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Abstract
Fluid-relaxation-based scheduling is a powerful scheduling method for complex resource
allocation systems and other stochastic networks. However, this method has been pursued
through rather ad hoc representations and arguments in the past. This paper establishes
that timed-continuous Petri nets provide a structured and natural framework for the imple-
mentation of this method in the context of complex resource allocation, and highlights the
potential advantages of such a more structured approach.

Keywords Scheduling of complex resource allocation systems ·
Fluid-relaxation-based scheduling ·
Petri-net-based modeling and analysis of Discrete Event Systems

1 Introduction

Complex resource allocation systems (RAS) is a modeling abstraction for the operations
that take place in many contemporary application domains (Reveliotis 2017). These envi-
ronments support the concurrent execution of a number of process types through a set of
reusable resources, with each resource being available at a certain number of units that
defines the corresponding resource capacity. Process types execute sequentially, through a
certain set of processing stages, and the execution of each processing stage requires the
exclusive allocation of some “bundle” of the system resources that will be released only
when the process secures the resources required for its next processing stage. In this work,
we want to coordinate the resource allocation among the contesting processes in order to
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optimize some time-related performance measure; typical such performance measures are
the maximization of the system “throughput” or the minimization of some index of the
congestion that is experienced by the running processes.

The resulting scheduling problem is characterized by a very high complexity. In fact,
typically this problem is decomposed into two major subproblems, with the first subprob-
lem trying to establish deadlock-free operation for the underlying system, and the second
subproblem addressing the considered scheduling problem within the operational – or
“behavioral” – subspace that is defined by the first subproblem. The second subproblem can
be formulated, in principle, as a Markov Decision Process (MDP) (Puterman 1994), but the
practical solution of this MDP is challenged by the very large size of the underlying state
space. One way to address this last issue is by using some method from the burgeoning area
of Approximate Dynamic Programming (ADP) (Bertsekas 2012); some past endeavors in
this direction can be found in Choi and Reveliotis (2003), Li and Reveliotis (2015, 2016).
But a more recent development that appeared in (Ibrahim and Reveliotis 2019), has tried to
address this scheduling problem by adapting to it the technique of “fluid relaxation (FR)”-
based scheduling (Weiss 2000; Bertsimas et al. 2015). Generally speaking, at each decision
point, this technique tries to come up with an optimized decision as follows: (i) First, the dis-
crete workflow of the considered operation is approximated by a continuous flow of similar
structure and operational limitations, that is known as the “fluid relaxation” of the orig-
inal workflow. (ii) Next, a scheduling problem that encodes the gist of the dynamics that
determine the optimal decision at the current decision point, is formulated and solved in the
approximating representation of the “fluid” relaxation. This new scheduling problem usu-
ally takes the form of a linear program (LP) and is known as the corresponding “LP (fluid)
relaxation”. (iii) Finally, the information provided in the obtained optimal solution for the
LP relaxation is used in order to determine an optimized decision for the current decision
point of the original system. Extensive numerical experimentation reported in Ibrahim and
Reveliotis (2019) shows that this scheduling method has the potential to provide very high-
quality policies for the considered scheduling problem, and, in this way, it defines the “state
of art” when it comes to the scheduling of complex RAS.

This technical note intends to show that the developments of Ibrahim and Reveliotis
(2019) can be enhanced by leveraging the modeling and analytical power of timed-
continuous Petri nets (tc-PNs) (Mahulea 2007). More specifically, the fluid relaxation
models and the corresponding relaxing LPs that are used in the implementation of the
FR-based scheduling method in Ibrahim and Reveliotis (2019), have been developed
through some ad hoc representations and arguments. This work intends to show that timed-
continuous Petri nets provide a natural and more structured medium for the representation
of these fluid relaxations, and that the existing theory for the tc-PN model also enables (i)
a more systematic derivation of the relaxing LP, and (ii) an analytical study of the solution
space of this LP and the structure of its optimal solutions. Besides their theoretical interest,
these results further enable (iii) a more informed parameterization of the relaxing LP, and
(iv) a systematic extension of the methodology to RAS with very complex structure and
dynamics.

We should also notice, for completeness, that there is another line of past works that have
sought the optimization of the operations of certain contemporary workflows by leverag-
ing some of the modeling and analytical capabilities of timed continuous Petri nets. More
specifically, these works employ the particular model of the “first-order hybrid Petri net”,
which was introduced and studied in Balduzzi et al. (2000); as characteristic examples, we
mention the works of Balduzzi and Di Febbraro (2001), Dotoli et al. (2009), and Cavone
et al. (2016). However, the perusal of this material will reveal that except for the fact that
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they also employ a fluidized representation of the dynamics of the underlying workflow in
the form of a continuous Petri net model, the scheduling methods that are pursued in those
past works are very different, in their defining philosophy and their underlying operational
assumptions, from the FR-based scheduling method that is pursued in this paper.

