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Abstract
This work seeks to develop (lower) performance bounds for a traffic scheduling problem
that arises in many application contexts, ranging from industrial material handling and
robotics to computer game animations and quantum computing. In a first approach, the
sought bounds are obtained by applying the Lagrangian relaxation method to a MIP formu-
lation of the considered scheduling problem that is based on a natural notion of “state” for
the underlying traffic system and an analytical characterization of all the possible trajecto-
ries of this state over a predefined time horizon. But it is also shown that the corresponding
“dual” problem that provides these bounds, can be transformed to a linear program (LP) with
numbers of variables and constraints polynomially related to the size of the underlying traf-
fic system and the employed time horizon in the MIP formulation. Furthermore, the derived
LP formulation constitutes the LP relaxation of a second MIP formulation for the consid-
ered scheduling problem that can be obtained through an existing connection between this
problem and the “integral multi-commodity flow” (IMCF) model of network optimization
theory. Finally, the theoretical developments of the paper are complemented with a compu-
tational part that demonstrates the efficacy of the pursued methods in terms of the quality
of the derived bounds, and their computational tractability.

Keywords Guidepath-based traffic systems · Traffic scheduling · Lagrangian duality ·
Combinatorial optimization

1 Introduction

The basic traffic scheduling problem underlying the developments that are presented in this
paper, can be briefly described as follows: Given a set of agents, A, that circulate on the
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edges and/or the vertices of a connected graph G = (V ,E), to be called the “(support-
ing) guidepath network”, we want to advance these agents from their current locations to
some destination locations in the minimum possible time, while observing a number of
regulations regarding the edge and/or the vertex occupancy by the traveling agents.1

From a practical standpoint, the above problem is motivated by the need to study the
dynamics of traffic that is evolving in highly constricted environments. More specifically,
particular instantiations of this scheduling problem have been investigated by: (i) the artifi-
cial intelligence (AI) and the robotics communities under the name of the multi-agent path
planning (MAPP) problem (e.g., Standley (2010), Sajid et al. (2012), Yu and LaValle (2016),
and Ma et al. (2016)); (ii) the industrial engineering and the operations research communi-
ties in the operational context of various unit-load material handling systems (MHS) (e.g.,
Heragu (2008), Krishnamurthy et al. (1993), Huang et al. (1993), Desaulniers et al. (2003),
Nishi and Maeno (2010), and Daugherty et al. (2019)); (iii) the computer scientists and
the theoretical physicists that deal with the motion of the ionized atoms (or “qubits”) that
are the elementary information carriers in the context of quantum computing (Nielsen and
Chuang 2010; Daugherty 2017); and (iv) the computer game industry in its effort to support
complex animated computer graphics (Surynek 2012).

The restrictions that are imposed by the aforementioned operational environments on the
traveling agents that circulate in them, define various notions of “conflict” for these agents,
and, in certain cases, they can even impair the agents’ ability to reach their intended des-
tinations. As a result, for many of the considered scheduling formulations, even the more
basic tasks of (a) assessing their feasibility, and (b) constructing just a feasible traffic sched-
ule, can be very challenging (Wilson 1974; Kornhauser et al. 1984; Auletta et al. 1999;
Reveliotis 2000; Reveliotis and Roszkowska 2010; Yu and Rus 2015). Furthermore, the
optimization problem that is defined by these scheduling formulations, will typically fall
into the class of NP-hard problems (Yu and LaValle 2015; Ma et al. 2016). Hence, at the
end, these scheduling problems are usually addressed through heuristics and approximat-
ing methods that aim for near-optimal solutions. Finally, an additional complicating feature
of the aforementioned traffic scheduling problems is that the posed transport requirements
are emerging in a very dynamic manner, that necessitates the iterative re-computation of an
optimized traffic schedule.

When viewed from a more technical standpoint, most of the current literature on the
aforementioned traffic scheduling problems can be perceived as an endeavor to adapt clas-
sical ideas and techniques coming from combinatorial optimization (Papadimitriou and
Steiglitz 1998) and scheduling theory (Morton and Pentico 1993; Pinedo 2002) to this
particular problem setting. Hence, a large part of the proposed heuristics and algorithms
constitute “local-search”-based schemes (Papadimitriou and Steiglitz 1998) and variations
of the popular A∗ algorithm (Morton and Pentico 1993) adapted to the considered problem
context. Many of these schemes are also augmented with further decomposing or filtering
steps that seek to enhance the computational efficiency of the resulting algorithms, and also
the feasibility and the efficiency of the derived solutions. Some indicative samples of these
lines of work can be found in (Standley 2010; Standley and Korf 2011; Wang and Botea
2011; Sajid et al. 2012; Wagner and Choset 2015; Sharon et al. 2015; Daugherty et al.
2019). Also, the recent publication of Daugherty et al. (2019) provides a very systematic

1The time that it is required by any feasible traffic schedule for the considered problem to move all the trav-
eling agents from their current locations to their destinations, is known as the “makespan” of this schedule;
hence, in more technical terms, our problem is a “min makespan” scheduling problem. We shall provide a
detailed positioning of this problem in later parts of this work.
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and quite comprehensive survey of the existing literature on the effective and efficient traf-
fic management of the various classes of the guidepath-based traffic systems considered in
this work.

Of particular interest and affinity to this work, are some recent developments that have
appeared in (Yu and LaValle 2016; Ma et al. 2016), and connect the considered traffic
scheduling problems to the notion of the “integral multi-commodity flow (IMCF)” and the
corresponding network-flow optimization theory (Ahuja et al. 1993). The realization of this
connection has enabled the effective resolution of the particular traffic scheduling problems
that are addressed in (Yu and LaValle 2016; Ma et al. 2016) through integer programming
(IP) formulations (Wolsey 1998). More specifically, these IP formulations either provide a
complete representation of the addressed traffic scheduling problem, or they are embedded
as components in more general solution algorithms for these problems; and especially in
the latter case, they have resulted in the expedient computation of near-optimal solutions
for many instances from the considered scheduling problems that involve a large number of
agents and a complex structure for the underlying guidepath network.

This paper seeks to complement the aforementioned developments by taking a closer
look at the combinatorial structure of the considered traffic scheduling problems, and focus-
ing primarily on the ability of this structure to provide good quality (lower) bounds for their
optimal objective value. The importance of the availability of good-quality bounds for hard
scheduling (or more general combinatorial optimization) problems is well understood in
the corresponding optimization theory; these bounds enable the assessment of the extent of
the sub-optimality of the solutions that are derived through the heuristic methods that were
mentioned in the previous paragraphs, and they can also guide and streamline the search
for good solutions by steering the search process away from regions of the underlying solu-
tion space that are of poor quality (Fisher 1981; Bertsekas 1999). In certain, although rarer,
cases, the computation of these bounds can also reveal additional structural information
for the synthesis of efficient solutions for the considered optimization problem (Bertsekas
1999; Hoitomt et al. 1993).

From a methodological standpoint, the starting point for the derivation of the bounds
that are sought in this paper, is a complete mathematical programming (MP) formulation
of the considered optimization problem. As already mentioned, the traffic scheduling prob-
lems considered in this work can be formulated as a Mixed Integer Program (MIP) (Wolsey
1998). Once such a MIP formulation has been derived, there are two possible approaches
to derive the sought lower bounds: (a) One first bound can be obtained by relaxing the inte-
grality property of the integer (actually, binary) variables that model the more combinatorial
elements of the considered problem; the resulting formulation is known as the “Linear Pro-
gramming (LP) relaxation” of the original MIP, and the corresponding bounds are referred to
as the LP bounds. (b) The second line of computation of the sought bounds is by “softening”
some of the harder constraints in the original MIP formulation, bringing these constraints
into the original objective function as additional terms that will “penalize” the violation of
these constraints by any contemplated solution; the formulation that results from this mod-
ification is known as the “Lagrangian relaxation” of the original MIP formulation, and the
theory that deals with the systematic derivation of the corresponding bounds and the analysis
of their quality, is known as “(Lagrangian) duality” theory (Fisher 1981; Bertsekas 1999).

