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ABSTRACT
The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is con-

sidered to have contributed to the end-Cretaceous mass extinction and reduced productivity 
in the world’s oceans due to a transient cessation of photosynthesis. Here, biomarker profiles 
extracted from crater core material reveal exceptional insights into the post-impact upheaval 
and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean 
resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding 
carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyano-
bacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy 
from coastal microbial mats. As that energy subsided, days to months later, blooms of unicel-
lular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the 
nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-
fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur 
bacteria supported the development of water-column photic zone euxinia within the crater.

INTRODUCTION
The impact crater at Chicxulub (Yucatán 

Peninsula, México) is the only terrestrial cra-
ter on Earth with a well-preserved peak ring 
(Hildebrand et al., 1991; Schulte et al., 2010; 
Morgan et al., 2016; Kring et al., 2017; Gu-
lick et al., 2019). The asteroid impact is linked 
to the end-Cretaceous mass extinction event, 

which wiped out 76% of all species worldwide 
(Sepkoski, 1996), along with a near-global loss 
of vegetation (Kring, 2007; Vajda and Berco-
vici, 2014; Brugger et al., 2017). A collapse 
in phytoplankton productivity in the world’s 
oceans (Hsü et al., 1982; Zachos and Arthur, 
1986; Sepúlveda et al., 2009) occurred due to 
the sudden decline in photosynthesis as atmo-
spheric particulates lowered light levels for 
years after the impact (Bardeen et al., 2017). 
In 2016, the peak ring of the Chicxulub crater 

was cored (Fig. 1) by the International Ocean 
Discovery Program (IODP) and International 
Continental Scientific Drilling Program Expe-
dition 364 (see the GSA Data Repository1). A 
130-m-thick interval of impact melt rock and 
upward-fining suevite, which overlies fractured 
basement rock, was deposited immediately after 
impact. The lower suevite, rich in impact melt 
rock, is directly overlain by material transported 
via ocean resurge and then by seiches and a tsu-
nami deposit (Grice et al., 2009; Gulick et al., 
2019; Osinski et al., 2019; Whalen, 2019, per-
sonal commun.). The overlying 0.75-m-thick, 
fine-grained, brown micritic limestone (“tran-
sitional unit”), deposited in days to years after 
the impact by continuing seiches and tsunami, 
contains microfossils of calcareous plankton 
and trace fossils of burrowing organisms (Wha-
len et al., 2017; Lowery et al., 2018; Gulick 
et al., 2019). The transitional unit is overlain 
by a thin green marlstone, followed by the de-
position of “white” micritic limestone (616.55–
616.24 m below seafloor [mbsf]) within 30–200
k.y., representing the base of the succeeding 
pelagic-hemipelagic limestone deposit. Data 
to support the geology and relative timing of *E-mail: K.Grice@curtin.edu.au

1GSA Data Repository item 2020087, sample location and description, laboratory and analytical techniques, Figures DR1–DR4 (chromatograms), Figure DR5 
(maturity parameters), Figure DR6 (fractional abundance of heterocyst glycolipids), and Figure DR7 (long-chain alkanes versus TOC), is available online at http://
www.geosociety.org/datarepository/2020/, or on request from editing@geosociety.org.
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these events have been published by Gulick 
et al. (2019) and Lowery et al. (2018).

Evidence of ancient life is generally pre-
served in sediments as morphological fossils, 
trace fossils, and molecular fossils (biomark-
ers). Biomarkers are often well preserved in 
sediments even where visible mineralized fos-
sils are absent, representing valuable signs of 
past life, especially microbial life. For ex-
ample, in the Fiskeler Member in the end-
Cretaceous boundary layer at Kulstirenden, 
Denmark, biomarkers showed that marine pro-
ductivity recovered within a century following 
the Chicxulub impact (Sepúlveda et al., 2009). 
Here, we present biomarker distributions and 
sulfur isotopes of pyrite between 619 mbsf and 
608 mbsf at IODP Site M0077A (21.45°N, 

89.95°W). Our aim was to use biomarkers to 
reconstruct the origin, recovery, and develop-
ment of microbial life and to determine the 
paleoenvironmental conditions in the crater 
from the time of impact to up to ∼4 m.y. after 
the impact (Figs. 2 and 3).

