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Online Routing and Scheduling With Capacity

Redundancy for Timely Delivery Guarantees

in Multihop Networks

Han Deng , Tao Zhao , and I-Hong Hou , Member, IEEE

Abstract— It has been shown that it is impossible to achieve
stringent timely delivery guarantees in a large network with-
out having complete information of all future packet arrivals.
In order to maintain desirable performance in the presence of
uncertainty of future, a viable approach is to add redundancy
by increasing link capacities. This paper studies the amount of
capacity needed to provide stringent timely delivery guarantees.
We propose a low-complexity online algorithm and prove that
it only requires a small amount of redundancy to guarantee
the timely delivery of most packets. Furthermore, we show that
in large networks with very high timely delivery requirements,
the redundancy needed by our policy is at most twice as large
as the theoretical lower bound. For practical implementation,
we propose a distributed protocol based on this centralized
policy. Without adding redundancy, we further propose a low-
complexity order-optimal online policy for the network. The
simulation results show that our policies achieve much better
performance than the other state-of-the-art policies.

Index Terms— Competitive ratio, cyber-physical systems,
multihop networks, online algorithms, optimal scheduling.

I. INTRODUCTION

M
ANY emerging safety-critical applications for Internet

of Things and Cyber-Physical Systems require com-

munication protocols that support stringent timely delivery

guarantees for packet transmissions in multihop networks.

In a typical scenario, when sensors detect unusual events that

can cause system instability, they send out this information

to actuators or control centers. This information needs to

be delivered within a strict deadline for actuators or control

centers to resolve the unusual events. The system can suffer

from a critical fault when a small portion of packets fail to be

delivered in time.
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Despite the huge literature on quality of service (QoS),

there is little work that can provide stringent timely delivery

guarantees, especially when packet arrivals are time-varying

and unpredictable. The lack of progress is mainly caused by

two fundamental challenges. On one hand, practical solutions

need to rely on online policies that do not have knowledge

of future packet arrivals and thus often suboptimal compared

to offline policies. On the other hand, in a multihop network,

the scheduling decision of one communication link will impact

the decisions of subsequent links. The negative effects of sub-

optimal decisions by online policies therefore get accumulated

along the path of multihop transmissions. In fact, a recent

work by Mao et al. [2] has proved that the performance of

any online policies deteriorates as the maximum route length

in the network increases. As a result, no online policy can

provide reasonable performance guarantees when the size of

the network is large.

In order to achieve desirable performance using online

policies, a viable approach is to add redundancy into the

system. During system deployment, it is common practice to

provision redundant capacities of communication links. Such

redundancy can alleviate the negative impacts of suboptimal

decisions by online policies. Using this approach, a critical

question is to determine the amount of redundancy needed to

provide the desirable performance guarantees. This paper aims

to answer this question.

We first show that the problem of maximizing the number of

timely packet deliveries can be formulated as a linear program-

ming problem when one knows the complete knowledge of all

future packet arrivals. In the setting of online policies, some of

the parameters of this linear programming problem will only

be revealed when the corresponding packets arrive. Therefore,

online policies need to make routing and scheduling decisions

for packets without knowing all parameters. On the other hand,

we also observe that adding redundancy by increasing link

capacities is equivalent to relaxing a subset of constraints in

the linear programming problem. Based on these observations,

we define a competitive ratio that, given the amount of redun-

dancy, quantifies the relative performance of online policies in

comparison to the optimal offline solution.

Using the primal-dual method [3], we propose an online

policy that achieves good performance in terms of competitive

ratio. This policy has several important features: First, when

there is no redundancy added to the system, the performance of
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our online policy is asymptotically better than that of the recent

work [2] when the size of the network increases. Second,

we also show that only a small amount of redundancy is

needed to achieve strict performance guarantees. Specifically,

in order to guarantee the timely delivery of at least 1 − 1
θ

as many packets as the optimal solution in a network whose

longest path has length L, our policy only needs to increase

link capacities by at most lnL + ln θ times.1 Finally, we also

show that our policy can be implemented with very low

complexity.

Next, we establish a theoretical lower bound of competitive

ratio for all online policies. We show that, in order to guarantee

a certain degree of performance, the redundancy needed by our

policy is only a small amount away from the theoretical limit.

In particular, when both L and θ go to infinity, the redundancy

needed by our policy is at most twice as large as the theoretical

limit.

To address the performance gap between the above online

policy and the theoretical lower bound, we propose another

online policy and prove that it is order optimal in the

case where there is no capacity redundancy in the network.

Specifically, we show that this online policy guarantees to

deliver at least 1
O(log L) as many packets before their deadlines

as the optimal offline solution, where L is the maximum route

length. As Mao et al. [2] has proved no online policy can

deliver more than 1
O(log L) packets without redundancy,2 our

policy is order optimal.

Noting that both the above online policies are centralized

algorithms,3 we also propose a distributed protocol that is

inspired by the design principles of our centralized online

policies. This distributed protocol only requires each node to

broadcast its local load information infrequently, and therefore

it only incurs a small amount of communication overhead.

When a packet arrives at a source node, the source node

determines a suggested route for the packet using its received

load information. Each link on the route makes scheduling

decisions solely based on its local information.

All our three policies are evaluated by simulations, and

compared with the well-known earliest deadline first (EDF)

policy and the online policy proposed by Mao et al. [2], which

will be denoted by MKS afterwards. Simulation results show

that all our policies perform better than the other two policies

in most cases under various system settings.

The rest of the paper is organized as follows. Section II

reviews related work. Section III introduces our system model

and defines the competitive ratio. Section IV proposes our first

online policy and studies its competitive ratio and computation

complexity. Section V establishes a theoretical lower bound

of competitive ratio. Section VI proposes an order-optimal

policy and proves its competitive ratio. Section VII proposes a

distributed protocol based on the intuitions of our centralized

1When the optimal policy delivers all packets in time, θ is the loss frequency,
i.e. the number of packet losses per unit time, under the online policy, and
1− 1

θ
is the delivery ratio, i.e. the percentage of delivered packets among all

packets, of the online policy.
2The original paper contains an error that is fixed in http://newslab.ece.ohio-

state.edu/research/resources/Mao_errata.pdf.
3We use the words “algorithm” and “policy” interchangeably in this paper.

online policies. Section VIII provides simulations on our

proposed policies and compare them with EDF and MKS.

Finally, Section IX concludes this paper.

II. RELATED WORK

Online scheduling in real-time environment has been exten-

sively studied. Studies show that the earliest deadline first

(EDF) algorithm [4] and the least laxity first (LLF) algo-

rithm [5] achieve the same performance as the optimal offline

algorithm in an underloaded uniprocessor system. Considering

overload, Baruah et al. [5] proved that no online algorithm

can guarantee to serve more than 1/4 of the jobs that can

be served by optimal offline algorithm and provided an

algorithm in a uniprocessor system which achieves the 1/4
bound. Goldman et al. [6], Goldwasser and Kerbikov [7],

and Goldwasser [8] considered admission control in online

scheduling. When all jobs have equal length, the best deter-

ministic algorithm is (1 + 1/(�k� + 1))-competitive, where

k ≥ 0 denotes the willingness of a job to endure a delay

before being served.