Furthermore, two additional important facts that have been established by Lagrangian
duality theory and are at the center of this work, are the following: (i) For MIP formulations
of the type considered in this work, Lagrangian duality can provide tighter bounds than the
corresponding LP bounds, in general (Geoffrion 1974). (ii) The computation of the tightest
Lagrangian-duality bounds that result from a given selection of the relaxed constraints, boils
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down to the solution of a concave optimization problem that is known as the corresponding
“dual” problem. But this concave optimization problem involves a non-smooth objective
function and requires the employment of sub-gradient optimization techniques; hence, its
solution can be a slow and unstable process, especially for large-scale instantiations of the
considered problems (Bertsekas 1999). These two facts subsequently imply that the qual-
ity – or, the “tightness” – of the derived bounds and the computational complexity that is
involved in their derivation, can be contingent upon (a) the starting MIP formulation, and
(b) the employed method for the derivation of these bounds.

In view of the above remarks, the main contributions of this paper can be stated as follows:

1. First we provide a MIP formulation for the traffic scheduling problems that are consid-
ered in this work that constitutes a “canonical” such formulation for these problems.
More specifically, the primary decision variables that are employed by this MIP formu-
lation are suggested by a natural notion of “state” for the considered traffic systems,
and, together with the constraints of this formulation, they define a straightforward
representation of the evolution – or of the “trajectory” – of this state under any contem-
plated feasible schedule. Hence, the notions and the perspectives that are employed by
this formulation parallel the notions and ideas that underlie the formulations of more
general optimal control problems.

2. The aforementionedMIP formulation is subsequently used in order to derive tight lower
bounds for the considered scheduling problem through the Lagrangian duality theory
that was discussed in the previous paragraphs. More specifically, these bounds are gen-
erated by relaxing some hard constraints in the original MIP formulation that “couple”
the routing and scheduling decisions among the traveling agents. But in an additional
important step, it is shown that the corresponding “dual” problem that will compute
the tightest possible value among this set of bounds, possesses special structure that
allows the eventual reformulation of this problem as an LP. Furthermore, the numbers
of variables and constraints of this LP are polynomially related to the system parameters
|A|, |E|, and the employed time horizon T for the underlying traffic scheduling prob-
lem. Hence, the hard non-smooth concave optimization problem that was mentioned in
the previous paragraphs, can be solved in our case through canned LP software in an
efficient and very robust manner.

3. We also provide an explanation of the linearizing result that was mentioned in item #2
above, by interpreting the obtained LP formulation as the LP relaxation of another MIP
formulation of the considered scheduling problem. In fact, it turns out that this newMIP
formulation of the considered scheduling problem is naturally motivated and defined
by the IMCF structure that is present in the dynamics of the considered traffic systems.
Hence, besides their explanatory role along the aforementioned lines, the results of this
part of our work also connect the developments of this paper to the recent developments
and insights of Yu and LaValle (2016) and Ma et al. (2016).2 They also establish that
the bounds resulting from the alternative modeling approach of the considered traffic
scheduling problems that recognizes the IMCF structure present in them, are of exactly
the same quality and informational content with the bounds obtained through the MIP
formulation of item #1.

2We emphasize, however, that our results have been developed in the Ph.D. thesis program of the first author
independently from, and in parallel to, the corresponding developments of Yu and LaValle (2016) and Ma
et al. (2016).
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4. Finally, a last part of the paper presents the results of a set of computational experiments
that (i) demonstrate the computational potency and efficiency in the derivation of the
sought bounds that is provided by the paper developments, and, even more importantly,
(ii) help us assess the quality of the bounds that can be obtained from these develop-
ments, in terms of their proximity to the optimal objective value of the underlying MIP
formulation.

With this positioning of the paper content and its intended contribution, the rest of it is
organized as follows: Section 2 provides a systematic description of the considered traf-
fic scheduling problems and their first MIP formulation that was described in item #1.
Section 3 presents the Lagrangian relaxation that is proposed for the MIP formulation of
Section 2, formulates the corresponding “dual” problem, and establishes some important
properties for this problem. Section 4 derives a series of LP (re-)formulations of the “dual”
problem of Section 3, and establishes formally the equivalence of these LP formulations to
the original “dual” problem. Section 5 introduces the alternative MIP formulation for the
considered traffic scheduling problem, and provides a more intuitive explanation for the
results of Section 4 by establishing the equivalence of the LP relaxation of this new MIP
formulation to the LP formulation of the Lagrangian “dual” problem of Section 3. Section 6
presents the numerical results regarding the computational tractability of the proposed LP-
based approach for the solution of the “dual” problem, and the tightness of the derived
bounds. Finally, Section 7 concludes the paper and discusses some directions for future
work. We also notice, for completeness, that a preliminary, more concise version of some
of the presented results have appeared in Daugherty (2016, 2017b).

2 The traffic scheduling problem considered in this work: detailed
problem description and its first MIP formulation

In this section we provide a formal characterization of the traffic systems and the corre-
sponding traffic scheduling problem that are the focus of this work. Some of the concepts
and the terminology introduced in the subsequent discussion are motivated from our experi-
ence with these scheduling problems in the context of the MHS and the quantum-computing
operations that were mentioned in the introductory section. But the overall positioning of
the problem, and the corresponding modeling assumptions, have been kept at a level of gen-
erality that renders the presented developments easily transferrable to the other variations
of these traffic scheduling problems that were cited in the introductory section.

Anabstractingdefinitionof theguidepath-based traffic systems considered in thiswork
The traffic system that is considered in this work can be formally abstracted as follows:
The system consists of a guidepath graph G = (V ,E) that is traversed by a set of agents,
A. Graph G is assumed to be connected and undirected. The edges e ∈ E of G model the
“zoning” of the underlying quidepath network, i.e., the segmentation of this network into
a set of locations that are allocated sequentially and exclusively to their occupying agents
in order to perform their traveling through this network. Hence, each edge e ∈ E can be
traversed by a traveling agent a ∈ A in either direction, but they can hold no more than one
agent at any time.

Each agent a ∈ A initially occupies an edge sa of G and also has associated with it
a destination edge da . We want to define a set of routes that will take each agent a from
its current location sa to its destination location da in a way that (i) observes the exclusive
occupancy of the system zones by the traveling agents, and (ii) optimizes an objective
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function that is defined with respect to (w.r.t.) certain attributes of these routes. Different
variations of the above problem can be obtained through the detailing of: (a) the dynam-
ics that define the agent motion within a zone or their transitions between two neighboring
zones; (b) the protocol that coordinates the zone allocation to the traveling agents; and (c)
the particular objective to be pursued by the selected routes.

For the expository needs of this work, we define the additional problem elements that
were listed in the previous paragraph through the following assumptions: In our problem
formulation, we assume that the edge traversal time is uniform for all agent-edge pairs
(a, e) ∈ A× E, and this time constitutes a natural “time unit” that discretizes the dynamics
of the underlying traffic.3 In the resulting discretized traffic model, it is further assumed that
an agent a can transition from an edge e, that it occupies at some period t , to a neighboring
edge e′, to be occupied at period t + 1, only if edge e′ is unoccupied at period t .4 Also,
while an edge e ∈ E can be traversed by an agent a ∈ A in any direction, in the rest of this
work we also assume that, once agent a has entered edge e, it cannot reverse the direction
of its motion on this edge. To capture this sense of direction of the agent motion in its
current edge, in our analytical formulations of the considered scheduling problem, we shall
represent each undirected edge e ∈ E in the original guidepath network, that connects some
vertices vi and vj , with the pair of directed edges (vi, vj ) and (vj , vi); this replacement will
turn the original graphG into a directed graph. Furthermore, in this extended representation,
for any edge e = (vi, vj ), we shall also use the notation of ē to denote the “reverse” edge
(vj , vi). Finally, in our formulation of the considered scheduling problem, we shall seek
to minimize the “makespan” of the employed schedule, i.e., the time by which every agent
a ∈ A has reached its destination da .5

Finally, we also notice, for completeness, that in many practical application contexts,
the traffic scheduling problem that was outlined in the previous paragraphs will constitute
the “core” sub-problem that must be repetitively formulated and solved in the context of an
MPC / “rolling-horizon” scheme (Kouvaritakis and Cannon 2015) that will address more
complicated routing schemes and/or more dynamically evolving transport requirements for
the considered traffic systems. The complete definition of such an MPC scheme able to
ensure the efficiency and the liveness of the generated traffic, depends on the aforemen-
tioned operational assumptions that define the agent maneuverability and the employed
zone allocation protocol; a more expansive discussion on this MPC scheme and a system-
atic treatment of the aforementioned dependencies can be found in Daugherty et al. (2019)
and Reveliotis (2018).