The rest of the paper is organized as follows: Section 2 provides a more systematic char-
acterization of the RAS scheduling problem that was outlined in the previous paragraphs,
using the modeling framework of generalized stochastic Petri nets (GSPNs) (Ajmone
Marsan et al. 1994). In an effort to simplify and concretize the presented developments,
this scheduling problem is focused on the maximization of the long-term throughput of a
capacitated re-entrant line (CRL), which was also the RAS scheduling problem addressed
in Ibrahim and Reveliotis (2019). Section 3 introduces the fluid relaxation of the considered
scheduling problem and of the underlying GSPN dynamics, through a naturally induced tc-
PN model. This section also establishes certain properties for this tc-PN, and employs these
properties in order to provide a pertinent formulation of the relaxing LP. The last part of
the section discusses the definition of the necessary decision rule for the original schedul-
ing problem, which is based on the optimal solution of the relaxing LP. On the other hand,
Section 4 discusses the extension of the results of Sections 2 and 3 to RAS classes with
more complex structure and dynamics than the CRL class. Finally, Section 5 concludes the
paper and suggests potential future work.

Due to the imposed space limitations for this article, the subsequent developments have
been limited to the minimal material that ensures a concise treatment of the paper content; a
more expansive treatment of these developments, that provides all the necessary background
material and a more leisurely coverage of the presented results, can be found in Ibrahim and
Reveliotis (2018), which is accessible through the personal webpage of the second author.

2 GSPN-basedmodeling of the CRL operation and the throughput
maximization problem

The basic CRL model As stated in the closing part of the previous section, in order to sim-
plify the exposition of the subsequent developments and provide more specificity, we focus
on the scheduling problem of maximizing the long-term throughput of a particular RAS
class that is known as the capacitated re-entrant line (Reveliotis 2000). This line consists of
L workstations, WS1, WS2, . . . , WSL, with each workstation possessing (i) a single server,
and (ii) a finite buffering capacity of Bi slots. A part visiting some workstation Wi is allo-
cated one of its buffer slots, and it will hold this slot throughout its sojourn at that station;
in particular, the part will release this buffer slot only when it has completed its entire pro-
cessing and exits the system, or it has been allocated a buffer slot at another workstation.
The line supports a single process type with the corresponding process plan consisting of M

processing stages, J1, J2, . . . , JM . Each processing stage Jj is carried out at one of the line
workstations which will be denoted by WS(j). We further assume that L < M , an assump-
tion that manifests the re-entrant nature of the line. Finally, we refer the reader to Reveliotis
(2000), Ibrahim and Reveliotis (2019, 2018) for some interesting discussion on the motiva-
tion of this CRL model, and on the role of the “re-entrant line” abstraction in the context of
the current scheduling theory and practice.

GSPN-based modeling of the considered CRL In the following, we shall model the above
CRL as a GSPN to be denoted by N . The main building block for this GSPN model
is the process-resource subnet that is depicted in Fig. 1, and models the workflow and
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Fig. 1 The GSPN subnet modeling a single processing stage, Jj , of the considered CRL

the supporting resource allocation for some processing stage Jj that takes place at the
corresponding workstation WS(j).

Tokens in place pjw of this subnet rsepresent process instances waiting for the execu-
tion of processing stage Jj at workstation WS(j); tokens in place pjp represent process
instances executing processing stage Jj ; and tokens in place pjb represent process instances
that have completed the execution of processing stage Jj but are still located at workstation
WS(j). In the following, we shall denote these three substages respectively by Jjw , Jjp and
Jjb. Furthermore, assuming that the considered CRL starts idle and empty of any jobs, the
initial marking m0(pjx) of all places pjx , j = 1, . . . , M, x ∈ {w,p, b}, must be set equal
to zero.

The places pBWS(j) and pSWS(j) depicted in Fig. 1 are “resource(-modeling)” places.
Tokens in place pBWS(j) model the free buffer slots at the workstation WS(j); as already
stated, a process instance entering this workstation for the execution of processing stage
Jj must be allocated one of the free buffer slots, and this buffer slot will be released
when this process instance leaves the workstation. The initial marking of place pBWS(j) is
m0(pBWS(j)) = BWS(j), i.e., the buffering capacity of workstation WS(j). Place pSWS(j)

models the server availability at workstation WS(j); the tokens in this place are required
only for the execution of the corresponding substage Jjp . Furthermore, since we assume
single-server workstations, we shall also have m0(pSWS(j)) = 1.

Finally, in the GSPN model of Fig. 1, the thinner black transitions are considered to be
untimed, since they essentially model decisions pertaining to the corresponding resource
allocation process, The white barred transition is a timed transition, with the corresponding
firing delay representing the processing time of the enabling process instance. Following
standard practice in GSPN modeling, these firing delays are drawn from an exponential
distribution with rate μj .

Figure 2 provides the complete GSPNmodel,N , for a CRL with two single-server work-
stations, WS1, WS2, that support a process type with three processing stages, J1, J2, J3.
The servers of the two workstations are modeled by places p7 and p9, while the avail-
able buffering capacity at each workstation is modeled by places p8 and p10. On the other
hand, the sequential logic that defines the process plan for this CRL is modeled by the path
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Fig. 2 The GSPN model for an example CRL