Besides the uniprocessor case, online scheduling with mul-

tiple servers has also been studied. Goldwasser and Pedigo [9]

studied the scheduling of equal-length jobs on two identi-

cal machines. Ding and Zhang [10], Ding et al. [11], and

Ebenlendr and Sgall [12] studied the case with paral-

lel machines. The scheduler needs to decide whether to

accept or reject a job and which machine is chosen to serve

the job. Ding et al. [11] proposed an algorithm with immediate

decision which has the optimal competitive ratio of 1.8 when

there are two machines and approaches e
e−1 -competitive as the

number of machines increases. Later Ebenlendr and Sgall [12]

showed that e
e−1 is the lower bound of all online algo-

rithms with immediate decision when the number of machines

approaches infinity.

There are also many works studying the scheduling prob-

lem in multihop networks. An early study by Andrews and

Zhang [13] focuses on the problem of packet scheduling with

arbitrary end-to-end delay, fixed route, and known packet

injection rate. It proposed a distributed algorithm which

achieves a certain delay bound. Bhattacharya et al. [14]

studied the scheduling problem on a tree network. Packets

arrive at an arbitrary node and they need to be transmitted

to the root node before the deadlines. Therefore, this is

also a fixed-route problem. The shortest time to extinction

(STE) algorithm was proposed and it is shown to achieve the

performance of the optimal offline policy. Hou [15] proposed

a throughput-optimal policy for up-link tree networks with

end-to-end delay constraints and delivery ratio requirement.

Li and Eryilmaz [16] studied end-to-end deadline constrained

flow scheduling in multihop wired networks. They assumed

stochastic arrival processes and developed algorithms that

exploit the freedom of choosing service disciplines. However,

they only considered the fixed-route model and did not provide

theoretical performance analysis. Singh and Kumar [17], [18]

proposed decentralized scheduling policies which maximize

the timely throughput for multihop wireless networks based

on Markov Decision Process. However, their work consid-

ers average performance guarantees, rather than worst-case
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performance guarantees. Mao et al. [2] considered a fixed-

route online scheduling problem. The network has arbitrary

packet arrival and packets have different weights. The paper

aims to maximize the total cumulative weights of packets

that reach destination before their deadline. The paper proved

that the competitive ratio of any online policy is no better

than O(log L), where L is the maximum route length. It also

proposed an online policy that is O(L log L)-competitive.

Taking online routing into account, Li et al. [19] pro-

posed using expected end-to-end delay for path selection in

wireless mesh networks. Their work aims to minimize the

average end-to-end delay, and cannot provide guarantees on

per-packet delays. Liu and Yang [20] studied the multihop

routing problem with end-to-end hard deadlines. They devel-

oped a distributed routing algorithm called spatial-temporal

backpressure which can support any periodic traffic flows

within the throughput region. Wang et al. [21] studied the

problem of routing and scheduling in multihop wireless sensor

networks to minimize channel usage with the constraint of

end-to-end delay and proposed a sub-optimal algorithm to

the NP-complete problem. Our work will focus on online

routing and scheduling in multihop networks to guarantee

strict timely delivery requirement for any possible sequence

of packet arrivals.

There has been a line of research on online routing in

networks with bounded node buffers. Aiello et al. [22] for-

malized the system model for store-and-forward routers with

limited buffer sizes and analyzed the performance of various

online algorithms. The competitive ratios of online algorithms

have been subsequently improved on uni-directional grid net-

works [23]–[25]. In contrast, our work considers unbounded

buffers and focuses on the requirement of link capacity redun-

dancy to achieve strict timely delivery guarantees in a general

network.

Besides, there are many works characterizing end-to-end

delay in multihop networks. Rodoplu et al. [26] studied

the problem of dynamic estimating end-to-end delay over

multihop mobile wireless networks. Sanada et al. [27] used a

Markov-chain model to study the string topology and analyzed

the end-to-end throughput and delay. Jiao et al. [28] studied

the problem of estimating the end-to-end delay distribution for

general traffic arrival process and Nakagami-m channel model

by analyzing packet delay at each hop. In our model, end-

to-end delay is a hard requirement imposed by each arriving

packet, and a successful delivery must occur within the preset

deadline.

Our analysis follows the primal-dual method illustrated by

Buchbinder and Naor [3]. They have used the method to

study bi-criteria competitive algorithms for online routing [29].

The main difference is that we consider online scheduling

with timely delivery guarantees in addition to online routing.

Besides, we employ a different approach in analyzing the

impact of capacity redundancy, leading to a more flexible

tradeoff between redundancy and quality of service. Our

approach has been successfully applied to online job allocation

problems [30], [31].

Fig. 1. An example network topology.

III. SYSTEM MODEL

We consider a network with multihop transmissions. The

network is represented by a directed graph where each node

represents a router and an edge from one node to another repre-

sents a link between the corresponding routers. Packets arrive

at their respective source nodes following some unknown

sequence. We use M to denote the set of all packets and

L the set of all links. When a packet m ∈ M arrives at its

source node sm at time am, it specifies its destination node δm

and a deadline fm. The packet requests to be delivered to

its destination at or before its specified deadline. Packets that

are not delivered in time do not have any value, and can be

dropped from the network. We aim to deliver as many packets

in time as possible.

We assume that time is slotted and numbered by t =
{1, 2, 3, . . .}. Different links in the network may have different

link capacities, and we denote by Cl the number of packets

that link l can transmit in a time slot. At the beginning of each

time slot, each node decides which packets to transmit over

its links, subject to capacity constraints of the links. Packets

transmitted toward a node in time slot t will be received by

that node at the end of the time slot, so that the node can

transmit these packets to subsequent nodes starting from time

slot t + 1.

Delivering a packet to its destination at or before its deadline

requires determining two things: the route used to forward

the packet from its source to its destination, and the times at

which the packet is transmitted along its route. We define a

valid schedule for each packet m as the collection of links

of a route, as well as the times of transmissions for each of

these links, so that packet m can be delivered to its destination

in time. For example, consider the network shown in Fig. 1.

Suppose a packet arrives at node A at time slot 1, and needs

to be delivered to node F before the end of time slot 3. One

valid schedule for this packet is to transmit it over link d in

time slot 1, and then over link g in time slot 2. We use {(d, 1),

(g, 2)} to represent this valid schedule. Other valid schedules

include {(d, 1), (g, 3)}, {(e, 1), (f, 2), (g, 3)}, etc. On the

other hand, {(d,1), (g,4)} is not a valid schedule because the

packet is delivered to its destination after its deadline at time

slot 3. The schedule {(d,3), (g,2)} is not valid because it would

require node D to transmit the packet over link g at time slot 2

before it receives the packet at time slot 3. For each packet
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m, we let V (m) denote the set of valid schedules for m.

The problem of deciding how to deliver packets in time then

becomes one of choosing valid schedules for packets.