Formulating the considered traffic scheduling problem as a Mixed Integer Program
Next, we develop the first Mixed Integer Programming (MIP) (Wolsey 1998) formulation
for the traffic scheduling problem that was detailed in the previous part of this section. The

3While facilitating the presentation of the subsequent developments, the presumed uniformity of the zone
traversal times is not restrictive, since one can adapt the presented developments to the non-uniform case by
using the greatest common divisor of the various zone traversal times as the discretizing time unit.
4As acknowledged in Yu and LaValle (2016), this is a typical requirement for most models of guidepath-based
traffic systems. In the context of zone-controlled until-load MHS (Heragu 2008) and of the qubit transport
systems that are employed by quantum computing (Daugherty 2017), this requiirement is motivated by the
need to ensure collision-freedom for the traveling agents during the unobservable, transitional phase between
time periods t and t + 1.
5Besides its practical relevance in many applications, the selection of the schedule makespan as the employed
objective function also expresses our intention to address one of the most difficult variations of the considered
scheduling problem, since this criterion is a nonlinear function of the dynamics of the underlying traffic.
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notation and the decision variables that are employed in this formulation are defined as
follows:

2.1 Notation

• V = {v1, v2, ..., vm}: Guidepath-graph vertices
• E = {e1, e2, ..., en}, with el = (vi, vj ) ∀l ∈ {1, ..., n}: Guidepath-graph edges (or

“zones”)
• T (n×n): A binary matrix expressing the agent transitional dynamics on the guidepath

graph; Ti,j = 1 iff a direct transition from ei to ej is allowed. We also set Ti,i = 1 ∀i

s.t. ei ∈ E
• ē = (vj , vi): Complementary edge of edge e = (vi, vj )
• •el = {eq ∈ E : Tq,l = 1 ∧ q �= l}: The set of input edges for el , ∀el ∈ E
• e•

l = {eq ∈ E : Tl,q = 1 ∧ q �= l}: The set of output edges for el , ∀el ∈ E
• A = {a1, a2, ..., aK }: The set of traveling agents
• da : Destination edge for agent a ∈ A
• sa : Starting edge for agent a ∈ A; this edge also specifies the initial orientation for the

agent motion
• T : An upper bound on the required transport time, across all agents (and therefore an

upper bound on the optimal value of the objective function).
• t ∈ T = {0, 1, ..., T }: Time index

2.2 Decision variables

• ∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1} indicates whether, in the derived traffic
schedule, agent a is located on the directed edge e at timestep t ; these decision variables
define a natural notion of “state” for the underlying traffic over the considered time
horizon T , and they constitute the primary decision variables of the considered traffic
scheduling problem. Also, for notational convenience, in the following, we shall denote
by x the vector that collects all the variables xa,e,t .

• w: An auxiliary variable that will represent the “makespan” – i.e., the total time to
completion – of the optimal traffic schedule.

The MIP formulation itself is as follows:

minw (1)

s.t.
∀a ∈ A, ∀t ∈ T ,

∑

e∈E

xa,e,t = 1 (2)

∀a ∈ A, ∀e ∈ E, xa,e,0 = I{e=sa} (3)

∀a ∈ A, xa,da,T = 1 (4)

∀a ∈ A, ∀t ∈ T \ {T }, xa,da,t+1 ≥ xa,da,t (5)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {T }, xa,e,t ≤ xa,e,t+1 +
∑

e′∈e•
xa,e′,t+1 (6)

∀e = (vi, vj ) ∈ E s.t. i < j, ∀t ∈ T \ {0, T },
∑

a∈A
(xa,e,t + xa,ē,t ) ≤ 1 (7)
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∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0}, xa,e,t +
∑

a′∈A:a′ �=a

(xa′,e,t−1 + xa′,ē,t−1) ≤ 1 (8)

∀a ∈ A, w ≥
T∑

t=0

(1 − xa,da,t ) = T + 1 −
T∑

t=0

xa,da,t (9)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1} (10)

A brief explanation of the constraints appearing in the above formulation is as follows: Con-
straint (2) imposes the requirement that all agents must occupy one and only one position
at any time period. On the other hand, Constraint (3) places the agents a ∈ A at their initial
zones sa at time t = 0; in particular, the notation I{e=sa} that appears in the right-hand-side
of this constraint denotes an indicator variable that is equal to 1 if the condition e = sa
is true. Constraint (4) requires that every agent must reach its destination edge, da , within
the provided time horizon, while Constraint (5) further stipulates that agents cannot leave
their destination edges after reaching them.6 Constraint (6) enforces the fact that agents
can only transition to adjacent, directionally compatible edges, and Constraint (7) prevents
the concurrent occupancy of an edge by more than one agent.7 Constraint (8) enforces the
additional requirement that an agent can enter an edge at period t only if this edge was
empty during the previous period, t − 1. As discussed in the previous part of this section,
this requirement is imposed due to safety considerations, and it further implies that agents
located on neighboring edges can neither “swap” their edges nor “dovetail” each other in
their transitions among a cascade of such edges. Constraint (9) together with Eq. (1) define
the objective of the considered formulation as the minimization of the makespan of the traf-
fic schedule to be generated for the traveling agents. Finally, Constraint (10) specifies the
binary nature of all decision variables xa,e,t . We also notice that the remaining decision
variable w is a free variable.

The MIP formulation of Eqs. (1)–(10) provides a succinct characterization of the consid-
ered scheduling problem, but it becomes computationally intractable even for moderately
sized instantiations of this problem. These computational challenges are further aggravated
by the “on-line” / “real-time” nature of the considered problem, and the strict time budgets
that this feature implies for the involved computations. Hence, in practice, the considered
scheduling problem typically will be solved by some heuristic algorithm. In the rest of this
work, we use the MIP formulation of Eqs. (1)–(10) primarily as a starting point in order
to compute high-quality lower bounds for its optimal objective value (i.e., for the optimal
makespan of the corresponding scheduling problem).8

6This constraint is dictated by the broader logic that defines the MPC scheme that provides context for the
considered MIP formulation.
7In the statement of this constraint, we further assume that the constraint is observed by the problem data
that specify the initial positions, sa , and the destinations, da , of the agents a ∈ A.
8We also notice, for completeness, that the MIP formulation of Eqs. (1)–(10) can be infeasible for some of its
instantiations, and the assessment of the corresponding (in-)feasibility is a hard problem in itself. In general,
the feasibility of the considered MIP will depend on (i) the topology of the underlying guidepath network
and the relative positioning of the edges sa and da , a ∈ A, in this topology, as well as (ii) the selection of
the parameter T . Determining feasibility w.r.t. the first of the above two elements is a hard “reachability”
problem that should be addressed in the context of the “untimed” dynamics of the underlying traffic system,
using, for instance, some “linguistic” modeling framework for these dynamics, like automata theory or Petri
nets (Cassandras and Lafortune 2008). On the other hand, for feasible problem instances w.r.t. criterion (i),
a pertinent T value that will not compromise this feasibility, can be obtained through the solution of the
corresponding scheduling problem by a heuristic method.
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3 A Lagrangian relaxation for theMIP of Section 2,
and the corresponding “dual” problem

The proposed Lagrange relaxation and the corresponding “dual” problem It should be
evident to the astute reader that the increased complexity of theMIP formulation of Eqs. (1)–
(10) arises from the restrictions that are imposed by Constraints (7)–(9), since, otherwise,
the traveling agents could be routed to their target destinations, da, a ∈ A, through any
shortest path in the underlying guidepath network that connects the agent current location,
sa , to the corresponding destination, da . Hence, a pertinent Lagrangian relaxation for this
MIP will relax the “coupling” Constraints (7)–(9). For a detailed specification of this relax-
ation, let us denote the three vectors of the Lagrange multipliers that correspond to each of
these three constraint sets, as follows:

• λ: vector of Lagrange multipliers for constraint set (7);
• μ: vector of Lagrange multipliers for constraint set (8);
• ν: vector of Lagrange multipliers for constraint set (9).