〈t0, p0, t1, p1, t2, p2, t3, p3, t4, p4, t5, p5, t6, p6, t7〉; the interpretation of the correspond-
ing places p0, . . . , p6 is according to the logic of Fig. 1, with the further understanding
that, for the economy of the overall representation, we have dropped the two places corre-
sponding to the processing substages J1w and J3b. Finally, place p11 is a “monitor” place
that enforces the requirement that the combined number of process instances executing
processing stage J1 and J2 must be no more than three. In the operational context of this
CRL, the enforcement of this restriction is necessary in order to prevent the formation of
any deadlock. Indeed, the re-entrant nature of the considered CRLs makes them suscepti-
ble to deadlock, and the necessary control logic for deadlock avoidance can be provided
through the corresponding theory of deadlock avoidance for complex RAS that is presented
in Reveliotis (2017). Furthermore, as detailed in Ibrahim and Reveliotis (2019, 2018), for
the considered CRLs it is always possible to obtain deadlock avoidance policies that take
the form of a (small) number of linear inequalities on the net sub-marking that is defined
by the places pjx , j = 1, . . . , M, x ∈ {w,p, b}, and these inequalities can be repre-
sented in the employed GSPN framework through the superimposition of an equal number
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of “monitor” places (Giua et al. 1992; Moody and Antsaklis 1998) (as in the case of the
depicted example). Finally, it can also be shown that these “monitor” places play a role
in the dynamics of the controlled system that is equivalent to the role of the resource-
modeling places (this is also obvious in the controlled GSPN that is depicted in Fig. 2).
In the following, we shall assume that the considered GSPN model has been augmented
with a set of “monitor” places that will ensure deadlock-free operation for the resulting
net.

The considered scheduling problem and its MDP formulation As is the case with any
GSPN model (Ajmone Marsan et al. 1994), the set of reachable markings of a CRL-
modeling GSPN N can be partitioned into tangible markings, that enable only timed
transitions, and vanishing markings, that enable at least one untimed transition. Fur-
thermore, the sojourn time and the transitional dynamics out of a tangible marking are
completely determined by the “exponential race” that is defined by the enabled (timed)
transitions. On the other hand, since untimed transitions can fire instantaneously, vanish-
ing markings have zero sojourn times. More importantly, the selection among the set of
enabled untimed transitions at a vanishing marking must be arbitrated by some externally
specified logic; this logic usually takes the form of a probability distribution that is defined
on these enabled transitions, and it is known as the corresponding “random switch”. Hence,
in the GSPN-based representation of the CRL dynamics, the scheduling problem of maxi-
mizing the CRL throughput reduces to the problem of determining accordingly the random
switches at each vanishing marking of the net.

Furthermore, in Li and Reveliotis (2016), Ibrahim and Reveliotis (2018, 2019) it is shown
that the last problem defined in the previous paragraph can be further simplified by focusing
only on the set X of vanishing markings that result from the firing of some timed transition
at some tangible marking. Consider a vanishing marking m ∈ X, and let T R(m) denote
those tangible markings m′ that are reachable from m through the firing of a sequence of
untimed transitions, σ ; we shall refer to T R(m) as the corresponding “tangible reach” of
m. Since the time-based performance of the line is determined by the way that it allocates its
time among the various tangible markings, the main issue to be resolved at the considered
vanishing marking m ∈ X, is the selection of the tangible marking m′ ∈ T R(m). This
realization reduces the original scheduling problem to an MDP (Puterman 1994), to be
denoted by MDP(N) in the following. The decision points of MDP(N) are defined by
the aforementioned marking set X, and the possible decisions associated with each decision
point m ∈ X are defined by the corresponding tangible reach T R(m). The transitional
dynamics of MDP(N) upon the execution of a decision at marking m are determined by
the exponential race corresponding to the selected tangible state m′ ∈ T R(m). State m′
also defines the immediate reward, r(m,m′), that is associated with this decision; r(m,m′)
is equal to the firing probability in state m′ of the timed transition tM (i.e., the transition
corresponding to the completion of the last processing stage JM by a running part and
the unloading of this part from the line). Finally, let �(N ) denote the set of deterministic
policies for this MDP, i.e., the policies that are specified by the selection of a single decision
m′ ∈ T R(m) for each decision point m ∈ X. Also, let π denote any such deterministic
policy. The ultimate objective of MDP(N) is to determine a deterministic policy π∗ such
that

π∗ = arg max
π∈�(N )

lim
N→∞

1

E[τN ]E
[

N∑
i=1

r(mi ,m′
i ) | m0, π

]
(1)
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In Eq. 1, τN denotes the time of the N -th state transition for the underlying stochastic
process. Hence, in plain terms, the considered MDP seeks to maximize the average reward
collected over an infinite operational horizon, which according to the above definition of
the immediate reward, corresponds to the long-term throughput of the underlying CRL. The
presumed absence of deadlock from the underlying CRL – which is established through the
augmentation of the GSPN N with the necessary monitor places – implies that this MDP
problem is well posed, and guarantees the existence of an optimal deterministic policy. But
as remarked in the introductory section, the practical solution of MDP(N) is challenged
by the explosive nature of the underlying state space. Hence, next we discuss how we can
generate a good suboptimal solution for this problem, by leveraging a fluidized version of
the GSPNN .

3 Fluid-relaxation-based scheduling of CRLs through tc-PN-based
modeling and analysis

Some notation, semantics and properties for the employed tc-PNmodels As explained
in the introductory section, FR-based scheduling resolves the decision to be taken at each
decision pointm ∈ X of the MDP that is induced by the considered CRL model, by formu-
lating and solving an LP relaxation of the original problem. This LP relaxation is obtained
through a continuous-flow approximation of the discrete workflow that takes place in the
original system. In this section, we shall derive the sought LP relaxation by employing a
tc-PN model that is induced from the GSPN modelN ; this tc-PN model will be denoted by
N (tc) in the following.

