]). Most of these methods focus on the case d = 1
and involve maximizing the likelihood over mixture densities where the mixing measure is
supported on a fixed fine grid in the range of the data. The algorithm of Koenker and Mizera
[28] is highly scalable (relying on the commercial convex optimization library Mosek [43])
and can obtain an approximate NPMLE efficiently even for large sample sizes (n of the order
100,000). See Section 5 for more algorithmic and implementation details as well as some
simulation results.

Let us now describe the main objectives and contributions of the current paper. Our first
goal is to investigate the theoretical properties of NPMLEs. In particular, we study the accu-
racy of f̂n as an estimator of the density f ∗ from which the data X1, . . . ,Xn are generated.
We shall use, as our loss function, the squared Hellinger distance

(1.3) H2(f, g) :=
∫ (√

f (x) −
√

g(x)
)2

dx,

which is one of the most commonly used loss functions for density estimation problems. We
present a detailed analysis of the risk, EH2(f̂n, f

∗), of every NPMLE (the expectation here
is taken with respect to X1, . . . ,Xn distributed independently according to f ∗). The other
common loss function used in density estimation is the total variation distance. The total
variation distance is bounded from above by a constant multiple of H so that upper bounds
for risk under the squared Hellinger distance automatically imply upper bounds for risk in
squared total variation distance.

Our results imply that, for a large class of true densities f ∗ ∈ M, the risk of every NPMLE
f̂n is parametric (i.e., n−1) up to multiplicative factors that are logarithmic in n. In particular,
our results imply that when f ∗ ∈ Mk for some 1 ≤ k ≤ n, then every NPMLE has risk k/n up
to a logarithmic multiplicative factor in n. It is not hard to see that the minimax risk over Mk

is bounded from below by k/n which implies therefore that every NPMLE is nearly minimax
over Mk (ignoring logarithmic factors in n) for every k ≥ 1. This is interesting because
NPMLEs do not use any a priori knowledge of k. The price in squared Hellinger risk that is
paid for not knowing k in advance is only logarithmic in n. Our results are nonasymptotic
and the bounds for risk over Mk hold even when k = k(n) grows with n. Our results also
imply that NPMLEs have parametric risk (again up to multiplicative logarithmic factors)
when the mixing measure of f ∗ is supported on a fixed compact subset of Rd . Note that we
have assumed that the covariance matrix of every Gaussian component of mixture densities
in the class M is the identity matrix. Our results can be extended to the case of arbitrary and
unknown covariance matrices provided a lower bound on the eigenvalues is available (see
Theorem 2.5) (on the other hand, when no a priori information on the covariance matrices is
available, it is well known that likelihood-based approaches are infeasible). These results are
described in Section 2.

Previous results on the Hellinger accuracy of NPMLEs were due to Zhang [63] (see also
Ghosal and van der Vaart [23] for related results) who dealt with the univariate (d = 1) case.
Here the Hellinger accuracy was analyzed under conditions on the moments of the mixing
measure corresponding to f ∗. The accuracy of NPMLEs in the interesting case when f ∗ ∈
Mk does not appear to have been studied previously even in d = 1. We study the Hellinger
risk of NPMLEs for all d ≥ 1 and also under a much broader set of assumptions on f ∗
compared to existing papers.

We would like to mention here that numerous papers have appeared in the theoretical com-
puter science community establishing rigorous theoretical results for estimating densities in
Mk . For example, the papers Daskalakis and Kamath [13], Suresh et al. [52], Bhaskara et al.
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[4], Chan et al. [10, 11], Acharya et al. [1], Li and Schmidt [31] have results on estimat-
ing densities in Mk with rigorous bounds on the error in estimation. The estimation error
is mostly measured in terms of the total variation distance which is smaller (up to constant
multiplicative factors) compared to the Hellinger distance used in the present paper. Their
sample complexity results imply rates of estimation of k/n up to logarithmic factors in n for
densities in Mk in terms of the squared total variation distance and hence these results are
comparable to our results for the NPMLE. The estimation procedures used in these papers
range from (a) hypothesis selection over a set of candidate estimators via an improved version
of the Scheffé estimate ([13, 52]; see Devroye and Lugosi [15], Chapter 6, for background
on the Scheffé estimate), (b) reduction to finding sparse solutions to a nonnegative linear
systems [4] and (c) fitting piecewise polynomial densities ([1, 10, 11, 31]; these papers have
the sharpest results). These methods are very interesting and, remarkably, come with precise
time complexity guarantees. They are not based on likelihood maximization, however, and
in our opinion, conceptually more involved compared to the NPMLE. An additional minor
difference between our work and this literature is that k is taken to be a constant (and some-
times even known) in these papers while we allow k = k(n) to grow with n and, moreover,
the NPMLE does not need any prior knowledge of k.

Let us now describe briefly the proof techniques underlying our risk results for the NPM-
LEs. Our technical arguments are based on standard ideas from the literature on empirical
processes for assessing the performance of maximum likelihood estimators (see van der Vaart
and Wellner [56], Wong and Shen [60], Zhang [63]). These techniques involve bounding the
covering numbers of the space of Gaussian location mixture densities. For each compact sub-
set S ⊆ R

d , we prove covering number bounds for M under the supremum distance (L∞)
on S. Our bounds can be seen as extensions of the one-dimensional covering number results
of Zhang [63] (which are themselves enhancements of corresponding results in Ghosal and
van der Vaart [23]). The covering number results of Zhang [63] can be viewed as special
instances of our bounds for the case when S = [−M,M]. The extension to arbitrary compact
sets S is crucial for dealing with rates for densities in Mk . For proving the final Hellinger
risk bounds of f̂n from these L∞ covering numbers, we use appropriate modifications of tail
arguments from Zhang [63]. A sketch of these ideas is given in Section 4.1.

The second goal of the present paper is to use NPMLEs to yield empirical Bayes estimates
in the Gaussian denoising problem. By Gaussian denoising, we refer to the problem of es-
timating vectors θ1, . . . , θn ∈ R

d from independent d-dimensional observations X1, . . . ,Xn

generated as

(1.4) Xi ∼ N(θi, Id) for i = 1, . . . , n.

The naive estimator in this denoising problem simply estimates each θi by Xi . It is well
known that, depending on the structure of the unknown θ1, . . . , θn, it is possible to achieve
significant improvement over the naive estimator by using information from Xj, j �= i in
addition to Xi for estimating θi . An ideal prototype for such information sharing across ob-
servations is given by the oracle Bayes estimator which will be denoted by θ̂∗

1 , . . . , θ̂∗
n and is

defined in the following way:

θ̂∗
i := E(θ |X = Xi) where θ ∼ Ḡn and X|θ ∼ N(θ, Id)

and Ḡn is the empirical measure corresponding to the true set of parameters θ1, . . . , θn. In
other words, θ̂∗

i is the posterior mean of θ given X = Xi under the model X|θ ∼ N(θ, Id)

and the prior θ ∼ Ḡn. This is an oracle estimator that is infeasible in practice as it uses
information on the unknown parameters θ1, . . . , θn via their empirical measure Ḡn. It has the
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important well-known property (see, e.g., Robbins [46]) that θ̂∗
i can be written as T ∗(Xi) for

each i = 1, . . . , n where T ∗ :Rd →R
d minimizes

(1.5) E

[
1

n

n∑
i=1

∥∥T (Xi) − θi

∥∥2

]

over all possible functions T : Rd → R
d . Estimators for θ1, . . . , θn which are of the form

T (X1), . . . , T (Xn) for a single nonrandom function T are known as separable estimators and
the best separable estimator is given by θ̂∗

1 , . . . , θ̂∗
n . We shall show that θ̂∗

1 , . . . , θ̂∗
n can be

estimated accurately by a natural estimator constructed using any NPMLE (1.2) based on
X1, . . . ,Xn.