In the following, we shall refer to the specific elements of the constraint sets (7)–(9), and
the corresponding Lagrange multipliers, by the particular index tuples that define these
constraints within the corresponding constraint set; hence, for instance, the elements of
vector λ will be represented by λe,t , e ∈ {(vi, vj ) ∈ E : i < j}, t ∈ T \ {0, T }. Under this
notational convention, the defined Lagrangian function can be written as follows:

L(x, w;λ, μ, ν) ≡ w +
∑

{e∈E:vi<vj }

∑

t∈T \{0,T }
λe,t

[
∑

a∈A
(xa,e,t + xa,ē,t ) − 1

]

+
∑

a∈A

∑

e∈E

∑

t∈T \{0}
μa,e,t

[
xa,e,t+

∑

{a′∈A:a′ �=a}
(xa′,e,t−1 + xa′,ē,t−1) − 1

⎤

⎦

+
∑

a∈A
νa

[
T + 1 − w −

∑

t∈T
xa,da,t

]
(11)

with

λ ≥ 0; μ ≥ 0; ν ≥ 0 (12)

Furthermore, for any arbitrary pricing of the Lagrange multipliers λ, μ and ν, the “relaxed”
version of the MIP formulation of Section 2 can be expressed as follows:

θ(λ,μ, ν) ≡ min
x,w

⎧
⎨

⎩w +
∑

{e∈E:vi<vj }

∑

t∈T \{0,T }
λe,t

[
∑

a∈A
(xa,e,t + xa,ē,t ) − 1

]

+
∑

a∈A

∑

e∈E

∑

t∈T \{0}
μa,e,t

[
xa,e,t +

∑

{a′∈A:a′ �=a}
(xa′,e,t−1 + xa′,ē,t−1) − 1

⎤

⎦

+
∑

a∈A
νa

[
T + 1 − w −

∑

t∈T
xa,da,t

]}
(13)

s.t. the primal constraint sets (2)–(6) and (10)
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Function θ(λ,μ, ν) is known as the “dual” function for the original MIP formulation of
Section 2 (under the particular selection of the relaxed constraints) Bertsekas (1999). Fur-
thermore, since the minimization problem in the right-hand-side of Eq. (13), that defines this
function, is a relaxation of the original MIP formulation, it follows that function θ(λ,μ, ν)

provides a lower bound to the optimal value for the MIP formulation of Section 2, for any
values of its variables λ, μ and ν. Naturally, we are interested in obtaining the tightest possi-
ble lower bound that can be provided by θ(λ,μ, ν). This bound can be obtained by solving
the following optimization problem:

max
λ,μ,ν

θ(λ,μ, ν) s.t. Eq. (12) (14)

The above formulation is known as the “dual” problem for the original MIP formulation of
Section 2 Bertsekas (1999).

A structural analysis of the considered “dual” problem Next, we proceed to reveal addi-
tional structure in the Lagrangian function of Eq. (11) that will prove particularly useful for
the efficient evaluation of the dual function θ(λ, μ, ν), for any given vector (λ, μ, ν), and
for the solution of the corresponding dual problem. By rearranging its terms, the Lagrangian
function of Eq. (11) can be rewritten as follows:

L(x, w; λ,μ, ν) =
∑

a∈A
νa(T + 1) −

⎡

⎣

⎛

⎝
∑

{e∈E:vi<vj }

∑

t∈T \{0,T }
λe,t

⎞

⎠

+
⎛

⎝
∑

a∈A

∑

e∈E

∑

t∈T \{0}
μa,e,t

⎞

⎠

⎤

⎦+ w(1 −
∑

a∈A
νa)

+
∑

a∈A

⎧
⎨

⎩
∑

t∈T \{0,T }

⎛

⎝
∑

{e∈E:vi<vj }

⎡

⎣λe,t + μa,e,t

+
∑

a′∈A:a′ �=a

(μa′,e,t+1 + μa′,ē,t+1)

⎤

⎦ xa,e,t

+
∑

{e∈E:vi>vj }

⎡

⎣λē,t + μa,e,t +
∑

a′∈A:a′ �=a

(μa′,e,t+1 + μa′,ē,t+1)

⎤

⎦ xa,e,t

⎞

⎠

+
∑

e∈E

⎡

⎣
∑

a′∈A:a′ �=a

(μa′,e,1 + μa′,ē,1)

⎤

⎦ xa,e,0

+
∑

e∈E

μa,e,T xa,e,T − νa

∑

t∈T
xa,da,t

⎫
⎬

⎭ (15)

Then, setting

�λ,μ ≡ −
⎡

⎣

⎛

⎝
∑

{e∈E:vi<vj }

∑

t∈T \{0,T }
λe,t

⎞

⎠+
⎛

⎝
∑

a∈A

∑

e∈E

∑

t∈T \{0}
μa,e,t

⎞

⎠

⎤

⎦ ; (16)
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C
λ,μ
a,e,t ≡

⎧
⎪⎪⎨

⎪⎪⎩

λe,t + μa,e,t +∑
a′∈A:a′ �=a(μa′,e,t+1 + μa′,ē,t+1),

∀a ∈ A, ∀t ∈ T \ {0, T }, ∀e ∈ E : vi < vj ;
λē,t + μa,e,t +∑

a′∈A:a′ �=a(μa′,e,t+1 + μa′,ē,t+1),

∀a ∈ A, ∀t ∈ T \ {0, T }, ∀e ∈ E : vi > vj ;
(17)

C
λ,μ
a,e,0 ≡

∑

a′∈A:a′ �=a

(μa′,e,1 + μa′,ē,1), ∀a ∈ A, ∀e ∈ E; (18)

C
λ,μ
a,e,T ≡ μa,e,T , ∀a ∈ A, ∀e ∈ E; (19)

we obtain the following expression for the Lagrangian function:

L(x, w;λ, μ, ν) =
∑

a∈A
νa(T + 1) + �λ,μ + w(1 −

∑

a∈A
νa)

+
∑

a∈A

⎧
⎨

⎩
∑

e∈E

∑

t∈T \{0,T }
C

λ,μ
a,e,t xa,e,t

+
∑

e∈E

C
λ,μ
a,e,0xa,e,0+

∑

e∈E

C
λ,μ
a,e,T xa,e,T −

∑

t∈T
νaxa,da,t

}

=
∑

a∈A
νa(T + 1) + �λ,μ + w(1 −

∑

a∈A
νa)

+
∑

a∈A

[
∑

e∈E

∑

t∈T
C

λ,μ
a,e,t xa,e,t − νa

∑

t∈T
xa,da,t

]
(20)

Also, from Eq. (20), we get the following representation of the dual function:

θ(λ,μ, ν) = (T + 1)
∑

a∈A
νa + �λ,μ + min

x,w

{
w(1 −

∑

a∈A
νa)

+
∑

a∈A

[
∑

e∈E

∑

t∈T
C

λ,μ
a,e,t xa,e,t − νa

∑

t∈T
xa,da,t

]}
(21)

s.t. the primal constraint sets (2)–(6) and (10)
The minimization problem that appears in the right-hand-side of Eq. (21), when com-

bined with the free nature of variable w in this problem, further imply the following
proposition:

Proposition 1 At any optimal solution (λ∗,μ∗, ν∗) of the dual problem that is defined by
Eqs. (14), (12), it must hold that ∑

a∈A
ν∗
a = 1.0 (22)

Proof If
∑

a∈A ν∗
a < 1.0 (resp.,

∑
a∈A ν∗

a > 1.0), we can make the right-hand-side of
Eq. (21) arbitrarily small by setting the value of the free variable w arbitrarily small (resp.,
arbitrarily large).