We use Xmk ∈ {0, 1} to indicate whether packet m chooses

valid schedule k ∈ V (m). Xmk = 1 if and only if packet m
is transmitted using valid schedule k. We aim to maximize the

total number of timely deliveries by deciding the values of all

Xmk. Our optimization problem is formally as follows:

Schedule:

max
∑

m∈M
k∈V (m)

Xmk (1a)

s.t.
∑

k∈V (m)

Xmk≤ 1, ∀m ∈ M, (1b)

∑

(l,t)∈k

Xmk≤ Cl, ∀l ∈ L, t ∈ {1, 2, . . .}, (1c)

Xmk≥ 0, ∀m ∈ M, k ∈ V (m). (1d)

As shown in Eq. (1a), the objective is to maximize the total

number of packets that are delivered in time. Eq. (1b) states

that at most one valid schedule can be chosen for each packet.

Eq. (1c) states that each link can transmit at most Cl packets

in any time slot. In practice, Xmk can only be either 0 or 1, but

our problem formulation allows Xmk to be any real number

in [0, 1]. Thus, the optimal solution to Schedule describes an

upper bound on the total number of timely deliveries.

If information of all packets is available when the system

starts, the optimal solution to Schedule can be found by

standard linear programming methods. In practice, however,

packets arrive sequentially, and we need to rely on online

policies that determines the values of Xmk for each arriving

packet m without knowing future packet arrivals. Without the

knowledge of future arrivals, it is obvious that online policies

cannot always achieve the optimal solution to Schedule.

In fact, Mao et al. [2] has shown that, when the maximum

route length between a source node and a destination node is

L, no online policy can guarantee to deliver more than 1
O(log L)

as many packets as the optimal solution. Therefore, when L is

large, the performance of online policies can be unacceptable

for virtually any applications.

In order to achieve good performance for online policies

in the presence of unknown future arrivals, we consider the

scenario where service providers can increase link capacities

by, for example, upgrading network infrastructures. When the

link capacities are increased by R times, link l can transmit

RCl packets in each time slot. With the capacity redundancy,

our problem can be rewritten as follows:

Schedule(R):

max
∑

m∈M
k∈V (m)

Xmk (2a)

s.t.
∑

k∈V (m)

Xmk≤ 1, ∀m ∈ M (2b)

∑

(l,t)∈k

Xmk≤ RCl, ∀l ∈ L, t ∈ {1, 2, . . .} (2c)

Xmk≥ 0, ∀m ∈ M, k ∈ V (m). (2d)

To evaluate the performance of online policies, we define a

competitive ratio that incorporates capacity redundancy:

Definition 1: Given a sequence of packet arrivals, let Γopt

be the optimal value of
∑

mk:k∈V (m) Xmk in Schedule, and

Γη(R) be the number of packets that are delivered under an

online policy η when the link capacities are increased by R
times. The online policy η is said to be (R, ρ)-competitive if

Γopt/Γη(R) ≤ ρ, for any sequence of packet arrivals.

Remark: Although the competitive ratio is defined against

the relaxed problem Schedule, it is also guaranteed against the

original binary linear problem, since Γopt is an upper bound

on the optimal total number of timely deliveries.

IV. AN ONLINE ALGORITHM AND ITS

COMPETITIVE RATIO

A. Algorithm Description

In this section, we propose an online policy based on primal-

dual method [3] and analyze the competitive ratio. We first

note that the dual problem of Schedule is:

Dual:

min
∑

m

αm +
∑

l,t

Clβlt (3a)

s.t. αm +
∑

(l,t)∈k

βlt≥ 1, ∀m ∈ M, k ∈ V (m) (3b)

αm≥ 0, ∀m ∈ M (3c)

βlt≥ 0, ∀l ∈ L, t ∈ {1, 2, . . .}, (3d)

where αm is the Lagrange multiplier corresponding to con-

straint (1b), and βlt is the Lagrange multiplier corresponding

to constraint (1c).

By the Weak Duality Theorem, we have the following

lemma:

Lemma 1: Given any vectors of {αm} and {βlt} that

satisfy the constraints (3b)–(3d), we have
∑

m αm +
∑

(l,t)

Clβlt ≥ Γopt.

Algorithm 1 Primal Dual (PD) Algorithm

1: αm ← 0, βlt ← 0, Xmk ← 0
2: dl ← (1 + 1/Cl)

RCl , ∀l.
3: for each arriving packet m do

4: k∗ ← argmink

∑

(l,t)∈k βlt

5: if
∑

(l,t)∈k∗ βlt < 1 then

6: αm ← 1 −
∑

(l,t)∈k∗ βlt

7: βlt ← βlt

(

1 + 1
Cl

)

+ 1
(dl−1)Cl

, ∀(l, t) ∈ k∗

8: Xmk∗ ← 1
9: Transmit packet m using valid schedule k∗.

10: else

11: Drop packet m.

12: end if

13: end for

We now introduce our online algorithm. Our algorithm

constructs {Xmk}, {αm}, {βlt} simultaneously while ensur-

ing they satisfy all constraints in Schedule(R) and Dual.

As shown in Algorithm 1, initially it sets all αm, βlt, Xmk
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to be 0. When a packet m arrives, the algorithm finds the

valid schedule k∗ that has the smallest
∑

(l,t)∈k βlt among

all k ∈ V (m). Here
∑

(l,t)∈k βlt can be viewed as the total

cost of delivering packet m using the schedule k. If the

optimal cost
∑

(l,t)∈k∗ βlt ≥ 1, then the algorithm drops

packet m. On the other hand, if
∑

(l,t)∈k∗ βlt < 1, packet

m is transmitted using the valid schedule k∗. Our algorithm

then sets Xmk∗ = 1, αm = 1−
∑

(l,t)∈k∗ βlt, and updates βlt

as βlt = βlt(1+ 1
Cl

)+ 1
(dl−1)Cl

for all (l, t) ∈ k∗, where dl is

chosen to be (1 + 1/Cl)
RCl . Note that our algorithm always

produces integer solutions for Xmk.

B. Complexity of the Algorithm

In step 4, the algorithm needs to find the valid schedule

k∗ that minimizes the cost of delivering packet m. We now

show that this step can be completed in polynomial time by

dynamic programming. Before presenting the algorithm, recall

that packet m joins the network at the beginning of time

slot am, and specifies its deadline as the end of time slot

fm. Its source node and destination node are sm and δm,

respectively. Therefore, a valid schedule for m is one that

can deliver a packet from node sm to node δm between time

slots am and fm.

Let Θ(v, τ) be the smallest cost of delivering packet m
among all schedules k ∈ V (m) that can deliver a packet from

node sm to node v between time slots am and τ . Θ(v, τ) = ∞
if there is no schedule that delivers a packet from sm to v
between time slots am and τm. Step 4 of Algorithm 1 is

then equivalent to finding the valid schedule that achieves

Θ(δm, fm). Since packet m arrives at the beginning of time

slot am, or equivalently, at the end of time slot am−1, we set

Θ(sm, am − 1) = 0 and Θ(v, am − 1) = ∞, ∀v 
= sm.