To motivate the estimator, observe first that it is well known (see, e.g., Robbins [47], Brown
[8], Stein [51], Efron [18]) that θ̂∗

i has the following alternative expression as a consequence
of Tweedie’s formula:

(1.6) θ̂∗
i = Xi + ∇fḠn

(Xi)

fḠn
(Xi)

,

where fḠn
is the Gaussian location mixture density with mixing measure Ḡn (defined as in

(1.1)). From the above expression, it is clear that the oracle Bayes estimator can be estimated
from the data X1, . . . ,Xn provided one can estimate the Gaussian location mixture density,
fḠn

, from the data X1, . . . ,Xn. For this purpose, as insightfully observed in Jiang and Zhang

[25], any NPMLE, f̂n, as in (1.2) can be used. Indeed, if f̂n denotes any NPMLE based on
the data X1, . . . ,Xn, then Jiang and Zhang [25] argued that f̂n is a good estimator for fḠn

under (1.4) so that θ̂∗
i is estimable by

(1.7) θ̂i := Xi + ∇f̂n(Xi)

f̂n(Xi)
.

This yields a completely tuning-free solution to the Gaussian denoising problem (note, how-
ever, that the noise distribution is assumed to be completely known as N(0, Id)). This is the
general maximum likelihood empirical Bayes estimator of Jiang and Zhang [25] who pro-
posed it and studied its theoretical properties in detail for estimating sparse univariate normal
means. To the best of our knowledge, the properties of the estimator (1.7) for multidimen-
sional denoising problems have not been previously explored. More generally, the empirical
Bayes approach to the Gaussian denoising problem goes back to Robbins [45, 46, 48]. The ef-
fectiveness of nonparametric empirical Bayes estimators for estimating sparse normal means
has been explored by many authors including Johnstone and Silverman [26], Brown and
Greenshtein [9], Jiang and Zhang [25], Donoho and Reeves [17], Koenker and Mizera [28]
but most work seems restricted to the univariate setting. On the other hand, there exists prior
work on parametric empirical Bayes methods in the multivariate Gaussian denoising prob-
lem (see, e.g., [19, 20]) but the role of nonparametric empirical Bayes methods in multivariate
Gaussian denoising does not seem to have been explored previously.

We perform a detailed study of the accuracy of θ̂i in (1.7) as an estimator of the oracle
Bayes estimator θ̂∗

i for i = 1, . . . , n in terms of the following squared error risk measure:

(1.8) Rn

(
θ̂ , θ̂∗) := E

[
1

n

n∑
i=1

∥∥θ̂i − θ̂∗
i

∥∥2

]
,

where the expectation is taken with respect to X1, . . . ,Xn generated independently accord-
ing to (1.4). The risk Rn(θ̂ , θ̂∗) depends on the configuration of the unknown parameters
θ1, . . . , θn and we perform a detailed study of the risk for natural configurations of the points
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θ1, . . . , θn ∈ R
d . Our results imply that, under natural assumptions on θ1, . . . , θn, the risk

Rn(θ̂ , θ̂∗) is bounded by the parametric rate 1/n up to logarithmic multiplicative factors. For
example, when the number of distinct vectors among θ1, . . . , θn equals k = k(n) for some
k ≤ n (an assumption which makes sense in clustering situations), we prove that the risk
Rn(θ̂ , θ̂∗) is bounded from above by the parametric rate k/n up to logarithmic multiplicative
factors in n. This result is especially remarkable because the estimator (1.7) is tuning free and
does not have knowledge of k. We also prove that the analogous minimax risk over this class
is bounded from below by k/n implying that the empirical Bayes estimate is minimax up to
logarithmic multiplicative factors. Our result also implies that when θ1, . . . , θn take values in
a bounded region on R

d , then also the risk Rn(θ̂ , θ̂∗) is nearly parametric. Summarizing, our
results imply that, under a wide range of assumptions on θ1, . . . , θn, the empirical Bayes esti-
mator θ̂i performs comparably to the oracle Bayes estimator θ̂∗

i for denoising. We also prove
some results about denoising in the heteroscedastic setting where the data X1, . . . ,Xn are
independently generated according to Xi ∼ N(θi,�i) for more general unknown covariance
matrices �1, . . . ,�n. These results are in Section 3. The results and the proof techniques
are inspired by the arguments of Jiang and Zhang [25] who studied the univariate denoising
problem under sparsity assumptions. We generalize their arguments to multidimensions; a
sketch of our proof techniques is provided in Section 4.2.

In addition to theoretical results, we also present simulation evidence for the effectiveness
of θ̂i in the Gaussian denoising problem in Section 5 (where we also present some imple-
mentation and algorithmic details for computing approximate NPMLEs). Here, we illustrate
the performance of (1.7) for denoising when the true parameter vectors θ1, . . . , θn take values
in certain natural regions in R

2. We also numerically analyze the performance of (1.7) in
clustering situations when θ1, . . . , θn take k distinct values for some small k (these results are
given in Section G of the Supplementary Material [49]). Here we compare the performance
of (1.7) to other natural procedures such as k-means with k selected via the gap statistic (see
Tibshirani, Walther and Hastie [54]). We argue that (1.7) performs efficiently in terms of the
risk Rn(θ̂ , θ̂∗). In terms of a purely clustering based comparison index (such as the Adjusted
Rand Index), we argue that the performance of (1.7) is still reasonable.

The rest of the paper is organized in the following manner. In Section 2, we state our
results on the Hellinger accuracy of NPMLEs for estimating Gaussian location mixture den-
sities. Section 3 has statements of our results on the risk Rn(θ̂ , θ̂∗) in the denoising problem.
An overview of the key ideas in the proofs of the main results is given in Section 4. Section 5
has algorithmic details and simulation evidence for the effectiveness of (1.7) for denoising.
Due to space constraints, complete proofs of all the results in the paper are given in the
Supplementary Material [49]. Specifically, proofs for results in Section 2 are given in Sec-
tion A while proofs for Section 3 are in Section B of [49]. Some additional observations on
the heteroscedastic Gaussian denoising problem are also in the Supplementary Material (see
Section C of [49]). Metric entropy results for multivariate Gaussian location mixture densities
play a crucial rule in the proofs of the main results; these results are proved in [49], Section D.
[49], Section E, contains the statement and proof for a crucial ingredient for the proof of the
main denoising theorem. Finally, additional technical results needed in the proofs of the main
results are collected in [49], Section F, together with their proofs while additional simulation
results are in [49], Section G.

2. Hellinger accuracy of NPMLE. For data X1, . . . ,Xn, let f̂n be any NPMLE defined
as in (1.2). In this section, we study the accuracy of f̂n in terms of the squared Hellinger
distance (defined in (1.3)). All the results in this section are fully proved in the Supplementary
Material [49], Section A, while Section 4.1 contains a sketch of the key ideas in the proof of
Theorem 2.1 (which is the main result of this section).
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For investigations into the performance of f̂n, it is most natural to assume that the data
X1, . . . ,Xn are independent observations having common density f ∗ ∈M in which case we
seek bounds on H2(f̂n, f

∗). However, following Zhang [63], we work under the more general
assumption that X1, . . . ,Xn are independent but not identically distributed and that each Xi

has a density that belongs to the class M. This additional generality will be used in Section 3
for proving results on the empirical Bayes estimator (1.7) for the Gaussian denoising problem.

Specifically, we assume that X1, . . . ,Xn are independent and that each Xi has density
fGi

for some probability measures G1, . . . ,Gn on R
d . This distributional assumption on

the data X1, . . . ,Xn includes the following two important special cases: (a) G1, . . . ,Gn are
all identically equal to G (say): in this case, the observations X1, . . . ,Xn are identically
distributed with common density f ∗ = fG ∈ M, and (b) Each Gi is degenerate at some
θi ∈R

d : here each data point Xi is normal with Xi ∼ Nd(θi, Id) and this has been referred to
as the compound decision setting by Robbins.

We let Ḡn := (G1 +· · ·+Gn)/n to be the average of the probability measures G1, . . . ,Gn.
In the case when G1, . . . ,Gn are all identically equal to G, then clearly Ḡn = G. On the other
hand, when each Gi is degenerate at some θi ∈R

d (i.e., the compound decision setting), then
Ḡn equals the empirical measure corresponding to θ1, . . . , θn.

Under the above independent but not identically distributed assumption on X1, . . . ,Xn, it
has been insightfully pointed out by Zhang [63] that every NPMLE f̂n based on X1, . . . ,Xn

(defined as in (1.2)) is really estimating fḠn
. Note that fḠn

denotes the average of the densi-
ties of X1, . . . ,Xn.