To facilitate the subsequent discussion, let us define the finite set X by

X ≡ {x satisfying primal constraint sets (2)–(6) and (10)} (23)
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Then, an immediate implication of Proposition 1 is the reduction of the dual problem of
Eq. (21) to the following simpler form:

max
λ,μ,ν

θ(λ,μ, ν) ≡ (T +1)+�λ,μ+min
x∈X

{
∑

a∈A

[
∑

e∈E

∑

t∈T
C

λ,μ
a,e,t xa,e,t −νa

∑

t∈T
xa,da,t

]}
(24)

s.t.
λ ≥ 0; μ ≥ 0; ν ≥ 0;

∑

a∈A
νa = 1.0 (25)

A first remark regarding the above formulation is that the minimization problem that defines
the eventually optimized dual function θ(λ, μ, ν) is separable with respect to the agent set
A, a fact that will have some very significant implications for the subsequent developments.

A second important implication of the formulation of Eqs. (24)–(25) is that function
θ(λ,μ, ν) can also be set in the form

θ(λ, μ, ν) = min
x∈X

{
(λT , μT , νT ) · g(x)

}
+ (T + 1) (26)

where, for any given x ∈ X, the components of the corresponding vector g(x) are linear
functions of x that are completely defined by (i) the structure of the function θ(λ,μ, ν)

defined in Eq. (24), and (ii) Eqs. (16)–(19) that define the involved quantities �λ,μ and

C
λ,μ
a,e,t . Equation (26) reveals the structure of θ as a polyhedral concave function, and there-

fore, non-differentiable at the points of intersection of its defining hyperplanes. Hence, the
solution of the dual problem that is defined by Eqs. (24)–(25) must rely on subgradient
optimization methods. In general, the application of subgradient optimization methods to
formulations that are generated through duality theory, can be challenged by slow and non-
monotonic convergence. But, in the next sections, we show that the optimization problem
of Eqs. (24)–(25) can be re-formulated as an LP that is effectively solvable by commercial
LP solvers; hence, for the considered class of scheduling problems, the corresponding dual
problem can be solved exactly in finite time, in a very robust and efficient manner.

4 Reformulating the considered “dual” problem as an LP

A first linearization of the “dual” problem of Eqs. (24)–(25) To derive the main results
of this paper, we start with the observation that the representation of the “dual” function
according to Eq. (26) allows us to express the “dual” problem of Eqs. (24)–(25), modulo the
term T + 1 in the right-hand-side of Eq. (24), as the following LP:

max
λ,μ,ν,u

u (27)

s.t.
∀x ∈ X, u ≤ g(x)T · (λT ,μT , νT )T (28)

∑

a∈A
νa = 1.0 (29)

λ ≥ 0; μ ≥ 0; ν ≥ 0 (30)

Furthermore, from standard LP duality theory (Luenberger and Ye 2016), the optimal value
of the above LP can also be obtained by solving its dual LP, that has the following form:

min
γ ,z,ψ

ψ (31)
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s.t.

[−I 1ν] ·
[

z

ψ

]
=

∑

x∈X

γ x · g(x) (32)

∑

x∈X

γ x = 1.0 (33)

γ ≥ 0; z ≥ 0 (34)

In the above LP formulation, the nonnegative vector γ collects the dual variables that cor-
respond to the constraints of Eq. (28) in the primal LP, and the free variable ψ is the dual
variable corresponding to the constraint of Eq. (29). On the other hand, vector z is a set of
“slack” variables that converts the constraint of Eq. (32) to an “equality” constraint. Further-
more, in Eq. (32), I denotes the identity matrix of dimensionality k equal to the total number
of Lagrange multipliers λ, μ and ν, and 1ν is a k-dimensional binary (column) vector with
its unit elements placed at the components that correspond to Lagrange multipliers ν.

While the formulations of Eqs. (27)–(30) and Eqs. (31)–(34) provide valid LP represen-
tations for the dual problem of Eqs. (24)–(25), their practical usefulness is limited by the
fact that they require a complete enumeration of set X. As already noticed, set X is finite,
but it can also grow extremely large.

However, in the rest of this section we shall show that, in the considered context, X

admits a distributed representation that enables the rewriting of the above LPs in a much
more compact form in terms of the employed numbers of variables and constraints.

The alternative LP formulations of the considered “dual” problem The starting point for
developing the new LP formulations of the considered “dual” problem is the observation
provided in the closing part of Section 3 that the constraints defining the set X are totally
separable across the agents a ∈ A. Hence, the vectors x that are the elements of set X can
be perceived as the concatenation of some vectors xa, a ∈ A, with each vector xa living in
a space Xa that is defined by the corresponding subset of the Constraints (2)–(6) and (10)
that refer to agent a; more formally,

X = ×a∈AXa (35)

From a more conceptual standpoint, each set Xa, a ∈ A, encodes all the possible routes in
the guidepath network G that take agent a from initial location sa to its destination location
da within the provided time span T . A compact way to represent all these routes is by an
acyclic digraph Ga . The nodes of this digraph are labeled by (e, t) and signify the placement
of agent a at (directed) edge e at time period t . On the other hand, the edges of Ga connect
nodes (e, t) for t ∈ {0, 1, . . . , T −1} to nodes (e′, t +1) with e′ ∈ {e}∪e•. For T adequately
large to ensure the feasibility of the original MIP of Section 2, the digraph Ga will have
node (sa, 0) as its single “source” node, and node (da, T ) as its single “sink” node. Hence,
each feasible route in Xa corresponds to a path leading from node (sa, 0) to node (da, T ).
Furthermore, the connectivity of digraph Ga encodes the additional requirement that a fea-
sible route for agent a does not leave the destination edge da once it has reached it for the
first time; i.e., for every node (da, t), t ∈ T \ {T }, the only emanating edge from this node
is the edge leading to node (da, t + 1). Finally, it is clear that each digraph Ga, a ∈ A, can
have no more than |E| · T nodes, and it can be constructed through elementary reachability
analysis on the guidepath network G in time O(|E|2 · T ).

Next, we employ the graphical representation of the sets Xa, a ∈ A, that was
defined in the previous paragraph, in order to provide a more efficient encoding of Con-
straints (32) and (33) in the LP formulation of Eqs. (31)–(34). A closer examination of
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these two constraints will reveal that they essentially employ the convex hull of the vector
set {g(x) : x ∈ X}, where the vector function g(·) is the function that was introduced in
Eq. (26). Let us denote this convex hull by Conv ({g(x) : x ∈ X}). The next proposition
establishes a distributed representation of Conv ({g(x) : x ∈ X}) by means of the convex
hulls of the vector sets Xa, a ∈ A.

Proposition 2 It holds that:

Conv ({g(x) : x ∈ X}) = {g(q) : q ∈ ×a∈AConv(Xa)} (36)

Proof As remarked in Section 3, each component of the vector function g(x) is a linear
function of x, and therefore,

g(x) = A · x + β2 (37)
for an appropriately defined matrix A and vector β2. 9

Furthermore, from Eqs. (26), (37) and the definition of Conv ({g(x) : x ∈ X}), we have:
Conv ({g(x) : x ∈ X}) ={

g ≡
∑

x∈X

ξx

(
A · x + β2

)
: ∀x ∈ X, ξx ≥ 0;

∑

x∈X

ξx = 1.0

}
=

{
g ≡ A ·

∑

x∈X

ξx · x + β2 : ∀x ∈ X, ξx ≥ 0;
∑

x∈X

ξx = 1.0

}
=

{
g ≡ A · q + β2 : q ∈ Conv(X)

}
(38)

Finally, from Eq. (35), we also have that

Conv(X) = ×a∈AConv(Xa) (39)

and the proof is complete.

Each element qa ∈ Conv(Xa), a ∈ A, can be represented by means of a flow f a on
the corresponding graph Ga , that transfers a unit of fluid from the “source” node of Ga to its
“sink” node. More specifically, for some qa ∈ Conv(Xa), a ∈ A, let

qa =
∑

xa∈Xa

ξxaxa; ∀xa ∈ Xa, ξxa ≥ 0;
∑

xa∈Xa

ξxa = 1.0 (40)

Then, the flow f a on the graph Ga that represents the vector qa , sends through some edge(
(e, t), (e′, t + 1)

)
of this graph an amount of fluid equal to the total weight of the vectors

xa that involve the transition
(
(e, t), (e′, t + 1)

)
in the corresponding routes. The vector qa ,

itself, consists of the amounts of fluid that are routed through the different nodes (e, t) of
the graph Ga by the aforementioned flow pattern for f a .

