
Cache-Version Selection and Content Placement for

Adaptive Video Streaming in

Wireless Edge Networks

Archana Sasikumar∗†, Tao Zhao∗‡, I-Hong Hou‡, and Srinivas Shakkottai‡

†Juniper Networks
‡Dept. of ECE, Texas A&M University, College Station, TX 77843

Email: asasi@juniper.net, {alick,ihou,sshakkot}@tamu.edu

Abstract—Wireless edge networks are promising to provide
better video streaming services to mobile users by provisioning
computing and storage resources at the edge of wireless network.
However, due to the diversity of user interests, user devices, video
versions or resolutions, cache sizes, network conditions, etc., it is
challenging to decide where to place the video contents, and which
cache and video version a mobile user device should select. In this
paper, we study the joint optimization of cache-version selection
and content placement for adaptive video streaming in wireless
edge networks. We propose practical distributed algorithms that
operate at each user device and each network cache to maximize
the overall network utility. In addition to proving the optimality
of our algorithms, we implement our algorithms as well as several
baseline algorithms on ndnSIM, an ns-3 based Named Data
Networking simulator. Simulation evaluations demonstrate that
our algorithms significantly outperform conventional heuristic
solutions.

I. INTRODUCTION

Video streaming has become the dominant application for

modern Internet traffic. In order to provide better quality of

service (QoS) and quality of experience (QoE) to mobile users,

content delivery networks (CDNs) have been deployed to store

popular videos at cache servers close to the users. This aligns

with the trend of wireless edge networks, where computing and

storage resources are provisioned at the edge of the wireless

network [1]. Meanwhile, as users are accessing videos from a

variety of devices, ranging from smartphones to 4K televisions

(TVs), adaptive video streaming, which encodes the same

video content into multiple versions with different resolutions,

has been widely used to deliver arguably the best video version

to each user based on device types and network conditions.

In this paper, we study the interplay between three important

components for adaptive video streaming in wireless edge

networks: cache selection, where each user device determines

which cache server to retrieve videos from, version selection,

which determines the version that each user watches, and

content placement, which entails the caching strategy of each

∗These authors contributed equally to this work.
A. Sasikumar was with Texas A&M University when conducting this work.
This research was supported in part by grants NSF CNS 1149458, AST

1443891, NSF-Intel CNS 1719384, ARO W911NF-18-1-0331, and ONR
N00014-18-1-2048.

cache server. We formulate CaVe-CoP, a Cache-Version se-

lection and Content Placement problem that jointly optimizes

these three components by taking into account the preferred

video versions of users, the communication capacities of

network links, and the storage capacities of cache servers.

Our goal is to develop a new network algorithm for CaVe-

CoP that is not only provably optimal, but also practical and

implementable.

Our proposed solution is based on the observation that

there is a practical timescale separation between cache-version

selection (CaVe) and content placement (CoP), as the former

can be updated much more frequently. Hence, we first solve

the CaVe problem by fixing the solution to the CoP problem,

and prove the optimality of our CaVe algorithms. We then

solve the CoP problem by considering its influence to solution

to the CaVe problem, and prove our CoP algorithms are

optimal when fractional solutions are allowed.

While our algorithms can be practically implemented under

the current Internet architecture with TCP/IP, we demonstrate

that our algorithms can also be implemented in a distributed

fashion on Named Data Networking (NDN) [2], a future

Internet architecture designed with video streaming applica-

tions in mind. Since NDN forwards packets by content names

instead of location IDs such as IP addresses, we present

a distributed forwarding strategy that ensures user devices

always obtain their selected video versions from their selected

cache server. Moreover, we show that the overhead of our

algorithms is negligible by exploiting local information and

built-in caching. We evaluate our algorithms on ndnSIM [3],

an ns-3 based NDN simulator. Simulation results depict that

our algorithms significantly outperform baseline policies that

employ conventional heuristic solutions and subsets of our

algorithms.