There are only two different ways to deliver a packet to

node v at or before the end of time slot τ : The first is to

deliver the packet to v at or before the end of time slot τ − 1,

in which case the smallest cost is Θ(v, τ − 1). The second

is to deliver the packet to one of v’s neighbors, say, node u,

at or before the end of time slot τ − 1, and then forward the

packet along the link l from u to v at time slot τ . In this

case, the cost of delivering the packet to node v by time τ is

Θ(u, τ − 1) + βlτ . Therefore, we have

Θ(v, τ) = min

{

Θ(v, τ − 1),

Θ(u, τ − 1) + βlτ , ∀l := (u, v) ∈ L.

Based on the above recursive equation, we design

Algorithm 2 to compute the optimal cost Θ(δm, fm) and the

optimal schedule k∗ for each packet m. In the algorithm,

we use S(v, τ) to denote the schedule that achieves Θ(v, τ).
In Algorithm 2, the inequality Θ(u, τ − 1) + βlτ < Θ(v, τ)

is only evaluated once for any link and time slot. Let E := |L|
be the number of links in the network. Let T := maxm(fm −
am+1) be the maximum relative deadline for all packets. Then

the time complexity of both Algorithm 2 and Algorithm 1

is O(ET ).

C. Competitive Ratio Analysis

Before analyzing the performance of Algorithm 1, we first

establish a basic property of βlt.

Algorithm 2 Dynamic Programming

1: for each arriving packet m do

2: Θ(sm, am − 1) ← 0
3: Θ(v, am − 1) ← ∞, ∀v 
= sm

4: S(v, am − 1) ← φ, ∀v
5: for τ = am to fm do

6: for node v do

7: Θ(v, τ) ← Θ(v, τ − 1)
8: S(v, τ) ← S(v, τ − 1)
9: for link l := (u, v) ∈ L do

10: if Θ(u, τ − 1) + βlτ < Θ(v, τ) then

11: Θ(v, τ) ← Θ(u, τ − 1) + βlτ

12: S(v, τ) ← S(u, τ − 1) ∪ {(l, τ)}
13: end if

14: end for

15: end for

16: end for

17: end for

Lemma 2: Let βlt[n] be the value of βlt after n packets are

scheduled to use link l at time t. Then,

βlt[n] =
1

dl − 1

(

d
n

RCl

l − 1
)

. (4)

Proof: First, note that the value of βlt is only changed

when Algorithm 1 uses link l at time t to transmit a packet.

Therefore, the value of βlt only depends on the number of

packets that are scheduled to use link l at time t.
We then prove (4) by induction. Initially, when n = 0,

βlt[0] = 0 = ( 1
dl−1 )(d0

l − 1) and (4) holds.

Suppose (4) holds for the first n packets. When the (n+1)-
th packet is scheduled for link l at time t, we have

βlt[n + 1] = βlt[n]

(

1 +
1

Cl

)

+
1

(dl − 1)Cl

=
1

dl − 1

(

d
n

RCl

l − 1
)

(

1 +
1

Cl

)

+
1

(dl − 1)Cl

=
1

dl − 1

[

d
n

RCl

l

(

1 +
1

Cl

)

− 1

]

We select dl = (1 + 1
Cl

)RCl , and therefore

βlt[n + 1] =
1

dl − 1

(

d
n+1
RCl

l − 1

)

,

and (4) still holds for n + 1. Thus, by induction, (4) holds for

all n.

Remark: Since βlt is an exponential function of the load
n

RCl
of link l at time t, we can call βlt the exponential load

of link l at time t. It is monotonic, and the value is 0 (resp. 1)

when the load is 0 (resp. 1).

We now establish the competitive ratio of Algorithm 1.

Theorem 1: Let Cmin := minCl, dmin := (1+1/Cmin)
RCmin ,

and L be the longest path between a source node and a

destination node, that is, all valid schedules have |k| ≤ L, for

all m ∈ M, k ∈ V (m). Algorithm 1 produces solutions that

satisfy all constraints in Schedule(R) and Dual. Moreover,

Algorithm 1 is (R, 1 + L
dmin−1 )-competitive, which converges

to (R, 1 + L
eR−1 )-competitive, as Cmin → ∞.
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Proof: First, we show that the dual solutions {αm} and

{βlt} satisfy constraints (3b) to (3d). Initially, we have βlt = 0.

By Lemma 2, βlt ≥ 0 holds. Since step 6 is only used when
∑

(l,t)∈k∗ βlt < 1, αm ≥ 0 holds. From step 4 and 6, we know

that αm+
∑

(l,t)∈k βlt ≥ (1−
∑

(l,t)∈k βlt)+
∑

(l,t)∈k βlt = 1.

Thus (3b) to (3d) hold.

Next, we show {Xmk} satisfies constraints (2b) to (2d).

By step 4, the algorithm picks at most one schedule k∗ for

packet m, constraint (2b) holds. With Lemma 2, βlt = 1
when RCl packets use link l at time t. Since a valid schedule

including (l, t) will be chosen for packet m only when
∑

(l,t)∈k∗ βlt < 1, all (l, t) in the chosen valid schedule must

have βlt < 1, and therefore the number of packets transmitted

over link l at time t must be less than RCl. Thus, at any time

t, there are at most RCl packets using link l. Constraint (2c)

holds. By initialization and step 8, constraint (2d) holds.

We derive the ratio between
∑

m αm +
∑

(l,t) Clβlt and
∑

mk Xmk. Initially, both are equal to 0. We consider the

increasing amount for both when a new packet m arrives at the

network. We use ∆P (R) to denote the change of
∑

mk Xmk,

and ∆D to denote the change of
∑

m αm +
∑

(l,t) Clβlt.

If packet m is dropped, both ∆P (R) and ∆D are 0. If

packet m is accepted and transmitted using valid schedule k∗,

we have Xmk∗ = 1. Thus, ∆P (R) = 1. On the other hand,

∆D is increased as:

∆D = ∆αm +
∑

(l,t)∈k∗

Cl∆βlt

= (1 −
∑

(l,t)∈k∗

βlt) +
∑

(l,t)∈k∗

(βlt +
1

(dl − 1)Cl

)

= 1 +
∑

(l,t)∈k∗

1

(dl − 1)
≤ 1 +

L

dmin − 1

Therefore, for each packet arrival, the ratio between ∆D and

∆P (R)is no larger than 1+ L
dmin−1 if ∆D > 0. When the algo-

rithm terminates, we have

�
m

αm+
�

(l,t) Clβlt
�

mk
Xmk

≤ 1 + L
dmin−1 .

By Lemma 1,
Γopt�

mk
Xmk

≤ 1 + L
dmin−1 , and the competitive

ratio of Algorithm 1 is (R, 1 + L
dmin−1 ). When Cmin → ∞,

dmin = (1 + 1
Cmin

)RCmin → eR, and the competitive ratio of

Algorithm 1 converges to (R, 1 + L
eR−1 ).

There are several important implications of Theorem 1.