In this section, we shall prove bounds for the accuracy of any NPMLE f̂n as an estimator
for fḠn

under the Hellinger distance that is, for H(f̂n, fḠn
). In order to state our main theo-

rem, we need to introduce the following notation. For nonempty sets S ⊆ R
d , we define the

function dS :Rd → [0,∞) by

(2.1) dS(x) := inf
u∈S

‖x − u‖ for x ∈ R
d ,

where ‖·‖ is the usual Euclidean norm on R
d . Also for S ⊆ R

d , we let

(2.2) S1 := {
x : dS(x) ≤ 1

}
.

Our bound on H(f̂n, fḠn
) will be controlled by the following quantity. For every probabil-

ity measure G on R
d , every nonempty compact set S ⊆ R

d and every M ≥ √
10 logn, let

εn(M,S,G) be defined via

ε2
n(M,S,G) := Vol

(
S1)Md

n
(
√

logn)d+2

+ (logn) inf
p≥ d+1

2 logn

(
2μp(dS,G)

M

)p

,

(2.3)

where S1 is defined in (2.2) and μp(dS,G) is defined as the moment

μp(dS,G) :=
(∫

Rd

(
dS(θ)

)p
dG(θ)

)1/p

for p > 0.

Note that the moments μp(dS,G) quantify how the probability (under G) decays as one
moves away from the set S.

The next theorem proves that H2(f̂n, fḠn
) is bounded (with high probability and in ex-

pectation) by a constant (depending on d) multiple of ε2
n(M,S, Ḡn) for every estimator f̂n

having the property that the likelihood of the data at f̂n is not too small compared to the likeli-
hood at fḠn

(made precise in inequality (2.4)). Every NPMLE trivially satisfies this condition
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(as it maximizes likelihood) but the theorem also applies to certain approximate likelihood
maximizers.

The bound given the following theorem holds for every compact set S ⊆ R
d and M ≥√

10 logn. As will be seen later in this section, under some simplifying assumptions on Ḡn,
our bound for H(f̂n, fḠn

) can be optimized over S and M to produce an explicit bound.

THEOREM 2.1. Let X1, . . . ,Xn be independent random vectors with Xi ∼ fGi
and let

Ḡn := (G1 + · · · + Gn)/n. Fix M ≥ √
10 logn and a nonempty compact set S ⊆ R

d and let
εn(M,S, Ḡn) be defined via (2.3). Then there exists a positive constant Cd (depending only
on d) such that for every estimator f̂n based on the data X1, . . . ,Xn satisfying

(2.4)
n∏

i=1

f̂n(Xi)

fḠn
(Xi)

≥ exp
[

Cd(β − α)

min(1 − α,β)
nε2

n(M,S, Ḡn)

]

for some 0 < β ≤ α < 1, we have

(2.5) P

{
H(f̂n, fḠn

) ≥ tεn(M,S, Ḡn)
√

Cd√
min(1 − α,β)

}
≤ 2n−t2

for every t ≥ 1 and, moreover,

(2.6) EH2(f̂n, fḠn
) ≤ 4Cd

min(1 − α,β)
ε2
n(M,S, Ḡn).

Theorem 2.1 asserts that the risk EH2(f̂n, f̄Ḡn
) is bounded from above by a constant (de-

pending on d , α and β) multiple of ε2
n(M,S, Ḡn) for every M ≥ √

10 logn and compact
subset S ⊆ R

d . This is true for every estimator f̂n satisfying (2.4). Every NPMLE satisfies
(2.4) with α = β = 0.5 (note that the right-hand side of (2.4) is always less than or equal to
one because β ≤ α).

Theorem 2.1 is novel to the best of our knowledge. When d = 1 and S is taken to be
[−R,R] for some R ≥ 0, then the conclusion given by Theorem 2.1 appears implicitly in
Zhang [63], proof of Theorem 1. The presence of an arbitrary compact set S allows the
derivation of interesting adaptation results for discrete mixing distributions (as will be clear
from the special cases of Theorem 2.1 that are given below). Such results cannot be derived if
the arbitrary S is replaced by only a box or a ball such as [−R,R] as in the univariate result of
Zhang [63]. Indeed, suppose that Ḡn is a discrete measure gives equal probability to the two
points R and −R for a large value of R. Then the bound of Zhang [63] gives a multiplicative
factor involving R in the risk bounds which make them quite suboptimal when R is large. On
the other hand, Theorem 2.1 applied with S = {−R,R} gives a near-parametric risk bound
(see Theorem 2.3 below). One can further think of the support of Ḡn being a collection of
discrete points, curves and regions (all the while being bounded) for general d ≥ 2, where a
direct extension of Zhang’s result would produce an upper bound directly proportional to the
volume of the bounding box of the shapes mentioned above; while our result will depend on
the total volume of the fattenings of each of the shapes described above. In cases where the
total fattened volume is a constant while the separation between the different shapes increases
as a function n, our result will yield a tighter upper bound (as a negative power of n) than
Zhang’s result and its naive multidimensional extension.

Our proof of Theorem 2.1 (given in Section A of the Supplementary Material [49]) is
greatly inspired by Zhang [63], proof of Theorem 1. An overview of this proof is provided in
Section 4.1 where we explain the main ideas as well as points of departure between our proof
and the arguments in Zhang [63], proof of Theorem 1.
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To get the best rate for H(f̂n, fḠn
) from Theorem 2.1, we need to choose M and S so

that εn(M,S, Ḡn) is small. These choices obviously depend on Ḡn and in the next result,
we describe how to choose M and S based on reasonable assumptions on Ḡn. This leads
to explicit rates for H(f̂n, fḠn

). Note that, more generally, Theorem 2.1 implies that f̂n is
consistent (in the Hellinger distance) for fḠn

provided Ḡn is such that

inf
S compact,M≥√

10 logn
εn(M,S, Ḡn) → 0 as n → ∞.

For simplicity, we shall assume, for the next result, that f̂n is an NPMLE so that (2.4) is
satisfied with α = β = 0.5. We shall also only state the results on the risk EH2(f̂n, fḠn

).

COROLLARY 2.2. Let X1, . . . ,Xn be independent random vectors with Xi ∼ fGi
and

let Ḡn := (G1 + · · · + Gn)/n. Let f̂n be an NPMLE based on X1, . . . ,Xn defined as in (1.2).
Below Cd denotes a positive constant depending on d alone.

1. Suppose that Ḡn is supported on a compact subset S of Rd . Then

(2.7) EH2(f̂n, fḠn
) ≤ Cd

Vol(S1)

n
(logn)d+1.

2. Suppose there exists a compact subset S ⊆ R
d and real numbers 0 < α ≤ 2 and K ≥ 1

such that

(2.8) μp(dS, Ḡn) ≤ Kp1/α for all p ≥ 1.

Then

(2.9) EH2(f̂n, fḠn
) ≤ Cd

Vol(S1)(Ke1/α)d

n
(
√

logn)(2d/α)+d+2.

3. Suppose there exists a compact set S ⊆ R
d and real numbers μ > 0 and p > 0 such

that μp(dS, Ḡn) ≤ μ. Then there exists a positive constant Cd,μ,p (depending only on d,μ

and p) such that

(2.10) EH2(f̂n, fḠn
) ≤ Cd,μ,p

(
Vol(S1)

n

) p
p+d

(
√

logn)
2d+2p+dp

p+d .

Corollary 2.2 is a generalization of Zhang ([63], Theorem 1), as the latter result can be seen
as a special case of Corollary 2.2 for d = 1 and S = [−R,R] for some R ≥ 0. The fact that
S can be arbitrary in Corollary 2.2 allows us to deduce the following important adaptation
results of NPMLEs for estimating Gaussian mixtures whose mixing measures are discrete.
These results are, to the best of our knowledge, novel.

THEOREM 2.3 (Near parametric risk for discrete Gaussian mixtures). Let X1, . . . ,Xn

be independent random vectors with Xi ∼ fGi
and let Ḡn := (G1 + · · · + Gn)/n. Let f̂n be

an NPMLE based on X1, . . . ,Xn defined as in (1.2). Then there exists a positive constant
Cd depending only on d such that whenever Ḡn is a discrete probability measure that is
supported on a set of cardinality k, we have

(2.11) EH2(f̂n, fḠn
) ≤ Cd

(
k

n

)
(logn)d+1.
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Note that (2.11) directly follows from (2.7). Indeed, when Ḡn is supported on a finite
set S of cardinality k, we can apply inequality (2.7) to this S. It is easy to see then that
Vol(S1) ≤ Cdk which proves (2.11).