The rest of the paper is organized as follows. Section II

introduces our system model and the formulation of CaVe-CoP.

Solutions to the two problems CaVe and CoP are introduced

in Section III and IV, respectively. In Section V, we discuss

the implementation of our algorithms in NDN. Section VI

demonstrates the simulation results. Section VII reviews some

related literature. Finally, Section VIII concludes the paper.

the same video version depending on the solution to the

content placement problem. Hence, not only does a user have

multiple choices of network caches to obtain the video version

from, but the problem of selecting cache is fundamentally

intertwined with the problem of content placement. Second,

although the problem of version selection may seem to be

a special case of the rate control problem, we note that the

problem of version selection is fundamentally intertwined with

the problem of selecting cache since each cache may only

store a subset of versions for a given video. The possibility of

placing different versions of the same video at different caches

also distinguishes this work from some recent studies on

throughput-optimal algorithms with caches. Araldo et al. [5]

studied a similar problem to ours. However, they only derived

heuristics without meaningful performance guarantees.

The decision variables in CaVe-CoP are p and z. We note

that there is a practical timescale separation between the

update for p and that for z. When a user device changes

its values for z due to e.g. network congestion, it simply

requests new packets from a different network cache and/or

with a different video version. Hence, z can be updated rather

frequently, for example, once every 100 milliseconds. On the

other hand, when a network cache changes its values for pc,v ,

it needs to obtain all video versions with pc,v = 1. Hence, p

can only be updated infrequently.

Our proposed solution for CaVe-CoP is based on the obser-

vation of the timescale separation between the update for p

and that for z. In Section III, we will first consider the CaVe

problem by finding the optimal z for given p. Next, in Section

IV, we will consider the CoP problem. In order to find the

optimal p, we will introduce pseudo-variables z′ := [z′s,c,v]
and p′ := [p′c,v] that are updated at the same frequency as p

to address the issue with timescale separation.

Finally, we note that CaVe-CoP is an integer programming

problem since pc,v and zs,c,v are integers. To obtain tractable

results, we will relax (1f) and allow pc,v and zs,c,v to be

any real number between 0 and 1. As we will demonstrate

in Section III, our solution to the CaVe problem will always

yield integer values for zs,c,v . We will also discuss how to

obtain integer solutions for pc,v in Section IV.

III. THE CACHE-VERSION SELECTION PROBLEM (CAVE)

In this section, we study the CaVe problem. We consider

that the contents that each network cache store are given and

fixed, and aims to determine both the video version to watch

and the network cache to obtain contents from for each user.

In terms of the optimization problem (1a)–(1f), we focus on

finding the optimal z := [zs,c,v] to maximize total utility in

the network when p := [pc,v] is given and fixed.

A. Overview of the Solution

We begin by rewriting the optimization problem (1a)–(1f)

for the CaVe problem. Since p is given and fixed, constraint

(1b) no longer applies. Further, we relax the constraint (1f) by

allowing zs,c,v to be any real number between 0 and 1. The

resulting optimization problem, which we call CaVe-Primal,

can then be described as follows:

CaVe-Primal

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (2a)

s.t.
∑

c,v∈Is

zs,c,v = 1, ∀s ∈ S, (2b)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (2c)
∑

s,c,v

XvH
l
s,czs,c,v ≤ Rl, ∀l ∈ L, (2d)

0 ≤ zs,c,v ≤ 1, ∀s ∈ S, c ∈ C, v ∈ V. (2e)

We will consider a dual problem to CaVe-Primal. We

associate a Lagrange multiplier, λl, for each link capacity

constraint (2d), for all l ∈ L. Let λ := [λl] be the vector of

Lagrange multipliers. The Lagrangian is obtained as follows:

L(z,λ)

:=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑

l

λl

(

∑

s,c,v

zs,c,vH
l
s,cXv −Rl

)