First, without increasing capacity, that is, when R = 1, the

competitive ratio of our policy is (1, O(L)). In comparison,

the MKS policy proposed by Mao et al. [2] focuses on

the special case of R = 1 and has a competitive ratio of

(1, O(L log L)). Therefore, our algorithm is asymptotically

better than the MKS online algorithm. Second, this theorem

allows us to quantify the amount of capacity needed to a cer-

tain performance guarantee. For the PD algorithm to guarantee

to deliver at least 1− 1
θ

as many packets as the optimal solution,

Theorem 1 states that we only need to increase all link capac-

ities by Rθ times such that 1+ L
eRθ−1

≤ 1/(1− 1
θ
) = 1+ 1

θ−1 .

Therefore, we have Rθ = ln (L(θ − 1) + 1) ≤ lnL+ln θ. For

example, if we are required to use PD to deliver 99% of the

packets and the longest path consists of 10 hops, then we need

to increase link capacities by 6.9 times.

Fig. 2. Network topology for lower bound analysis.

V. A THEORETICAL LOWER BOUND FOR

COMPETITIVE RATIO

In Section IV, we showed that our PD policy is (R, 1 +
L

eR−1
)-competitive. In this section, we will establish a lower

bound for the competitive ratio of online policies.

Theorem 2: Any online algorithm cannot be better than

(R, 1 + L−2eR

(L+1)eR−L
)-competitive.

Proof: We design a network as shown in Fig 2. We start to

construct the network from an up-link tree, which is shown as

the white nodes in Fig 2. Root is marked as node D and it is

the destination of all packets. There are N levels of non-root

nodes with N nodes in each level. Each node is connected to

one node in the next level. Nodes do not share parent except

the N -th level nodes share the same root node. At the j-th

level, where 1 ≤ j ≤ N , there are
(

N
N+1−j

)

extra nodes,

which is shown as the black nodes in Fig 2, with each node

connecting to an unique set of N+1−j nodes in this level. For

example, there is one black node connected to all white nodes

in level 1, and there are N black nodes connected to white

nodes in level 2, where each of these black nodes is connected

all but one white nodes in level 2. Likewise, there are
(

N
N−2

)

black nodes connected to white nodes in level 3, with each

black node connected to N − 2 white nodes in level 3, and

no two black nodes are connected to the same subset of white

nodes.

Next, we describe packet arrivals. Packets only arrive at

black nodes. Of all black nodes connected to the same level

of white nodes, only one black node has packet arrival. Let

Wj be the set of white nodes in j-th level which connects

to the black node with packet arrivals. The black nodes with

packet arrivals are chosen such that all nodes in Wj+1 are

connected to those in Wj . Fig 3 is a simplified network of

Fig 2, where we omit the black nodes with no packet arrival

and marked each black node with a number from 1 to N .

Packets arrive at nodes 1, 2, . . . , N . Their destination is

node D. Each link in the network has capacity C. At the

beginning of time slot 1, there are C packets arriving at node 1.

Node 1 is connected to N links: l11, l12, · · · , l1N . At the

beginning of time slot 2, there are C packets arriving at node 2.

Node 2 is connected to N − 1 links: l21, l22, · · · , l2(N−1).

Similarly for nodes 3, 4, · · · . At the beginning of time N ,
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Fig. 3. Simplified network topology for lower bound analysis.

there are C packets arriving at node N . The deadline of all

packets is N + 1. Node N is connected only to link lN1.

When one knows which black nodes have packet arrivals,

the offline optimal algorithm is to transmit the first C packets

through link l11 and the following links, the second C packets

through link l21 and the following links, . . . , and the N -th C
packets through link lN1 and the following link. The total

number of delivered packets is NC.

Next we consider the online algorithm when all links’

capacity is increased by R times. Since online policies do not

know which black nodes will have packet arrivals, the opti-

mal online policy is to distribute packets evenly among all

connected links. That is, at time 1, each of links l1i, i =
1, 2, · · · , N , transmit C/N packets. At time 2, each of link

l2i, i = 1, 2, · · · , (N − 1), transmits C/(N − 1) packets.

At time K , link lKi, i = 1, 2, · · · , (N − K + 1), transmits

C/(N−K+1) packets. For simplicity, we call the routes from

node 1 to node D through l1i route ri. If all packets arrive at

node K are accepted, routes ri, i = K, K + 1, · · · , N have

the same load on each link. When any link on a single route

reaches its capacity, the route cannot be used for future arrival

packets. Suppose the route gets over-loaded at time K+1, that

is, packets arrive at node K are accepted and packets arrive

at node K +1 are not fully accepted. The maximum load of a

single link on route rN is at most C
N

+ C
N−1 + · · ·+ C

N−K+1

and at least C
N

+ C
N−1 + · · · + C

N−K
. We then have:

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . . +

1

N − K + 1
) ≤ RC,

and

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . . +

1

N − K
) ≥ RC.

Since
∫ N+1

N−K+1

1

x
dx <(

1

N
+

1

N − 1
+

1

N − 2
+ . . . +

1

N − K + 1
),

and
∫ N

N−K−1

1

x
dx > (

1

N
+

1

N − 1
+

1

N − 2
+ . . . +

1

N − K
).

We have:

log(N + 1) − log(N − K + 1) = log
N + 1

N − K + 1
< R,

and

log(N) − log(N − K − 1) = log
N

N − K − 1
> R.

Then we can derive the value of K as: N − N
eR − 1 ≤ K ≤

N + 1− N+1
eR . The total number of accepted packets is in the

range ((N − N
eR − 1)C, (N + 2 − N+1

eR )C).
Thus the competitive ratio of an online policy is at best

(R, N

N+2−N+1

eR

). In Fig. 2, the longest path in the network is

between the leftmost black node and the sink, which has length

L = N + 1. The competitive ratio can then be rewritten as

(R, 1 + L−2eR

(L+1)eR−L
).

Let us once again consider the scenario where online

policies need to guarantee to deliver at least 1 − 1
θ

as many

packets as the optimal solution. Theorem 2 states that any

online policy needs to increase its link capacities by at least

Rθ times so that 1 + L−2eRθ

(L+1)eRθ−L
≤ 1 + 1

θ−1 . Solving this

equation, we have Rθ needs to be at least lnL+ln θ− ln(L+
2θ − 1). In comparison, our policy only needs to increase

link capacities by (lnL + ln θ) times to ensure the delivery

of 1 − 1
θ

as many packets as the optimal solution. Therefore,

the capacity requirement of our policy is at most ln(L+2θ−1)
away from the lower bound. Suppose we fix the ratio between

L and θ, and let them both go to infinity, then we have

(lnL + ln θ)/(ln L + ln θ − ln(L + 2θ − 1)) → 2. Therefore,

when both L and θ are large, our policy at most requires twice

as much capacity as the theoretical lower bound.

VI. AN ORDER-OPTIMAL ONLINE POLICY WHEN R = 1

We have shown that our PD algorithm is (R, 1 +
L

dmin−1 )-competitive. Without increasing link capacity, i.e,

when R = 1, the algorithm is (1, 1 + L
e−1 )-competitive, as

Cmin → ∞. While the competitive ratio of our PD algorithm

is an order better than the MKS algorithm [2], it still fails

to achieve the theoretical bound of (1, O(log L))-competitive.

