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Abstract: Exponential decay laws describe systems rang-
ing from unstable nuclei to fluorescent molecules, in
which the probability of jumping to a lower-energy state in
any given time interval is static and history-independent.
These decays, involving only a metastable state and fluc-
tuations of the quantum vacuum, are the most funda-
mental nonequilibriumprocess and provide amicroscopic
model for the origins of irreversibility. Despite the fact
that the apparently universal exponential decay law has
been precisely tested in a variety of physical systems, it is
a surprising truth that quantum mechanics requires that
spontaneous decay processes have nonexponential time
dependence at both very short and very long times. Cold-
atom experiments have proven to be powerful probes of
fundamental decay processes; in this article, we propose
the use of Bose condensates in Floquet–Bloch bands as a
probe of long-timenonexponential decay in single isolated
emitters. We identify a range of parameters that should
enable observation of long-time deviations and experi-
mentally demonstrate a key element of the scheme: tun-
able decay between quasi-energy bands in a driven optical
lattice.

Keywords: Nonequilibrium Dynamics; Non-Markovian
Dynamics; Spontaneous Decay; Ultracold Atoms.

1 Introduction
Given the ubiquity of exponential decay, it is surprising
that quantum mechanics requires that decay processes to
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a continuum with a ground state exhibit nonexponential
long-time dynamics [1–6]. Classic experiments on the sub-
ject include negative results from studies of 56Mn nuclear
decay tests [7] and an indirect observation claimed in
investigations of 8Be scattering phase shifts [8]. More
recently, a variety of physical systems ranging from inte-
grated photonics [9] to Feshbach molecules [10] have
emerged as platforms for the exploration of nonexponen-
tial decay. Extensive theoretical work has been directed
toward nonexponential decay of autoionising resonances
in atomic systems [11–13] and laser-induced ionisation
effects [14, 15], although this remains at the frontier of
experimental feasibility.

Negative ions are often considered in this context,
in part due to their simple structure: there is usually
only one bound state and a few resonances that sim-
plify the study of laser-induced negative ion photodetach-
ment [14]. Another reason [2, 13] is the possibility of find-
ing broad resonances decaying with a very small energy
release, which, as discussed below, should result in a
deviation at an earlier time when more is left of the par-
ent. On the experimental side, however, negative ions also
pose certain difficulties, especially due to the low tar-
get densities available. To our knowledge, no experiments
on nonexponential decay in negative ions have been
reported.

In a very different physical context, cold atoms in opti-
cal lattices can also serve as a probe of decay dynam-
ics [16], as shown, for example, in two seminal experi-
ments. The quantum Zeno effect was first detected using
cold sodium atoms in an accelerated optical lattice [17];
more recently, non-Markovian long-time dynamics were
observed in an optically dense ensemble of lattice-trapped
atoms driven by an applied microwave field [18, 19]. These
results demonstrate the promise of degenerate gases in
optical lattices for observing long-time modifications to
memoryless exponential decay in an ensemble of single
emitters.

Here we propose the use of ultracold noninteract-
ing 7Li Bloch oscillating in a tilted modulated optical
lattice to directly observe long-time nonexponential inter-
band decay. A schematic of the proposed setup and
its relationship to an idealised decay process is pre-
sented in Figure 1. While the proposed experiments, in
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 1: (a) Schematic of a potential in which nonexponential
decay is expected. τ is the decay time of the exponential part of
the tunnelling process, and τE = �/E0 is the timescale associated
with the energy of the decay product. (b) Schematic of proposed
optical lattice experiment probing nonexponential decay. E1 and
E2 are different possible characterisations of the decay product
energy.

principle, can be performed in unmodulated lattices (in
close analogy to [17] and topioneering experiments in opti-
cal lattice Stückelberg interferometry [20]), we will show
that signatures of nonexponential long-time evolution can
be greatly enhanced using recently developed tools of Flo-
quet engineering for modification and mapping of band
structure [21, 22].

The proposed platform for the exploration of non-
exponential decay has several unique advantages. Most
important is the extreme tunability afforded by the use
of flexible Floquet engineering techniques. Another key
advantage, arising from the choice of atomic species,
is the presence of broadly Feshbach-tunable interac-
tions in 7Li. In this work, we emphasize the ability to
access the single-emitter regime by tuning the scatter-
ing length to zero. However, the ability to work at arbi-
trary scattering length may also enable a future system-
atic study of the effects of interactions on spontaneous
decay.