(3)

The dual objective, D(λ), is defined as the maximum value

of L(z,λ) over z subject to the constraints (2b), (2c), and

(2e). We call the underlying optimization problem CaVe-

Lagrangian. It can be written as follows:

CaVe-Lagrangian

max L(z,λ) (4a)

s.t.
∑

c,v∈Is

zs,c,v = 1, ∀s ∈ S, (4b)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (4c)

0 ≤ zs,c,v ≤ 1, ∀s ∈ S, c ∈ C, v ∈ V. (4d)

Remark 1: In defining the CaVe-Lagrangian problem, we

only relax the link capacity constraint (2d), and keep other

constraints (2b), (2c) and (2e) intact. This is because the link

capacity constraint (2d) can be temporarily violated as packets

that cannot be served immediately can be queued in the buffer.

On the other hand, constraints (2b) and (2c) need to be satisfied

at all time in practical systems.

The dual problem is to minimize D(λ) while ensuring that

all Lagrange multipliers λl are non-negative. We call this the

CaVe-Dual and mathematically write it as:

CaVe-Dual

min D(λ) (5a)

s.t. λl ≥ 0, ∀λl ∈ L. (5b)

Theorem 1 (Strong Duality): CaVe-Primal and CaVe-Dual

have the same optimal value.

Proof: See [6].

Based on Theorem 1, we can solve the CaVe-Primal prob-

lem by solving CaVe-Dual. Solving CaVe-Dual involves two

steps: First, for a given vector λ, we need to find D(λ) by

solving CaVe-Lagrangian. Second, we need to find the optimal

λ to solve CaVe-Dual. We introduce our solutions to these two

steps below.

B. The Solution to CaVe-Lagrangian

We rewrite (3) as:

L(z,λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑

l

λl

(

∑

s,c,v

zs,c,vH
l
s,cXv −Rl

)

=
∑

s

∑

c,v∈Is

zs,c,v
(

Us(Xv)−Xv

∑

l:Hl
s,c=1

λl

)

+
∑

l

λlRl

(6)

We note that the above expression provides a natural user-

by-user decomposition. Specifically, by defining zs as the

vector containing all [zs,c,v] for a given s, and defining

Ls(zs,λ) :=
∑

c,v∈Is

zs,c,v
(

Us(Xv)−Xv

∑

l:Hl
s,c=1

λl

)

, (7)

we have

L(z,λ) =
∑

s

Ls(zs,λ) +
∑

l

λlRl. (8)

As λ is given in CaVe-Lagrangian, the last term
∑

l λlRl is

a constant. Hence, L(z,λ) is maximized if one can maximize

Ls(zs,λ) for each user s. Moreover, recall that pc,v is the

indicator function that network cache c stores video version

v. Therefore, the constraint (4c) is equivalent to saying that

zs,c,v needs to be 0 if pc,v = 0. We can now define CaVe-Users
as follows:

CaVe-Users

max
∑

c,v:v∈Is,pc,v=1

zs,c,v
(

Us(Xv)−Xv

∑

l:Hl
s,c=1

λl

)

(9a)

s.t.
∑

c,v:v∈Is,pc,v=1

zs,c,v = 1, (9b)

0 ≤ zs,c,v ≤ 1, ∀c ∈ C, v ∈ V. (9c)

It is clear that the optimal vector z that solves CaVe-

Users, for all s, is also the optimal vector that solves CaVe-

Lagrangian. To solve CaVe-Users, note that the only decision

variable in CaVe-Users is the vector zs, while Us(Xv), Xv ,

and λl are all constants. Hence, the following algorithm solves

CaVe-Users: First, find (c∗, v∗) that has the maximum value

of Us(Xv) − Xv

∑

l:Hl
s,c=1

λl among all (c, v) with v ∈ Is

and pc,v = 1. Ties can be broken arbitrarily. Second, set

zs,c∗,v∗ = 1, and zs,c,v = 0 for all other (c, v). Alg. 1

summarizes the algorithm. We note that, even though we have

relaxed the constraint and allowed zs,c,v to be any real number

between 0 and 1, the optimal solution produced by Alg. 1

is always an integer one. Besides, note that c∗ and v∗ are

updated iteratively as λ is updated. It means the cache-version

selection of each user is dynamic and adaptive to the network

congestion.