The significance of Theorem 2.3 is the following. The right-hand side of (2.11) is the para-
metric risk k/n up to an additional multiplicative factor that is logarithmic in n. This inequal-
ity shows important adaptation properties of NPMLEs. When the true unknown Gaussian
mixture fḠn

is a discrete mixture having k Gaussian components, then every NPMLE nearly
(up to logarithmic factors) achieves the parametric squared Hellinger risk k/n. For a fixed k,
it is well known that fitting a k-component Gaussian mixture via maximum likelihood is a
nonconvex problem that is usually solved by the EM algorithm. On the other hand, NPMLE
is given by a convex optimization algorithm, does not require any prior specification of k

and still achieves the k/n rate (up to logarithmic factors) when the truth is a k-component
Gaussian mixture. We would also like to stress here that in Theorem 2.3 (and all other results
in the paper), k is allowed to grow with n (we can write k(n) instead of k but we are sticking
to k for simplicity of notation).

Note that Theorem 2.3 applies to the case of independent but not identically distributed
X1, . . . ,Xn which is more general compared to the i.i.d. assumption. This implies, in partic-
ular, that (2.11) also applies to the case when X1, . . . ,Xn are i.i.d. having density f ∗ ∈ M.
In this case, we have

(2.12) sup
f ∗∈Mk

EH2(f̂n, f
∗)≤ Cd

(
k

n

)
(logn)d+1.

The interesting aspect of this inequality is that it holds for every k ≥ 1 and that the estimator
f̂n does not know or use any information about k.

It is straightforward to prove a minimax lower bound over Mk that complements Theo-
rem 2.3. The following result proves that the minimax risk over Mk is bounded from below
by a constant multiple of k/n. This implies that the NPMLE is minimax optimal over Mk

ignoring logarithmic factors of n. Moreover, this optimality is adaptive since MLE does not
require knowledge of k. This minimax lower bound is stated for the i.i.d. case which implies
that it holds for the more general independent but not identically distributed case as well.

LEMMA 2.4. For k ≥ 1, let

R(Mk) := inf
f̃

sup
f ∈Mk

EfH
2(f̃ , f ),

where Ef denotes expectation when the data X1, . . . ,Xn are independent observations drawn
from the density f . Then there exists a universal positive constant C such that

(2.13) R(Mk) ≥ C
k

n
for every 1 ≤ k ≤ n.

Inequality (2.12) and Lemma 2.4 together imply that every NPMLE f̂n is minimax optimal
up to logarithmic factors in n over the class Mk for every k ≥ 1. This optimality is adaptive
since the NPMLE requires no information on k. The logarithmic term in (2.12) are likely
suboptimal but we are unable to determine the exact power of logn in (2.12).

So far we have studied estimation of Gaussian location mixture densities where the co-
variance matrix of each Gaussian component is fixed to be the identity matrix. We next show
that the same estimator (NPMLE defined as in (1.2)) can be modified to estimate arbitrary
Gaussian mixtures (where the covariance matrices can be different from identity) provided
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a lower bound on the eigenvalues of the covariance matrices is available. Suppose that h∗ is
the Gaussian mixture density

(2.14) h∗(x) :=
k∑

j=1

wjφd(x;μj ,�j ) for x ∈R
d ,

where k ≥ 1, μ1, . . . ,μk ∈ R
d and �1, . . . ,�k are d × d positive definite matrices. Here

φd(·;μ,�) denotes the d-variate normal density with mean μ and covariance matrix �.
Suppose σ 2

min and σ 2
max are two positive numbers that are, respectively, smaller and larger

than all the eigenvalues of �1, . . . ,�k , that is,

(2.15) σ 2
min ≤ min

1≤j≤k
λmin(�j ) ≤ max

1≤j≤k
λmax(�j ) ≤ σ 2

max.

Consider the problem estimating h∗ from i.i.d. observations Y1, . . . , Yn. It turns out that for
every NPMLE f̂n computed as in (1.2) based on the data X1 := Y1/σmin, . . . ,Xn := Yn/σmin
can be converted to a very good estimator for h∗ via

(2.16) ĥn(x) := σ−d
minf̂n

(
σ−1

minx
)

for x ∈ R
d .

Our next result shows that the squared Hellinger risk of ĥn is bounded from above by (k/n)

up to a logarithmic factor in n provided that σmax/σmin is bounded by a constant. This result
implies that applying the NPMLE to Yi/σmin leads to a very accurate estimator even for
heteroscedastic normal observations.

THEOREM 2.5. Let Y1, . . . , Yn be independent and identically distributed observations
having density h∗ defined in (2.14). Consider the estimator ĥn for h∗ defined in (2.16). Then

(2.17) EH2(ĥn, h
∗)≤ Cd

(
k

n

)(
max(1, τ )

)d
(logn)d+1,

where τ :=
√

σ 2
max

σ 2
min

− 1.

Theorem 2.5 shows that ĥn achieves near parametric risk k/n (up to logarithmic factors in
n) provided τ is bounded from above by a constant. Note that this estimator ĥn uses knowl-
edge of σ 2

min but does not use knowledge of any other feature of h∗ including the number
of components k. In particular, this is an estimation procedure which (without knowing the
value of k) achieves nearly the k/n rate for k-component well-conditioned Gaussian mixtures
provided a lower bound σ 2

min on eigenvalues is known a priori.
It is natural to compare Theorem 2.5 to the main results in Maugis and Michel [39] where

an adaptive procedure is developed for estimating k-component Gaussian mixtures at the
rate k/n (up to a logarithmic factor) without prior knowledge of k. The estimator of Maugis
and Michel [39] is very different from ours. They first fit m-component Gaussian mixtures
for different values of m and then select one of these estimators by optimizing a penalized
model-selection criterion. Thus, their procedure is based on solving multiple nonconvex op-
timization problems. Also, Maugis and Michel [39] impose upper and lower bounds on the
means and the eigenvalues of the covariance matrices of the components of the mixture den-
sities. On the contrary, our method is based on convex optimization and we only need a lower
bound on the eigenvalues of the covariance matrices (no bounds on the means are necessary).
On the flip side, the result of Maugis and Michel [39] has much better logarithmic factors
compared to Theorem 2.5 and it is also stated in the form of an oracle inequality.
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3. Application to Gaussian denoising. In this section, we explore the role of the
NPMLE for estimating the oracle Bayes estimator in the Gaussian denoising problem. All
the results in this section are proved in the Supplementary Material [49], Section B.

The goal is to estimate unknown vectors θ1, . . . , θn ∈ R
d in the compound decision setting

where we observe independent random vectors X1, . . . ,Xn such that Xi ∼ N(θi, Id) for i =
1, . . . , n. The Oracle estimator is θ̂∗

i , i = 1, . . . , n which is given by (1.6) where Ḡn is the
empirical measure corresponding to θ1, . . . , θn.

It is natural to estimate the oracle Bayes estimator by the Empirical Bayes estimator θ̂i

which is defined as in (1.7) for i = 1, . . . , n. Here f̂n is any NPMLE based on X1, . . . ,Xn

(defined as in (1.2)). We will gauge the performance of θ̂i , i = 1, . . . , n as an estimator for
θ̂∗
i , i = 1, . . . , n in terms of the squared error risk measure Rn(θ̂ , θ̂∗) defined in (1.8).

The main theorem of this section is given below. This is stated in a form that is similar
to the statement of Theorem 2.1. It proves that, for every compact set S ⊆ R

d and M ≥√
10 logn, the risk Rn(θ̂ , θ̂∗) is bounded from above by ε2

n(M,S, Ḡn) (defined via (2.3)) up
to the additional logarithmic multiplicative factor (logn)max(d,3). This additional logarithmic
factor is a consequence of our proof technique.

THEOREM 3.1. Let X1, . . . ,Xn with independent random vectors with Xi ∼ N(θi, Id)

for i = 1, . . . , n. Let Ḡn denote the empirical measure corresponding to θ1, . . . , θn. Let f̂n

denote an NPMLE based on X1, . . . ,Xn defined as in (1.2). Let θ̂1, . . . , θ̂n be as defined
in (1.7) and let θ̂∗

1 , . . . , θ̂∗
n be as in (1.6). Also, let Rn(θ̂ , θ̂∗) be as in (1.8). There exists a

positive constant Cd (depending only on d) such that for every nonempty compact set S ⊆ R
d

and M ≥ √
10 logn, we have

Rn

(
θ̂ , θ̂∗)≤ Cdε2

n(M,S, Ḡn)(
√

logn)max(d−2,6).

