1258

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Online Routing and Scheduling With Capacity
Redundancy for Timely Delivery Guarantees
in Multihop Networks

Han Deng™, Tao Zhao™, and I-Hong Hou™', Member, IEEE

Abstract—1t has been shown that it is impossible to achieve
stringent timely delivery guarantees in a large network with-
out having complete information of all future packet arrivals.
In order to maintain desirable performance in the presence of
uncertainty of future, a viable approach is to add redundancy
by increasing link capacities. This paper studies the amount of
capacity needed to provide stringent timely delivery guarantees.
We propose a low-complexity online algorithm and prove that
it only requires a small amount of redundancy to guarantee
the timely delivery of most packets. Furthermore, we show that
in large networks with very high timely delivery requirements,
the redundancy needed by our policy is at most twice as large
as the theoretical lower bound. For practical implementation,
we propose a distributed protocol based on this centralized
policy. Without adding redundancy, we further propose a low-
complexity order-optimal online policy for the network. The
simulation results show that our policies achieve much better
performance than the other state-of-the-art policies.

Index Terms— Competitive ratio, cyber-physical systems,
multihop networks, online algorithms, optimal scheduling.

I. INTRODUCTION

ANY emerging safety-critical applications for Internet

of Things and Cyber-Physical Systems require com-
munication protocols that support stringent timely delivery
guarantees for packet transmissions in multihop networks.
In a typical scenario, when sensors detect unusual events that
can cause system instability, they send out this information
to actuators or control centers. This information needs to
be delivered within a strict deadline for actuators or control
centers to resolve the unusual events. The system can suffer
from a critical fault when a small portion of packets fail to be
delivered in time.

Manuscript received August 17, 2018; revised April 4, 2019; accepted
May 5, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor E. Uysal-Biyikoglu. Date of publication May 30, 2019; date of current
version June 14, 2019. This work was supported in part by the NSF and
Intel under Contract CNS-1719384, in part by the U.S. Army Research
Laboratory and the U.S. Army Research Office under Contract/Grant
WO11INF-18-1-0331, and in part by the Office of Naval Research under
Contract N00014-18-1-2048. Part of this work has been presented at ACM
SIGMETRICS 2017 [1]. (Han Deng and Tao Zhao contributed equally to this
work.) (Corresponding author: Tao Zhao.)

H. Deng is with the Houston Methodist Research Institute, Houston,
TX 77030 USA (e-mail: hdeng @houstonmethodist.org).

T. Zhao and I-H. Hou are with the Department of ECE, Texas A&M
University, College Station, TX 77843-3128 USA (e-mail: alick@tamu.edu;
ihou@tamu.edu).

Digital Object Identifier 10.1109/TNET.2019.2917393

Despite the huge literature on quality of service (QoS),
there is little work that can provide stringent timely delivery
guarantees, especially when packet arrivals are time-varying
and unpredictable. The lack of progress is mainly caused by
two fundamental challenges. On one hand, practical solutions
need to rely on online policies that do not have knowledge
of future packet arrivals and thus often suboptimal compared
to offline policies. On the other hand, in a multihop network,
the scheduling decision of one communication link will impact
the decisions of subsequent links. The negative effects of sub-
optimal decisions by online policies therefore get accumulated
along the path of multihop transmissions. In fact, a recent
work by Mao et al. [2] has proved that the performance of
any online policies deteriorates as the maximum route length
in the network increases. As a result, no online policy can
provide reasonable performance guarantees when the size of
the network is large.

In order to achieve desirable performance using online
policies, a viable approach is to add redundancy into the
system. During system deployment, it is common practice to
provision redundant capacities of communication links. Such
redundancy can alleviate the negative impacts of suboptimal
decisions by online policies. Using this approach, a critical
question is to determine the amount of redundancy needed to
provide the desirable performance guarantees. This paper aims
to answer this question.

We first show that the problem of maximizing the number of
timely packet deliveries can be formulated as a linear program-
ming problem when one knows the complete knowledge of all
future packet arrivals. In the setting of online policies, some of
the parameters of this linear programming problem will only
be revealed when the corresponding packets arrive. Therefore,
online policies need to make routing and scheduling decisions
for packets without knowing all parameters. On the other hand,
we also observe that adding redundancy by increasing link
capacities is equivalent to relaxing a subset of constraints in
the linear programming problem. Based on these observations,
we define a competitive ratio that, given the amount of redun-
dancy, quantifies the relative performance of online policies in
comparison to the optimal offline solution.

Using the primal-dual method [3], we propose an online
policy that achieves good performance in terms of competitive
ratio. This policy has several important features: First, when
there is no redundancy added to the system, the performance of

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9363-1722
https://orcid.org/0000-0003-0395-9260
https://orcid.org/0000-0002-1166-8773

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

our online policy is asymptotically better than that of the recent
work [2] when the size of the network increases. Second,
we also show that only a small amount of redundancy is
needed to achieve strict performance guarantees. Specifically,
in order to guarantee the timely delivery of at least 1 — %
as many packets as the optimal solution in a network whose
longest path has length L, our policy only needs to increase
link capacities by at most In L + In @ times.! Finally, we also
show that our policy can be implemented with very low
complexity.

Next, we establish a theoretical lower bound of competitive
ratio for all online policies. We show that, in order to guarantee
a certain degree of performance, the redundancy needed by our
policy is only a small amount away from the theoretical limit.
In particular, when both L and 6 go to infinity, the redundancy
needed by our policy is at most twice as large as the theoretical
limit.

To address the performance gap between the above online
policy and the theoretical lower bound, we propose another
online policy and prove that it is order optimal in the
case where there is no capacity redundancy in the network.
Specifically, we show that this online policy guarantees to
deliver at least m as many packets before their deadlines
as the optimal offline solution, where L is the maximum route
length. As Mao et al. [2] has proved no online policy can
deliver more than m packets without redundancy,? our
policy is order optimal.

Noting that both the above online policies are centralized
algorithms,® we also propose a distributed protocol that is
inspired by the design principles of our centralized online
policies. This distributed protocol only requires each node to
broadcast its local load information infrequently, and therefore
it only incurs a small amount of communication overhead.
When a packet arrives at a source node, the source node
determines a suggested route for the packet using its received
load information. Each link on the route makes scheduling
decisions solely based on its local information.

All our three policies are evaluated by simulations, and
compared with the well-known earliest deadline first (EDF)
policy and the online policy proposed by Mao ef al. [2], which
will be denoted by MKS afterwards. Simulation results show
that all our policies perform better than the other two policies
in most cases under various system settings.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces our system model
and defines the competitive ratio. Section IV proposes our first
online policy and studies its competitive ratio and computation
complexity. Section V establishes a theoretical lower bound
of competitive ratio. Section VI proposes an order-optimal
policy and proves its competitive ratio. Section VII proposes a
distributed protocol based on the intuitions of our centralized

"When the optimal policy delivers all packets in time, 6 is the loss frequency,
i.e. the number of packet losses per unit time, under the online policy, and
1— é is the delivery ratio, i.e. the percentage of delivered packets among all
packets, of the online policy.

2The original paper contains an error that is fixed in http://newslab.ece.ohio-
state.edu/research/resources/Mao_errata.pdf.

3We use the words “algorithm” and “policy” interchangeably in this paper.

1259

online policies. Section VIII provides simulations on our
proposed policies and compare them with EDF and MKS.
Finally, Section IX concludes this paper.

II. RELATED WORK

Online scheduling in real-time environment has been exten-
sively studied. Studies show that the earliest deadline first
(EDF) algorithm [4] and the least laxity first (LLF) algo-
rithm [5] achieve the same performance as the optimal offline
algorithm in an underloaded uniprocessor system. Considering
overload, Baruah et al. [5] proved that no online algorithm
can guarantee to serve more than 1/4 of the jobs that can
be served by optimal offline algorithm and provided an
algorithm in a uniprocessor system which achieves the 1/4
bound. Goldman et al. [6], Goldwasser and Kerbikov [7],
and Goldwasser [8] considered admission control in online
scheduling. When all jobs have equal length, the best deter-
ministic algorithm is (1 + 1/(|k] + 1))-competitive, where
k > 0 denotes the willingness of a job to endure a delay
before being served.