Algorithm 1 CaVe-Users Algorithm

Obtain p and λ

zs,c,v ← 0, ∀c, v
(c∗, v∗)← argmaxc,v∈Is:pc,v=1 Us(Xv)−Xv

∑

l:Hl
s,c=1

λl

zs,c∗,v∗ ← 1

C. The Solution to CaVe-Dual

Our solution to CaVe-Dual is shown in Alg. 2, where each

link l updates its own λl. We have the following lemma and

theorem.

Algorithm 2 CaVe-Linkl Algorithm

t← 0, λl ← 0
while true do

Obtain z from Alg. 1

λl ←
[

λl + ht(
∑

s,c,v XvH
l
s,czs,c,v −Rl)

]+

t← t+ 1

Lemma 1: Given λ, let z∗ be the vector that solves CaVe-

Users. Then g := [gl] := [Rl −
∑

s,c,v XvH
l
s,cz

∗
s,c,v] is a

subgradient of D(λ).
Proof: See [6].

Theorem 2: Let {ht} be a sequence of non-negative numbers

with
∑∞

t=0
ht = ∞ and limt→∞ ht = 0, then Alg. 2 solves

CaVe-Dual.

Proof: See [6].

D. The Solution to CaVe-Primal

We have the following theorem regarding the optimality of

z obtained by running Alg. 1 and Alg. 2 iteratively:

Theorem 3: Let z∗ be the vector that solves CaVe-Primal,

λk be the vector produced by Alg. 2 after k iterations, and

zk be the vector produced by Alg. 1 when λ = λk. Let z̄t

be the weighted average of zk after the first t iterations, i.e.

z̄t := limT→∞

∑t+T

k=t+1
hkz

k

∑t+T

k=t+1
hk

. Then, for any ε > 0, there exists

an integer K such that for every t > K,

1) z̄t satisfies all CaVe-Primal constraints;

2)
∑

s,c,v Us(Xv)z
∗
s,c,v −

∑

s,c,v Us(Xv)z̄
t
s,c,v ≤ ε.

Proof: See [6].

IV. THE CONTENT PLACEMENT PROBLEM (COP)

We now discuss the content placement (CoP) problem,

which entails deciding pc,v , the indicator function that network

cache c stores video version v, for all c and v. As discussed

in Section II, a major challenge to our optimization problem

(1a)–(1f) is that the vector p needs to be updated much less

frequently than the vector z. To address this challenge, we

introduce pseudo-variables z′ := [z′s,c,v] and p′ := [p′s,c,v],
which can be updated much more frequently than p, to replace

z and p.4 We only update p, the real content placement, after

p′ converges. Also, we relax (1f) by allowing p′c,v and z′s,c,v
to be any real number between 0 and 1. We can now rewrite

(1a)–(1f) as:

CoP-Primal

max
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v (10a)

s.t.
∑

v

Yvp
′
c,v ≤ Bc, ∀c ∈ C, (10b)

∑

c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (10c)

z′s,c,v ≤ p′c,v, ∀s, c, v, (10d)
∑

s,c,v

XvH
l
s,cz

′
s,c,v ≤ Rl, ∀l ∈ L, (10e)

0 ≤ p′c,v ≤ 1, 0 ≤ z′s,c,v ≤ 1, ∀s, c, v. (10f)