Hence, for each a ∈ A, the set Conv(Xa) can be represented parametrically by a set of
linear equations

Fa · f a = β1
a ; f a ≥ 0 (41)

qa = Qa · f a (42)
with the matrices Fa ,Qa and the vecrtor β1

a suitably defined. More specifically, in the above
representation, Eq. (41) expresses the “flow balance” equations that must be satisfied by

9A complete definition of matrix A and vector β2 can be obtained from the parsing of the right-hand-side of
Eq. (11) that defines the Lagrangian function employed in this work.
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vector f a ; these equations are determined by the topology of the corresponding graph Ga ,
and the unit volume of the transferred fluid. On the other hand, Eq. (42) defines the vector
qa as a linear function of f a , as described in the previous paragraphs.

10

Furthermore, we combine the linear systems of equations that are defined in Eq. (41) for
each agent a ∈ A, into the single equation

F · f = β1 ; f ≥ 0 (43)

where F is a block-diagonal matrix that collects the matrices Fa, a ∈ A, and β1 is the
vector that results from the concatenation of the vectors β1

a, a ∈ A. Also, we shall let Q

denote the block-diagonal matrix with its diagonal blocks being the matrices Qa, a ∈ A,
and define

Â ≡ A · Q (44)

Finally, by combining all the above developments, the original LP formulation of Eqs. (31)–
(34) can be rewritten as

min
q,z,ψ

ψ (45)

s.t.
[

F 0 0
−Â −I 1ν

]
·
⎡

⎣
f

z

ψ

⎤

⎦ =
[

β1

β2

]
(46)

f ≥ 0; z ≥ 0 (47)

Also, the dual of the above LP has the form:

max
η,ρ

(β1)T · η + (β2)T · ρ (48)

s.t.
FT · η − ÂT · ρ ≤ 0 (49)

1T
ν · ρ = 1.0 (50)

ρ ≥ 0 (51)

The vectors η and ρ that constitute the decision variables in this last formulation, collect,
respectively, the dual variables for the constraints that correspond to the first and the sec-
ond rows in Eq. (46). Furthermore, the LP of Eqs. (48)–(51) is the analogue of the original
LP formulation of Eqs. (27)–(30) in the distributed representation of the set X and its con-
vex hull Conv(X) that were introduced in the previous paragraphs. This analogy is further
characterized and analyzed in the following theorem.

Theorem 1 The LP formulation of Eqs. (48)–(51) is a valid representation of the “dual”
problem of Eqs. (24)–(25) modulo the term T + 1 that appears in the right-hand-side of
Eq. (24). Furthermore, for any optimal solution of this LP, (η∗, ρ∗), the vector ρ∗ defines
an optimal set of Lagrange multipliers for the “dual” problem of Eqs. (24)–(25).

Proof First we notice that the two LP formulations of Eqs. (48)–(51) and Eqs. (27)–(30)
must have the same optimal objective value, since (i) they are the respective duals to the two
LPs that are defined by the equation sets (45)–(47) and (31)–(34), and (ii) the last two LPs

10A more exact characterization of the elements Fa, β1
a and Qa that appear in Eqs. (41) and (42), is provided

in Section 5.
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are equivalent by construction. But the optimal value of the LP formulation of Eqs. (27)–
(30) is equal to the optimal value of the “dual” problem of Eqs. (24)–(25) modulo the term
T +1 that appears in the right-hand-side of Eq. (24). This proves the first part of Theorem 1.

To establish the second part of the theorem, first we notice that Proposition 2 implies that
in the LP formulation of Eqs. (27)–(30), Constraint (28) can be substituted by the constraint:

∀q ∈ conv(X), u ≤ g(q)T · (λT ,μT , νT )T (52)

Next, let us consider a “flow” vector f that satisfies the constraints of Eq. (43), and take the
inner product of this vector f with the left-hand-side of Eq. (49); the non-negativity of the
elements of f , together with Eqs. (42), (44) and Proposition 2, imply that

∀f s.t. F · f = β1 ; f ≥ 0 :
f T · FT · η − f T · ÂT · ρ = (β1)T · η + (β2)T · ρ − g(q)T · ρ ≤ 0 (53)

where q = Q · f ∈ Conv(X).
From the above developments, it is clear that any feasible solution for the LP of

Eqs. (48)–(51) defines a feasible solution for the LP of Eqs. (27)–(30) by setting u ≡
(β1)T ·η+(β2)T ·ρ and (λT ,μT , νT )T ≡ ρ, and these two feasible solutions give the same
objective value to the two LPs, namely, the value of u ≡ (β1)T · η + (β2)T · ρ. But then,
the second part of Theorem 1 results by considering an optimal solution (η∗, ρ∗) of the LP
of Eqs. (48)–(51).

Some complexity considerations It should be clear from the above discussion that each
diagonal block Fa, a ∈ A, in the sub-matrix F appearing in the left-hand-side of Eq. (46),
has a dimensionality of O(|E| · T ) × O(|E|2 · T ). At the same time, matrix Â in the left-
hand-side of Eq. (46) has a number of rows equal to dim(λT ,μT , νT ) (i.e., the total number
of the variables that appear in the “dual” problem), and a number of columns equal to
dim(f ), which is O(|A| · |E|2 · T ). Hence, the numbers of variables and constraints in
the LP formulation of Eqs. (45)–(47) are polynomially related to the primary parameters
that define the original MIP formulation, i.e., (i) the number of edges, |E|, in the guidepath
network G, (ii) the number of the circulating agents, |A|, and employed time horizon T .
And, of course, a similar remark applies to the numbers of variables and constraints for
the dual LP of Eqs. (48)–(51). Hence, the derived LP of Eqs. (48)–(51) is, indeed, a very
convenient representation of the original “dual” problem of Eqs. (24)–(25).

In Section 6 we shall also present a series of numerical experiments that will demon-
strate more concretely the ability of the LP formulation of Eqs. (48)–(51) to provide tight
lower bounds to the considered scheduling problem in a computationally robust and effi-
cient manner. But before turning to these computational developments, in the next section
we provide another derivation of this LP that provides further insights for its origin and its
informational content.

5 An alternative MIP formulation of the considered traffic scheduling
problem

In this section, we present an alternative MIP formulation for the traffic scheduling prob-
lem of Section 2. This formulation is motivated by the LP formulation of Eqs. (45)–(47),
and it provides the basis for an alternative interpretation of the results of Section 4. More
specifically, the new MIP formulation of the considered scheduling problem that is pre-
sented in this section, takes the form of an integral multi-commodity flow (IMCF) problem
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(Ahuja et al. 1993), where the transported commodities are the traveling agents. This IMCF
problem is formulated on a new acyclic digraph G that encodes all the potential routes for
the traveling agents over the considered time horizon T , and it also includes a number of
“side” constraints expressing the various restrictions that are imposed by the zone allo-
cation protocol. Furthermore, the IMCF structure of the new MIP formulation gives it the
“integrality” property of Geoffrion (1974), and therefore, the lower bound to the optimal
makespan that is obtained through Lagrangian duality theory from this MIP, is equal to the
bound that is obtained from its LP relaxation.11 The picture is completed by establishing
that the LP of Eqs. (45)–(47) is essentially the LP relaxation of the new MIP.

In the rest of this section, we develop all the results that were outlined in the previous
paragraph. An additional gain from the following developments is a more explicit char-
acterization of the various elements that appear in Eq. (46). Finally, as pointed out in the
introductory section, the following results also establish some affinity between this work
and the works of Yu and LaValle (2016) and Ma et al. (2016) that have highlighted the exist-
ing connection between the considered class of traffic scheduling problems and the IMCF
model.