N (tc) inherits the basic structure of the GSPN modelN , but it operates under the seman-
tics and the transition-fireability rules of timed-continuous Petri nets. In particular, the net
N (tc) has the same “flow” matrix � with net N , and the same “pre-flow” and “post-flow”
matrices �− and �+. On the other hand, the marking m of the net N (tc) lies in R

+
0 , and it

evolves according to a “flow vector” f(m), that defines a firing rate for very transition t ∈ T

at marking m, as follows:1

∀t ∈ T , f(t;m) = μ(t) · enab(t,m) = μ(t) · min
p∈•t

{
m(p)

�−(p, t)

}
(2)

In particular, the flow vector f(m) defines the rate of change of marking m when the
net transitions are fired at their maximum possible speed; for each transition t ∈ T , this
maximum speed is defined by (i) the corresponding firing rate μ(t), and (ii) the “enabling
degree” of this transition at markingm. Hence, if we let τ denote the absolute time, and we
consider the net markingm as a function of τ , we shall have that

m(τ ) = m0 + � · σ (τ ) (3)

Differentiating both sides of the last equation with respect to τ , eventually we get

ṁ(τ ) = � · σ̇ (τ ) = � · f(m(τ )) (4)

1The determination of the transition firing rates according to the rule of Eq. 2 implies the adoption of the
“infinite-server” semantics for net N (tc). This choice is justified by the explicit modeling of the resources
that regulate the firing of the various transitions of the CRL-modeling GSPN N through the corresponding
“resource” places; please, c.f. Sections 2.3.1 and 3.1 of Mahulea (2007) for a more thorough support of this
statement.
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In the subsequent developments, we shall further allow that μ(t) = ∞ for some tran-
sitions t ∈ T , which will enable us to replicate the notion of “untimed” transitions of
the GSPN modeling framework in the tc-PN context. It is clear from Eq. 2 that, for these
transitions, f(t;m) = ∞, for all markingsm, and therefore, these transitions can fire instan-
taneously at marking m at any level that does not exceed enab(t,m) (i.e., their enabling
degree at that marking).

In addition, we shall consider a “controlled” version of the tc-PNN (tc), where

∀t ∈ T , f(t;m) ≤ μ(t) · enab(t,m) = μ(t) · min
p∈•t

{
m(p)

�−(p, t)

}
(5)

i.e., transitions t ∈ T can be “slowed down” with respect to their maximal firing speeds.
The resulting controlled tc-PN has similar reachability dynamics to the corresponding
untimed continuous (uc-) PN N (uc) (Mahulea 2007), and it inherits the structural and
behavioral properties of the latter. In particular, both nets have the same reachability space
lim–Ruc(N ,m0), where this reachability space also contains all these markings that are
reachable from the initial marking m0 in the limit, i.e., through the firing of some infi-
nite transition sequence. Finally, it can be easily checked that the CRL-modeling GSPN N
is quasi-live, consistent and conservative, and these properties are inherited by the uc-PN
N (uc). But then, the results of Recalde et al. (1999) and Silva et al. (1998) imply that

m ∈ lim–Ruc(N ,m0) ⇐⇒ ∃σ ≥ 0 s.t.m = m0+�·σ ⇐⇒ ∀ p-semiflow y, y·m = y·m0
(6)

Equation 6 implies that the set of reachable markings of the uc-PN N (uc) is succinctly
characterized by the set of markings that satisfy the p-semiflows of this net, or, equivalently,
by the minimal p-semiflows. For the CRL-modeling GSPN N , the minimal p-semiflows
correspond to the net invariants that are defined by (i) the reusable nature of the vari-
ous resource types (Reveliotis 2017), and (ii) the control logic that implements the linear
inequalities of the applied deadlock avoidance policy through the corresponding “monitor”
places (Moody and Antsaklis 1998); in particular, there is one minimal p-semiflow asso-
ciated with each resource and each “monitor” place. In order to facilitate the subsequent
discussion, we shall assume that all these minimal p-semilfows are collected in the rows of
a matrix that will be denoted by By(N ).

Finally, an additional property that will play a significant role in the following, is that the
CRL-modeling GSPNN has a single minimal t-semiflow, namely the |T|-dimensional vec-
tor 1. This property is a straightforward implication of the single and completely sequential
process plan that is supported by the underlying CRL model, and when combined with the
consistent and conservative nature of the considered netN , it places this net in the particular
class of mono-t-semiflow nets (Mahulea 2007).

Steady-state markings of the controlled tc-PN N (tc) For the needs of the subsequent
developments, we define a notion of “steady-state operation” for the controlled tc-PNN (tc)

as follows:

Definition 1 The controlled tc-PN N (tc) can be operated at a steady-state regime at some
marking m iff

∃ f ∈ R
|T | s.t. (∀t ∈ T , 0 < f(t;m) ≤ μ(t) · enab(t,m)) ∧ (� · f = 0) (7)

Marking m itself is characterized as a potential steady-state marking.
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In other words, a given marking m of tc-PN N (tc) is a potential steady-state marking, if
there is a strictly positive t-semiflow of N (tc) that constitutes a feasible flow vector f for
markingm under the controlled dynamics ofN (tc). Then, markingm will remain unaltered
under the firing of the net transitions according to the considered flow vector f. Furthermore,
the strict positivity of f implies that this operation will keep active the entire network. The
next proposition provides a complete characterization of the set of steady-state markings of
netN (tc).