A. Overview of the Solution

Similar to our solution to the CaVe problem, we will

consider a dual problem to the CoP-Primal problem. Let

µ′ := [µ′
s,c,v], and λ′ := [λ′

l] be the vectors of Lagrange

multipliers associated with each constraint in (10d) and (10e)

respectively. The Lagrangian is then

L′(p′, z′,λ′,µ′)

:=
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v −

∑

l

λ′
l

(

∑

s,c,v

XvH
l
s,cz

′
s,c,v −Rl

)

−
∑

s,c,v

µ′
s,c,v(z

′
s,c,v − p′c,v). (11)

The dual objective, D′(λ′,µ′), is defined as the maximum

value of L′(p′, z′,λ′,µ′) over p′ and z′ subject to constraints

(10b), (10c) and (10f). We call the optimization problem CoP-

Lagrangian:

CoP-Lagrangian

max L′(p′, z′,λ′,µ′) (12a)

s.t.
∑

v

Yvp
′
c,v ≤ Bc, ∀c ∈ C, (12b)

∑

c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (12c)

0 ≤ p′c,v ≤ 1, 0 ≤ z′s,c,v ≤ 1, ∀s, c, v. (12d)

Remark 2: We note that an important difference between

CoP-Lagrangian and CaVe-Lagrangian is that CoP-Lagrangian

relaxes the constraint (10d) as well. Since the pseudo-variable

z′s,c,v in CoP-Primal bears no physical meaning, this constraint

can now be temporarily violated in practice.

The dual problem, which we call CoP-Dual, is to find the

Lagrange multipliers that minimize D′(λ′,µ′):

4The pseudo-variables carry state information that needs to be shared
between user applications and the network in the implementation.

CoP-Dual

min D′(λ′,µ′) (13a)

s.t. λ′
l ≥ 0, ∀l ∈ L, (13b)

µ′
s,c,v ≥ 0, ∀s ∈ S, c ∈ C, v ∈ V. (13c)

It is straightforward to show the following theorem:

Theorem 4: CoP-Primal and CoP-Dual have the same opti-

mal value.

Proof: See [6].

We will solve CoP-Primal by solving CoP-Dual. We discuss

our solutions to CoP-Lagrangian and CoP-Dual below.

B. The Solution to CoP-Lagrangian

We first rewrite L′(p′, z′,λ′,µ′) as:

L′(p′, z′,λ′,µ′)

=
∑

s

∑

c,v

z′s,c,v



Us(Xv)−Xv

∑

l:Hl
s,c=1

λ′
l − µ′

s,c,v





+
∑

c

∑

v

p′c,v
∑

s

µ′
s,c,v +

∑

l

λ′
lRl. (14)

Let z′
s be the vector containing all [z′s,c,v] for a given s

and p′
c be the vector containing all [p′c,v] for a given c. Also,

let L̄s(z
′
s,λ

′,µ′) :=
∑

c,v z
′
s,c,v[Us(Xv)−Xv

∑

l:Hl
s,c=1

λ′
l−

µ′
s,c,v], L̂c(p

′
c,µ

′) :=
∑

v p
′
c,v(
∑

s µ
′
s,c,v), and B(λ′) :=

∑

l λlRl. Then, we have

L′(p′, z′,λ′,µ′)

=
∑

s

L̄s(z
′
s,λ

′,µ′) +
∑

c

L̂c(p
′
c,µ

′) +B(λ′), (15)

which gives rise to a natural decomposition among all users

and network caches. Specifically, consider the two subprob-

lems, namely, CoP-Users and CoP-Cachec, below. For fixed

vectors λ′ and µ′, CoP-Lagrangian can be solved by solving

CoP-Users for each s and CoP-Cachec for each c.
CoP-Users

max
∑

c,v

z′s,c,v
(

Us(Xv)−Xv

∑

l:Hl
s,c=1

λ′
l − µ′

s,c,v

)

(16a)

s.t.
∑

c,v∈Is

z′s,c,v = 1, (16b)

