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Abstract

The scanning tunneling microscope-based break junction (STM-BJ) is used widely to create and
characterize single metal-molecule-metal junctions. In this technique, conductance is continuously
recorded as a metal point-contact is broken in a solution of molecules. Conductance plateaus are
seen when stable molecular junctions are formed. Typically, thousands of junctions are created and
measured, yielding thousands of distinct conductance versus extension traces. However, such
traces are rarely analyzed individually to recognize the types of junctions formed. Here, we present
a deep learning-based method to identify molecular junctions and show that it performs better than
several commonly used and recently reported techniques. We demonstrate molecular junction
identification from mixed solution measurements with accuracies as high as 97%. We also apply
this model to an in situ electric-field driven isomerization reaction of a [3]Jcumulene to follow the
reaction over time. Furthermore, we demonstrate that our model can remain accurate even when a
key parameter, the average junction conductance, is eliminated from the analysis, showing that our

model goes beyond conventional analysis in existing methods.



Main Text

Break junction techniques, such as the scanning tunneling microscope-based break junction
(STM-BJ)" 2 and mechanically controlled-break junction (MC-BJ),*> * are robust and powerful
methods to create and characterize well-defined single Au-molecule-Au junctions. In break
junction experiments, the electronic properties of these junctions are typically recorded although
in addition mechanical, thermoelectric and flicker noise characteristics can also be measured and
analyzed.>” Most frequently, conductance data from these measurements are analyzed by looking
at averages through histograms. However, a single break-junction measurement with multiple
possible junction types requires a junction-by-junction analysis. This is especially true in STM-BJ
measurements where in situ chemical reactions involve different molecules participating or created
during the course of the measurement in one experiment.!%!3 Recently, machine learning methods
have been applied to STM-BJ data.'*!” However, these methods still rely on averaging some
aspects of the measurements, which results in a loss of information during the data preprocessing
and analysis.

Deep learning is a powerful but more complicated machine learning technique which is
capable of representing and analyzing multiple aspects of measured data. Recently, deep learning-
based analysis have been applied to STM measurements'® and nano-gap conductance data.!® For
break junction-related data, Lauritzen and coworkers study the rupture process of Au-Au contact
using recurrent neural network?® and Huang and coworkers develop a clustering method on
conductance traces with deep auto-encoder’' techniques. Among deep learning techniques,
convolutional neural network (CNN) is a particularly powerful and popular method for image
recognition.”? Since STM-BJ data, which records conductance as a function of distance (or
equivalently time), can be regarded as a 1D image, CNN can, in principle, be applied to such data.
In this study, we develop a CNN-based model that can be applied to single-molecule conductance
data collected using an STM-BJ setup and demonstrate its higher accuracy and robustness
compared to non-deep learning models. Importantly, we show how this method can be used to

characterize junctions where we remove a key parameter, its average conductance, highlighting



the rich information available in conductance-time traces beyond what is analyzed using
histograms. We note however that this performance gain has its cost. When compared with non-

deep learning methods,'*!’

our method requires more time to train the model. Additionally, our
method is a supervised method, i.e., we need to feed the model reference measurements to sort the

data, while unsupervised methods such as clustering,'* !>-2! do not require reference measurements.
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Figure 1. (a) llustration of a molecular junction formed with STM-BJ. (b) Typical STM-BI traces.
(c) The 1D and (d) 2D histograms of a measurement of a mixed solution with1,6-diaminohexane
and 4,4’°-bis(methylthiol)biphenyl. (¢) The 1D and (f) 2D histograms of the rightmost trace (single
trace) shown in (b) showing only the molecular conductance region.

In a single break junction measurement, two gold electrodes start in contact and are gradually
pulled apart in a molecular solution, forming molecular junctions as shown in Figure la.