Besides the uniprocessor case, online scheduling with mul-
tiple servers has also been studied. Goldwasser and Pedigo [9]
studied the scheduling of equal-length jobs on two identi-
cal machines. Ding and Zhang [10], Ding et al. [11], and
Ebenlendr and Sgall [12] studied the case with paral-
lel machines. The scheduler needs to decide whether to
accept or reject a job and which machine is chosen to serve
the job. Ding et al. [11] proposed an algorithm with immediate
decision which has the optimal competitive ratio of 1.8 when
there are two machines and approaches =5 -competitive as the
number of machines increases. Later Ebenlendr and Sgall [12]
showed that %5 is the lower bound of all online algo-
rithms with immediate decision when the number of machines
approaches infinity.

There are also many works studying the scheduling prob-
lem in multihop networks. An early study by Andrews and
Zhang [13] focuses on the problem of packet scheduling with
arbitrary end-to-end delay, fixed route, and known packet
injection rate. It proposed a distributed algorithm which
achieves a certain delay bound. Bhattacharya et al. [14]
studied the scheduling problem on a tree network. Packets
arrive at an arbitrary node and they need to be transmitted
to the root node before the deadlines. Therefore, this is
also a fixed-route problem. The shortest time to extinction
(STE) algorithm was proposed and it is shown to achieve the
performance of the optimal offline policy. Hou [15] proposed
a throughput-optimal policy for up-link tree networks with
end-to-end delay constraints and delivery ratio requirement.
Li and Eryilmaz [16] studied end-to-end deadline constrained
flow scheduling in multihop wired networks. They assumed
stochastic arrival processes and developed algorithms that
exploit the freedom of choosing service disciplines. However,
they only considered the fixed-route model and did not provide
theoretical performance analysis. Singh and Kumar [17], [18]
proposed decentralized scheduling policies which maximize
the timely throughput for multihop wireless networks based
on Markov Decision Process. However, their work consid-
ers average performance guarantees, rather than worst-case

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

1260

performance guarantees. Mao ef al. [2] considered a fixed-
route online scheduling problem. The network has arbitrary
packet arrival and packets have different weights. The paper
aims to maximize the total cumulative weights of packets
that reach destination before their deadline. The paper proved
that the competitive ratio of any online policy is no better
than O(log L), where L is the maximum route length. It also
proposed an online policy that is O(L log L)-competitive.

Taking online routing into account, Li et al. [19] pro-
posed using expected end-to-end delay for path selection in
wireless mesh networks. Their work aims to minimize the
average end-to-end delay, and cannot provide guarantees on
per-packet delays. Liu and Yang [20] studied the multihop
routing problem with end-to-end hard deadlines. They devel-
oped a distributed routing algorithm called spatial-temporal
backpressure which can support any periodic traffic flows
within the throughput region. Wang et al. [21] studied the
problem of routing and scheduling in multihop wireless sensor
networks to minimize channel usage with the constraint of
end-to-end delay and proposed a sub-optimal algorithm to
the NP-complete problem. Our work will focus on online
routing and scheduling in multihop networks to guarantee
strict timely delivery requirement for any possible sequence
of packet arrivals.

There has been a line of research on online routing in
networks with bounded node buffers. Aiello et al. [22] for-
malized the system model for store-and-forward routers with
limited buffer sizes and analyzed the performance of various
online algorithms. The competitive ratios of online algorithms
have been subsequently improved on uni-directional grid net-
works [23]-[25]. In contrast, our work considers unbounded
buffers and focuses on the requirement of link capacity redun-
dancy to achieve strict timely delivery guarantees in a general
network.

Besides, there are many works characterizing end-to-end
delay in multihop networks. Rodoplu et al. [26] studied
the problem of dynamic estimating end-to-end delay over
multihop mobile wireless networks. Sanada et al. [27] used a
Markov-chain model to study the string topology and analyzed
the end-to-end throughput and delay. Jiao et al. [28] studied
the problem of estimating the end-to-end delay distribution for
general traffic arrival process and Nakagami-m channel model
by analyzing packet delay at each hop. In our model, end-
to-end delay is a hard requirement imposed by each arriving
packet, and a successful delivery must occur within the preset
deadline.

Our analysis follows the primal-dual method illustrated by
Buchbinder and Naor [3]. They have used the method to
study bi-criteria competitive algorithms for online routing [29].
The main difference is that we consider online scheduling
with timely delivery guarantees in addition to online routing.
Besides, we employ a different approach in analyzing the
impact of capacity redundancy, leading to a more flexible
tradeoff between redundancy and quality of service. Our
approach has been successfully applied to online job allocation
problems [30], [31].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 1. An example network topology.

III. SYSTEM MODEL

We consider a network with multihop transmissions. The
network is represented by a directed graph where each node
represents a router and an edge from one node to another repre-
sents a link between the corresponding routers. Packets arrive
at their respective source nodes following some unknown
sequence. We use M to denote the set of all packets and
L the set of all links. When a packet m € M arrives at its
source node s,, at time a.,, it specifies its destination node d,,,
and a deadline f,,. The packet requests to be delivered to
its destination at or before its specified deadline. Packets that
are not delivered in time do not have any value, and can be
dropped from the network. We aim to deliver as many packets
in time as possible.

We assume that time is slotted and numbered by ¢t =
{1,2,3,...}. Different links in the network may have different
link capacities, and we denote by C; the number of packets
that link / can transmit in a time slot. At the beginning of each
time slot, each node decides which packets to transmit over
its links, subject to capacity constraints of the links. Packets
transmitted toward a node in time slot ¢ will be received by
that node at the end of the time slot, so that the node can
transmit these packets to subsequent nodes starting from time
slot ¢ + 1.

Delivering a packet to its destination at or before its deadline
requires determining two things: the route used to forward
the packet from its source to its destination, and the times at
which the packet is transmitted along its route. We define a
valid schedule for each packet m as the collection of links
of a route, as well as the times of transmissions for each of
these links, so that packet m can be delivered to its destination
in time. For example, consider the network shown in Fig. 1.
Suppose a packet arrives at node A at time slot 1, and needs
to be delivered to node F before the end of time slot 3. One
valid schedule for this packet is to transmit it over link d in
time slot 1, and then over link g in time slot 2. We use {(d, 1),
(g, 2)} to represent this valid schedule. Other valid schedules
include {(d, 1), (g, 3)}, {(e, 1), (f, 2), (g, 3)}, etc. On the
other hand, {(d,1), (g,4)} is not a valid schedule because the
packet is delivered to its destination after its deadline at time
slot 3. The schedule {(d,3), (g,2)} is not valid because it would
require node D to transmit the packet over link g at time slot 2
before it receives the packet at time slot 3. For each packet

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

m, we let V(m) denote the set of valid schedules for m.
The problem of deciding how to deliver packets in time then
becomes one of choosing valid schedules for packets.

We use X1, € {0, 1} to indicate whether packet m chooses
valid schedule k € V(m). X5, = 1 if and only if packet m
is transmitted using valid schedule k. We aim to maximize the
total number of timely deliveries by deciding the values of all
X k. Our optimization problem is formally as follows:

Schedule:

max Z Xk (1a)
meM
keV(m)

st > Xp< 1, YmeM, (1b)
keV(m)

> X< G, VieLite{l,2,...}, (o)

(1,t)ek
Xmi> 0, Ym e M,k e V(m). (1d)

As shown in Eq. (1a), the objective is to maximize the total
number of packets that are delivered in time. Eq. (1b) states
that at most one valid schedule can be chosen for each packet.
Eq. (1c) states that each link can transmit at most C; packets
in any time slot. In practice, X, can only be either O or 1, but
our problem formulation allows X,,; to be any real number
in [0, 1]. Thus, the optimal solution to Schedule describes an
upper bound on the total number of timely deliveries.