The alternative MIP formulation of the traffic scheduling problem of Section 2 As
already mentioned, the new formulation of the traffic scheduling problem that is considered
in this work, perceives the route of each agent a ∈ A as an integral unitary flow φa . More
specifically, flow φa is defined on an acyclic digraph G that, itself, is defined as follows:
The node set VG of graph G is equal to E × T , and its edge set, EG , consists of the nodal
pairs

(
(e, t), (e′, t + 1)

)
with e′ ∈ e• ∪ {e}. Flow φa carries a unit of fluid from node (sa, 0)

to node (da, T ). Hence, the flow vector φa is of dimensionality |EG |, and it must satisfy the
following equations: ∑

e′∈s•
a∪{sa}

φa

(
(sa, 0), (e

′, 1)
) = 1.0 (54)

∑

e′∈•da∪{da}
φa

(
(e′, T − 1), (da, T )

) = 1.0 (55)

∀(e, t) ∈ VG \ {(sa, 0), (da, T )} ,
∑

e′∈•e∪{e}
φa

(
(e′, t − 1), (e, t)

) =
∑

e′∈e•∪{e}
φa

(
(e, t), (e′, t + 1)

)
(56)

∀ ((e, t), (e′, t + 1)
) ∈ EG, φa

(
(e, t), (e′, t + 1)

) ∈ {0, 1} (57)

It should be clear from the above definitions that any flow vector φa satisfying Eqs. (54)–
(57) defines a feasible route that takes agent a ∈ A from its initial location sa at time 0, to
its destination location da by time period T . Similarly, any feasible route for agent a can
be represented as a flow vector φa . Hence, any possible schedule for the considered traffic
scheduling problem is represented as a multi-commodity flow on digraph G.

However, there is a need for further constraints that will establish the validity of the
traffic schedules that are defined by the flow vectors φa, a ∈ A, w.r.t. the imposed zone
allocation protocol. These additional constraints can be derived as follows:

11As remarked in the introductory section, in the general case, the bounds obtained from the LP relaxation of
a MIP formulation might not be as tight as the corresponding bounds that are obtained through Lagrangian
duality theory (Bertsekas 1999).
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First we notice that the “state” variables xa,e,t that were employed by the MIP
formulation of Section 2, can be expressed by means of the “flow” vectors φa as follows:

∀a ∈ A, ∀e ∈ E, xa,e,0 =
∑

e′∈e•∪{e}
φa

(
(e, 0), (e′, 1)

)
(58)

∀a ∈ A, ∀e ∈ E, xa,e,T =
∑

e′∈•e∪{e}
φa

(
(e′, T − 1), (e, T )

)
(59)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0, T },
xa,e,t =

∑

e′∈•e∪{e}
φa

(
(e′, t − 1), (e, t)

) =
∑

e′∈e•∪{e}
φa

(
(e, t), (e′, t + 1)

)
(60)

But once the “state” variables xa,e,t of the initial MIP formulation of Section 2 have been
retrieved through Eqs. (58)–(60), the constraint set of the new MIP formulation can be
completed by appending to it Constraints (5), (7) and (8) of that first MIP formulation.
As in the original MIP formulation, these three constraint sets express, respectively, (i) the
requirement that an agent does not leave its destination edge once it reaches it, (ii) the
unitary capacity of each zone in the guidepath network G, and (iii) the requirement that an
agent can advance to a zone e at period t only if this zone was free during period t − 1.

To complete the definition of the new MIP formulation, we must also define its objective
function. This function is readily defined in terms of the new primary decision variables
φa, a ∈ A, by defining the following cost functions Ca, a ∈ A, on the edge set EG of
digraph G:

∀a ∈ A, ∀ ((e, t), (e′, t + 1)
) ∈ EG, Ca

(
(e, t), (e′, t + 1)

) ≡
{
0 if e = e′ = da;
1 otherwise.

(61)

Then, the makespan of any feasible schedule represented by a set of flows φa, a ∈ A, is
given by maxa∈A

{
CT

a · φa

}
, and therefore, the objective of our traffic scheduling problem

can be expressed by
minω (62)

where ω ≡ maxa∈A
{
CT

a · φa

}
. Finally, the resulting formulation can be linearized by

eventually minimizing the auxiliary variable ω, under the additional constraints

∀a ∈ A, ω ≥ CT
a · φa (63)

The next theorem summarizes all the above developments, providing a succinct characteri-
zation of the new MIP formulation for the considered traffic scheduling problem.

Theorem 2 An alternative MIP formulation for the traffic scheduling problem of Section 2
is provided by the objective function of Eq. (62), and the constraint sets that are defined by:
(i) Eqs. (54)–(57); (ii) the Constraints (5), (7) and (8) of that original MIP formulation of
Section 2, where the original variables xa,e,t have been substituted by the corresponding
expressions of Eqs. (58)–(60); and (iii) Eq. (63). The primary decision variables of this new
MIP formulation are the vectors φa, a ∈ A, with each vector φa defining a unitary integral
flow on the digraph G that was defined at the beginning of this section. �

The connection between the LP relaxation of the MIP formulation of Theorem 2 and
the LP of Eqs. (45)–(47) In order to see the connection between the MIP formulation of
Theorem 2 and the LP of Eqs. (45)–(47), let us consider a slight variation of the new MIP,
where the integral unitary flows φa, a ∈ A, are defined on the corresponding subgraphs Ga

of the original digraph G, that were defined in Section 4. We remind the reader that these
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subgraphs enforce the additional requirement of Constraint (5) in original MIP formulation
of Section 2; hence, the employment of these subgraphs for the specification of the corre-
sponding flows φa removes the need for the employment of Constraint (5) in the new MIP
formulation.

Also, let us write the constraints of the new MIP that are induced by Constraints (7) and
(8) of the original MIP formulation of Section 2, in the form

Â(7,8) · φ + β2
(7,8) ≤ 0 (64)

where the vector φ is the concatenation of the vectors φa, a ∈ A, and the elements Â(7,8)
and β2

(7,8), that appear in the above equation, are defined accordingly. Furthermore, we
replace the constraint of Eq. (63) with the constraint

Â(65) · φ − (T + 1) · 1 ≤ ω · 1 (65)

where the matrix Â(65) is appropriately defined.
Finally, Constraints (64) and (65) can be combined to the following constraint:

[
Â(7,8)

Â(65)

]
· φ +

[
β2

(7,8)
−(T + 1) · 1

]
≤

[
0
1

]
· ω (66)

Then, it is not hard to see that the LP of Eqs. (45)–(47) is the LP relaxation of the MIP that
is obtained from the MIP formulation of Theorem 2 through the slight modifications and
the additional notation that were introduced in the previous paragraphs; we invite the reader
to work out the relevant details.

The “integrality” property for theMIP formulation of Theorem 2 In the MIP formulation
that was defined in the last paragraph, the “coupling” constraints across the different agents
are the constraints that appear in Eq. (66). The relaxed version of our traffic scheduling
problem that is obtained through the Lagrangian relaxation of these constraints, boils down
to the solution of a set of “shortest path” problems that are defined on the corresponding
digraphs Ga and possess a cost structure that depends on the employed Lagrange multipliers.
This particular structure of the Lagrangian relaxation further implies that it will have an
integral optimal solution, φ∗, for any selection of Lagrange multipliers; i.e., it possesses the
“integrality” property of Geoffrion (1974). But then, Theorem 2 in Geoffrion (1974) implies
that this Lagrangian relaxation cannot improve any further the performance bound that is
obtained from the LP relaxation of the corresponding MIP, and that the bounds provided by
the LP formulations of Section 4 remain the tightest possible that can be obtained through
the presented analysis.

Finally, we also notice, for completeness, that the bound provided by the LP relaxation of
the MIP formulation of Section 2 might not be as tight as the bound that is obtained through
the corresponding “dual” problem of Eqs. (24)–(25); a counter-example establishing this
fact is provided in Daugherty (2017).

6 A numerical experiment

The performed experiment In this section, we demonstrate and empirically assess, by
means of a numerical experiment, (i) the computational tractability of the LP formulation
of Eqs. (48)–(51), and (ii) the tightness of the obtained bounds. More specifically, in the
presented experiment, we formulated and solved the LP of Eqs. (48)–(51) for a number of
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instantiations of the traffic scheduling problem considered in Section 2, that were defined
by means of the guidepath network depicted in Fig. 1.