Proposition 1 The set of the potential steady-state markings for the controlled tc-PNN (tc)

is given by:

SS(N (tc)) ≡ {
m ∈ R

+
0

∣∣ (
By(N ) · m = By(N ) · m0

) ∧ (∀j = 1, . . . , M, m(pjp) > 0
)}
(8)

Proof According to Eq. 6, the first condition in the conjunction in the right-hand-side of
Eq. 8 is a necessary and sufficient condition for the reachability of any given marking m ∈
R

+
0 in the dynamics of the controlled tc-PNN (tc).
Next we show that the second condition in this conjunction is equivalent to the condition

of Definition 1. For this, first we notice that the mono-t-semiflow structure of the considered
network that was discussed in the previous paragraphs, further implies that any flow vector
f that satisfies the condition of Definition 1, will be f = f · 1, for some scalar f > 0. This
result, together with (i) the untimed transitions that are present in N (tc), and (ii) the inflow
relation of the timed transitions tj j = 1, . . . , M , of net N to their corresponding input
places pjp (c.f. Figure 1), further imply that the condition of Definition 1 reduces to the
condition

∃ f ∈ R
+ s.t. ∀tj ∈ Tt , f ≤ μ(tj ) · m(pjp) (9)

where R+ denotes the set of strictly positive reals. The proof concludes by noticing that the
second condition in the conjunction in the right-hand-side of Eq. 8 is essentially a rewriting
of the condition of Eq. 9.

The marking set OSS(N (tc)) and its reachability In the following, we are particularly
interested in those elements of the marking set SS(N (tc)) that will enable a maximal steady-
state flow f ∗ for the underlying tc-PN N (tc); we shall denote this set of markings by
OSS(N (tc)). In view of Proposition 1 and the arguments in the proof of this proposition,
the requested marking set OSS(N (tc)), and the corresponding maximal flow f ∗, can be
obtained as optimal solutions to the following linear program (LP):

max f (10)

s.t.
By(N ) · m = By(N ) · m0 (11)

∀tj ∈ Tt , f ≤ μ(tj ) · m(pjp) (12)

f ≥ 0 (13)

The reader should notice that the required non-negativity for the vector variable m that
appears in the above LP, is enforced by the combination of Eqs. 12 and 13 and the strict
positivity of the rates μ(tj ), ∀tj ∈ Tt . Also, the existence of an optimal solution (f ∗,m∗)
for this LP with f ∗ > 0 is guaranteed by (i) the resource availability that is presumed by the
CRL model that is considered in this work, and (ii) the applied deadlock avoidance policy;
these two elements define the effective content of Eq. 11. In fact, in Ibrahim and Reveliotis
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(2018) it is shown that the LP of Eqs. 10–13 can be reduced to an equivalent LP with the
same objective function, and with its constraints expressing the restrictions on the flow value
f that are imposed by (i) the limited processing capacity of the workstation servers, and (ii)
the “virtual bottlenecks” (Dai and Vande Vate 2000) of the underlying CRL that are defined
by the applied deadlock avoidance policy.

The next result establishes that the marking set OSS(N (tc)) can be reached in finite time
from any marking m ∈ lim−Ruc(N ,m0).

Proposition 2 Let f ∗ denote the maximal steady-state flow for the considered net N (tc),
and define the marking m̃ of this net as follows:

∀ ∈ P, m̃(p)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ∗
μ(tj )

, if p=pjp for some j ∈{1, . . . , M}
0, if p=pjw or pjb for some j ∈{1, . . . , M}
m0(p) − ∑

p′∈P \{p} yp(p′) · m̃(p′), for every place p modeling a resource or
a monitor place with corresponding
p-semiflow yp

(14)
Then, marking m̃ satisfies the following two properties:

1. m̃ ∈ OSS(N (tc)).
2. ∀m ∈ lim–Ruc(N ,m0), ∃σ = a1t1 . . . aktk for some k ∈ Z

+
0 , s.t. m[σ 〉m̃.

Proof In order to prove the first part of Proposition 2, it suffices to show that marking m̃
satisfies the constraints of the LP of Eqs. 10–13, for f = f ∗. The constraint of Eq. 12 is
satisfied immediately by the definition of marking m̃. Furthermore, since f ∗ is the maximal
steady-state flow of net N (tc), there exists a marking m∗ such that (f ∗,m∗) is an optimal
solution to the LP of Eqs. 10–13. Also, Eqs. 12 and 14 imply that m̃(p) ≤ m∗(p), ∀p ∈
{pjw, pjp, pjb : j = 1, . . . , M}. Therefore,

m0(p) −
∑

p′∈P \{p}
yp(p′) · m̃(p′) ≥ m0(p) −

∑
p′∈P \{p}

yp(p′) · m∗(p′) ≥ 0

and marking m̃ satisfies the constraints of Eq. 11, as well.
Next, we shall establish the second part of Proposition 2 by providing a finite transition

sequence σ = σ1σ2σ3σ4 that will lead from any given marking m ∈ lim–Ruc(N ,m0) to
the target marking m̃.