In Section 2 of this article, we review a heuristic
explanation for nonexponential decay based on a simple
analysis of the survival probability and the Breit–Wigner
energy distribution. We present numerical calculations of
the emergence of nonexponential behaviour as a result
of imposing the lowest energy bound, revealing decay
rate and decay energy as key parameters for experimen-
tal observation. In Section 3, we discuss the details and
feasibility of the proposed experiment. In particular, we
experimentally demonstrate the use of Floquet engineer-
ing to engineer the bandgap and tune the decay rate, a key
stepon thepath to realisationof long-timenonexponential
decay of an isolated emitter. Section 4 offers conclusions
and outlook.

2 Origins of Nonexponential Decay
We begin by recalling a heuristic argument for non-
exponential decay that makes no reference to the partic-
ular form of the unstable state or decay mechanism [5].
Given some initial state |ψ0⟩ with Hamiltonian H, the sur-
vival or undecayed amplitude A(t) can be calculated as
the overlap of the initial state with the time-evolved state
exp(−iHt/�)|ψ0⟩. For a continuous spectrum, the time-
evolved state can be expanded over the complete set of
energy eigenstates |ϕE⟩ as

e−iHt/�|ψ0⟩ =
∫︁
dE|ϕE⟩⟨ϕE|ψ0⟩e−iEt/�. (1)

Taking the overlap of (1) with |ψ0⟩ and recognising the
initial density of states as ρ(E) = |⟨ϕE|ψ0⟩|2, the survival
amplitude is the Fourier transform

A(t) =
∞∫︁

−∞

dEρ(E)e−iEt/�. (2)

The survival probability is |A2|. A simple assumed
form for the energy distribution ρ(E) is a Lorentzian or
Breit–Wigner distribution:

ρ(E) = Γ
2π

1
(E − E0)2 + ( Γ2 )

2 , (3)

where E0 is the mode, and Γ is the linewidth. Inserting (3)
into (2) and squaring yield the familiar result of exponen-
tially decaying survival probability with decay rate 1/τ =
Γ/�.

Nonexponential decay at long times arises from
including in this simple argument the fact that real sys-
tems necessarily have the lowest energy state, requiring
either a truncation of ρ(E) or a bounding of the integral
in (2) from below. This alters the form of the survival prob-
ability from a pure exponential, giving rise to corrections
at long timescales. Figure 2 shows the nonexponential
population dynamics that result from imposing such a
lower energy bound. The absolute square of A(t) is plot-
ted for varying values of the decay product energy E0,
demonstrating a clear change from almost purely expo-
nential behaviour when E0 is many linewidths away from
the ground state to large oscillations and strongly non-
exponential dynamics for small values of E0. Here, the
ground state energy is set to 0. This slower than exponen-
tial decay at very long times is well understood theoreti-
cally [5, 23], but poses a major challenge for experimental
observation due to the small scale of the deviations (note
the logarithmic y axis of Figure 2) and the many half-lives

444     A. Cao et al.: Probing Nonexponential Decay in Floquet–Bloch Bands

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 1: (a) Schematic of a potential in which nonexponential
decay is expected. τ is the decay time of the exponential part of
the tunnelling process, and τE = �/E0 is the timescale associated
with the energy of the decay product. (b) Schematic of proposed
optical lattice experiment probing nonexponential decay. E1 and
E2 are different possible characterisations of the decay product
energy.

principle, can be performed in unmodulated lattices (in
close analogy to [17] and topioneering experiments in opti-
cal lattice Stückelberg interferometry [20]), we will show
that signatures of nonexponential long-time evolution can
be greatly enhanced using recently developed tools of Flo-
quet engineering for modification and mapping of band
structure [21, 22].

The proposed platform for the exploration of non-
exponential decay has several unique advantages. Most
important is the extreme tunability afforded by the use
of flexible Floquet engineering techniques. Another key
advantage, arising from the choice of atomic species,
is the presence of broadly Feshbach-tunable interac-
tions in 7Li. In this work, we emphasize the ability to
access the single-emitter regime by tuning the scatter-
ing length to zero. However, the ability to work at arbi-
trary scattering length may also enable a future system-
atic study of the effects of interactions on spontaneous
decay.