REMARK 3.1. For the case of d = 1, Jiang and Zhang ([25], Theorem 5), established a
related result on the risk of θ̂i in comparison to θ̂∗

i . The risk used therein is

(3.1)

[
E

(
1

n

n∑
i=1

|θ̂i − θi |2
)]1/2

−
[
E

(
1

n

n∑
i=1

∣∣θ̂∗
i − θi

∣∣2)]1/2

.

Jiang and Zhang [25] investigated the above risk in the case where d = 1 and S = [−R,R] for
some R ≥ 0. The statement of Theorem 3.1 and its proof, as well as the following corollary,
are inspired by Jiang and Zhang [25], proof of Theorem 5.

Under specific reasonable assumptions on Ḡn, it is possible to choose M and S explicitly
which leads to the following result that is analogous to Corollary 2.2.

COROLLARY 3.2. Consider the same setting and notation as in Theorem 3.1. Below Cd

denotes a positive constant depending on d alone.

1. For every compact set S ⊆R
d containing all the points θ1, . . . , θn, we have

(3.2) Rn

(
θ̂ , θ̂∗)≤ Cd

Vol(S1)

n
(
√

logn)max(3d,2d+8).

2. For every compact subset S ⊆ R
d and real numbers 0 < α ≤ 2 and K ≥ 1 satisfying

(2.8), we have

(3.3) Rn

(
θ̂ , θ̂∗)≤ Cd

Vol(S1)(Ke1/α)d

n
(
√

logn)max( 2d
α

+2d, 2d
α

+d+8).
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3. Suppose S ⊆ R
d is compact and real numbers μ > 0 and p > 0 are such that

μp(dS, Ḡn) ≤ μ. Then there exists a positive constant Cd,μ,p (depending only on d,μ and
p) such that

(3.4) Rn

(
θ̂ , θ̂∗)≤ Cd,μ,p

(
Vol(S1)

n

) p
p+d

(
√

logn)
2d+2p+dp

p+d
+max(d−2,6)

.

Corollary 3.2 has interesting consequences. Inequality (3.2) states that when Ḡn is sup-
ported on a fixed compact set S, then the risk Rn(θ̂ , θ̂∗) is parametric up to logarithmic
multiplicative factors in n. This is especially interesting because θ̂1, . . . , θ̂n do not use any
knowledge of S.

Corollary 3.2 also leads to the following result which gives an upper bound for Rn(θ̂ , θ̂∗)
when θ1, . . . , θn are clustered into k groups.

PROPOSITION 3.3. Consider the same setting and notation as in Theorem 3.1. Suppose
that θ1, . . . , θn satisfy

(3.5) max
1≤i≤n

min
1≤j≤k

‖θi − aj‖ ≤ R

for some a1, . . . , ak ∈ R
d and R ≥ 0. Then

(3.6) Rn

(
θ̂ , θ̂∗)≤ Cd(1 + R)d

(
k

n

)
(
√

logn)max(3d,2d+8).

The assumption (3.5) means that θ1, . . . , θn can be grouped into k balls each of radius R

centered at the points a1, . . . , ak . When R is not large, this implies θ1, . . . , θn can be clus-
tered into k groups. In particular, when R = 0, the assumption (3.5) implies that θ1, . . . , θn

take only k distinct values. In words, Proposition 3.3 states that when θ1, . . . , θn are clustered
into k groups, then θ̂1, . . . , θ̂n estimate θ̂∗

1 , . . . , θ̂∗
n in squared error loss with accuracy k/n up

to logarithmic multiplicative factors in n. The notable aspect about this result is that the esti-
mator does not use any knowledge of k and is tuning-free. It is well known in the clustering
literature that choosing the optimal number of clusters is challenging (see, e.g., Tibshirani,
Walther and Hastie [54]). It is therefore helpful that θ̂1, . . . , θ̂n achieves nearly the k/n rate in
(3.5) without explicitly getting into the pesky problem of estimating k. Moreover, θ̂1, . . . , θ̂n

is given by convex optimization (on the other hand, one usually needs to deal with nonconvex
optimization problems for solving clustering-type problems even if the number of clusters k

is known).
There exist techniques for estimating the number of clusters and subsequently employing

algorithms for minimizing the k-means objective (notably, the “gap statistic” of Tibshirani,
Walther and Hastie [54]). However, we are not aware of any result analogous to Proposi-
tion 3.3 for such techniques. There also exist other techniques for clustering based on convex
optimization such as the method of convex clustering (see, e.g., Lindsten, Ohlsson and Ljung
[36], Hocking et al. [24], Chen et al. [12]) which is based on a fused lasso-type penalized
optimization. This method requires specification of tuning parameters. While interesting the-
oretical development exists for convex clustering (see, e.g., Radchenko and Mukherjee [44],
Zhu et al. [64], Tan and Witten [53], Wu et al. [61], Wang et al. [57]), to the best of our
knowledge, a result similar to Proposition 3.3 is unavailable.

It is straightforward to see that it is impossible to devise estimators that achieve a rate
that is faster than k/n for the risk measure Rn. We provide a proof of this via a minimax
lower bound in the following lemma. The logarithmic factors can probably be improved in
Proposition 3.3 but we are unable to do so at the present moment. For the lower bound,



NPMLE FOR GAUSSIAN LOCATION MIXTURES 751

let �n,d,k denote the class of all n-tuples (θ1, . . . , θn) with each θi ∈ R
d and such that the

number of distinct vectors among θ1, . . . , θn is equal to k. Equivalently, �n,d,k consists of
all n-tuples (θ1, . . . , θn) whose empirical measure is supported on a set of cardinality k. The
minimax risk for estimating θ̂∗

1 , . . . , θ̂∗
n with (θ1, . . . , θn) ∈ �n,d,k in squared error loss from

the observations X1, . . . ,Xn can be defined as

R∗(�n,d,k) := inf
θ̃1,...,θ̃n

sup
(θ1,...,θn)∈�n,d,k

E

[
1

n

n∑
i=1

∥∥θ̃i − θ̂∗
i

∥∥2

]
.

The following result proves that R∗(�n,d,k) is at least Ck/n for a universal positive con-
stant C.

LEMMA 3.4. Let �n,d,k and R∗(�n,d,k) be defined as above. There exists a universal
positive constant C such that

(3.7) R∗(�n,d,k) ≥ C
k

n
for every 1 ≤ k ≤ n.

Lemma 3.4, together with Proposition 3.3, implies that θ̂1, . . . , θ̂n is nearly minimax opti-
mal (up to logarithmic multiplicative factors) for estimating θ̂∗

1 , . . . , θ̂∗
n over the class �n,d,k .

Moreover, this optimality is adaptive over k because the estimator does not use any knowl-
edge of k.

Before closing this section, let us remark that Theorem 3.1 can be generalized to work
with certain kinds of heteroscedasticity in the Gaussian observations. Concretely, consider
the problem of heteroscedastic Gaussian denoising where the goal is to estimate θ1, . . . , θn

from independent observations X1, . . . ,Xn generated according to

(3.8) Xi ∼ N(θi,�i)

for some unknown covariance matrices �1, . . . ,�n. We work with the assumption that �i −
Id is positive semidefinite (or equivalently, λmin(�i) ≥ 1) for each i = 1, . . . , n. If �i −
σ 2

minId is positive semidefinite for some other known positive constant σ 2
min, then one can

reduce this to the previous case by simply scaling the observations X1, . . . ,Xn by σ 2
min.

Note that we are considering the setting where �1, . . . ,�n are unknown (satisfying �i −
Id is positive semidefinite). This is different from the setting where �1, . . . ,�n are exactly
known and there has been previous work in empirical Bayes estimation under this latter
assumption (see, e.g., Xie, Kou and Brown [62] and Weinstein et al. [59]).