MATERIALS AND METHODS
Detailed materials and methods are pro-

vided in the Data Repository. Briefly, samples 
were Soxhlet extracted, and the extracts were 
separated into apolar and polar fractions and 
analyzed by gas chromatography–mass spec-
trometry (GC-MS), metastable reaction moni-
toring (MRM), and high-performance liquid 
chromatography–tandem mass spectrometry 
(HPLC-MS2). The δ13C and δ34S values were 
measured on extracted residues. Total organic 
carbon (TOC) was determined by an elemental 
analyzer. Typical traces of GC-MS and MRM 
for procedural blanks and samples are given 
in Figures DR1–DR4 in the Data Repository.

RESULTS AND DISCUSSION
The TOC content (Fig. 2A) in the entire 

interval was low (0.06–0.2 wt%), consistent 
with carbonate dilution (see the Data Re-
pository). The homohopane ratios [i.e., 22S/
(22S + 22R)], were ≤ 0.6, supporting a low 
thermal maturity through the section (see 
Fig. DR5; Peters et al., 2005). Despite low 
organic matter content and low abundances 
of biomarkers (Figs. 2 and 3), the record pro-
vided insights into the evolution of microbial 
communities in this exotic habitat.

First Days After Impact (619.31–617.33 mbsf)
The uppermost suevite was deposited by a tsu-

nami within the first day after impact (Gulick et al., 
2019). This tsunami transported reworked organic 
matter from outside the crater, as evidenced by 
the abundance and distribution of perylene and 
charcoal (Grice et al., 2009; Gulick et al., 2019). 
Reworked marine inputs shown by biomarkers in-
cluded dominant n-C17/n-C19 alkanes, indicative of 
algae or cyanophytes (Fig. 2G). Further, abundant 
C29 steranes from green algae and/or land plants 
(Fig. 2F) reflect a mixture of marine and terrig-
enous inputs. This interval also contains biomark-
ers derived from anoxygenic photosynthetic sul-
fur bacteria (i.e., isorenieratane, β-isorenieratane, 
and traces of chlorobactane and okenane; Sum-
mons and Powell, 1987; Brocks et al., 2005; 
Grice et al., 2005, 1996; Figs. 3B–3D). In ad-
dition, cyanobacterial biomarkers in the form of 
2α-methylhopanes (2α-MeH; Summons et al., 
1999; Welander et al., 2010) and heterocyst glyco-
lipids (HGs) were observed. The latter, diagnostic 
for N2-fixing cyanobacteria, represent the oldest 
reported intact HGs (Fig. 2D; Bauersachs et al., 
2010). From the presence of terrestrial signatures 
and the depositional regime, we infer that all the 
organic signatures are reworked materials, likely 
derived from carbonate platforms and coastal en-
vironments close to the site. The biomarkers listed 
above were also identified in overlying sediments 
(617.33–608.48 mbsf), where they represent or-
ganisms living within the nascent crater. Here, we 
evaluate the oceanographic and redox conditions 
in the impact basin as inferred from the biological 
origins of these compounds.

Figure 1.  Map showing International Ocean 
Discovery Program (IODP) Site M0077A 
(21.45°N, 89.95°W) at the Chicxulub crater, 
Mexico.

Figure 2.  Composite plot of bio-
marker data in extracted bitumen 
samples against the lithology 
of the Chicxulub core (Yucatán 
Peninsula, México) from Interna-
tional Ocean Discovery Program 
(IODP) Site M0077A. Compounds 
were identified by compari-
son with standard components 
(see the Data Repository [see 
footnote 1] for analyses). Total 
organic carbon (TOC) content in 
entire interval was very low (0.2 
wt%). C35 homohopane index 
(bacterial activity), 2α-methyl 
(cyanobacteria) and 3β-methyl 
(methanotrophs) hopanes, and 
heterocysts glycolipids (HGs), 
which are indicative of N2-fixing 
cyanobacteria. Sterane index, 
S/(S + H), is indicative of rela-
tive inputs of eukaryotic (algae 
and higher plants) and bacterial 
sources. C27-C29 steranes (algae, 
land plants, and fungi) and n-C25 
to n-C33 waxes from land plants 
are prevalent compared to low-
molecular-weight n-alkanes. 