0 ≤ z′s,c,v ≤ 1, ∀c ∈ C, v ∈ V. (16c)

CoP-Cachec

max
∑

v

p′c,v
∑

s

µ′
s,c,v (17a)

s.t.
∑

v

Yvp
′
c,v ≤ Bc, (17b)

0 ≤ p′c,v ≤ 1, ∀v ∈ V. (17c)

CoP-Users can be solved by the following algorithm: First,

find (c∗, v∗) that has the maximum value of Us(Xv) −

Xv

∑

l:Hl
s,c=1

λ′
l−µ

′
s,c,v among all (c, v) with v ∈ Is. Ties can

be broken arbitrarily. Second, set z′s,c∗,v∗ = 1, and z′s,c,v = 0
for all other (c, v). Alg. 3 shows the algorithm.

On the other hand, CoP-Cachec can be solved by the

following greedy algorithm: First, sort all video versions v in

decreasing order of
∑

s
µ′

s,c,v

Yv
so that

∑
s
µ′

s,c,1

Y1
≥

∑
s
µ′

s,c,2

Y2
≥

. . . . Second, starting from v = 1, set pc,v to be the largest

possible value without violating any constraints. Specifically,

set p′c,v = min{1, (Bc−
∑

v′<v Yv′p′c,v′)/Yv}. It is straightfor-

ward to verify that this greedy algorithm achieves the optimal

solution for CoP-Cachec, since it is a fractional knapsack

problem.

Remark 3: Recall that pc,v is the indicator function that c
stores v, which needs to be an integer. The optimal solution to

CoP-Cachec may not be integer. However, from the description

of our greedy algorithm, it is obvious that, for each c, there

is at most one v with non-integer pc,v . In practice, we make

each network cache c store only video versions with pc,v = 1.

Since all but one version have integer pc,v , this approach is

close to optimal.

C. The Solution to CoP-Dual

The CoP-Dual problem involves two Lagrange multipliers,

λ′ and µ′. They are updated as in Alg. 4 and 5. The following

lemma and theorem, whose proofs are omitted due to space

constraint, show that these algorithms solve CoP-Dual.

Lemma 2: Given λ′ and µ′, let z′∗ and p′∗ be the vectors

that solve CoP-Users and CoP-Cachec. Then the vector g′ :=
[[Rl−

∑

s,c,v XvH
l
s,cz

′∗
s,c,v], [p

′∗
c,v − z′∗s,c,v]] is a subgradient of

D′(λ′,µ′).
Proof: See [6].

Theorem 5: Let {ht} be a sequence of non-negative numbers

with
∑∞

t=0
ht = ∞ and limt→∞ ht = 0, then Alg. 4 and 5

together solve CoP-Dual.

Proof: See [6].

Algorithm 3 CoP-Users Algorithm

1: Obtain µ′ and λ′

2: z′s,c,v ← 0, ∀c, v
3: (c∗, v∗) ← argmaxc,v∈Is

Us(Xv) − Xv

∑

l:Hl
s,c=1

λ′
l −

µ′
s,c,v

4: z′s,c∗,v∗ ← 1

Algorithm 4 CoP-Linkl Algorithm

1: t← 0, λ′
l ← 0

2: while true do

3: Obtain z′ from Alg. 3

4: λ′
l ←

[

λ′
l + ht(

∑

s,c,v XvH
l
s,cz

′
s,c,v −Rl)

]+

5: t← t+ 1

V. IMPLEMENTATION ON NAMED DATA NETWORKING

In this section, we discuss the implementation of our

algorithms on Named Data Networking (NDN). We first

Algorithm 5 CoP-Cachec Algorithm

1: t← 0, µ′
s,c,v ← 0

2: while true do

3: Obtain z′ from Alg. 3

4: µ′
s,c,v ←

[

µ′
s,c,v + ht(z

′
s,c,v − p′c,v)

]+
∀s, v

5: Sort all versions so that
∑

s
µ′

s,c,1

Y1
≥

∑
s
µ′

s,c,2

Y2
≥ . . .