Under the assumption that �i −Id is positive semidefinite, it is clear that (3.8) is equivalent
to the statement that Xi ∼ fG0

i
where G0

i is the N(θi,�i − Id) distribution (here we take
N(θi,�i − Id) to be the Dirac probability measure centered at θi if �i = Id ). Therefore, as
we have seen in Section 2, the estimator f̂n based on X1, . . . ,Xn (defined as in (1.2)) will be
an accurate estimator of fḠ0

n
where

(3.9) Ḡ0
n := 1

n

n∑
i=1

N(θi,�i − Id)

under reasonable assumptions on θ1, . . . , θn provided σmax is not too large (here σ 2
max is any

upper bound on max1≤i≤n λmax(�i)). As a result, it is reasonable to believe that θ̂1, . . . , θ̂n

(defined in (1.7)) will be close to θ̆∗
1 , . . . , θ̆∗

n where

(3.10) θ̆∗
i := Xi + ∇fḠ0

n
(Xi)

fḠ0
n
(Xi)

for i = 1, . . . , n.



752 S. SAHA AND A. GUNTUBOYINA

The next result rigorizes this intuition. Note that θ̆∗
i is also given by

(3.11) θ̆∗
i = E(θ |X = Xi) where θ ∼ Ḡ0

n and X|θ ∼ N(θ, Id).

Intuitively, it makes sense that θ̂i estimates θ̆∗
i because an observation X ∼ N(θ0,�) (with

� − Id being positive semidefinite) can also be thought of as being generated from X|θ ∼
N(θ, Id) with θ ∼ N(θ0,� − Id). However, it should be noted that θ̆∗

1 , . . . , θ̆∗
n is not the best

separable estimator for θ1, . . . , θn in the heteroscedastic setting and this is explained later in
this section (after Proposition C.1).

THEOREM 3.5. Let X1, . . . ,Xn be independent random vectors with Xi ∼ N(θi,�i) for
some covariance matrices �1, . . . ,�n with �i − Id being positive semidefinite for every i.
Suppose σ 2

max is such that max1≤j≤k λmax(�j ) ≤ σ 2
max where λmax(�j ) denotes the largest

eigenvalue of �j . Let θ̂1, . . . , θ̂n be as defined in (1.7) and θ̆∗
1 , . . . , θ̆∗

n be as defined in (3.10).
Then there exists a positive constant Cd (depending only on d) such that for every nonempty
compact set S ⊆R

d and M ≥ √
10 logn, we have

Rn

(
θ̂ , θ̆∗) := E

[
1

n

n∑
i=1

∥∥θ̂i − θ̆∗
i

∥∥2

]
≤ Cdσ 2

maxε
2
n

(
M,S, Ḡ0

n

)
(
√

logn)max(d−2,6),

where εn(M,S, Ḡ0
n) is as defined in (2.3).

Note that Theorem 3.5 generalizes Theorem 3.1. Indeed, Theorem 3.1 is the special case
of Theorem 3.5 when �i = Id for each i because, in this special case, σ 2

max = 1 and Ḡ0
n,

as defined in (3.9), precisely equals the empirical measure corresponding to θ1, . . . , θn. The-
orem 3.5 leads to corollaries that are similar to those derived from Theorem 3.1 (see, e.g.,
Proposition C.1 in the Supplementary Material [49] which is the analogue of Proposition 3.3
for the heteroscedastic setting.

We would like to remark here that Theorem 3.5 is of limited interest unless the het-
eroscedasticity is mild (by mild, we mean that σ 2

max can be chosen to be close to 1). This
is because the oracle estimator θ̆∗

i (defined in (3.10)) is different from the best separable
estimator (recall the best separable estimator is given by T ∗(Xi), i = 1, . . . , n where T ∗ min-
imizes (1.5) over all functions T : Rd → R

d ). A description of the best separable estimator
along with some results on the discrepancy between the best separable estimator and (3.10)
is given in the Supplementary Material [49], Section C.

4. Proof ideas. In this section, we provide a broad overview of the proofs of our main
results, Theorem 2.1 and Theorem 3.5. Full proofs of these theorems, of the remaining results
in the paper as well as statements and proofs of the supporting results that are used in the
proofs are given in the Supplementary Material [49].

4.1. Proof overview of Theorem 2.1. Every estimator satisfying (2.4) is an approximate
MLE. Therefore the general theory of the rates of convergence of maximum likelihood esti-
mators from, say, van der Vaart and Wellner [56], Wong and Shen [60] can be used to bound
H(f̂n, fḠn

). This general theory requires bounds on the covering numbers of the underlying
class of densities (covering numbers are formally defined at the beginning of Section A in the
Supplementary Material [49]). In our particular context, we need to bound covering numbers
of the class M (which consists of all densities of the form fG as G varies over all probability
measures on R

d ). Our main covering number result for M is stated next.
For compact S ⊆ R

d , let ‖·‖S and ‖·‖S,∇ denote pseudonorms given by

‖f ‖S := sup
x∈S

∣∣f (x)
∣∣ and ‖f ‖S,∇ := sup

x∈S

∥∥∇f (x)
∥∥
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for densities f ∈ M. These naturally lead to two pseudometrics on M and we shall
denote the η-covering numbers of M under these pseudometrics by N(η,M,‖·‖S) and
N(η,M,‖·‖S,∇), respectively. The following theorem, which could be of independent inter-
est, gives upper bounds for N(η,M,‖·‖S) and N(η,M,‖·‖S,∇). We let Sa := {x : dS(x) ≤
a} for S ⊆ R

d and a > 0 and use N(a,Sa) to denote the a-covering number (in the usual
Euclidean distance) of the set Sa .

THEOREM 4.1. There exists a positive constant Cd depending on d alone such that for

every compact set S ⊆ R
d and 0 < η ≤ 2

√
2π

(2π)d/2√e
, we have

(4.1) logN
(
η,M,‖·‖S

)≤ CdN
(
a,Sa)| logη|d+1

and

(4.2) logN
(
η,M,‖·‖S,∇

)≤ CdN
(
a,Sa)| logη|d+1,

where a is defined as

(4.3) a :=
√√√√2 log

2
√

2π

(2π)d/2η
.

To the best of our knowledge, Theorem 4.1 (proved in the Supplementary Material [49],
Section D) is novel, although certain special cases (such as when d = 1 and S is a closed
interval) are known previously (see the Supplementary Material [49], Remark D.1). The gen-
eralization for arbitrary compact sets S is crucial for our results. Only the first assertion
(inequality (4.1)) is required for the proof of Theorem 2.1; the second assertion involving
gradients is needed for the proof of Theorem 3.5.

Let us now sketch the proof of Theorem 2.1 assuming Theorem 4.1. The reader is welcome
to read the full proof in the Supplementary Material. As mentioned previously, our proof is
inspired from Zhang ([63], proof of Theorem 1) and differences between our proof and the
arguments of [63] are pointed out at the end of this subsection.

For simplicity, in this section, let us assume that f̂n is an NPMLE so that (2.4) holds
for α = β = 0.5. The full proof (in the Supplementary Material [49]) applies to estimators
satisfying (2.4) for arbitrary 0 < β ≤ α < 1. Note first that trivially (for every t ≥ 1 and
γn > 0)

P
{
H(f̂n, fḠn

) ≥ tγn

}= P

{
H(f̂n, fḠn

) ≥ tγn,

n∏
i=1

f̂n(Xi)

fḠn
(Xi)

≥ 1

}
.

The right-hand side above can be easily controlled if f̂n were nonrandom. To deal with ran-
domness, we cover M to within some η > 0 in L∞(SM) (where SM := {x : dS(x) ≤ M}).
From this cover, it is possible to deduce the existence of a collection of nonrandom densities
h0j , j ∈ J in M for some finite set J with cardinality at most the right-hand side of (4.1)
such that H(h0j , fḠn

) ≥ tγn and such that the inequality

n∏
i=1

f̂n(Xi) ≤ max
j∈J

∏
i:Xi∈SM

{
h0j (Xi) + 2η

} ∏
i:Xi /∈SM

(2π)−d/2

holds whenever H(f̂n, fḠn
) ≥ tγn. From here, it can be shown that for every function v :

R
d → (0,∞) with v(x) = η for x ∈ SM , we have

n∏
i=1

f̂n(Xi)

fḠn
(Xi)

≤ max
j∈J

n∏
i=1

h0j (Xi) + 2v(Xi)

fḠn
(Xi)

∏
i:Xi /∈SM

(2π)−d/2

2v(Xi)
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on the event H(f̂n, fḠn
) ≥ tγn. We take

(4.4) v(x) :=
⎧⎪⎨
⎪⎩

η if x ∈ SM,

η

(
M

dS(x)

)d+1
otherwise.