If information of all packets is available when the system
starts, the optimal solution to Schedule can be found by
standard linear programming methods. In practice, however,
packets arrive sequentially, and we need to rely on online
policies that determines the values of X,,; for each arriving
packet m without knowing future packet arrivals. Without the
knowledge of future arrivals, it is obvious that online policies
cannot always achieve the optimal solution to Schedule.
In fact, Mao et al. [2] has shown that, when the maximum
route length between a source node and a destination node is
L, no online policy can guarantee to deliver more than m
as many packets as the optimal solution. Therefore, when L is
large, the performance of online policies can be unacceptable
for virtually any applications.

In order to achieve good performance for online policies
in the presence of unknown future arrivals, we consider the
scenario where service providers can increase link capacities
by, for example, upgrading network infrastructures. When the
link capacities are increased by R times, link [can transmit
RC; packets in each time slot. With the capacity redundancy,
our problem can be rewritten as follows:

Schedule(R):

max Z Xonk (2a)

meM

keV(m)
s.t. Z Xmk< 1, Yme M (2b)

keV(m)
> Xaw< RCi, VieLite{l,2,...} ()

(L,t)Ek

Xmk>0, Yme M,k € V(m). (2d)

1261

To evaluate the performance of online policies, we define a
competitive ratio that incorporates capacity redundancy:

Definition 1: Given a sequence of packet arrivals, let T'oy
be the optimal value of ka: keV (m) Xk in Schedule, and
I',(R) be the number of packets that are delivered under an
online policy 1 when the link capacities are increased by R
times. The online policy 7 is said to be (R, p)-competitive if
Lopi/I'y(R) < p, for any sequence of packet arrivals.

Remark: Although the competitive ratio is defined against
the relaxed problem Schedule, it is also guaranteed against the
original binary linear problem, since Iy is an upper bound
on the optimal total number of timely deliveries.

IV. AN ONLINE ALGORITHM AND ITS
COMPETITIVE RATIO

A. Algorithm Description

In this section, we propose an online policy based on primal-
dual method [3] and analyze the competitive ratio. We first
note that the dual problem of Schedule is:

Dual:

min Z oy, + Z C1 8 (3a)
m Lt
stoam+ Y Bu>1, Yme M, keV(m) (3b)
(Lt)ek
am>0, Yme M (3¢)
Bi>0, Yie L,te{1,2,...}, (3d)

where «,, is the Lagrange multiplier corresponding to con-
straint (1b), and 3, is the Lagrange multiplier corresponding
to constraint (1¢).

By the Weak Duality Theorem, we have the following
lemma:

Lemma 1: Given any vectors of {a,,} and {f;} that
satisfy the constraints (3b)—(3d), we have) o, + Z(l}t)
C’lﬁlt > Fopt~

Algorithm 1 Primal Dual (PD) Algorithm
1oy — 0, By — 0, X < 0

2 dy « (14 1/C))EC Vi,

3: for each arriving packet m do

4: k™ « argminy E(l’t)ek B

5. if E(l,t)ek* B < 1 then

6: A — 1 — E(l,t)ek* B

7 B Bu (1+c%) + @ V(. t) € k*
8: KXpr — 1

9: Transmit packet m using valid schedule £*.
10: else

11: Drop packet m.

12: end if

13: end for

We now introduce our online algorithm. Our algorithm
constructs { X1}, {am}, {0t} simultaneously while ensur-
ing they satisfy all constraints in Schedule(R) and Dual.
As shown in Algorithm 1, initially it sets all oy, B, Xmk

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

1262

to be 0. When a packet m arrives, the algorithm finds the
valid schedule £ that has the smallest 3, ., S among
all k € V(m). Here }_; ;) B can be viewed as the total
cost of delivering packet m using the schedule k. If the
optimal cost Z(l,t)ek* Gir > 1, then the algorithm drops
packet m. On the other hand, if }Z ;. B < 1, packet
m is transmitted using the valid schedule k*. Our algorithm
then sets X, = 1, ayp, = 1 — Z(l’t)ek* B¢, and updates [y
as iy = O (1+ Cil) + m for all (I,t) € k*, where d is
chosen to be (1 + 1/C;)%C. Note that our algorithm always
produces integer solutions for X,,x.

B. Complexity of the Algorithm

In step 4, the algorithm needs to find the valid schedule
k* that minimizes the cost of delivering packet m. We now
show that this step can be completed in polynomial time by
dynamic programming. Before presenting the algorithm, recall
that packet m joins the network at the beginning of time
slot a,,, and specifies its deadline as the end of time slot
fm. Its source node and destination node are s,, and &,
respectively. Therefore, a valid schedule for m is one that
can deliver a packet from node s,, to node d,, between time
slots a,, and fy,.

Let O(v,7) be the smallest cost of delivering packet m
among all schedules k& € V' (m) that can deliver a packet from
node s, to node v between time slots a,, and 7. (v, T) = 0o
if there is no schedule that delivers a packet from s, to v
between time slots a,, and 7,,. Step 4 of Algorithm 1 is
then equivalent to finding the valid schedule that achieves
O(dym, fm)- Since packet m arrives at the beginning of time
slot a,,, or equivalently, at the end of time slot a,, — 1, we set
O(Sm, am —1) =0 and O(v, a, — 1) = 00, Vv # spy.

There are only two different ways to deliver a packet to
node v at or before the end of time slot 7: The first is to
deliver the packet to v at or before the end of time slot 7 — 1,
in which case the smallest cost is ©(v,7 — 1). The second
is to deliver the packet to one of v’s neighbors, say, node u,
at or before the end of time slot 7 — 1, and then forward the
packet along the link [from u to v at time slot 7. In this
case, the cost of delivering the packet to node v by time 7 is
O(u, T — 1) + 5. Therefore, we have

o O(v, 7 — 1),
Slv7) = {G(u,T — 1)+ Bir, V= (u,v) € L.

Based on the above recursive equation, we design
Algorithm 2 to compute the optimal cost ©(d,,, f,,) and the
optimal schedule k£* for each packet m. In the algorithm,
we use S(v,7) to denote the schedule that achieves O (v, 7).

In Algorithm 2, the inequality ©(u, ™ —1) + 5 < O(v,T)
is only evaluated once for any link and time slot. Let E := |L]
be the number of links in the network. Let T' := max,, ([, —
@, +1) be the maximum relative deadline for all packets. Then
the time complexity of both Algorithm 2 and Algorithm 1
is O(ET).

C. Competitive Ratio Analysis

Before analyzing the performance of Algorithm 1, we first
establish a basic property of (.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Algorithm 2 Dynamic Programming

1: for each arriving packet m do
22 O(s$m,am — 1) «— 0

33 O, am, — 1) « 00, Yo # sy,
4 S, am, —1) — ¢, Vv

5. for 7 =a,, to f,, do

6: for node v do

7 O(v,7) — O(v,7—1)

8 S(v, 1) «— S(v,7—1)

9 for link [:= (u,v) € L do

10: if O(u,7 —1)+ B < O(v,7) then
11: O(v, 1) — O(u,7— 1)+ Bir

12: S, 1)« S(u, 7 —=1)U{(,7)}
13: end if

14: end for

15: end for

16: end for

17: end for

Lemma 2: Let 3;;[n] be the value of (), after n packets are
scheduled to use link [at time ¢. Then,
Bueln] = ﬁ (77 —1).)

Proof: First, note that the value of (; is only changed

when Algorithm 1 uses link / at time ¢ to transmit a packet.
Therefore, the value of (;; only depends on the number of
packets that are scheduled to use link [at time t.

We then prove (4) by induction. Initially, when n = 0,
Bu[0] = 0 = (717)(d} — 1) and (4) holds.