In Section 2 of this article, we review a heuristic
explanation for nonexponential decay based on a simple
analysis of the survival probability and the Breit–Wigner
energy distribution. We present numerical calculations of
the emergence of nonexponential behaviour as a result
of imposing the lowest energy bound, revealing decay
rate and decay energy as key parameters for experimen-
tal observation. In Section 3, we discuss the details and
feasibility of the proposed experiment. In particular, we
experimentally demonstrate the use of Floquet engineer-
ing to engineer the bandgap and tune the decay rate, a key
stepon thepath to realisationof long-timenonexponential
decay of an isolated emitter. Section 4 offers conclusions
and outlook.

2 Origins of Nonexponential Decay
We begin by recalling a heuristic argument for non-
exponential decay that makes no reference to the partic-
ular form of the unstable state or decay mechanism [5].
Given some initial state |ψ0⟩ with Hamiltonian H, the sur-
vival or undecayed amplitude A(t) can be calculated as
the overlap of the initial state with the time-evolved state
exp(−iHt/�)|ψ0⟩. For a continuous spectrum, the time-
evolved state can be expanded over the complete set of
energy eigenstates |ϕE⟩ as

e−iHt/�|ψ0⟩ =
∫︁
dE|ϕE⟩⟨ϕE|ψ0⟩e−iEt/�. (1)

Taking the overlap of (1) with |ψ0⟩ and recognising the
initial density of states as ρ(E) = |⟨ϕE|ψ0⟩|2, the survival
amplitude is the Fourier transform

A(t) =
∞∫︁

−∞

dEρ(E)e−iEt/�. (2)

The survival probability is |A2|. A simple assumed
form for the energy distribution ρ(E) is a Lorentzian or
Breit–Wigner distribution:

ρ(E) = Γ
2π

1
(E − E0)2 + ( Γ2 )

2 , (3)

where E0 is the mode, and Γ is the linewidth. Inserting (3)
into (2) and squaring yield the familiar result of exponen-
tially decaying survival probability with decay rate 1/τ =
Γ/�.

Nonexponential decay at long times arises from
including in this simple argument the fact that real sys-
tems necessarily have the lowest energy state, requiring
either a truncation of ρ(E) or a bounding of the integral
in (2) from below. This alters the form of the survival prob-
ability from a pure exponential, giving rise to corrections
at long timescales. Figure 2 shows the nonexponential
population dynamics that result from imposing such a
lower energy bound. The absolute square of A(t) is plot-
ted for varying values of the decay product energy E0,
demonstrating a clear change from almost purely expo-
nential behaviour when E0 is many linewidths away from
the ground state to large oscillations and strongly non-
exponential dynamics for small values of E0. Here, the
ground state energy is set to 0. This slower than exponen-
tial decay at very long times is well understood theoreti-
cally [5, 23], but poses a major challenge for experimental
observation due to the small scale of the deviations (note
the logarithmic y axis of Figure 2) and the many half-lives

A. Cao et al.: Probing Nonexponential Decay in Floquet–Bloch Bands | 3

Figure 2: Emergence of nonexponential decay due to truncation of
the energy distribution. The survival probability is plotted versus
time for various values of E0, as indicated in the legend. The ground
state energy is set to 0. � is set to 1 with time measured in life-
times τ and energy in linewidths Γ. The inset highlights the largest
deviations in the first lifetime.

elapsed before their onset. However, the inset of Figure 2
reveals that significant nonexponential behaviour arises
even within the first lifetime when the truncation occurs
within a few linewidths of the distribution peak. The scale
of these deviations is on the order of 10 %, which should
be readily accessible to detection.

It is instructive to compare these results to the predic-
tion of [2] that the timescale τL for long time deviations is
approximately given by

τL ≃ 3τ log(E0τ/�) = 3τ log(E0/Γ), (4)

where E0 is the energy released in the decay. Intuitively,
this indicates that τL/τ (or E0/Γ) cannot be much larger
than unity in order for there to be a significant remain-
ing population to exhibit nonexponential behaviour. In
Figure 3, we map out the numerical integration of (2) for
the rangeof E0/Γ = 0.2−10.Wealsoplot the results of (4).
While the prediction is qualitatively correct, for E0/Γ ≈ 2−
3 it somewhat overestimates the onset time; there is clear
non-Markovian behaviour even within the first time con-
stant. Note the logarithmic scale of the colour bar. Over-
all, though, Figure 3 confirms the intuitive result of (4)
that minimising the decay product energy with respect to
the decay rate yields the largest signal for nonexponential
behaviour.