The inequality above implies that

P
{
H(f̂n, fḠn

) ≥ tγn

}≤ ∑
j∈J

P

{
n∏

i=1

h0j (Xi) + 2v(Xi)

fḠn
(Xi)

≥ e−nt2γ 2
n /2

}

+ P

{ ∏
i:Xi /∈SM

(2π)−d/2

2v(Xi)
≥ ent2γ 2

n /2
}
.

The first term on the right-hand side above is now controlled by standard arguments for
bounding likelihood ratio deviations in terms of Hellinger distances (note that H(h0j , fḠn

) ≥
tγn). For the second term, we use Markov’s inequality and the following moment inequality
(proved in Section F of the Supplementary Material [49]) applied to the Lipschitz function
g(x) := dS(x).

LEMMA 4.2. Let X1, . . . ,Xn be independent random variables with Xi ∼ fGi
and

Ḡn := (G1 + · · · + Gn)/n. Let g : Rd → [0,∞) be a 1-Lipschitz function, that is, g(x) −
g(y) ≤ ‖x − y‖ for all x, y ∈ R

d . Also let μp(g) denote the pth moment of g under the
measure Ḡn, that is,

μp(g) :=
(∫

Rd
g(θ)p dḠn(θ)

)1/p

.

There then exists a positive constant Cd depending only on d such that

E

{
n∏

i=1

∣∣ag(Xi)
∣∣I {g(Xi)≥M}

}λ

≤ exp
{
CdaλMλ+d−2 + (aM)λn

(
2μp(g)

M

)p}(4.5)

for every a > 0,M ≥ √
8 logn and 0 < λ ≤ min(1,p).

Further, there exists a positive constant Cd depending only on d such that

(4.6)
1

n

n∑
i=1

P
[
g(Xi) ≥ M

]≤ Cd

Md−2

n
+ inf

p≥ d+1
2 logn

(
2μp(g)

M

)p

for any M ≥ √
8 logn.

The differences between our proof and that of Zhang ([63], proof of Theorem 1) are the
metric entropy result (Theorem 4.1), the breakup of the likelihood ratio into the sets SM and
(SM)c, the choice of v(·) function in (4.4) and the moment control in Lemma 4.2. Zhang [63]
proved special cases of these ingredients for d = 1 and S = [−R,R] for some R while our
argument applies to every S. As remarked previously, it is crucial to allow S to be arbitrary
for obtaining adaptation results to discrete mixtures.



NPMLE FOR GAUSSIAN LOCATION MIXTURES 755

4.2. Proof overview of Theorem 3.5. A complete proof of Theorem 3.5 is given in Sec-
tion B.5 of the Supplementary Material [49]. This subsection gives an overview of the main
ideas. Let us now introduce the following notation. Let X denote the d × n matrix whose
columns are the observed data vectors X1, . . . ,Xn. For a density f ∈ M, let Tf (X) denote
the d × n matrix whose ith column is given by the d × 1 vector:

Xi + ∇f (Xi)

f (Xi)
for i = 1, . . . , n.

With this notation, we can clearly rewrite Rn(θ̂ , θ̆∗) as

Rn

(
θ̂ , θ̆∗)= E

(
1

n

∥∥T
f̂n

(X) − Tf
Ḡ0

n
(X)

∥∥2
F

)
,

where ‖·‖F denotes the usual Frobenius norm for matrices.
Now for f ∈ M and ρ > 0, let Tf (X, ρ) be the d × n matrix whose ith column is given

by the d × 1 vector:

Xi + ∇f (Xi)

max(f (Xi), ρ)
for i = 1, . . . , n.

The first important observation is that for ρn := (2π)−d/2/n, we have T
f̂n

(X, ρn) = T
f̂n

(X)

and this follows from classical results about the NPMLE. This allows us to write

Rn

(
θ̂ , θ̆∗)= E

(
1

n

∥∥T
f̂n

(X, ρn) − Tf
Ḡ0

n
(X)

∥∥2
F

)

≤ 2E
(

1

n

∥∥T
f̂n

(X, ρn) − Tf
Ḡ0

n
(X, ρ)

∥∥2
F

)

+ 2E
(

1

n

∥∥Tf
Ḡ0

n
(X, ρn) − Tf

Ḡ0
n
(X)

∥∥2
F

)
.

Using the following lemma (proved in Section F of the Supplementary Material [49]), the
second term above is bounded by (

√
logn)max(d−2,0)ε2

n(M,S, Ḡ0
n).

LEMMA 4.3. Fix a probability measure G on R
d and let 0 < ρ ≤ (2π)−d/2/

√
e. Let

L(ρ) :=
√

− log((2π)dρ2). Then there exists a positive constant Cd such that for every com-

pact set S ⊆ R
d , we have

�(G,ρ) :=
∫ (

1 − fG

max(fG,ρ)

)2 ‖∇fG‖2

fG

≤ CdN

(
4

L(ρ)
, S

)
Ld(ρ)ρ + dG

(
Sc).

(4.7)

We thus focus attention on the first term in the above bound for Rn(θ̂ , θ̆∗):

A(f̂n) := E

(
1

n

∥∥T
f̂n

(X, ρn) − Tf
Ḡ0

n
(X, ρ)

∥∥2
F

)
.

Now if f̂n were nonrandom, the above term can be bounded from above by a generalization
(to d ≥ 1) of Jiang and Zhang ([25], Theorem )3, which bounds A(f ) in terms of H2(f, fḠ0

n
)

for nonrandom f ∈ M. We have stated this general result as Theorem E.1 and proved it
in Section E of the Supplementary Material [49]. Of course, this result cannot be directly
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used here because f̂n is random. However, Theorem 2.1 implies that f̂n belongs with high
probability (specifically with probability at least 1 − (2/n)) to the set

En := {
f ∈ M :H(f, fḠ0

n
) ≤ Cdεn

(
M,S, Ḡ0

n

)}
,

where Cd is the constant obtained from Theorem 2.1. The idea therefore is to cover the space
En to within η by deterministic densities fG1, . . . , fGN

. For this covering, we use the metric

sup
x:dS(x)≤M

∥∥∥∥ ∇f (x)

max(f (x), ρn)
− ∇g(x)

max(g(x), ρn)

∥∥∥∥.
Covering numbers in this metric are given in Corollary D.1 in the Supplementary Material
[49] and this result is derived as a corollary of our main covering number result in Theo-
rem 4.1. With these deterministic densities, we bound A(f̂n) via A(f̂n) ≤ 4

∑n
i=1(Eζ 2

in/n)

where

ζ1n := ∥∥T
f̂n

(X, ρn) − Tf
Ḡ0

n
(X, ρn)

∥∥
F I {f̂n /∈ En},

ζ2n :=
(∥∥T

f̂n
(X, ρn) − Tf

Ḡ0
n
(X, ρn)

∥∥
F

− max
1≤j≤N

∥∥TfGj
(X, ρn) − Tf

Ḡ0
n
(X, ρn)

∥∥
F

)
+I {f̂n ∈ En},

ζ3n := max
1≤j≤N

(∥∥TfGj
(X, ρn) − Tf

Ḡ0
n
(X, ρn)

∥∥
F

−E
∥∥TfGj

(X, ρn) − Tf
Ḡ0

n
(X, ρn)

∥∥
F

)
+,

ζ4n := max
1≤j≤N

E
∥∥TfGj

(X, ρn) − Tf
Ḡ0

n
(X, ρn)

∥∥
F .

Each of these terms is controlled to finish the proof of Theorem 3.5 in the following way:

1. Eζ 2
1n/n is bounded by Cdε2

n(M,S, Ḡ0
n) because P{f̂n /∈ En} ≤ (2/n) and the fact that

Tf (X, ρn) can be bounded by a term involving ρn alone (this result is stated (and proved) as
Lemma F.1 in [49]).

2. Eζ 2
2n/n is bounded by Cdε2

n(M,S, Ḡ0
n) using the fact that fG1, . . . , fGN

form a cover-
ing of En.

3. Eζ 2
3n/n is bounded by Cdσ 2

maxε
2
n(M,S, Ḡ0

n)(logn)2 using measure concentration prop-
erties of Gaussian random variables and an upper bound on N which is given by the covering
number result in Theorem D.1.