Suppose (4) holds for the first n packets. When the (n+1)-
th packet is scheduled for link [at time ¢, we have

1 1
Buln +1] = Bun] (1+ a) ta-na
1 = R
= a-1 (dz 1) (1+ Cz) T (d — 1)

1 s 1
— 14 =) -1
dl—l{dl (+Cl>]

We select d; = (1 + C%)RC’ , and therefore

S
d—1\"! ’

and (4) still holds for n + 1. Thus, by induction, (4) holds for
all n. [|

Remark: Since fj; is an exponential function of the load
RLCI of link [at time ¢, we can call ;; the exponential load
of link [at time ¢. It is monotonic, and the value is O (resp. 1)
when the load is O (resp. 1).

We now establish the competitive ratio of Algorithm 1.

Theorem 1: Let Cip := min Cy, dpyin := (1+1/Clyin) FCmin,
and L be the longest path between a source node and a
destination node, that is, all valid schedules have |k| < L, for
all m € M,k € V(m). Algorithm 1 produces solutions that
satisfy all constraints in Schedule(R) and Dual. Moreover,
Algorithm 1 is (R,1 + ﬁ)-competitive, which converges
to (R, 1+ eR—El)—competitive, as Cin — 00.

Bieln+1] =

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

Proof: First, we show that the dual solutions {«;,} and
{ Bt} satisfy constraints (3b) to (3d). Initially, we have (;; = 0.
By Lemma 2, §;; > 0 holds. Since step 6 is only used when
Z(l,t)ek* Gt < 1, iy > 0 holds. From step 4 and 6, we know
that com +3 2 pyer Bit = (L=22 0 er Pie) + 2 pyer Ot = 1.
Thus (3b) to (3d) hold.

Next, we show {X,,x} satisfies constraints (2b) to (2d).
By step 4, the algorithm picks at most one schedule k* for
packet m, constraint (2b) holds. With Lemma 2, 5, = 1
when RC; packets use link [at time ¢. Since a valid schedule
including (I,¢) will be chosen for packet m only when
> pyexs Bu <1, all ({,¢) in the chosen valid schedule must
have ;; < 1, and therefore the number of packets transmitted
over link [at time ¢ must be less than RCj. Thus, at any time
t, there are at most RC packets using link /. Constraint (2c)
holds. By initialization and step 8, constraint (2d) holds.

We derive the ratio between) c,, + Z(l}t) C)3;; and
ka Xk Initially, both are equal to 0. We consider the
increasing amount for both when a new packet m arrives at the
network. We use AP(R) to denote the change of), X,
and AD to denote the change of > = oy, + Z(H) C10.

If packet m is dropped, both AP(R) and AD are 0. If
packet m is accepted and transmitted using valid schedule £*,
we have X5~ = 1. Thus, AP(R) = 1. On the other hand,
AD is increased as:

AD = Aam+ Y CiABy

(I,t)ek*
1
=1- 3 B+ > But——r)
i i (di —1)Cy
(Lt)ek (Lt)ek
1 L

=1+ Y <1+

(1,t)ek* (dr — 1) nin — 1

Therefore, for each packet arrival, the ratio between A D and
AP(R)is no larger than 1+ - if AD > 0. When the algo-

. . m Om+> C1Bu
rithm terminates, we have ==)((”"; <144 L
o Xm min
F(Jp! L L
By Lemma 1, % <1+ e and the competitive

ratio of Algorithm 1 is (R, 1 + ﬁ) When Chin — 00,
dmin = (1 + ﬁ)RCm‘“ — ef, and the competitive ratio of
Algorithm 1 converges to (R, 1+ —£). [|

There are several important implications of Theorem 1.
First, without increasing capacity, that is, when R = 1, the
competitive ratio of our policy is (1, O(L)). In comparison,
the MKS policy proposed by Mao et al. [2] focuses on
the special case of R = 1 and has a competitive ratio of
(1,0(Llog L)). Therefore, our algorithm is asymptotically
better than the MKS online algorithm. Second, this theorem
allows us to quantify the amount of capacity needed to a cer-
tain performance guarantee. For the PD algorithm to guarantee
to deliver at least 1 —% as many packets as the optimal solution,
Theorem 1 states that we only need to increase all link capac-
ities by Ry times such that 1+ eReLi <1/(1-3) =145
Therefore, we have Rg =1In (L(# — 1)+ 1) < In L+In#. For
example, if we are required to use PD to deliver 99% of the
packets and the longest path consists of 10 hops, then we need
to increase link capacities by 6.9 times.

1263

1 level 20 Tevel Do @

)
—
@
<
@

:
ik

Network topology for lower bound analysis.

OG-0 O 00
7O~ 0 0O O ¢

55 - O ¢
o

Fig. 2.

V. A THEORETICAL LOWER BOUND FOR
COMPETITIVE RATIO

In Section IV, we showed that our PD policy is (R, 1 +
ﬁ)-competitive. In this section, we will establish a lower
bound for the competitive ratio of online policies.

Theorem 2: Any online algorithm cannot be better than
(R, 1+ (Lif)%)-competitive.

Proof: We design a network as shown in Fig 2. We start to
construct the network from an up-link tree, which is shown as
the white nodes in Fig 2. Root is marked as node D and it is
the destination of all packets. There are N levels of non-root
nodes with /N nodes in each level. Each node is connected to
one node in the next level. Nodes do not share parent except
the N-th level nodes share the same root node. At the j-th
level, where 1 < 5 < N, there are (N ﬁﬁ) extra nodes,
which is shown as the black nodes in Fig 2, with each node
connecting to an unique set of /N+1— 7 nodes in this level. For
example, there is one black node connected to all white nodes
in level 1, and there are N black nodes connected to white
nodes in level 2, where each of these black nodes is connected
all but one white nodes in level 2. Likewise, there are (NAi 5)
black nodes connected to white nodes in level 3, with each
black node connected to N — 2 white nodes in level 3, and
no two black nodes are connected to the same subset of white
nodes.

Next, we describe packet arrivals. Packets only arrive at
black nodes. Of all black nodes connected to the same level
of white nodes, only one black node has packet arrival. Let
W; be the set of white nodes in j-th level which connects
to the black node with packet arrivals. The black nodes with
packet arrivals are chosen such that all nodes in W, are
connected to those in W;. Fig 3 is a simplified network of
Fig 2, where we omit the black nodes with no packet arrival
and marked each black node with a number from 1 to V.

Packets arrive at nodes 1,2,..., N. Their destination is
node D. Each link in the network has capacity C. At the
beginning of time slot 1, there are C' packets arriving at node 1.
Node 1 is connected to N links: l11, l12, -+, lin. At the
beginning of time slot 2, there are C' packets arriving at node 2.
Node 2 is connected to N — 1 links: l21, l22, -+, lo(nv—1)-
Similarly for nodes 3, 4, ---. At the beginning of time IV,

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

1264

Fig. 3. Simplified network topology for lower bound analysis.

there are C' packets arriving at node N. The deadline of all
packets is N 4+ 1. Node N is connected only to link .

When one knows which black nodes have packet arrivals,
the offline optimal algorithm is to transmit the first C' packets
through link /;; and the following links, the second C' packets
through link /5, and the following links, ..., and the N-th C'
packets through link /7 and the following link. The total
number of delivered packets is NC.