Transition subsequence σ1 will first establish a “corridor” of free capacity δ <

min{m̃(pjp) : j = 1, . . . , M} with respect to each resource or monitor place q across the
entire line. This can be attained in an iterative manner, starting from the place pMp and
unloading the necessary amount of fluid from this place in order to attain the aforestated
free-capacity requirement with respect to any resource or monitor place q that includes place
pMp in the corresponding p-semiflow. Subsequently, we employ the free capacity estab-
lished through this fluid removal from place pMp, in order to satisfy the same free-capacity
requirement with respect to the resource and the monitor places that are engaged by the
places pM−1,w, pM−1,p, pM−1,b, that model stage JM−1; we omit the relevant details to
the reader. Sequence σ1 is completed by proceeding in a similar manner through the remain-
ing stages JM−2, . . . , J1, in this order. Let m′ denote the marking that will result from this
draining.
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Transition subsequence σ2 will employ the “corridor of free capacity” established by
sequence σ1 in order to drain the line from the following quantities:

• For each place p ∈ {pjp|j = 1, . . . , M} with m′(p) > m̃(p) − δ, transition
subsequence σ2 will remove an amount of fluid equal to m′(p) − m̃(p) + δ.

• For each place p ∈ {pjw, pjb|j = 1, . . . , M} with m′(p) > m̃(p) = 0, transition sub-
sequence σ2 will empty completely this place by removing the corresponding amount
of fluidm′(p).

For all these places, the corresponding drainage will occur in chunks no larger than
δ. Then, since the original marking m satisfies all the minimal p-semiflows of net
N , all the markings that will be generated by the fluid advancement through the line
during this drainage will satisfy these p-semiflows, as well (i.e., they will respect the
resource availability of the line and the imposed deadlock avoidance policy). Let us
denote the marking that will result from the execution of transition subsequence σ2
bym′′.

Transition subsequence σ3 will add to places p ∈ {pjp : j = 1, . . . , M} with
m′′(p) < m̃(p) − δ, the quantities m̃(p) − δ − m′′(p). For each such place p, the corre-
sponding quantity will be loaded from the beginning of the line, in chunks no larger than
δ. Let us denote the marking that will result from the execution of transition subsequence
σ3 bym′′′.

Finally, transition subsequence σ4 will bring to each place pjp, j = 1, . . . , M , a fluid
amount equal to δ, starting with place pMp , and proceeding with places pM−1,p, . . . , p1p ,
in this order. The plausibility of this operation with respect to the p-semiflows of net N is
guaranteed by the specification of (i) marking m̃ in Eq. 14, and (ii) the intermediate target
markings m′′ andm′′′.

The proposed LP relaxation for the considered scheduling problem In the previous parts
of this section we have provided a complete characterization of (i) the maximal steady-
state throughput, f ∗, that can be attained by the fluidized dynamics of the considered CRL
that are encoded by the tc-PN N (tc), and (ii) the set of markings OSS(N (tc)) that can
support this steady-state operation. Also, Proposition 2 has established that the marking
set OSS(N (tc)) is reachable, in finite time, from any reachable marking m of this net-
work. Hence, given a marking m̂ that constitutes a decision point of the MDP(N) of
Section 2, the corresponding LP relaxation, to be formulated in the fluidized dynamics
of the controlled net N (tc), must drive these dynamics from marking m̂ to some marking
m̃ ∈ OSS(N (tc)), in a way that minimizes the experienced loss with respect to the target
throughput f ∗ during this transition. The resulting optimal control problem belongs to the
class of optimal control problems for the considered tc-PN models that has been investi-
gated in Chapter 7 of Mahulea (2007). Next we adapt the results of that work to the tc-PN
N (tc) that is considered in this paper, and to the particular optimal control problem that was
stated in the previous part of this paragraph.

As in Mahulea (2007), we shall derive the sought LP formulation in discretized time,
where the time-discretizing (or “sampling”) period will be set equal to some value �t

sartisfying

�t < min
j=1,...,M

{
1

μ(tj )

}
(15)

The above discretization of time induces a discrete-time controlled continuous PN,
N (dt), from the original tc-PN model of N (tc). Letting m(k) denote the marking of net
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N (dt) at period k, the one-time-step transitional dynamics of this new net satisfy the
following state equation:

m(k + 1) = m(k) + �t · � · w(k) (16)

In Eq. 16, � denotes the flow matrix of the underlying net N , and w(k) denotes the
instantaneous firing levels for the various transitions t ∈ T , that are presumed to be kept
constant during the considered time interval �t . Then, Proposition 7.6 and Theorem 7.9 of
Mahulea (2007) imply the following properties for the dynamics of the dt-PNN (dt):

Proposition 3 Consider the dt-PN N (dt) that is induced from the ct-PN N (ct) under time
discretization with a sampling period�t that satisfies the condition of Eq. 15. Furthermore,
suppose that the one-time-step transitional dynamics of net N (dt) observe the enabling
condition of Eq. 5.