In passing, we note that short-time deviations from
exponential decay arise from a related but distinct mecha-
nism: the finite expectation value of energy leading to a
survival probability with initially vanishing time deriva-
tive [24]. This phenomenon underlies the quantum Zeno
effect, which was also first realised experimentally with
cold atoms [25].

Figure 3: Nonexponential population dynamics as a function of time
and the ratio E0/Γ. Note that the survival probability colour map
is normalised to an exponential law in time, with black indicating
an order of magnitude population excess with respect to the expo-
nential decay prediction. Dotted green line is the prediction for the
onset of nonexponential decay as given by (4).

3 Probing Nonexponential Decay in
Modulated Optical Lattices

The experimental probe of nonexponential decay we pro-
pose here is based on Bloch oscillations of an ultracold
atom ensemble through partially avoided band crossings
in modulated optical lattices. Our experimental platform
consists of a Bose condensate of 105 7Li atoms in a far-
red-detuned (λ = 1064 nm) optical lattice. Interatomic
interactions can be eliminated entirely using the shallow
zero-crossing below 7Li’s broad magnetic Feshbach res-
onance [26]; this crucially allows us to probe the funda-
mental question of nonexponential decay of a single emit-
ter. The lattice induces an energy band structure, shown
in Figure 4, which can be probed with Bloch oscillations
induced by an applied tilt of the harmonic magnetic con-
finement. In fact, the high tunnelling rate of 7Li enables
spatial resolving of different band populations in situ
without the use of band maps or time-of-flight imaging
[22]. Time-periodicmodulation of the lattice depth enables
the creation of hybridised Floquet–Bloch bands [21] with a
drive-dependent band structure; as argued below, this is a
key capability for realistic observation of nonexponential
decay.

We begin by considering the use of Bloch oscillations
in an undriven lattice as a probe of decay dynamics. In
such an experiment, the atoms are adiabatically loaded
into the ground band of the lattice and then undergo Bloch
oscillations due to the applied force from the inhomoge-
neousmagnetic potential. Ignoring the field curvature, the
main correction to the single-band approximation for the
Wannier–Stark problem comes from tunnelling between
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 4: Band structure of a 3.5 ER deep undriven optical lattice.
Solid lines are the lowest three energy bands. Dashed line overlays
the lattice potential in position space (top axis). Dotted black line
depicts the drive hybridisation scheme used in Figure 5, ignoring
coupling to higher bands.

adjacent bands. As the atoms traverse the edge of the Bril-
louin zone, they have a chance to “decay” by tunnelling
across the first bandgap once per Bloch cycle. The fea-
sibility of observing long-time deviations from exponen-
tial decay in such an experiment can be quantitatively
estimated using a Landau–Zener model of interband tun-
nelling [27]. Semiclassically, the probability of tunnelling
across the nth bandgap ∆n in a single Bloch cycle is

Pn = exp
[︃
−π2

2
∆2
n

hfB ∂
∂q |En − En−1|

]︃
, (5)

where fB is the Bloch frequency, and En is the dispersion
of the nth band in the free particle limit, indexed with
n = 0 as the ground band. The derivative with respect to
the undimensionalised quasi-momentum (q = k/kL and
kL = 2π/λ) is evaluated at the point of avoided crossing.
By modelling the decay as a discrete process happening
once per Bloch cycle and then taking a continuum limit,
the effective tunnelling rate across the nth bandgap is
approximated as

1
τ ≈ fB log

(︂
1

1− Pn

)︂
. (6)

In a shallow lattice, tunnelling between all excited
bands is large, and we can treat them as a continuum,
so we need to focus only on tunnelling across the first
bandgap. In calculating the probability P1 to tunnel out
of the ground band, we have ∂