Next we consider the online algorithm when all links’
capacity is increased by R times. Since online policies do not
know which black nodes will have packet arrivals, the opti-
mal online policy is to distribute packets evenly among all
connected links. That is, at time 1, each of links ly;, 1 =
1,2,---, N, transmit C'//N packets. At time 2, each of link
log, @ = 1,2,--- (N — 1), transmits C/(N — 1) packets.
At time K, link lg;, ¢ = 1,2,--- ,(N — K + 1), transmits
C'/(N — K +1) packets. For simplicity, we call the routes from
node 1 to node D through [y; route r;. If all packets arrive at
node K are accepted, routes r;, ¢ = K, K + 1,---, N have
the same load on each link. When any link on a single route
reaches its capacity, the route cannot be used for future arrival
packets. Suppose the route gets over-loaded at time K +1, that
is, packets arrive at node K are accepted and packets arrive
at node K + 1 are not fully accepted. The maximum load of a

single link on route rN is at mostc—i—N T+t v ?{4—1
and at least & ~ T N 7t + N— We then have:

1 1 1
Rty at Ty K+1) RC,
and

1 1 1 1
C(N+—N—1+—N—2+ +N—K)*RC'
Since
/NJrl ldx<(—+;+ ! + :)
and
/N d>(1+1+1++1)
vk T NT N1 TN 2 N_K
We have:

N+1

log(N +1) —log(N — K +1)=log ———

og(N + 1) — log(tlh)=log ooy < B

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

and
1(N)1(NK1)17N >R
o) — lo - — = 10 .
g g N K —1
Then we can derive the value of K as: N — -5 —1 < K <
N+1-X +1 . The total number of accepted packets is in the

range ((N - eﬂR 1HC,(Affl)C).
Thus the competitive ratio of an online policy is at best
(R, N+2+N—§1) In Fig. 2, the longest path in the network is

between the leftmost black node and the sink, which has length
L = N + 1. The competitive ratio can then be rewritten as
(R + 525—). n

Let us once again consider the scenario Where online
policies need to guarantee to deliver at least 1 — 5 as many
packets as the optimal solution. Theorem 2 states that any
online policy needs to increasg its link capacities by at least
Ry times so that 1 + (LJLFI)Q% < 1+ 5. Solving this
equation, we have Ry needs to be at least In L +1n 6 —In(L +
260 — 1). In comparison, our policy only needs to increase
link capacities by (In L + In#) times to ensure the delivery
of 1 — % as many packets as the optimal solution. Therefore,
the capacity requirement of our policy is at most In(L+26—1)
away from the lower bound. Suppose we fix the ratio between
L and 6, and let them both go to infinity, then we have
(InL+4+mf)/InL+1nd —In(L + 20 — 1)) — 2. Therefore,
when both L and 6 are large, our policy at most requires twice
as much capacity as the theoretical lower bound.

VI. AN ORDER-OPTIMAL ONLINE POLICY WHEN R =1

We have shown that our PD algorithm is (R,1 +
ﬁ)—competitive. Without increasing link capacity, i.e,
when R = 1, the algorithm is (1,1 + e_%)-competitive, as
Chnin — 00. While the competitive ratio of our PD algorithm
is an order better than the MKS algorithm [2], it still fails
to achieve the theoretical bound of (1, O(log L))-competitive.
In this section, we propose another online algorithm and prove

that it achieves the theoretical bound when R = 1.

A. Algorithm Description

Similar to the design of Algorithm 1, we aim to design
an algorithm that constructs { X, }, {am }, {81t} while ensur-
ing they satisfy all constraints in Schedule and Dual. The
algorithm is described in Algorithm 3. One can see that
Algorithm 3 is very similar to Algorithm 1, and their only
difference lies in the update rules for ;. Recall that §j;[n] is
the value of 3;; when link [serves a total number of n packets
at time ¢. Define 3(z) as

e’ —1
—eL ifr< ;
B(a) = Llemtii-1) wia)
e(zfl)(lnLJrl)7 if x> T L+1
Then Algorithm 3 chooses the value of [i[n] as

Blf[] B(RC,)

To illustrate the difference in 3;;, we plot the values of 3;;[n]
for a link with C; = 1000 under the two policies in Fig. 4,
where we consider the two cases L. = 8 and L = 64 for
Algorithm 3. As can be shown in the figure, when n is small,

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

. PD
0.9 f- - PDSS, L =38 /A
——PDSS, L =64 ot

400 600 800
Number of packets scheduled n

0 200 1000

Fig. 4. Values of (3;[n] under different policies.

Algorithm 3 PDSS: Primal Dual With Slow Start

1: Initially, o, < 0, B < 0, X < 0.
2: for each arriving packet m do
3 kY argming) 4y, Bue

4 if Z(H)E,ﬁ* B < 1 then
5: o — (1 =32 per= Bit)
6: for each (I,¢) € k* do
7: if total number of packets n at time ¢ on link [: n <
lnRLC-:-l then .
8: By — ——F—— (R — 1),
L(eWIFT —1)
9: else
o By — (e D L+1)
11: end if
12: end for
13: Xongr — 1.
14 Transmit packet m using valid schedule £*.
15: else
16: Drop packet m.
17: end if
18: end for

Algorithm 3 increases the value of (3;; much more slowly
than Algorithm 1 does. Moreover, Algorithm 3 increases [,
slower when L is larger. Based on this observation, we call
Algorithm 3 “PD With Slow Start (PDSS)”. Recall that both
Algorithm 1 and Algorithm 3 only schedule a packet when
ming E(l,t)ek Gt < 1. By increasing (3;; slower when n is
small, Algorithm 3 ensures that more packets with long routes
can be accepted, especially when the network is lightly loaded.

B. Competitive Ratio Analysis

We now prove that Algorithm 3 achieves the theoretical
bound in [2] by being (1, O(log L))-competitive.

Lemma 3: Let Cyyy := min Cy. In Algorithm 3, each time
a new packet is scheduled, the ratio between the change of
Schedule and Dual is bounded by 2(In L + 1) + z, where
the value of B is independent of Ciyp.

1265

Proof: If a new packet is admitted to the network,
the increasing amount of Dual is

AD = Aa,, + Z CiABy

(Lt)ek>
=1+ Y (CiABu — Bu)
(I,t)Ek*
Using Taylor Sequence, we then have
n+1 n
ABuln) : @t[n + 1] - @t[n] = 5(=)= B(F)
l 1

for some bounded constant € < 00, where B and (" are
the first and second derivative of (3, respectively. We note
that the function 3(x) is continuous for all x, and infinitely
differentiable for all = except at the point xy := ﬁ
At the point xo, we define ['(z¢) = lim,, B'(x) and
B’ (xg) = lim,, ¢ ¢ (z). This ensures that the above
inequality still holds.

By (5) we know that n <y

if and only if Gj[n] < %

x

L+1

If 1 = & < 77, then ﬁ() =pB"(x) = 7“91“%_1)'
We have:

Ci(&e@) 4 e(F)2e%) — (%1 — 1)
CiABin] — Bi[n] < = L

L(elnL+1 — 1)
1+ ec%ea
o L(l + 1nL1+1 - 1)
InL+1 1

< —(1 —
<—7 (1+ G e)
Let B; = eelnLTH, then
InL+1 1
Biln] <

CiABy[n] — T+ Big—.

(6)

n 1
when [} S InL+1°

On the other hand, If z = g > lnL+1’ then ('(z) =
(InL+1)B(x) and f"(x) = (lnL—|—1) B(x). We have:

1nL—|—1

——Buln] + «()?Bue]

+ CileanL n 1) Buln]

- Bu [n]

Let By = ¢(In L + 1)?, then

CiABR[n] — Bie[n] < (InL + Bs

VBulnl, @)
when é'_)l 2 InL+1 L+1

If packet m is transmitted using valid schedule k£*, we have

Xk = 1. Thus, AP = 1. On the other hand, AD is
increased as:
AD =1+ Z CiAB — Bue
(Lt):(L,t)Ek*
<1+ Z CiABw — B

(L) (Lt)yek*,Bi: < +

+ > CiABr — Bu

(Lt):(Lt) ek B> L

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

1266

From (6) and (7) we have:

InL+1 1
AD <1+ > (g +Big)
(Lt):(Lt) ek B <+
1
+ Z (InL + BQ@)BH)

(Lt):(Lt)Ek* B> L

From Algorithm 3 step 4 we know that > 5, < 1, thus we
have

L 1
AD <14+ (InL+1+4 By)+ (InL+ By)
min Cmin
B, L+ B
— 242l 2T
C(min
and the proof is complete. [|

Theorem 3: Algorithm 3 produces solutions that satisfy all
constraints in Schedule and Dual. Moreover, it is (1,2(1 +
In L))-competitive, as Cyin — 00.

Proof: We use the same approach as in the proof of
Theorem 1 to establish that all constraints are satisfied in
Schedule and Dual. First, we show that the dual solutions
{am} and {0} satisfy constraints (3b) to (3d). Initially,
we have G;; = 0. By (5), £z > 0 holds. Since step 5 is only
used when Z(l,t)ek* Ot < 1, au, > 0 holds. From step 3 and
5, we know that o, + E(H)Ek’ B > (1 — E(l,t)ek Bit) +
Z(z,t)ek 0B = 1. Thus (3b) to (3d) hold.