Then, netN (dt) possesses the following properties:

1. All the markings m(k), k = 1, 2, . . . ,that are reached by netN (dt), when initialized at
any initial marking m0 ≥ 0, are nonnegative.

2. A marking m is reachable in the net N (dt) if and only if it is reachable in the untimed
dynamics of the netN (tc) with a sequence that never empties an already marked place.

Property 1 of Proposition 3 guarantees that, under the condition of Eq. 15, the dt-PN
N (dt) is a valid approximation of the dynamics of the ct-PN N (ct) with respect to the
preservation of the non-negativity of the net marking. On the other hand, Property 2 of this
proposition is a reachability condition in the discretized dynamics of netN (dt). Fortunately,
it can be easily checked that the transition sequence σ that was employed in the proof of
Proposition 2, satisfies the condition of Proposition 3, and therefore, Proposition 3 enables
the extension of the reachability result of Proposition 2 to the operational context of net
N (dt); i.e., starting from any initial marking m of net N (dt), we can drive this net to the
marking set OSS(N (tc)) in a finite number of periods �t . This realization, when combined
with (i) the motivational logic for the pursued LP relaxation that was outlined in the previous
paragraphs, and (ii) the above specification of the discrete dynamics of net N (dt), result in
the following form of this LP:

min
H∑

k=0

(f ∗ − w(tM ; k)) (17)

s.t.
∀k = 0, 1, . . . , H, m(k + 1) = m(k) + �t · � · w(k) (18)

∀k = 0, 1, . . . , H, ∀j = 1, . . . , M, w(tj ; k) ≤ μ(tj ) · m(pjp; k) (19)

∀k = 0, 1, . . . , H, w(k) ≥ 0 (20)

∀k = 0, 1, . . . , H, ∀j = 1, . . . , M, m(pjw; k + 1) ≥ 0 ; m(pjb; k + 1) ≥ 0 (21)

m(0) = m̂ (22)

The LP of Eqs. 17–22 is formulated over a finite time-horizon H + 1 that is selected a
priori as one of the problem parameters. During this time-horizon, the considered LP tries to
determine the control variables w(k), k = 0, . . . , H , for the underlying dt-PNN (dt) so that
the total amount of fluid output by this net over the considered time-horizon is maximized.
But, as already noticed, under the assumption of a sufficiently long time-horizon H +1, this
objective is equivalently attained by trying to drive the netN (dt) from its current marking m̂
to a marking m̃ ∈ OSS(N (tc)), while minimizing the loss experienced during this transition
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with respect to the total fluid that would be output by net N (dt) if it was operated at the
maximal flow rate f ∗. The LP objective that is stated in Eq. 17 adopts this last perspective,
since this selection also provides a very natural rule for selecting a pertinent value for the
parameter H ; more specifically, H should be selected such that the optimal value of the LP
will remain invariant to any extensions of the employed time horizon H + 1 by one or more
periods.

The constraints of Eqs. 18–21 in the above LP essentially stipulate the validity of the
one-step transitional dynamics of the net N (dt) that are implied by any tentative solution.
Finally, the constraint of Eq. 22 sets the initial marking for netN (dt) in the optimal control
problem that is addressed by the considered LP, equal to the marking m̂ that corresponds to
the current decision point of the underlyingMDP(N).

The induced schedulingpolicy forMDP(N) The solution of the LP relaxation of Eqs. 17–
22 at any decision point m̂ of MDP(N) can “guide” the selection of the next tangible
marking m̃ from the tangible reach T R(m̂) of marking m̂, according to the following logic:

Let m∗(1) be the marking in the obtained optimal solution for the LP relaxation for
k = 1.

Then, the proposed scheduling policy will select the next tangible marking m̃ ∈ T R(m̂)

for the CRL-modeling GSPNN , through the following rule:

m̃ ∈ arg min
m∈T R(m̂)

∑
j=1,...,M

|m(pj ) − m∗(pj ; 1)| (23)

In more natural terms, the criterion of Eq. 23 seeks to select a tangible marking m ∈
T R(m̂) that matches the marking m∗(1) at the places pjp that enable the timed transitions
tj , j = 1, . . . , M , as much as possible (with respect to the employed l1-norm), and thus,
to attain a utilization for the various servers of the line that is similar to utilization that is
implied by marking m∗(1).

Furthermore, a secondary criterion that we have used in Ibrahim and Reveliotis (2018,
2019) in order to break any ties that are generated through the criterion of Eq. 23, is as
follows:

m̃ ∈ arg min
m∈T R(m̂)

∑
∀p∈{pjx :j=1,...,M;x=w,p,b}

|m(p) − m∗(p; 1)| (24)

This new criterion selects a tangible marking m ∈ T R(m̂) that has the smallest l1-
distance from the marking m∗(1) with respect to the sub-marking that is defined by the
places p of net N that model the processing substages of the underlying CRL; i.e., this
criterion tries to attain a spatial arrangement of the active process instances that is as similar
to the corresponding arrangement that is implied by marking m∗(1).2

Extensive numerical experimentation reported in Ibrahim and Reveliotis (2018) reveals
that the scheduling methodology that results from all the previous developments that were
presented in this section, preserves the ability of the corresponding methodology of Ibrahim
and Reveliotis (2019) to identify very high-quality (near-optimal) scheduling policies for
the underlying CRLs. The derived methodology is also computationally very efficient, since
it is based on: (i) the formulation and solution of the LP of Eqs. 10–13 only once, at the