In this section, we propose another online algorithm and prove

that it achieves the theoretical bound when R = 1.

A. Algorithm Description

Similar to the design of Algorithm 1, we aim to design

an algorithm that constructs {Xmk}, {αm}, {βlt} while ensur-

ing they satisfy all constraints in Schedule and Dual. The

algorithm is described in Algorithm 3. One can see that

Algorithm 3 is very similar to Algorithm 1, and their only

difference lies in the update rules for βlt. Recall that βlt[n] is

the value of βlt when link l serves a total number of n packets

at time t. Define β(x) as

β(x) :=

⎧

⎨

⎩

ex−1

L(e
1

ln L+1 −1)
, if x ≤ 1

ln L+1 ;

e(x−1)(ln L+1), if x ≥ 1
ln L+1 .

(5)

Then Algorithm 3 chooses the value of βlt[n] as

βlt[n] = β( n
RCl

).
To illustrate the difference in βlt, we plot the values of βlt[n]

for a link with Cl = 1000 under the two policies in Fig. 4,

where we consider the two cases L = 8 and L = 64 for

Algorithm 3. As can be shown in the figure, when n is small,
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Fig. 4. Values of βlt[n] under different policies.

Algorithm 3 PDSS: Primal Dual With Slow Start

1: Initially, αm ← 0, βlt ← 0, Xmk ← 0.

2: for each arriving packet m do

3: k∗ ← argmink

∑

(l,t)∈k βlt

4: if
∑

(l,t)∈k∗ βlt < 1 then

5: αm ← (1 −
∑

(l,t)∈k∗ βlt)
6: for each (l, t) ∈ k∗ do

7: if total number of packets n at time t on link l: n ≤
RCl

ln L+1 then

8: βlt ←
1

L(e
1

ln L+1 −1)
(e

n
RCl − 1),

9: else

10: βlt ← e
( n

RCl
−1)(ln L+1)

11: end if

12: end for

13: Xmk∗ ← 1.
14: Transmit packet m using valid schedule k∗.

15: else

16: Drop packet m.

17: end if

18: end for

Algorithm 3 increases the value of βlt much more slowly

than Algorithm 1 does. Moreover, Algorithm 3 increases βlt

slower when L is larger. Based on this observation, we call

Algorithm 3 “PD With Slow Start (PDSS)”. Recall that both

Algorithm 1 and Algorithm 3 only schedule a packet when

mink

∑

(l,t)∈k βlt < 1. By increasing βlt slower when n is

small, Algorithm 3 ensures that more packets with long routes

can be accepted, especially when the network is lightly loaded.

B. Competitive Ratio Analysis

We now prove that Algorithm 3 achieves the theoretical

bound in [2] by being (1, O(log L))-competitive.

Lemma 3: Let Cmin := minCl. In Algorithm 3, each time

a new packet is scheduled, the ratio between the change of

Schedule and Dual is bounded by 2(lnL + 1) + B
Cmin

, where

the value of B is independent of Cmin.

Proof: If a new packet is admitted to the network,

the increasing amount of Dual is

∆D = ∆αm +
∑

(l,t)∈k∗

Cl∆βlt

= 1 +
∑

(l,t)∈k∗

(Cl∆βlt − βlt)

Using Taylor Sequence, we then have

∆βlt[n] := βlt[n + 1] − βlt[n] = β(
n + 1

Cl

) − β(
n

Cl

)

≤
1

Cl

β′(
n

Cl

) + ε
1

C2
l

β′′(
n

Cl

),

for some bounded constant ε < ∞, where β′ and β′′ are

the first and second derivative of β, respectively. We note

that the function β(x) is continuous for all x, and infinitely

differentiable for all x except at the point x0 := 1
ln L+1 .

At the point x0, we define β′(x0) = limx→x
+
0

β′(x) and

εβ′′(x0) = limx→x
+
0

εβ′′(x). This ensures that the above

inequality still holds.

By (5) we know that n ≤ Cl

lnL+1 if and only if βlt[n] ≤ 1
L

.

If x = n
Cl

≤ 1
ln L+1 , then β′(x) = β′′(x) = ex

L(e
1

ln L+1 −1)
.

We have:

Cl∆βlt[n] − βlt[n] ≤
Cl(

1
Cl

e
n

Cl ) + ε( 1
Cl

)2e
n

Cl ) − (e
n

Cl − 1)

L(e
1

ln L+1 − 1)

≤
1 + ε 1

Cl
e

n
Cl

L(1 + 1
ln L+1 − 1)

≤
lnL + 1

L
(1 + ε

1

Cl

e)

Let B1 = εe ln L+1
L

, then

Cl∆βlt[n] − βlt[n] ≤
lnL + 1

L
+ B1

1

Cmin

, (6)

when n
Cl

≤ 1
ln L+1 .

On the other hand, If x = n
Cl

≥ 1
ln L+1 , then β′(x) =

(lnL + 1)β(x) and β′′(x) = (lnL + 1)2β(x). We have:

Cl∆βlt[n] − βlt[n]

≤ Cl[
lnL + 1

Cl

βlt[n] + ε(
lnL + 1

Cl

)2βlt[n]] − βlt[n]

≤ lnL · βlt[n] +
1

Cl

ε(lnL + 1)2βlt[n]

Let B2 = ε(lnL + 1)2, then

Cl∆βlt[n] − βlt[n] ≤ (lnL + B2
1

Cmin

)βlt[n], (7)

when n
Cl

≥ 1
ln L+1 .

If packet m is transmitted using valid schedule k∗, we have

Xmk∗ = 1. Thus, ∆P = 1. On the other hand, ∆D is

increased as:

∆D = 1 +
∑

(l,t):(l,t)∈k∗

Cl∆βlt − βlt

≤ 1 +
∑

(l,t):(l,t)∈k∗,βlt≤
1
L

Cl∆βlt − βlt

+
∑

(l,t):(l,t)∈k∗,βlt≥
1
L

Cl∆βlt − βlt
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From (6) and (7) we have:

∆D ≤ 1 +
∑

(l,t):(l,t)∈k∗,βlt≤
1
L

(
lnL + 1

L
+ B1

1

Cmin

)

+
∑

(l,t):(l,t)∈k∗,βlt≥
1
L

((ln L + B2
1

Cmin

)βlt)

From Algorithm 3 step 4 we know that
∑

βlt ≤ 1, thus we

have

∆D ≤ 1 + (ln L + 1 + B1
L

Cmin

) + (lnL + B2
1

Cmin

)

= 2 + 2 lnL +
B1 L + B2

Cmin

,

and the proof is complete.

Theorem 3: Algorithm 3 produces solutions that satisfy all

constraints in Schedule and Dual. Moreover, it is (1, 2(1 +
lnL))-competitive, as Cmin → ∞.