Next, we show {X,,;} satisfies constraints (1b) to (1d).
By step 3, the algorithm picks at most one schedule k* for
packet m, constraint (1b) holds. With (5), when the number
of packets on link [at ¢ is Cj, we have §;; = 1. Also, since a
packet is scheduled if Z(l,t)ek* G < 1, we have §;; < 1 for
all (I,t) € k*. Therefore, the number of packets transmitted
on link [at any time ¢ is at most C;. Constraint (1c) holds.
By initialization and step 13, constraint (1d) holds.

When a new packet m arrives, it will either be
dropped or scheduled. If it is dropped, both AP and AD
are 0. If it is scheduled, both (3a) and (la) increase. With
Lemma 3, the ratio between AP and AD is bounded
by 2(1 + InL) + %. Therefore the competitive ratio of
Algorithm 3 is (1,2(1+In L) + &) — (1,2(1 +In L)), as
Chyin — 00. |

Thus, comparing with the result in [2], Algorithm 3 achieves
the optimal competitive ratio when R = 1.

Remark: Applying the above proof to a general R > 1 leads
to trivial results. However, PDSS performs very well when
R > 1 as suggested by Section VIII.

VII. A DISTRIBUTED PROTOCOL FOR IMPLEMENTATION

The two algorithms that we have proposed so far are both
centralized algorithms. Specifically, when a packet arrives at
a node, the node needs to have complete knowledge of all
exponential loads [, of all links to find a valid schedule.
These algorithms are applicable in software defined net-
works (SDN) where there is a centralized controller. However,
in other systems, it is preferable to have distributed algorithms
which do not require always up-to-date global information.
In this section, we propose a distributed protocol called

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

PDD (Primal Dual Distributed) based on the design of PD
in Algorithm 1. Note that we cannot directly employ the
distributed method by Kuhn ef al. [32] since we aim to design
online algorithms without knowledge of future information.

In our distributed protocol, the task of transmitting a packet
to its destination is decomposed into two parts: First, when
a packet arrives at its source node, the node determines a
suggested schedule based on past system history. This sug-
gested schedule consists of the route for forwarding the packet,
as well as a local deadline for each link. After determining
the suggested schedule, the node simply forwards it to the
first link of the route. On the other hand, when a link receives
a packet along with a suggested schedule, the link tries to
forward the packet to the next link in the suggested schedule
by its local deadline. The link drops the packet when it cannot
forward the packet in time.

To facilitate this protocol, each link keeps track of its own
exponential load (3;;, which reflects the number of packets that
have been scheduled to be transmitted over link [at time t.
The value of §;; changes over time, and is updated when more
packets are scheduled to transmit over link [at time ¢. Link
I, more specifically the start node of link [, broadcasts the
exponential load of its own and others which it has received
periodically so that all nodes can learn the values of 3 for all
links. Broadcasts occur infrequently to minimize its overhead
on network bandwidth. We also do not need to broadcast [
for time ¢ that is before the current broadcast time.

We now describe how a node s,, determines a suggested
schedule upon the exogenous arrival of a packet m at time
t, := a,,. Let t, be the last broadcast time. We use Blt to
denote the latest values of (3;; that node s,, has received
for all [€ L,t > tp. Recall that in the PD Algorithm,
the node would like to find a valid schedule that minimizes
> (tyex B In distributed networks, the node only knows
the exact values of (j; for links that are incident to the
node. However, it receives Blt for all other links. In our
protocol, the node treats the time in broadcasted exponential
load relatively. It assumes that the values of 3, starting from
t = t, for some other link [are the same as (3, starting from
t = t, respectively, that is By = 51 4—t,+4,, Vt > t,. It then
finds a valid schedule k£* that minimizes Z(l,t)e i Bi¢- Similar
to the original PD algorithm, the node drops the packet if
Dpyers B = LI 30) cpe B < 1, then the node puts
information of £* into the header of the packet, and forwards
the packet to the first link in £*. Algorithm 4 summarizes the
steps of schedule suggestion for each packet at its source node.
To solve the optimization problem in line 7, we use dynamic
programming similar to Algorithm 2. The difference is that
when multiple schedules achieves the optimum, we choose
one of them to be £* uniformly at random.

Since the actual values of (3;; can be different from those
last broadcasted, there is no guarantee that a packet can
be delivered in time using the valid schedule £* even if
> (tyek- Bu < 1. Therefore, when a node determines a valid
schedule £* for a packet, the valid schedule k* is treated only
as a suggestion for links in £*. Specifically, if k£* contains an
entry (I*,t*), then the link [* interprets k* as a requirement
that [* needs to forward the packet to the next link by

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

Algorithm 4 PDD: Schedule Suggestion at Source Nodes
1: for each arriving packet m do
20ty am
3: t, « last broadcast time
4 Blt «— last broadcasted exponential load
5. (i < most up-to-update values, Vt > t,,1: sy, €1

6 B — Bli—totte, Vt > ta, L2 S &1

7.

8

9

{packet arrival time}

k* — argming Y- 4 cx B {suggested schedule}
if E(l,t)ek* By < 1 then
: Put k£* in the header of packet m.
10: Forward the packet to the first link in £*.
11: else
12: Drop packet m.
13: end if

14: end for

t*, or drops the packet. When [* obtains the packet, it still has
the freedom to choose when to forward the packet, as long as
the packet is forwarded by the time t*.

Next, we discuss how each link determines the actual time
to transmit each packet. Obviously, each link [* knows its
own (3;«;. From the design of PD, we can see that PD prefers
to transmit packets when (;; is small. Our proposed policy
is based on this principle. When a link [* receives a packet,
it finds the entry (I*,¢*) from the valid schedule k* specified
in the header of the packet. Link [* then finds a time ¢
between the current time and t* that has the smallest 5+,
and transmits the packet at time 5. Algorithm 5 summarizes
the policy for packet transmission on each link.

Algorithm 5 PDD: Packet Transmission on Each Link

1: for each incoming packet m on link [* do
2: k™ < suggested schedule in the packet header

3: t* « t such that (I*,t) € k* {local deadline}
4: tg < current time

50t «— argming <¢<s G+t

6: if B« ¢ < 1 then

7: ﬁl*m — ﬁl*,m (1 + CLI*) + m

8: Transmit packet m on link [* at time t;.

9: else

10: Drop packet m.

11: end if

12: end for

VIII. SIMULATIONS

In this section, we evaluate the performance of our policies
by simulations. We compare our policies with the EDF policy
and the MKS policy [2]. Both EDF and MKS focus on packet
scheduling, and are applicable only when the route of the
packet is given. For these two policies, we assume that each
packet is routed through the shortest path.

We consider the combinations of two network topologies,
two link capacity settings, and two traffic patterns in our
simulations. This gives us eight combinations in total. We first

1267

Fig. 5. Network topologies in simulations. (a) A small network. (b) A 5 x 5
grid network.

introduce the two network topologies. The first one is a small
network as shown in Fig. 5a. The network has 9 nodes from
node 1 to node 9. Neighboring nodes have bidirectional links
between them, and each pair of nodes can communicate within
two hops. This topology can be useful in smart home envi-
ronment where all wireless devices can talk to a central hub
(Node 5), and nearby wireless devices can also communicate
directly. The second one is a 5 x 5 grid network which is
also used by [2]. Fig. 5b depicts the grid network. There are
80 directional links in this network. The longest path between
all pairs of nodes has a length of 24.

Given a network topology, we consider two link capacity
settings. One is “homogeneous link capacity”, where each link
in the network has a capacity of two units when R = 1.
The other is “heterogeneous link capacities”, where we choose
the link capacities to be integers uniformly at random from
1to3 when R=1.