Biostratigraphy was used for age determination (Gradstein et al., 2012; Lowery et al., 2018). PFZ—planktic foraminifer zone; HHI—homohopane 
index; MeHI—Methylhopane index. (A) TOC concentrations (wt%). (B) C35 HHI ([C35αβ S + R/ΣC31–35αβ S + R] × 100). (C) Methylhopane indices (e.g., 
[C31 2α-methylhopane/{C30αβ + C31 2α-methylhopane}] × 100). (D) HG abundance (area counts/g of TOC). (E) Sterane/(sterane + hopane) ratio (C27–29 

steranes/[C27–29 steranes + C30–35 hopanes]). (F) Steranes (C27/ΣC27–29, C28/ΣC27–29, C29/ΣC27–29). (G) n-alkanes (n-C14–C33).
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Recovery—The First 200 k.y.  
(617.33–616.24 mbsf)

The interval deposited immediately after 
impact is represented by the transitional unit 
(617.33–616.58 mbsf) of fine-grained brown 
micrite and overlying green marlstone, and it is 
likely to contain the first record of microbial life 
after the impact (Lowery et al., 2018; Bralow-
er, 2019, personal commun.). The succeeding 
“white micrite” is possibly a result of calcite 
formed photosynthetically by cyanobacteria that 
replaced the calcareous nanoplankton and other 
algae across the Cretaceous-Paleogene boundary 
(Bralower, 2019, personal commun.).

Our study provides the first evidence of cya-
nobacteria 30 k.y. after impact at 617.33–616.58 
mbsf, from abundant C31+ hopanes (Figs. 2B 
and 2C; Rohmer et al., 1984; Summons et al., 
1999; Brocks, 2018). The 2α-MeH ratios (1.9 
and 4.2; Fig. 2C), in agreement with those report-
ed for the Fiskeler Member boundary layer, are 
typical of marine conditions (Sepúlveda et al., 
2009). However, the ratios observed here are sig-
nificantly lower than those reported in Permian-
Triassic (Cao et al., 2009) and Triassic-Jurassic 
(Kasprak et al., 2015) boundary sections.

The sterane/(sterane + hopane) ratios [S/
(S + H)] were found to be low (0.17 and 0.7; 
Fig. 2E), showing low algal inputs relative to 
bacteria, particularly cyanobacteria (Brocks, 
2018). In the Fiskeler Member boundary layer, 
the lowest S/(S + H) ratio was assigned to a de-
creased algal input, followed by an immediate 
increase, suggesting a rapid resurgence of algae 
when solar irradiance returned to pre-impact lev-

els (Sepúlveda et al., 2009). In the transitional 
unit, the S/(S + H) ratio changed within multiple 
intervals, suggesting that the organic matter in the 
crater was a mixture of transported and autoch-
thonous material, distinct from other Cretaceous-
Paleogene sites (Sepúlveda et al., 2009). A similar 
trend was observed in the 2α-MeH index and the 
homohopane index (HHI) (Figs. 2B, 2C, and 2E). 
The HHI (5.8) and 2α-MeH index (4.2) are con-
sistent with anoxic-euxinic conditions (Sepúlveda 
et al., 2009; Hamilton et al., 2017), which are 
also reflected by the low pristane/phytane ratios 
(Figs. 2B, 2C, and 3E). The HHI is based on 
the increased preservation of extended hopanes 
(>C33) under euxinic conditions (Peters and 
Moldowan, 1991) through reduction and cross-
linking with reduced sulfur species (Köster et al., 
1997). The shifts in high to low S/(S + H) ratios 
suggest that sedimentation was influenced by wa-
ter movement, most likely seiches (Gulick et al., 
2019) and resuspension (Lowery et al., 2018).