Proof: We use the same approach as in the proof of

Theorem 1 to establish that all constraints are satisfied in

Schedule and Dual. First, we show that the dual solutions

{αm} and {βlt} satisfy constraints (3b) to (3d). Initially,

we have βlt = 0. By (5), βlt ≥ 0 holds. Since step 5 is only

used when
∑

(l,t)∈k∗ βlt < 1, αm ≥ 0 holds. From step 3 and

5, we know that αm +
∑

(l,t)∈k βlt ≥ (1 −
∑

(l,t)∈k βlt) +
∑

(l,t)∈k βlt = 1. Thus (3b) to (3d) hold.

Next, we show {Xmk} satisfies constraints (1b) to (1d).

By step 3, the algorithm picks at most one schedule k∗ for

packet m, constraint (1b) holds. With (5), when the number

of packets on link l at t is Cl, we have βlt = 1. Also, since a

packet is scheduled if
∑

(l,t)∈k∗ βlt < 1, we have βlt < 1 for

all (l, t) ∈ k∗. Therefore, the number of packets transmitted

on link l at any time t is at most Cl. Constraint (1c) holds.

By initialization and step 13, constraint (1d) holds.

When a new packet m arrives, it will either be

dropped or scheduled. If it is dropped, both ∆P and ∆D
are 0. If it is scheduled, both (3a) and (1a) increase. With

Lemma 3, the ratio between ∆P and ∆D is bounded

by 2(1 + lnL) + B
Cmin

. Therefore the competitive ratio of

Algorithm 3 is (1, 2(1 + lnL) + B
Cmin

) → (1, 2(1 + lnL)), as

Cmin → ∞.

Thus, comparing with the result in [2], Algorithm 3 achieves

the optimal competitive ratio when R = 1.

Remark: Applying the above proof to a general R > 1 leads

to trivial results. However, PDSS performs very well when

R > 1 as suggested by Section VIII.

VII. A DISTRIBUTED PROTOCOL FOR IMPLEMENTATION

The two algorithms that we have proposed so far are both

centralized algorithms. Specifically, when a packet arrives at

a node, the node needs to have complete knowledge of all

exponential loads βlt of all links to find a valid schedule.

These algorithms are applicable in software defined net-

works (SDN) where there is a centralized controller. However,

in other systems, it is preferable to have distributed algorithms

which do not require always up-to-date global information.

In this section, we propose a distributed protocol called

PDD (Primal Dual Distributed) based on the design of PD

in Algorithm 1. Note that we cannot directly employ the

distributed method by Kuhn et al. [32] since we aim to design

online algorithms without knowledge of future information.

In our distributed protocol, the task of transmitting a packet

to its destination is decomposed into two parts: First, when

a packet arrives at its source node, the node determines a

suggested schedule based on past system history. This sug-

gested schedule consists of the route for forwarding the packet,

as well as a local deadline for each link. After determining

the suggested schedule, the node simply forwards it to the

first link of the route. On the other hand, when a link receives

a packet along with a suggested schedule, the link tries to

forward the packet to the next link in the suggested schedule

by its local deadline. The link drops the packet when it cannot

forward the packet in time.

To facilitate this protocol, each link keeps track of its own

exponential load βlt, which reflects the number of packets that

have been scheduled to be transmitted over link l at time t.
The value of βlt changes over time, and is updated when more

packets are scheduled to transmit over link l at time t. Link

l, more specifically the start node of link l, broadcasts the

exponential load of its own and others which it has received

periodically so that all nodes can learn the values of βlt for all

links. Broadcasts occur infrequently to minimize its overhead

on network bandwidth. We also do not need to broadcast βlt

for time t that is before the current broadcast time.

We now describe how a node sm determines a suggested

schedule upon the exogenous arrival of a packet m at time

ta := am. Let tb be the last broadcast time. We use β̃lt to

denote the latest values of βlt that node sm has received

for all l ∈ L, t ≥ tb. Recall that in the PD Algorithm,

the node would like to find a valid schedule that minimizes
∑

(l,t)∈k βlt. In distributed networks, the node only knows

the exact values of βlt for links that are incident to the

node. However, it receives β̃lt for all other links. In our

protocol, the node treats the time in broadcasted exponential

load relatively. It assumes that the values of βlt starting from

t = ta for some other link l are the same as β̃lt starting from

t = tb respectively, that is βlt = β̃l,t−ta+tb
, ∀t ≥ ta. It then

finds a valid schedule k∗ that minimizes
∑

(l,t)∈k βlt. Similar

to the original PD algorithm, the node drops the packet if
∑

(l,t)∈k∗ βlt ≥ 1. If
∑

(l,t)∈k∗ βlt < 1, then the node puts

information of k∗ into the header of the packet, and forwards

the packet to the first link in k∗. Algorithm 4 summarizes the

steps of schedule suggestion for each packet at its source node.

To solve the optimization problem in line 7, we use dynamic

programming similar to Algorithm 2. The difference is that

when multiple schedules achieves the optimum, we choose

one of them to be k∗ uniformly at random.

Since the actual values of βlt can be different from those

last broadcasted, there is no guarantee that a packet can

be delivered in time using the valid schedule k∗ even if
∑

(l,t)∈k∗ βlt < 1. Therefore, when a node determines a valid

schedule k∗ for a packet, the valid schedule k∗ is treated only

as a suggestion for links in k∗. Specifically, if k∗ contains an

entry (l∗, t∗), then the link l∗ interprets k∗ as a requirement

that l∗ needs to forward the packet to the next link by
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Algorithm 4 PDD: Schedule Suggestion at Source Nodes

1: for each arriving packet m do

2: ta ← am {packet arrival time}

3: tb ← last broadcast time

4: β̃lt ← last broadcasted exponential load

5: βlt ← most up-to-update values, ∀t ≥ ta, l : sm ∈ l
6: βlt ← β̃l,t−ta+tb

, ∀t ≥ ta, l : sm /∈ l
7: k∗ ← argmink

∑

(l,t)∈k βlt {suggested schedule}

8: if
∑

(l,t)∈k∗ βlt < 1 then

9: Put k∗ in the header of packet m.

10: Forward the packet to the first link in k∗.

11: else

12: Drop packet m.

13: end if

14: end for

t∗, or drops the packet. When l∗ obtains the packet, it still has

the freedom to choose when to forward the packet, as long as

the packet is forwarded by the time t∗.

Next, we discuss how each link determines the actual time

to transmit each packet. Obviously, each link l∗ knows its

own βl∗t. From the design of PD, we can see that PD prefers

to transmit packets when βlt is small. Our proposed policy

is based on this principle. When a link l∗ receives a packet,

it finds the entry (l∗, t∗) from the valid schedule k∗ specified

in the header of the packet. Link l∗ then finds a time ts

between the current time and t∗ that has the smallest βl∗t,

and transmits the packet at time ts. Algorithm 5 summarizes

the policy for packet transmission on each link.