Given a network topology and link capacity setting, we
consider two traffic patterns. The first one corresponds to
light traffic. The inter-arrival time between packets are chosen
to be 0 with probability 0.95 and 1 with probability 0.05.
On average, there are about 19.8 packets arriving in each
slot. The second pattern has heavy traffic. At the beginning
of each time slot, the number of packets arriving the system
is chosen uniformly at random from 100 to 200. For both
traffic patterns, there are 10* packets arriving at the system.

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

1268 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019
1 g 9 2
0.9 ﬁf 1
0.8 J
9 .9
8 8
0.7 B >
[[
=2 2
© ©
(=] o
0.6 J
——PD
—©—-PDSS|
0.5 = —A—PDD |1
——EDF
MKS
04 1 1 1 1
1 2 3 4 5 6
R
(a)
1 —— A 1
0.9
0.9 1
0.8
0.8 7 0.7
he] he]
S T06
0.7 1 >
2 205
© ©
a a
0.6 1 0.4
——PD
—©—-PDSS 0.3
0.5 —A—PDD |q
——EDF 0.2
MKS ‘
0.4 Il Il Il Il 0.1 Il Il Il Il
1 2 3 4 5 6 1 2 3 4 5 6
R R
© (d
Fig. 6. Delivery ratio comparison for the small network. (a) Homogeneous link capacity, light traffic. (b) Homogeneous link capacity, heavy traffic.

(c) Heterogeneous link capacities, light traffic. (d) Heterogeneous link capacities, heavy traffic.

The source nodes and destination nodes are both chosen from
all nodes in the network with equal probability, and for each
packet the destination node is not allowed to be the same
as the source node. We choose the relative deadline of each
packet, the time between its arrival and deadline, to be an
integer uniformly at random from 2 to 6 for the small network
and from 2 to 10 for the 5 x 5 grid network. Simulations
end after the expiry of all packets. The average simulation
duration varies from 73 slots (small network, heavy traffic)
to 506 slots (5 x 5 grid network, light traffic). We let PDD
broadcast exponential load values every 10 slots so that there
are at least seven broadcast cycles in a typical simulation.
Since the heterogeneous link capacities and packet arrivals
are generated randomly, we report the average performance
of each algorithm over 100 runs given a particular combi-
nation of network topology, link capacity setting, and traffic
pattern.* We measure the performance of an algorithm by its

“Due to excessive memory usage and running time, we report the perfor-
mance of MKS based on the first 103 packets of each packet arrival sequence.

delivery ratio. Fig. 6 and Fig. 7 compare the delivery ratios
of different algorithms against different values of R for each
of the eight combinations of network topology, link capacity
setting, and traffic pattern respectively. We can see that our PD
and PDSS algorithms outperform the two baseline algorithms
in all figures. PD and PDSS typically have similar performance
and in some cases PDSS is slightly better. Our distributed
algorithm PDD is better than the two baseline algorithms in
most cases, and the gap is larger under heavy traffic. When R
is small, PDD can be slightly worse than EDF but is still much
better than MKS. We also note that both baseline policies are
centralized policies, while PDD is a distributed protocol. MKS
performs poorly in our simulations because the condition in
Theorem 3 in [2] is not met and the control parameter . therein
is not fine tuned.

By comparing these figures, we can also observe that
generally the performance under light traffic is better than that
under heavy traffic, and the performance under homogeneous
link capacity is better than that under heterogeneous link
capacities. These results confirm the intuition that heavy

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

085 o % @ &
0.8t ,
0.75i 1
0.7 f 1
2
T 0.65 1
>
2 06¢f 1
[
a
0.55 ,
——PD
05t —6-PDSS
—A—PDD
0.45 ——EDF |
MKS
0.4 ‘ L L L 1
1 2 3 4 5 6
R
(@)
0.85 . Py Y
0.8 ,
0.75 ,
0.7 ,
o
T 065 .
>
2 06 1
[
a
0.55 ,
——PD
0.5 —6-PDSS
—A—PDD
0.45 ——EDF |
MKS
04 ‘ ‘ ‘ ‘
1 2 3 4 5 6
R

Fig. 7.

1269

0.9

o
3

I
o

I
3

Delivery ratio

e
IS

o
w

0.2

0.1

0.9

o
]

I
o

Delivery ratio
o
(6,]

o
»

()

Delivery ratio comparison for the 5 x 5 grid network. (a) Homogeneous link capacity, light traffic. (b) Homogeneous link capacity, heavy traffic.

(c) Heterogeneous link capacities, light traffic. (d) Heterogeneous link capacities, heavy traffic.

1

-Tb=10
-Tb=30 =
0.8 - i
|:|Tb=50
206 1
Y
>
9] _
=2
© 04 r 1
a
0.2 1 i
0 = |
1 2 3 4 5 6
R
Fig. 8. Delivery ratio comparison of different PDD broadcast periods 7.

As an example, T}, = 10 means PDD broadcasts every 10 slots.

traffic and heterogeneous link capacities degrade the network
performance. Besides, note that in the small network, the best
algorithms can deliver almost all packets with large capacity
redundancy R, while in the larger 5 x 5 grid network, the

performance saturates at a delivery ratio of over 80%. The
reason is that the relative deadline can be smaller than the
distance between the source and the destination in the 5 x 5
grid network, making it impossible to deliver some packets in
time.

Furthermore, we focus on PDD and study the impact
of broadcast frequency over its delivery ratio performance.
Fig. 8 shows the simulation results with the small network,
homogeneous link capacity, and heavy traffic, where we report
the average performance of PDD over 100 runs for each R
and broadcast period 7. We can observe the performance
degradation with infrequent broadcasts (i.e. large broadcast
period Tjp). However, the degradation is not significant and
becomes negligible when R is large.

IX. CONCLUSION

In this paper, we have presented our study on online
routing and scheduling with capacity redundancy for timely
delivery guarantees in multihop networks. We have answered
the question that how much capacity redundancy is needed
for online algorithms to guarantee certain timely delivery
requirements. We have proposed an online algorithm PD for
routing and scheduling as packets arrive in the network.

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

1270

The algorithm is proved to be (R,1 + eR—El)—competitive,
where L is the length of the longest path. We have also showed
that the complexity of PD is O(ET'), where E is the total
number of links and 7' is the maximum relative deadline.
Next, we have showed that any online algorithm cannot be

better than (R,1 + (Lf_l_)%)-competitive. When both L

and the required deliver ratio are large, our PD algorithm
requires at most twice as much capacity as the lower bound.
In addition, we have proposed another online algorithm PDSS,
which is proved to be (1,0(log L))-competitive, and thus
order optimal when R = 1. Furthermore, we have proposed a
heuristic distributed algorithm PDD that only requires infre-
quent broadcast of load information. Simulation results have
demonstrated that our algorithms outperform EDF and MKS
scheduling algorithms with shortest path routing in various
network settings.

There remain many interesting open problems for future
research. The PDSS algorithm is proved to be order optimal
only when R = 1. However, simulation results suggest that
PDSS still performs very well when R > 1. It would be
interesting to study online algorithms that are order optimal for
all R. It is also of great interest to study the competitiveness
of distributed algorithms.

REFERENCES

[1] H. Deng and I.-H. Hou, “On the capacity requirement for arbitrary end-
to-end deadline and reliability guarantees in multi-hop networks,” in
Proc. ACM SIGMETRICS, Jun. 2017, pp. 15-16.

[2] Z. Mao, C. E. Koksal, and N. B. Shroff, “Optimal Online scheduling

with arbitrary hard deadlines in multihop communication networks,”

IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 177-189, Feb. 2016.

N. Buchbinder and J. S. Naor, “The design of competitive Online

algorithms via a primal—-dual approach,” Found. Trends Theor. Comput.

Sci., vol. 3, nos. 2-3, pp. 93-263, May 2009.

[4] C.L.Liuand J. W. Layland, “Scheduling algorithms for multiprogram-

ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 4661,

Jan. 1973.

S. Baruah er al., “On the competitiveness of on-line real-time

task scheduling,” in Proc. 12th Real-Time Syst. Symp., Dec. 1991,

pp. 106-115.