4. Eζ 2
4n/n is bounded by Cdε2

n(M,S, Ḡ0
n)(logn)3 by Theorem E.1 (in [49]) which bounds

A(f ) in terms of H(f, fḠ0
n
) for every nonrandom f .

The structure of the proof and the main ideas are very similar to that of Jiang and Zhang
[25], proof of Theorem 5. Other than the fact that our arguments hold for d ≥ 2 and arbitrary
compact sets S, additional differences between our proof and [25], proof of Theorem 5, are
as follows. The breakdown of the risk Rn(θ̂ , θ̆∗) into various terms is different as the authors
of [25] work with the discrepancy measure (3.1) while we work directly with the discrepancy
between θ̂ and θ̆∗. Our argument for T

f̂n
(X) = T

f̂n
(X, ρn) (given in inequality (B.9) near

the beginning of the proof of Theorem 3.5) is more direct compared to the corresponding
argument in [25], Proposition 2. Our measure concentration result (see Lemma F.3) involves
Xi ∼ N(θi,�i) and not Gaussian random vectors with identity covariance as in [25], Propo-
sition 4. Our control of Eζ 2

5n/n (via Lemma 4.3) is different from and probably more direct
compared to the corresponding argument in [25], Theorem 3(ii).
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5. Implementation details and some simulation results. In this section, we shall dis-
cuss some computational details concerning the NPMLE and also provide numerical evidence
for the effectiveness of the estimator (1.7) based on the NPMLE for denoising.

For the optimization problem (1.2), it can be shown that f̂n exists and is nonunique. How-
ever f̂n(X1), . . . , f̂n(Xn) are unique and they solve the finite dimensional optimization prob-
lem

argmax
n∑

i=1

logfi

s.t. (f1, . . . , fn) ∈ Conv
{(

φ(X1 − θ), . . . , φ(Xn − θ)
) : θ ∈ R

d},
(5.1)

where Conv above stands for convex hull. The constraint set in the above problem, however,
involves every θ ∈ R

d . A natural way of computing an approximate solution is to fix a finite
data-driven set F := {a1, . . . , am} ⊆R

d and restrict the infinite convex hull to the convex hull
over θ belonging to this set. This leads to the problem

argmax
n∑

i=1

logfi

s.t. (f1, . . . , fn) ∈ Conv
{(

φd(X1 − θ), . . . , φd(Xn − θ)
) : θ ∈ F

}
.

(5.2)

This can also be seen as an approximation to (1.2) where the densities f ∈ M are restricted to
have atoms in {a1, . . . , am} ⊆R

d . (5.2) is a convex optimization problem over the probability
simplex in m dimensions and can be solved using many algorithms (e.g., standard interior
point methods as implemented in the software, Mosek, can be used here).

The effectiveness of (5.2) as an approximation to (1.2) depends crucially on the choice of
{a1, . . . , am}. For d = 1, Koenker and Mizera [28] propose the use of a uniform grid within
the range [min1≤i≤n Xi,max1≤i≤n Xi] of the data. Dicker and Zhao [16] discuss this ap-
proach in more detail and recommend the choice m := [√n]. They also prove (see [16], Theo-
rem 2) that the resulting approximate MLE, f̃n, has a squared Hellinger accuracy, H2(f̃n, f0),
of Op((logn)2/n) when the mixing measure corresponding to f0 has bounded support. For
d ≥ 1, Feng and Dicker [22] recommend taking a regular grid in a compact region containing
the data. They also mention that empirical results seem “fairly insensitive” to the choice of
m.

A proposal for selecting {a1, . . . , am} that is different from gridding is the so called “ex-
emplar” choice where one takes m = n and ai = Xi for i = 1, . . . , n. This choice is proposed
in Böhning [7] for d = 1 and in Lashkari and Golland [30] for d ≥ 1. This avoids gridding
which can be problematic in multiple dimensions. Also, this method is computationally fea-
sible as long as n is moderate (up to a few thousands) but becomes expensive for larger n.
In such instances, a reasonable strategy is to take a1, . . . , am as a random subsample of the
data X1, . . . ,Xn. For fast implementations, one can also extend the idea of Koenker and Miz-
era [28] by binning the observations and weighting the likelihood terms in (1.2) by relative
multinomial bin counts.

We shall now provide some graphical evidence of the effectiveness of the NPMLE for
denoising. For our plots, the NPMLE is approximately computed via the algorithm (5.2)
where a1, . . . , am are chosen to be the data points X1, . . . ,Xn with m = n (i.e., we follow
the exemplar recommendation of [7] and [30]). We use the software, Mosek, to solve (5.2).
The results of this paper do not apply directly to these approximate NPMLEs and extending
them is the subject of future work. We argue, however, via simulations that these approximate
NPMLEs work well for denoising.
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(a) Two circles: n = 1000. Half of
{θi}ni=1 are drawn uniformly at

random from each of the concentric
circles of radii 2 and 6, respectively.

(b) Triangle: n = 999. A third of
{θi}ni=1 are drawn uniformly at

random from each edge of the triangle
with vertices (−3,0), (0,6) and (3,0)

(c) Digit 8: n = 1000. Half of {θi}ni=1
are drawn uniformly at random from
each of the circles of radii 3 centered

at (0,0) and (0,6), respectively.

(d) Letter A: n = 1000. A fifth of
{θi}ni=1 are drawn uniformly at
random from each of the line
segments joining the points

(−4,−6), (−2,0), (0,6), (2,0) and
(4,6) so as to form the letter A.

FIG. 1. Illustrations of denoising using the empirical Bayes estimates (1.7).

In Figure 1, we illustrate the performance of θ̂1, . . . , θ̂n (defined as in (1.7)) for denoising
when the true vectors θ1, . . . , θn take values in a bounded region of R2. The plots refer to
these estimates as the empirical Bayes estimates and the quantities (1.6) as the oracle Bayes
estimates.

In each of the four subfigures in Figure 1, we generate n vectors θ1, . . . , θn from a bounded
region in R

d for d = 2: they are generated from two concentric circles in the first subfigure, a
triangle in the second subfigure, the digit 8 in the third subfigure and the uppercase letter A in
the last subfigure. In each of these cases, the empirical measure Ḡn is supported on a bounded
region so that Corollary 3.2 yields the near parametric rate 1/n up to logarithmic multiplica-
tive factors in n for every NPMLE. In each of the subfigures in Figure 1, we plot the true
parameter values θ1, . . . , θn in black, the data X1, . . . ,Xn (generated independently accord-
ing to Xi ∼ N(θi, I2)) are plotted in gray, the oracle Bayes estimates θ̂∗

1 , . . . , θ̂∗
n are plotted
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in blue while the estimates θ̂1, . . . , θ̂n are plotted in red. The mean squared discrepancies

1

n

n∑
i=1

∥∥θ̂∗
i − θi

∥∥2
,

1

n

n∑
i=1

‖θ̂i − θi‖2 and
1

n

n∑
i=1

∥∥θ̂∗
i − θ̂i

∥∥2

are given in each figure in the legend at the upper-right corner. Note that the third MSE is
much smaller than the other two in each subfigure.

As can be observed from Figure 1, the empirical Bayes estimates (1.7) approximate their
targets (1.6) quite well. The most noteworthy fact is that the estimates (1.7) do not require
any knowlege of the underlying structure in Ḡn, for instance, concentric circles, or triangle
or a letter of the alphabet etc. We should also note here that the noise distribution here is
completely known to be N(0, Id) which implies, in particular, that there is no unknown scale
parameter representing the noise variance.

We have also done numerical simulations for illustrating the denoising performance of
θ̂1, . . . , θ̂n in the case when θ1, . . . , θn have a clustering structure. Due to space constraints,
these results have been moved to Section G of the Supplementary Material [49].

Acknowledgments. The second author was supported by NSF CAREER Grant DMS-
16-54589.

SUPPLEMENTARY MATERIAL

Supplement to “On the nonparametric maximum likelihood estimator for Gaussian
location mixture densities with application to Gaussian denoising” (DOI: 10.1214/19-
AOS1817SUPP; .pdf). This supplementary material contains proofs of all results in the main
paper as well as some observations on the heteroscedastic Gaussian denoising problem.
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