6: B′ ← Bc

7: for v = 1→ |V| do

8: p′c,v ← min{1, B′

Yv
}

9: B′ ← B′ − Yvp
′
c,v

10: t← t+ 1

introduce the NDN architecture briefly, and then show how

we implement our algorithms following the NDN philosophy.

A. NDN Architecture

NDN is a future Internet architecture where every piece of

data is associated with a unique hierarchical name. When a

user wants to obtain a piece of named data, the user device

sends out an interest packet with the name of the data. Note

that usually the interest packet does not specify the destination

location. NDN routers have built-in caches. When a router

receives an interest packet, it first checks whether the named

data is cached or not. If cached, it directly replies with the

corresponding data packet. Otherwise, it forwards the interest

packet to the next hop according to the employed forwarding

strategy. The content producer e.g. video service provider is

responsible for generating data packets for a certain name

space. The data packet follows the reverse route of the interest

packet to the user.

B. Placement of Data

In our implementation, there are three types of data: packets

of video contents, decision variables (z′s,c,v and pc,v), and La-

grange multipliers (λl, λ
′
l, and µ′

s,c,v). We assign each of them

a unique name. For example, a video version has a name prefix

such as /r/file1/v1, and µ′
1,2,3 has /mu2/1_3. Each

prefix is appended a sequence number to uniquely identify

video packets and variables in different iterations. Naturally,

video contents are placed at network caches according to

the video versions.5 Decision variables z′s,c,v are stored and

updated at the corresponding user s. Decision variables pc,v
and Lagrange multipliers µ′

s,c,v are stored and updated at the

corresponding network cache c. Finally, Lagrange multipliers

λl and λ′
l of link l from node A to B are stored and updated

at node A that is closer to the cache.

C. Implementation of User Algorithms

From Alg. 1 and 3, we can see that each user s needs

to know the values of pc,v , λl, λ′
l, and µ′

s,c,v . Each user

periodically sends out interest packets for the named data of

these variables. Since the names of these data indicate the

entities that store them, routers can easily route the interest

5Videos are cached in full rather than at the packet level.

packets to the correct destinations. Further, as data packets

traverse in the reverse route of their corresponding interest

packets, each router can cache all latest values of pc,v and λl

that pass through it.

With the information of pc,v and λl, each user s can find

the best video version v∗ and cache c∗ via Alg. 1. User s
then sends out interest packets for video version v∗ at a rate

indicated by Xv∗ . Note that these interest packets only contain

information about the video version v∗, and not the destination

c∗. Nevertheless, the following forwarding strategy ensures the

interest packet will be eventually forwarded to c∗ assuming

no link failure or topology change: When a router receives

an interest packet for video version v∗, it finds the network

cache c† that has the smallest cost, where the cost is defined

as
∑

l λl over all link l on the path to the network cache c,
among those that store v∗, i.e., pc,v∗ = 1. It then forwards the

interest packet to the next router on the path toward c†. Note

that routers store all values of pc,v and λl that pass through it

and thus do not need additional message passing.

With the information of pc,v , λ′
l and µ′

l, each user s can

decide the video version v∗ and network cache c∗ such that

z′s,c∗,v∗ = 1 via Alg. 3. Each user s then sends out a pseudo-

interest packet with the name of z′s,c∗,v∗ . We call it a pseudo-

interest packet since it is used to inform the caches the changes

of zs,c,v . The replied data packet from cache c∗ carries no

meaning payload and is ignored.

D. Implementations for Routers and Caches

We now discuss the implementations of Alg. 2, 4, and 5.