[6] S. A. Goldman, J. Parwatikar, and S. Suri, “Online scheduling with hard
deadlines,” J. Algorithms, vol. 34, no. 2, pp. 370-389, Feb. 2000.

[7] M. H. Goldwasser and B. Kerbikov, “Admission control with immediate
notification,” J. Scheduling, vol. 6, no. 3, pp. 269-285, May 2003.

[8] M. H. Goldwasser, “Patience is a virtue: The effect of slack on
competitiveness for admission control,” J. Scheduling, vol. 6, no. 2,
pp. 183-211, Mar. 2003.

[9] M. H. Goldwasser and M. Pedigo, “Online, non-preemptive scheduling
of equal-length jobs on two identical machines,” ACM Trans. Algorithms,
vol. 5, no. 1, pp. 2:1-2:18, Dec. 2008.

[10] J. Ding and G. Zhang, Online Scheduling with Hard Deadlines Parallel
Machines. Berlin, Germany: Springer, 2006, pp. 32-42.

[11] J. Ding, T. Ebenlendr, J. Sgall, and G. Zhang, Online Scheduling
Equal-Length Jobs Parallel Machines. Berlin, Germany: Springer, 2007,
pp. 427-438.

[12] T. Ebenlendr and J. Sgall, “A lower bound for scheduling of unit jobs
with immediate decision on parallel machines,” in Approximation Online
Algorithms. Berlin, Germany: Springer, 2009, pp. 43-52.

[13] M. Andrews and L. Zhang, “Packet routing with arbitrary end-to-end
delay requirements,” in Proc. 31st Annu. ACM Symp. Theory Comput.
(STOC), 1999, pp. 557-565.

[14] P. P. Bhattacharya, L. Tassiulas, and A. Ephremides, “Optimal schedul-
ing with deadline constraints in tree networks,” IEEE Trans. Autom.
Control, vol. 42, no. 12, pp. 1703-1705, Dec. 1997.

[15] 1. H. Hou, “Packet scheduling for real-time surveillance in multihop
wireless sensor networks with lossy channels,” IEEE Trans. Wireless
Commun., vol. 14, no. 2, pp. 1071-1079, Feb. 2015.

[3

[t}

[5

[t}

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

[16] R.Liand A. Eryilmaz, “Scheduling for end-to-end deadline-constrained
traffic with reliability requirements in multihop networks,” IEEE/ACM
Trans. Netw., vol. 20, no. 5, pp. 1649-1662, Oct. 2012.

[17] R. Singh and P. R. Kumar, “Decentralized throughput maximizing
policies for deadline-constrained wireless networks,” in Proc. IEEE
Conf. Decis. Control (CDC), Dec. 2015, pp. 3759-3766.

[18] R. Singh and P. R. Kumar, “Throughput optimal decentralized schedul-
ing of multihop networks with end-to-end deadline constraints: Unreli-
able links,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 127-142,
Jan. 2019.

[19] H. Li, Y. Cheng, C. Zhou, and W. Zhuang, “Minimizing end-to-end
delay: A novel routing metric for multi-radio wireless mesh networks,”
in Proc. IEEE INFOCOM, Apr. 2009, pp. 46-54.

[20] X. Liu and L. Ying, “Spatial-temporal routing for supporting end-to-
end hard deadlines in multi-hop networks,” in Proc. Annu. Conf. Inf.
Sci. Syst. (CISS), Mar. 2016, pp. 262-267.

[21] Q. Wang, P. Fan, D. O. Wu, and K. B. Letaief, “End-to-end delay
constrained routing and scheduling for wireless sensor networks,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1-5.

[22] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén, “Dynamic routing
on networks with fixed-size buffers,” in Proc. 14th Annu. ACM-SIAM
Symp. Discrete Algorithms (SODA), Jan. 2003, pp. 771-780.

[23] S. Angelov, S. Khanna, and K. Kunal, “The network as a storage device:
Dynamic routing with bounded buffers,” Algorithmica, vol. 55, no. 1,
pp- 71-94, Sep. 2009.

[24] G. Even and M. Medina, “Online packet-routing in grids with bounded
buffers,” Algorithmica, vol. 78, no. 3, pp. 819-868, Jul. 2017.

[25] G. Even, M. Medina, and B. Patt-Shamir, “Better deterministic Online
packet routing on grids,” in Proc. 28th ACM Symp. Parallelism Algo-
rithms Architectures (SPAA), Jun. 2015, pp. 284-293.

[26] V. Rodoplu, S. Vadvalkar, A. A. Gohari, and J. J. Shynk, “Empirical
modeling and estimation of end-to-end VoIP delay over mobile multi-
hop wireless networks,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Dec. 2010, pp. 1-6.

[27] K. Sanada, N. Komuro, and H. Sekiya, “End-to-end throughput and
delay analysis for IEEE 802.11 string topology multi-hop network using
Markov-chain model,” in Proc. IEEE 26th Annu. Int. Symp. Pers., Indoor,
Mobile Radio Commun. (PIMRC), Aug. 2015, pp. 1697-1701.

[28] W. Jiao, M. Sheng, K.-S. Lui, and Y. Shi, “End-to-end delay dis-
tribution analysis for stochastic admission control in multi-hop wire-
less networks,” IEEE Trans. Wireless Commun., vol. 13, no. 3,
pp. 1308-1320, Mar. 2014.

[29] N. Buchbinder and J. Naor, “Improved bounds for Online routing and
packing via a primal-dual approach,” in Proc. 47th Annu. IEEE Symp.
Found. Comput. Sci. (FOCS), Oct. 2006, pp. 293-304.

[30] H. Deng and I.-H. Hou, “Online job allocation with hard allocation ratio
requirement,” in Proc. IEEE INFOCOM, Apr. 2016, pp. 1-9.

[31] H. Deng and I.-H. Hou, “Optimal capacity provisioning for Online job
allocation with hard allocation ratio requirement,” IEEE/ACM Trans.
Netw., vol. 26, no. 2, pp. 724-736, Apr. 2018.

[32] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “The price of being near-
sighted,” in Proc. 17th Annu. ACM-SIAM Symp. Discrete Algorithm
(SODA). Philadelphia, PA, USA, Jan. 2006, pp. 980-989.

Han Deng received the B.S. degree in infor-
mation engineering from the Beijing Institute of
Technology, Beijing, China, in 2009, the M.S.
degree in electrical and computer engineering from
Oakland University, MI, USA, in 2012, and the
Ph.D. degree in computer engineering from Texas
A&M University, in 2017. She is currently a
Post-Doctoral Fellow with the Houston Methodist
Research Institute, Houston, TX, USA. Her research
interests are in optimization and machine learning.

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: ONLINE ROUTING AND SCHEDULING WITH CAPACITY REDUNDANCY

Tao Zhao received the B.Eng. and M.Sc.
degrees from Tsinghua University, Beijing, China,
in 2012 and 2015, respectively. He is currently
pursuing the Ph.D. degree with the Department of
Electrical & Computer Engineering, Texas A&M
University, College Station, TX, USA. His current
research interests include wireless networks, cloud-
based systems, and networked systems. He received
the Best Student Paper Award in WiOpt 2017.

1271

I-Hong Hou (S’10-M’12) received the B.S. degree
in electrical engineering from National Taiwan Uni-
versity in 2004, and the M.S. and Ph.D. degrees
in computer science from the University of Illinois,
Urbana-Champaign, IL, USA, in 2008 and 2011,
respectively.

In 2012, he joined the Department of Electrical
and Computer Engineering, Texas A&M University,
where he is currently an Associate Professor. His
research interests include wireless networks, wire-
less sensor networks, real-time systems, distributed

systems, and vehicular ad hoc networks.

Dr. Hou received the Best Paper Award with ACM MobiHoc 2017, the Best
Student Paper Award in WiOpt 2017, and the C.W. Gear Outstanding Graduate
Student Award from the University of Illinois at Urbana—Champaign.

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2020 at 21:49:36 UTC from IEEE Xplore. Restrictions apply.