Conductance is recorded as a function of the electrode separation. Plateaus at or above 1 Go (Go=



2¢%/h, the quantum of conductance) correspond to atomic size gold contacts and plateaus below 1
Go are attributed to a molecule bridging the gap between the two electrodes. Figure 1b shows
several example conductance-versus-displacement traces measured in the presences of a mixture
of two molecules. Typically, conductance traces are analyzed by creating 1-dimensional (1D)
conductance and 2-dimensional (2D) conductance-displacement histograms from all measured
traces, as shown in Figure 1c and 1d. From these histograms we can obtain the average junction

conductance and the average junction elongation length.
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Figure 2. (a) [llustration of STM-BJ data analysis methods. On the left are the methods used for
data preprocessing to generate an input from original trace. On the right are the models that can be
applied to analyze STM-BJ data. (b) A simplified chart showing the flow of data in the CNN model

used here. (c) The illustration of one convolutional layer shown in (b).

Single traces can also be converted to individual 1D and 2D histograms (see Figure 1e and 1f)

115

and then analyzed using machine learning methods. For example, Hamillet ef a/'> have used the

principal component analysis (PCA) method on single-trace 1D histograms (denoted as PC1/1DH),



while Cabosart et al'* have applied a KMeans++ clustering algorithm?* 2*

on single-trace 2D
histograms (denoted as KMeans/2DH) to categorize STM-BJ data. However, both these methods
lose information that is present in the raw conductance-versus-displacement traces. For example,
focusing on the molecular conductance plateau (Figure 1b), we see that small fluctuations and
oscillations are lost when these are converted into single-trace histograms (Figure 1e and 1f).
Here, we analyze the original STM-BJ conductance trace, i.e. a 1D array of conductance
values. In Figure 2a, we summarize some common data analysis methods and show how traces are
processed on the left and the classification algorithms used on the right. Among these, keeping all
the raw data are likely the best, and this is easiest using a CNN-based analysis method. We
therefore then design a CNN-based model as illustrated in Figure 2b. In this model, a clipped STM-
BJ trace that excludes the gold point contact (data points with a conductance greater than 0.1 Go)
and noise floor (lower than 10 Gy) is taken as input. This focuses the analysis on the molecular
conductance region. After processing the data with 6 convolutional layers and 2 fully-connected
layers, the model generates a class label as output, identifying the molecular junction type. The
fully-connected layer here has the same structure as a layer in a regular multilayer perceptron,
where in each fully-connected layer, the input data matrix is multiplied by a weight matrix and
offset by a bias matrix. The result from each of these multiplications undergoes a non-linear
activation to break the linearity; here we use a rectified linear unit (ReLU), where the negative
values are simply flattened to zero.>> Dropout is then applied to provide extra robustness by
randomly discarding outputs of some neurons during training; this prevents the network from
relying on very few neurons.?® The convolutional layers used in this model are of the octave

convolution (OctConv) style,?’

as illustrated in Figure 2c. Compared to vanilla convolution,
OctConv recognizes data shapes better and remains invariant under scaling (by introducing the
low-frequency section in Figure 2¢). Each of the four columns in Figure 2¢ represent a vanilla
convolutional layer, with a 1D convolution operation, batch normalization (BatchNorm)*® and

ReLU. An OctConv layer is broken into four columns of convolutions providing the cross-

processing within and between the high-frequency branch and low-frequency branch to keep



information shared between the two spatial scales. Nearest neighbor interpolation and average
pooling are used to double or half the size of data to match the different data sizes. The structure

of OctConv layers is described in detail in the Section 2 of Supporting Information (SI).
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Figure 3. (a) Chemical structures 1, 2, 3. (b) The 1D and (c) 2D histograms of the traces judged
to be 1-like (3406 traces) or 2-like (4876 traces) by the CNN model from mixed solution
measurements. The histograms of all traces are shown in Figure 1 (b) and (c), and histograms of
measurements on pure solutions are shown in SI Figure S1. (d) The 1D and (e) 2D histograms of
the traces judged to be 2-like (7678 traces) or 3-like (4098 traces) by the CNN model from mixed

solution measurements.