The HGs were observed to be low in abun-
dance (Fig. 2D) in this interval, and exclusive-
ly consisted of the HG26 diol and HG26 keto-ol 
(Fig. DR6), identified in coastal microbial mats 
(Bauersachs et al., 2011), brackish-marine en-
vironments (Sollai et al., 2017), and in axenic 
cultures of nostocalean cyanobacteria such as 
Anabaena spp. or Nodularia spp. (Bauersachs 
et al., 2009, 2017). HG28 triols have been re-
ported in free-living marine cyanobacteria (Bale 
et al., 2018). It is therefore plausible that the 
HG26 diol and HG26 keto-ol are also derived 
from a marine source. The low abundance of 
both components, however, suggests only low 

productivity of N2-fixing heterocystous cyano-
bacteria in the first 200 k.y. after the impact. An 
increased influx of terrigenous nutrients would 
have helped to sustain phytoplankton, as shown 
by the paired increase in the abundance of long-
chain waxy n-alkanes (C25–C33) and C29 steranes 
(0.3–0.56; Figs. 2G and 2F) from plants and 
green algae (Eglinton and Hamilton, 1967; Volk-
man, 1986; Kodner et al., 2008). The 3β-MeH 
index (Fig. 2C) showed an increase at the top of 
the transitional unit (616.62–616.58 mbsf) and 
in the white micrite, indicating the presence of 
methanotrophs (e.g., Ding and Valentine, 2008).

200 k.y. to 4 m.y. After Impact (616.24–
608.48 mbsf)

A substantial shift in the microbial commu-
nity was found in the middle and upper parts 
of the hemipelagic limestone horizon. The HG 
distribution patterns and abundances showed 
considerable changes indicating shifts in the cya-
nobacterial community and an increase in cya-
nobacterial productivity by two orders of magni-
tude (0.23 × 107 area counts/g TOC) compared to 
the transitional unit, with maximum concentra-
tions at 613.45 mbsf (Fig. 2D; Fig. DR6).

In contrast, the 2α-MeH index remained 
constant, with a slight increase at 613.45 mbsf, 
whereas the HHI increased again between 
613.45 and 610.72 mbsf. This increase in (cyano)
bacterial biomarkers and the concomitant rise 
in the abundance of N2-fixing heterocystous 
cyanobacteria suggest a shift toward a nitrogen-
limited environment, perhaps triggered by water 
column stratification. Another possibility is that 

Figure 3.  Composite plot of 
biomarker data in bitumen 
samples against the lithology 
of the Chicxulub core (Yucatán 
Peninsula, Mexico) from Interna-
tional Ocean Discovery Program 
(IODP) Site M0077A. Compounds 
were identified by comparison 
with standard components (see 
the Data Repository [see foot-
note 1] for analyses). Relatively 
high abundances of β-carotane 
and Chlorobiaceae biomarkers 
were observed in the hemi-
pelagic limestone section 
(isorenieratane, chlorobactane, 
and okenane). There were no 
aromatic hydrocarbons available 
to conduct metastable reaction 
monitoring (MRM) analysis for 
interval 617.35–616.24 mbsf. 
Low ratios of pristane to phytane 
(<1) were observed, minimizing 
in the limestone interval, con-
sistent with depleted values of 
δ34S of pyrite and abundant total 
reduced inorganic sulfur (TRIS). 
Biostratigraphy was used for age 