The guidepath network of Fig. 1 provides 133 distinct zones for the traveling agents,
organized in the depicted grid.12 In the presented experiment, we generated randomly a
number of instances of the original MIP formulation of Section 2, while varying the num-
ber of traveling agents from 3 to 30, with a step-increase of 3. For each of these levels, we
generated five replications, and for each replication, we obtained an upper bound T to the
optimal makespan w∗ using some of the heuristic algorithms that are reported in Daugherty
et al. (2019, 2017a). Subsequently, we formulated and solved the corresponding LP formu-
lation of Eqs. (48)–(51). All the LP formulations were solved through CPLEX, while the
preparation of the input files for CPLEX from the original problem data was performed
through MATLAB. The corresponding computation was executed on a 2013 Macbook Pro
with a 2.4 GHz Intel Core i5 processor and 8 GB of 1600 MHz DDR3 RAM.

An empirical assessment of the computational tractability of the LP formulation of
Eqs. (48)–(51) Fig. 2 plots the computational times required for setting up and solving the
LP formulation of Eqs. (48)–(51), as a function of the number of traveling agents; more
specifically, the reported numbers are the averages of the computational times that were
observed for the five corresponding replications. As it can be seen from the plot of Fig. 2,
the required computational times increase with the number of agents involved and the result-
ing congestion in the underlying guidepath network. But the presented approach remains
tractable for pretty large instances of the underlying scheduling problem.

In order to provide (i) a more vivid characterization of the congestion involved in the
most challenging instantiations of the presented experiment, and (ii) an appreciation of the
impact of this congestion on the observed computational times, we notice that a circulation
of 30 agents in the depicted grid of Fig. 1 results in a node occupancy of this grid of almost
25%; i.e., one out of four nodes of this grid is occupied by some traveling agent. In the con-
text of the considered experiment, this high congestion subsequently results in an increased
sub-optimality of the solutions that are returned by our heuristic algorithms as estimates of
the optimal makespan, and this fact further translates into inflated T -values for the LP for-
mulation of Eqs. (48)–(51). Finally, according to the complexity analysis that is provided at
the end of Section 4, these inflated T -values increase the “size” of the LP formulation of
Eqs. (48)–(51), in terms of the numbers of variables and constraints that are employed in it.

Another pertinent remark for a better appreciation of the data that is provided in the plot
of Fig. 2, is that the largest part of the times reported in Fig. 2 was consumed by MATLAB
for setting up the corresponding formulations. We believe that the reported times can be
curtailed considerably by using a more streamlined code for this task, developed in a more
basic programming language like C.

Finally, in order to provide the reader with some more concrete appreciation of the
computational effort that was involved in the presented experiment, we also notice that
the largest LP formulated and solved in this experiment employed 184,444 variables and
316,025 constraints.

An empirical assessment of the tightness of the bounds that are returned by the LP
formulation of Eqs. (48)–(51) Table 1 provides an empirical assessment of the tightness of

12In the graph of Fig. 1 the available zones are encoded by the graph nodes and not by its edges; but the
translation of this structure to the corresponding model of Section 2 is pretty straightforward.
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Fig. 1 The guidepath network used in the numerical experiment that is presented in Section 6

the bounds that are obtained through the LP formulation of Eqs. (48)–(51). Since it is not
possible to compare these bounds against the optimal objective values of the corresponding
MIPs, due to practical difficulties with solving these MIPs to optimality, we compare them
against the makespan of the optimized schedules that are obtained through the heuristic
schedulers that have been developed in Daugherty et al. (2019). More specifically, each line

Fig. 2 A plot reporting the computational times observed in the numerical experiment of Section 6
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Table 1 Assessing the quality of the obtained bounds for the problem instances of the experiment of Section 6

# agents D1 H1 D2 H2 D3 H3 D4 H4 D5 H5 Av. Rel. Gap

3 14 14 13 13 19 19 12 12 17 17 0

6 15 15 13 13 19 19 12 12 17 17 0

9 16 16 13 13 19 19 17 17 17 17 0

12 16 16 13 13 19 19 21 21 17 17 0

15 17 18 13 14 19 19 21 21 17 20 0.06

18 17 18 13 15 20 20 21 21 17 18 0.05

21 17 18 16 16 20 20 21 21 17 19 0.03

24 17 18 16 21 20 20 21 21 17 19 0.08

27 21 21 16 20 20 20 21 21 17 21 0.08

30 22 30 16 20 20 20 21 26 17 21 0.17

in Table 1 concerns the five problem instances that have been generated in the considered
experiment for the number of agents that are reported in the first entry of the line, and for
each of these five instances, it reports (i) the obtained bound in column Di , and (ii) the
makespan that is attained by the heuristic schedulers of Daugherty et al. (2019), in column
Hi , for i = 1, . . . , 5. Furthermore, since the optimal solution for the MIP of Section 2 has
an integer value, columns Di of Table 1 report the ceilings of the optimal values of the
corresponding LPs; i.e., these last values have been rounded up to the next integer. Finally,
the rightmost entry of each line in Table 1 reports the “average relative gap” across the
corresponding five problem instances, where the “relative gap” for a single instance i is
computed by

Hi − Di

Hi

.

The coincidence of the entries in many of the pairs (Di, Hi), in the data of Table 1, testifies
to the high quality of, both, (i) the lower bounds that are obtained through the methodology
that has been developed in this paper, and also (ii) the schedules that are returned by the
heuristic scheduler of Daugherty et al. (2019). Furthermore, whenever these two entries
differ for a certain pair, it is unclear whether the discrepancy is due to the poor quality of
the bound Di or the sub-optimality of the schedule that provides the corresponding value
Hi .13 But even with these inflations, the relative gaps that are reported in the last column
of Table 1 are still quite low. Finally, we should also point out that the higher values that
are observed in the last few rows of Table 1, can be explained by the remarks that were
provided in the earlier parts of this section, regarding the challenges that are experienced
by the schedulers of Daugherty et al. (2019) as the density of the traveling agents in the
underlying grid becomes pretty large; these remarks also explain the common trends that
are observed in the last column of Table 1 and in the plot of Fig. 2.

13In fact, in certain cases, we can actually infer that the observed gap is due primarily to the sub-optimality
of the schedule that is utilized in the estimation of the corresponding gap. As a concrete example, we refer
to the case of pair (D5,H5) in the line of Table 1 corresponding to 15 agents. Looking at the column for H5,
we observe the sequence 〈17, 20, 18〉 for the rows corresponding to number of agents 12, 15 and 18. But the
construction of the corresponding problem instances through the addition of three agents from each instance
to the next, implies that the optimal makespans for these three problem instances should be monotonically
increasing. Therefore, the actual optimal makespan for the fifth problem instance with 15 traveling agents is
actually 17 or 18, and not 20.
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7 Conclusions

This work has sought to develop (lower) performance bounds for a traffic scheduling prob-
lem that arises in many application contexts, ranging from industrial material handling and
robotics to computer game animations and quantum computing. In a first approach, the
sought bounds were obtained by applying the Lagrangian relaxation method to a MIP for-
mulation of the considered scheduling problem that is based on a natural notion of “state” for
the underlying traffic system and an analytical characterization of all the possible trajecto-
ries of this state over a predefined time horizon. But it was also shown that the corresponding
“dual” problem that provides these bounds, can be transformed to a linear program (LP) with
numbers of variables and constraints polynomially related to the size of the underlying traf-
fic system and the employed time horizon in the MIP formulation. Furthermore, the derived
LP formulation constitutes the LP relaxation of a second MIP formulation for the consid-
ered scheduling problem that can be obtained through an existing connection between this
problem and the IMCF model. Finally, the theoretical developments of the paper were com-
plemented with a computational part that demonstrates the efficacy of the pursued methods
in terms of the quality of the derived bounds, and their computational tractability.

Our future work will seek to further assess the potential of the analytical insights and of
the computational capability that were established in this paper, towards the development
of further analytical methodology for the computation of near-optimal solutions for the
considered traffic scheduling problems. In fact, it is also possible to extend the applicability
of the presented formulations and bounding methods to other, more general problems that
involve sequential resource allocation, like various versions of the notorious “job shop”
scheduling problem (Pinedo 2002); the systematic exploration of this possibility, and of the
potential gains incurred by it, is another part of our future work. Finally, at a more general
level, our future work will also seek the further development of the MPC control scheme
for the considered traffic systems that has been presented in Daugherty et al. (2019) and
Reveliotis (2018), so that it provides a complete control framework for the broadest possible
range of these traffic systems.
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