∂q |E1 − E0| = 4 ER eval-
uated at the Brillouin zone edge q = 1, where the recoil
energy is ER = �2k2L/2m with m = 7 amu. Equations (5)

and (6) reveal two important parameters for optimising the
decay rate of static Bloch oscillations: the bandgap ∆1 and
the Bloch frequency fB. These cannot be tuned arbitrarily,
although the bandgap is minimised for low lattice depths,
and the Bloch frequency is maximised for large mag-
netic field gradients. Our experiment can reliably achieve
Bloch frequencies fB ≈ 100 Hz and minimum usable lat-
tice depths of around 1ER, yielding ∆1 ≃ 0.5 ER. Insert-
ing these values into (5) and (6) reveals that the resulting
tunnelling probability will be minimal: P1 ∼ 10−5, lead-
ing to a decay time τ ∼ 103 s. Clearly more tunability is
needed to reach a regime where the predicted long-time
deviations from exponential decay can be observed. One
route could be to use the much stronger gradients attain-
able in accelerating lattices, but this intrinsically limits the
attainablemeasurement time as the atoms leave the region
of interest. A more flexible possibility is the use of Floquet
engineering to tune the bandgap.

Thus motivated, we consider the addition of time-
periodic lattice depth modulation to the experimental
protocol outlined above. Resonant coupling of two static
bands by such a modulation generically creates a hybrid
quasi-energy band structure featuring at least one new
gap, of a size determined by drive strength rather than lat-
tice depth [21]. Figure 5b shows calculated quasi-energy
band structure near such a gap, for several different val-
ues of the drive strength. Tunnelling across this tunable
gap during a Bloch oscillation in a modulated lattice can
realize a much more controllable decay process, in which
the decay time can be tuned independently of lattice depth
and potential tilt.

To demonstrate this central element of the proposed
realisation of nonexponential decay, we have experimen-
tally measured tunable Landau–Zener decay in a Floquet-
engineered quasi-energy band structure. Figure 5 presents
an experimentalmeasurement of the Landau–Zener decay
probability of (5) across a Floquet-tunable bandgap as a
function of drive strength, for the case of resonant driv-
ing between the lowest two energy bands. Images of the
two spatially resolved band populations after half a Bloch
period in the amplitude-modulated lattice are shown in
Figure 5a, and the calculated band crossing in the quasi-
energy picture is shown in Figure 5b. The spatial sepa-
ration between “decayed” and “undecayed” populations
is a consequence of position-space Bloch oscillations in
the two different band dispersions [22]. Plotting the frac-
tion of undecayed atoms that remain in the ground band,
wemeasure a tunable decay in qualitative agreement with
the Landau–Zener tunnelling theory of (5), as shown in
Figure 5b. Deviations of the data from theory may be the
result of uncertainty in the lattice depth or inhomogeneity
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 4: Band structure of a 3.5 ER deep undriven optical lattice.
Solid lines are the lowest three energy bands. Dashed line overlays
the lattice potential in position space (top axis). Dotted black line
depicts the drive hybridisation scheme used in Figure 5, ignoring
coupling to higher bands.

adjacent bands. As the atoms traverse the edge of the Bril-
louin zone, they have a chance to “decay” by tunnelling
across the first bandgap once per Bloch cycle. The fea-
sibility of observing long-time deviations from exponen-
tial decay in such an experiment can be quantitatively
estimated using a Landau–Zener model of interband tun-
nelling [27]. Semiclassically, the probability of tunnelling
across the nth bandgap ∆n in a single Bloch cycle is

Pn = exp
[︃
−π2

2
∆2
n

hfB ∂
∂q |En − En−1|

]︃
, (5)

where fB is the Bloch frequency, and En is the dispersion
of the nth band in the free particle limit, indexed with
n = 0 as the ground band. The derivative with respect to
the undimensionalised quasi-momentum (q = k/kL and
kL = 2π/λ) is evaluated at the point of avoided crossing.
By modelling the decay as a discrete process happening
once per Bloch cycle and then taking a continuum limit,
the effective tunnelling rate across the nth bandgap is
approximated as

1
τ ≈ fB log

(︂
1

1− Pn

)︂
. (6)

In a shallow lattice, tunnelling between all excited
bands is large, and we can treat them as a continuum,
so we need to focus only on tunnelling across the first
bandgap. In calculating the probability P1 to tunnel out
of the ground band, we have ∂