determination (Gradstein et al., 2012; Lowery et al., 2018). PFZ—planktic foraminifer zones; TOC—total organic carbon. (A) β-carotane concen-
trations (ng/g TOC). (B) Isorenieratane concentrations (ng/g TOC). (C) Chlorobactane concentrations (ng/g TOC). (D) Okenane concentrations 
(ng/g TOC). (E) Pristane/phytane (Pr/Ph) ratio. (F) δ13Ckerogen values (‰, relative to Vienna Peedee belemnite [VPDB]). (G) δ34Spyrite values (‰, 
relative to Vienna Canyon Diablo Troilite [VCDT]). (H) Total reduced inorganic sulfur (TRIS) concentrations (wt%).
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these organisms were allochthonous and were 
transported into the crater from microbial mats 
living in relatively shallow waters. The lime-
stone interval between 613.45 and 610.72 mbsf 
(ca. 64.4–63.1 Ma) indeed indicated anoxic 
conditions during deposition, depicted by low 
pristane/phytane ratios (<1; Fig. 3E), abundant 
β-carotane from autotrophs, and highly charac-
teristic photic zone euxinia (PZE) biomarkers 
from green-green and brown-green pigmented 
Chlorobiaceae (e.g., chlorobactane and isore-
nieratane), and purple pigmented Chromatiaceae 
(okenane; Figs. 3A–3D; Imhoff, 2004). Chloro-
biaceae and Chromatiaceae are anaerobic pho-
toautotrophs that use hydrogen sulfide (gener-
ated by sulfate-reducing bacteria) as an electron 
donor and biosynthesize specific bacteriochlo-
rophyll and accessory carotenoid pigments to 
capture longer wavelengths of light energy to fix 
CO2 (Pfennig, 1978). Such organisms flourish in 
benthic mats and as plankton concentrated at the 
chemocline of lakes or restricted marine basins 
where sulfide concentrations are high within the 
photic zone; hence, they are indicative of PZE 
conditions (Pfennig, 1978; Grice et al., 2005; 
French et al., 2015). In this limestone inter-
val, total reduced inorganic sulfur was abun-
dant, with δ34S values ranging from ∼−22‰ at 
613.71 mbsf to −33‰ at ∼611 mbsf, consistent 
with nonlimiting sulfate concentrations, water-
column PZE (Figs. 3G and 3H), and enhanced 
pyrite burial (Fig. 3H; Lyons, 1997; Böttcher 
and Lepland, 2000). Similar δ34S values have 
been reported for reduced sulfur in Cretaceous 
black shales (Hetzel et al., 2006; Witts et al., 

2018). Diagenetic pyrite in shell fillings and 
sediment matrix indicates recrystallization of 
primary framboids. The pronounced 34S deple-
tion compared to the estimated value of contem-
poraneous seawater (15‰–20‰; Strauss, 1997; 
Witts et al., 2018) signifies that microbial sulfate 
reduction probably took place in the water col-
umn (Figs. 3G and 3H; Strauss, 1997).

Associated with compelling indicators that 
periodic PZE was prevalent in the Chicxulub cra-
ter from ca. 64.4 Ma to 63.1 Ma, the molecular 
evidence indicates that oxygenated waters over-
lay the anoxic and sulfidic interval of the water 
column (Figs. 2B–2D, 3E, 3G, and 3H). During 
this time interval, methane from anoxic sediments 
underlying a sulfidic water column likely migrat-
ed upward until it was oxidized by microaerophil-
ic methanotrophic bacteria at the chemocline, as 
evidenced by 3β-MeHI (Fig. 2C). An alternative 
scenario is the possibility of an oxygen minimum 
zone (OMZ) existing in the crater water.

CONCLUSIONS
The evolution of microbial communities in 

the Chicxulub crater was investigated using mo-
lecular and isotopic signatures, as summarized in 
Figure 4. We propose a scenario where, in the ini-
tial days after the asteroid impact, debris from mi-
crobial mats containing N2-fixing heterocystous 
cyanobacteria and photosynthetic sulfur bacteria 
was eroded from adjacent carbonate platforms 
and transported by ocean resurge or tsunamis 
into the crater. Microbial ecosystem communities 
were in a constant state of dynamic flux during 
the early evolution of the crater. Diminution of 
sunlight following the impact led to a dramat-
ic decline in cyanobacterial productivity in the 
crater waters. However, rapid recovery of phyto-
plankton occurred in the first 200 k.y., and marine 
primary production was fueled by an influx of 
terrigenous nutrients. Phytoplankton communi-
ties continued to experience rapid changes over 
the following 4 m.y. The nascent Chicxulub crater 
basin was accompanied by major transitions in 
nutrient and oxygen supplies (periods of euxinia) 
that shaped the recovery of microbial life.
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