To demonstrate the capabilities of this CNN model in classifying break-junction
measurements trace-by-trace as well as those that have been used in the literature, we collect STM-
BJ data using three commercial compounds: 1,6-diaminohexane (1), 4,4’-bis(methylthiol)biphenyl
(2) and 1,6-bis(methylthiol)hexane (3) (structures shown in Figure 3a). We measure each molecule
individually and as mixed solutions (1 with 2, and 2 with 3) in 1,2,4-trichlorobenzene (TCB). The
1D and 2D histograms of the 1/2 mixture are shown in Figure 1c and 1d (and those of the 2/3
mixture are shown in SI Figure S2¢ and S2d). As an example, we train this CNN model on data
obtained from measurements of pure 1 and pure 2, and an accuracy of 97.6% is achieve on this
test dataset (based on analyzing 10% traces that were not used in training). We use this trained
model to label the traces from mixed 1/2 solution measurement and plot the 1D histogram of all
the traces classified to be 1- and 2-like by the model in Figure 3b. Figure 3c shows the
corresponding 2D histograms. These histograms are very much like those measured on pure 1 and
pure 2 (shown in SI Figure S1a-S1d). We do not see a peak at the conductance value corresponding
to 2 in the 1-like traces and vice versa indicating that the model is highly accurate. The
corresponding classification result using model designs reported by others are shown in SI Figure
S3; the accuracies of these models on pure molecule-test datasets are significantly lower (Table 1).
We also train this model in the same way on the 2/3 data, and obtain a 95.9% accuracy on the pure
molecule test dataset. The 1D and 2D histograms of the algorithm-labeled traces from mixed 2/3
solution measurements are shown in Figure 3d and 3e. We can see this CNN model performs
extremely well in sorting data corresponding to molecules that have different backbone structures
(alkane versus phenylenes). For molecule pairs with the same backbones (for example two alkanes
such as the 1/3 pair, shown in Table 1), the classification accuracy is lower (89.6% on the test
dataset). This indicates that the deep learning algorithm picks out features in the conductance traces
that are likely related to the molecular backbone rather than the linker. It is possibly that the
backbone contributes more to the trace properties such as the conductance value and plateau length.

We next apply our CNN model to characterize conductance data measured with [3]cumulene

derivatives 4 and S (structures shown in Figure 4a). We recently discovered and reported that the



electric field in STM-BJ setup can isomerize the cis-isomer 4 to the trans-isomer 5 in situ."> In this
experiment, we recorded more than 100,000 conductance traces over a period of 30-hour. By
training the CNN model on measurements of pure 4 and S (achieving an 88.4% accuracy on the
test dataset) and then applying it to the large data set, we determine the ratio of the cis-isomer 4 to
the trans-isomer 5 as a function of time. Figure 4b shows this ratio determined from sets of 1,000
traces. From Figure 4b, we can observe the transformation of 4 to 5 during the timescale of the
measurement. To demonstrate the performance this classification, we show the 1D and 2D
histograms of the algorithm-labeled traces from a set of 10,000 traces measured at about 22 hrs
after the start of the measurement in Figure 4c and 4d. We can see that these histograms have a
very similar appearance comparing to the histograms of pure cis-isomer 4 and trans-isomer 5 (SI

Figure S1g-S1j), highlighting the accuracy of our model.
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Figure 4. (a) Chemical structures of the [3]cumulene derivatives. Under electric field, the cis-
isomer (4) transforms into the trans-isomer (5). (b) The percentage 4 (red dots) and 5 (blue dots)
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as a function of time as determined by the CNN model. (c) The 1D and (d) 2D histograms of the
traces judged to be 4-like (4997 traces) or S-like (4994 traces) by the CNN model from the 10000
traces measured 22 hrs after starting with a pure 4 solution.

In Table 1, we show results from applying the alternative models to sort different conductance
data. We test the PC1/1DH and KMeans/2DH models (taken from the literatures'® ') and also
introduce two additional ones. The first is a “brute force” method, which uses individual trace
conditional histogram, and then sorts data based on the number of counts within different
conductance regions.?’ The second is a naive logistic regression (LogitR), which does a logistic
regression on the raw clipped conductance trace as a series of independent variables; this method
is a simple linear model using the same input as the CNN model introduced in this work. We can
see from the first column of Table 1 that the CNN model performs significantly better than all
these simpler models for the mixed 1/2 molecule pair. Thus, although CNN needs more
computational power for the training step, its extra complexity yields higher classification accuracy.
In addition to these comparisons, we also apply a reported recurrent neural network-based model
aims for classification on rupture process of Au-Au contact? for reference, and find it performs
lower accuracy on this molecule recognition problem as detailed in the SI Section 6.
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Table 1. The comparison among the reported and proposed models described in the main text. The
accuracies of different models on different molecule pairs are shown in the table. For each

experiment shown in each cell, 90% of the labeled dataset are used to train the model, while the



remaining 10% are used for testing. In each cell, the accuracy on the test dataset is shown in the

center, and the accuracy on the training dataset given in parenthesis.