∂q |E1 − E0| = 4 ER eval-
uated at the Brillouin zone edge q = 1, where the recoil
energy is ER = �2k2L/2m with m = 7 amu. Equations (5)

and (6) reveal two important parameters for optimising the
decay rate of static Bloch oscillations: the bandgap ∆1 and
the Bloch frequency fB. These cannot be tuned arbitrarily,
although the bandgap is minimised for low lattice depths,
and the Bloch frequency is maximised for large mag-
netic field gradients. Our experiment can reliably achieve
Bloch frequencies fB ≈ 100 Hz and minimum usable lat-
tice depths of around 1ER, yielding ∆1 ≃ 0.5 ER. Insert-
ing these values into (5) and (6) reveals that the resulting
tunnelling probability will be minimal: P1 ∼ 10−5, lead-
ing to a decay time τ ∼ 103 s. Clearly more tunability is
needed to reach a regime where the predicted long-time
deviations from exponential decay can be observed. One
route could be to use the much stronger gradients attain-
able in accelerating lattices, but this intrinsically limits the
attainablemeasurement time as the atoms leave the region
of interest. A more flexible possibility is the use of Floquet
engineering to tune the bandgap.

Thus motivated, we consider the addition of time-
periodic lattice depth modulation to the experimental
protocol outlined above. Resonant coupling of two static
bands by such a modulation generically creates a hybrid
quasi-energy band structure featuring at least one new
gap, of a size determined by drive strength rather than lat-
tice depth [21]. Figure 5b shows calculated quasi-energy
band structure near such a gap, for several different val-
ues of the drive strength. Tunnelling across this tunable
gap during a Bloch oscillation in a modulated lattice can
realize a much more controllable decay process, in which
the decay time can be tuned independently of lattice depth
and potential tilt.

To demonstrate this central element of the proposed
realisation of nonexponential decay, we have experimen-
tally measured tunable Landau–Zener decay in a Floquet-
engineered quasi-energy band structure. Figure 5 presents
an experimentalmeasurement of the Landau–Zener decay
probability of (5) across a Floquet-tunable bandgap as a
function of drive strength, for the case of resonant driv-
ing between the lowest two energy bands. Images of the
two spatially resolved band populations after half a Bloch
period in the amplitude-modulated lattice are shown in
Figure 5a, and the calculated band crossing in the quasi-
energy picture is shown in Figure 5b. The spatial sepa-
ration between “decayed” and “undecayed” populations
is a consequence of position-space Bloch oscillations in
the two different band dispersions [22]. Plotting the frac-
tion of undecayed atoms that remain in the ground band,
wemeasure a tunable decay in qualitative agreement with
the Landau–Zener tunnelling theory of (5), as shown in
Figure 5b. Deviations of the data from theory may be the
result of uncertainty in the lattice depth or inhomogeneity
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Figure 5: Experimental demonstration of Floquet-tunable decay. (a) Images of a sample of cold lithium atoms after a single Landau–Zener
tunnelling event during a Bloch oscillation in a quasi-energy band. The “undecayed” upper clouds are those that remain in the ground band
of the corresponding undriven system. The lattice depth is 3.5 ER, the modulation frequency is 55 kHz, and the Bloch frequency is 27.8 Hz.
(b) Calculated quasi-energy band structure around the avoided crossing for different modulation depths (indicated in legend). Note the
drive-tunable gap. (c) Undriven ground band fraction as a function of drive strength. Solid theory line is calculated from (5).

of the force. Note that, in this case, it is actually the atoms
that fail to undergo the tunnelling event that correspond
to the decayed population. To obtain a decay rate then,
we must actually subtract (5) from 1. In any case, these
results demonstrate the capacity to use lattice modula-
tion to tune the tunnelling probability over a wide range,
including an enhancement of roughly four orders of mag-
nitude over the tunnelling probability in a static band for
equivalent conditions. Crucially, this allows Γ to approach
our achievable Bloch frequencies of up to 100 Hz, allow-
ing for reasonable experimental run times and detectable
nonexponential dynamics.

4 Conclusion
We have proposed a measurement of nonexponential
decay of individual emitters that is based on interband
tunnelling of cold atoms during a Bloch oscillation
in a Floquet-engineered quasi-energy band. A simple

theoretical treatment of expected dynamics indicates that
deviations from exponential decay should be measur-
able. Preliminary experimental tests of the proposed tun-
able decay mechanism demonstrate widely tunable decay
rates and the feasibility of the underlying concept. These
results lay the groundwork for realising a new experi-
mental probe of universal non-Markovian evolution and
open up new possibilities for exerting quantum control
over an irreducible element of nonequilibrium quantum
dynamics.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.

2 L. Balzer et al.: TMLE for Rare Outcomes

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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