In Alg. 2, each router needs to know
∑

s,c,v XvH
l
c,vzs,c,v to

update λl for its links. We note that
∑

s,c,v XvH
l
c,vzs,c,v can

be estimated by the product of the rate of interest packets going

through the opposite link to l and video data packet size. As

the router knows the rate of interest packets going through

l, it can update λl directly without requesting additional

information. Likewise, Alg. 4, and 5 can be carried out if

one knows z′s,c,v . This is achieved by user s sending out a

pseudo-interest packet as explained in Section V-C. Besides,

Rl, the maximum supportable data rate of link l, is obtained

from stress tests.

VI. EVALUATIONS

We present our simulation evaluation results in this section.

All simulations are conducted on ndnSIM [3], an ns-3 based

NDN simulator.

We consider the wireless edge network in Fig. 1 for evalu-

ation. Same as in [4], the topology of network caches follows

the three-tier hierarchy of the YouTube video delivery system.

There are 15 network routers with caches in total, including

the root node and 8 edge caches. Each edge cache serves 20
users who have different types of devices and are interested

in different videos.

We consider a catalog of 200 different videos, each with 5
different versions. The popularity of these videos follows the

Zipf distribution with the shape parameter equal to 1. The 5
versions correspond to video resolutions of 360p, 720p, 1080p,

1440p (2K), and 2160p (4K) respectively.6 The data rate of

streaming each video version is set based on measurement

results for YouTube videos with H.264 codec [7]. The access

link capacities between users and edge caches are 25Mbps
each so that one can stream a 4K video. The capacities of

links between caches and the root node are 100Mbps each

so that the number of concurrent 4K streams is low. We

assume each video is one-hour long, and the file sizes of video

versions are calculated accordingly. The root node holds all

video versions. Each edge (or primary), secondary, and tertiary

cache is assumed to be able to hold all versions of one, two,

and four videos respectively.

As for user utilities, we categorizes user devices into three

types: smartphones, laptops or tablets, and TVs. The utility

function of each user has the form U(Xv) = α lnmin(Xv, X̄),
where α is a scaling factor capturing the effect of the screen

size, Xv is the data rate of video version v in Mbps, and X̄ is a

cutoff rate reflecting the limit of the device resolution. For the

three types, we set a scaling factor of 20, 40, 60 and a cutoff

rate corresponding to a 1080p, 2K, 4K video respectively.

Besides, we set U(0) = −100, which is much smaller than

all regular utilities.

To evaluate the performance of our algorithms, we imple-

ment and compare the following four policies:

• Optimal: This policy tries to find the optimal solution to

the CaVe-CoP problem by solving the integer program

numerically via the GLPK toolbox. Note that it is a cen-

tralized policy and involves solving a high-dimensional

problem.

• CaVe-CoP: This refers to our algorithms Alg. 1–5.

• CaVe-CAV: In this policy, each user employs our algo-

rithms for CaVe. For content placement, if a network

cache decides to store a video version, it needs to cache

all versions (CAV) of the same video. We note that

this content placement strategy is consistent with design

practices in commercial CDNs. As a result, each network

cache simply stores the most popular videos, subject to

its storage constraint.

• Greedy-CoP: In this policy, each user chooses the ver-

sion that matches its cutoff rate. Network caches employ

our algorithms for CoP.

For each simulation, we use the video contents that each

user actually receives to calculate the total utility of all users

and the average % stall time, i.e. the percentage of time that

video streaming stalls7, of all users. The metrics are calculated

at each CaVe iteration, i.e. every 0.1 s. We run CoP iterations

every 0.2 s, and apply content placement results at 20 s.
Fig. 2 and Fig. 3 present our simulation results. For our

simulated scenario, Optimal cannot find the exact integer

solution for utility. Instead, it reports a upper bound from linear

programming (LP) relaxation, and a lower bound by integer

programming (IP) heuristics. Note that Optimal reports ideal

6The aspect ratio is assumed to be 16 : 9 as in YouTube. For example, a
720p video has a resolution of 1280× 720.

7Video streaming stalls when all received video contents are consumed.