Algorithm 5 PDD: Packet Transmission on Each Link

1: for each incoming packet m on link l∗ do

2: k∗ ← suggested schedule in the packet header

3: t∗ ← t such that (l∗, t) ∈ k∗ {local deadline}

4: t0 ← current time

5: ts ← argmint0≤t≤t∗ βl∗,t

6: if βl∗,ts
< 1 then

7: βl∗ts
← βl∗,ts

(

1 + 1
Cl∗

)

+ 1
(dl∗−1)Cl∗

8: Transmit packet m on link l∗ at time ts.

9: else

10: Drop packet m.

11: end if

12: end for

VIII. SIMULATIONS

In this section, we evaluate the performance of our policies

by simulations. We compare our policies with the EDF policy

and the MKS policy [2]. Both EDF and MKS focus on packet

scheduling, and are applicable only when the route of the

packet is given. For these two policies, we assume that each

packet is routed through the shortest path.

We consider the combinations of two network topologies,

two link capacity settings, and two traffic patterns in our

simulations. This gives us eight combinations in total. We first

Fig. 5. Network topologies in simulations. (a) A small network. (b) A 5×5
grid network.

introduce the two network topologies. The first one is a small

network as shown in Fig. 5a. The network has 9 nodes from

node 1 to node 9. Neighboring nodes have bidirectional links

between them, and each pair of nodes can communicate within

two hops. This topology can be useful in smart home envi-

ronment where all wireless devices can talk to a central hub

(Node 5), and nearby wireless devices can also communicate

directly. The second one is a 5 × 5 grid network which is

also used by [2]. Fig. 5b depicts the grid network. There are

80 directional links in this network. The longest path between

all pairs of nodes has a length of 24.

Given a network topology, we consider two link capacity

settings. One is “homogeneous link capacity”, where each link

in the network has a capacity of two units when R = 1.

The other is “heterogeneous link capacities”, where we choose

the link capacities to be integers uniformly at random from

1 to 3 when R = 1.

Given a network topology and link capacity setting, we

consider two traffic patterns. The first one corresponds to

light traffic. The inter-arrival time between packets are chosen

to be 0 with probability 0.95 and 1 with probability 0.05.

On average, there are about 19.8 packets arriving in each

slot. The second pattern has heavy traffic. At the beginning

of each time slot, the number of packets arriving the system

is chosen uniformly at random from 100 to 200. For both

traffic patterns, there are 104 packets arriving at the system.
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Fig. 6. Delivery ratio comparison for the small network. (a) Homogeneous link capacity, light traffic. (b) Homogeneous link capacity, heavy traffic.
(c) Heterogeneous link capacities, light traffic. (d) Heterogeneous link capacities, heavy traffic.

The source nodes and destination nodes are both chosen from

all nodes in the network with equal probability, and for each

packet the destination node is not allowed to be the same

as the source node. We choose the relative deadline of each

packet, the time between its arrival and deadline, to be an

integer uniformly at random from 2 to 6 for the small network

and from 2 to 10 for the 5 × 5 grid network. Simulations

end after the expiry of all packets. The average simulation

duration varies from 73 slots (small network, heavy traffic)

to 506 slots (5 × 5 grid network, light traffic). We let PDD

broadcast exponential load values every 10 slots so that there

are at least seven broadcast cycles in a typical simulation.

Since the heterogeneous link capacities and packet arrivals

are generated randomly, we report the average performance

of each algorithm over 100 runs given a particular combi-

nation of network topology, link capacity setting, and traffic

pattern.4 We measure the performance of an algorithm by its

4Due to excessive memory usage and running time, we report the perfor-
mance of MKS based on the first 103 packets of each packet arrival sequence.

delivery ratio. Fig. 6 and Fig. 7 compare the delivery ratios

of different algorithms against different values of R for each

of the eight combinations of network topology, link capacity

setting, and traffic pattern respectively. We can see that our PD

and PDSS algorithms outperform the two baseline algorithms

in all figures. PD and PDSS typically have similar performance

and in some cases PDSS is slightly better. Our distributed

algorithm PDD is better than the two baseline algorithms in

most cases, and the gap is larger under heavy traffic. When R
is small, PDD can be slightly worse than EDF but is still much

better than MKS. We also note that both baseline policies are

centralized policies, while PDD is a distributed protocol. MKS

performs poorly in our simulations because the condition in

Theorem 3 in [2] is not met and the control parameter µ therein

is not fine tuned.

By comparing these figures, we can also observe that

generally the performance under light traffic is better than that

under heavy traffic, and the performance under homogeneous

link capacity is better than that under heterogeneous link

capacities. These results confirm the intuition that heavy
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Fig. 7. Delivery ratio comparison for the 5 × 5 grid network. (a) Homogeneous link capacity, light traffic. (b) Homogeneous link capacity, heavy traffic.
(c) Heterogeneous link capacities, light traffic. (d) Heterogeneous link capacities, heavy traffic.

Fig. 8. Delivery ratio comparison of different PDD broadcast periods Tb.
As an example, Tb = 10 means PDD broadcasts every 10 slots.

traffic and heterogeneous link capacities degrade the network

performance. Besides, note that in the small network, the best

algorithms can deliver almost all packets with large capacity

redundancy R, while in the larger 5 × 5 grid network, the

performance saturates at a delivery ratio of over 80%. The

reason is that the relative deadline can be smaller than the

distance between the source and the destination in the 5 × 5
grid network, making it impossible to deliver some packets in

time.

Furthermore, we focus on PDD and study the impact

of broadcast frequency over its delivery ratio performance.

Fig. 8 shows the simulation results with the small network,

homogeneous link capacity, and heavy traffic, where we report

the average performance of PDD over 100 runs for each R
and broadcast period Tb. We can observe the performance

degradation with infrequent broadcasts (i.e. large broadcast

period Tb). However, the degradation is not significant and

becomes negligible when R is large.

IX. CONCLUSION

In this paper, we have presented our study on online

routing and scheduling with capacity redundancy for timely

delivery guarantees in multihop networks. We have answered

the question that how much capacity redundancy is needed

for online algorithms to guarantee certain timely delivery

requirements. We have proposed an online algorithm PD for

routing and scheduling as packets arrive in the network.
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The algorithm is proved to be (R, 1 + L
eR−1 )-competitive,

where L is the length of the longest path. We have also showed

that the complexity of PD is O(ET ), where E is the total

number of links and T is the maximum relative deadline.

Next, we have showed that any online algorithm cannot be

better than (R, 1 + L−2eR

(L+1)eR−L
)-competitive. When both L

and the required deliver ratio are large, our PD algorithm

requires at most twice as much capacity as the lower bound.

In addition, we have proposed another online algorithm PDSS,

which is proved to be (1, O(log L))-competitive, and thus

order optimal when R = 1. Furthermore, we have proposed a

heuristic distributed algorithm PDD that only requires infre-

quent broadcast of load information. Simulation results have

demonstrated that our algorithms outperform EDF and MKS

scheduling algorithms with shortest path routing in various

network settings.

There remain many interesting open problems for future

research. The PDSS algorithm is proved to be order optimal

only when R = 1. However, simulation results suggest that

PDSS still performs very well when R > 1. It would be

interesting to study online algorithms that are order optimal for

all R. It is also of great interest to study the competitiveness

of distributed algorithms.
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