The accuracy of these four models on all other systems considered here are also shown in
Table 1. For sorting the 1/3 mixture (the 3™ row) where the backbones are the same and the
individual molecular conductances are also similar (both at ~2x10"* Gy), the accuracy is lower for
all models when compared to the 1/2 and 2/3 mixtures. However, the drop in accuracy for the CNN
model sorting the 1/3 mixture is much smaller than for other models. This implies that the CNN
model can identify trace characteristics beyond simply the conductance value. To test if this is
indeed the case, we design a reference analysis where the average plateau conductance information
is removed (5" row of Table 1). Instead of using the clipped conductance trace as input, we use a
randomly selected 0.4 nm-long fragment of molecular conductance plateau from the clipped trace
and then subtract the average conductance value of this segment from this data, in order to remove
the influence from conductance value as well as plateau length. We then test all models using this
new input. The accuracies of all the models decrease, but for the CNN model, the accuracy remains

reasonably high (94.4% on the test dataset).

10



2 40 4x10°
— — fragment — — fragment
1.2 full trace 12 full trace
CNN/wave PC,/1DH
3 3
2 2
c =
g 2 3
O o
1
0 I
10° 10* 10° 10 10" 10° 10° 10* 10° 10 10" 10°
Conductance (G) Conductance (G)
¢ ax10® 4x10°
— — fragment — — fragment
1 2 full trace 12 full trace
3 KMeans/2DH 3 LogitR/wave
& 2B
c c
3 2 3
[ & 6]

I .

10° 10* 10° 10? 10" 10° 10° 10* 10° 102 10" 10°
Conductance (Gg) Conductance (G)

Figure 5. The 1D histograms of 1-like (the light blue) or 2-like (the magenta) traces sorted by
different models from mixed solution measurements. The classification results based on using 0.4
nm fragments as inputs are shown as solid lines. As a reference, classification results using the
clipped trace as input, are reproduced here as shaded regions. (a) The CNN model applied to 0.4
nm fragments yield 3066 1-like and 5216 2-like traces (compared with 3406 1-like and 4876 2-
like traces when using the full trace). (b) The PC1/1DH model applied to 0.4 nm fragments yield
6053 1-like and 2229 2-like traces (compared with 4397 1-like and 3901 2-like traces when using
full trace). (c¢) The KMeans/2DH model applied to 0.4 nm fragments yield 392 1-like and 7890 2-
like traces (compared with 5260 1-like and 3022 2-like traces when using full trace). (d) Logistic
regression model applied to 0.4 nm fragments yield 4730 1-like and 3553 2-like traces (compared
with 4569 1-like and 3713 2-like traces when using full trace).

We next demonstrate the classifications of traces excluding the average conductance
information on the mixture solution of 1 and 2 in Figure 5. The significant result here, shown in
Figure 5a, is that discarding the average conductance information does not yield very different

results when using the CNN model, showing its robustness against the elimination of average
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conductance information. For the other models, discarding conductance information produces a
sorting that is more random. This indicates that these models rely strongly on the average
conductance information.

In conclusion, we have demonstrated a new deep learning-based model to recognize molecular
junction measurements performed with the STM-BJ technique that enables an accurate
classification and characterization of molecular types. Comparing our model to some widely used
and recently reported ones, we show that the CNN-based method achieves a much higher accuracy
and importantly is able to sort traces without relying on the average conductance information, a
critical innovation of this work. We demonstrate the application of this model to measurements of
mixtures of molecules and also apply it to monitor an in situ chemical reaction that is driven by
the electric field during STM-BJ experiment. The excellent performance and robustness of this
model makes it a favorable algorithm for analyzing such data. Its high-accuracy will enable more
detailed investigations on systems with mixture of different kinds of molecular junctions, including,

for example in situ reaction and surface chemistry.
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