2However, some more recent realizations that are reported in the closing part of Chapter 5 in Ibrahim (2019),
imply that the secondary action-selection criterion of Eq. 24 might not be very pertinent, and the development
of the necessary logic for the effective breaking of any ties generated by the primary action-selection criterion
of Eq. 23 is a remaining open issue.
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beginning of the entire implementation, in order to compute f ∗; and (ii) the formulation
and solution of the LP of Eqs. 17–22 at each decision point m ∈ X of the underlying
MDP(N). Both of these LPs are derived straightforwardly from the underlying GSPNN ,
and they involve a number of variables and constraints that is a polynomial function of the
size of the underlying CRL.3

At the same time, the developments of this section provide a very succinct characteriza-
tion of the defining logic and the fluidized dynamics that drive this methodology. Next, we
discuss briefly how the insights that have been obtained from these developments, enable
their extension to some more complex RAS.

4 Extending the presentedmethodology to other RAS classes

In this section we briefly discuss the extension of the FR-based scheduling method for
the CRL throughput maximization problem that has been developed in this work, to the
scheduling problem of maximizing the throughput of more complex RAS. In particular, we
focus on the class of Disjunctive–Conjunctive (DC–) RAS, that has been studied extensively
in Reveliotis (2017).

From a modeling standpoint, the class of DC-RAS supports the concurrent execution of
a number of process types. Furthermore, for each such process type, this new class allows
for (i) more arbitrary resource allocation requests by the corresponding processing stages
than the CRL model considered in this work, and (ii) routing flexibility (i.e., an instance
of these process types can execute through more than one sequences of processing stages).
The monograph of Reveliotis (2017) provides (a) a detailed characterization of the structure
and the operation of these RAS by means of the PN modeling framework, and (b) extensive
methodology for the synthesis of efficient deadlock avoidance policies that take the form of
linear inequalities on the net marking, and can be implemented through “monitor” places
superimposed on the RAS-modeling PN.

A first complication for any attempted extension of the considered scheduling problem to
the DC-RAS context arises from the fact that the notion of throughput maximization itself is
ill-defined, since there are more than one process types. A reasonable way to circumvent this
complication is by assuming that the production rates of all these process types must observe
some predefined ratios; then, it is possible to maximize the total production rate, across
all process types, by maximizing the production rate of any one of them. Furthermore, the
work of Hu et al. (2012) discusses how to encode these production-ratio requirements in the
underlying PN model, while preserving all the corresponding theory of deadlock avoidance
for these nets.

A second complication for the extension of the results that were developed in the previ-
ous parts of this paper to DC-RAS, even when they are operated under the production-ratio
constraints that were mentioned in the previous paragraph, arises from the presence of rout-
ing flexibility for the supported process types. When viewed in the light of the technical
developments that were pursued in the earlier parts of this document, this routing flexibility
implies that the underlying GSPN N will not possess the mono-t-semiflow property. This
fact, in turn, requires the redefinition of the steady-state regime for the fluidized version of
net N so that it allows the potential “shut down” of certain parts of this net, in particular,

3A more expansive discussion on the computational complexity and the tractability of the presented
scheduling method can be found in Ibrahim and Reveliotis (2019).
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those routes of the different process types that might not be competitive. Once this new
convention has been established, the computation of a maximizing flow vector f∗ for the
controlled fluidized net N (tc) can be attained through an LP formulation that is similar, in
terms of its informational content, to the LP of Eqs. 10–13.4

A last point that needs some further discussion regarding the proposed extension of our
main results to the DC-RAS model, concerns the second part of Proposition 3. We remind
the reader that this part implies that in the operation of the discrete-time PNmodelN (dt) that
is induced from the fluidized net N (tc), a marked place that feeds a timed transition of the
net will never get empty. This could be a potential complication in view the aforementioned
need to “shut down” certain parts of the net in the steady-state markings that support its
optimized operation.

But this issue is immediately resolved in any real-time implementation of the proposed
method that starts the underlying RAS in its empty state, and consistently guides it through
those markings that are competitive markings according to the selection logic of Eqs. 23–
24. Such an operational scheme will never route any process instances in the direction of
those processing stages that are not competitive according to the flow-maximizing LP of
Eqs. 10–13, and therefore, the underlying network N will never mark any places that will
have to be emptied by the considered LP relaxation.

Based on all the above discussion, it should be clear that the FR-based scheduling method
that has been developed in thiswork, is effectively extensible to the broader class ofDC-RAS.
This discussion also reveals the structure, as well as the modeling and analytical capabilities,
that are attained when the FR-based scheduling methodology is pursued through the PN-
based modeling framework, according to the lines that were specified in this paper.

5 Conclusions

This work has adapted the FR-based scheduling method for complex resource allocation
that was initially developed in Ibrahim and Reveliotis (2019), to a new version that takes
advantage of the modeling and the analytical power of the PN modeling framework. The
presented developments have shown that by making use of the various PN classes that are
currently offered by the corresponding PN theory, it is possible (i) to derive the necessary
components of this method in a very structured and disciplined manner, and also (ii) to rea-
son about various structural and behavioral aspects of these components with certain rigor
that cannot be supported by any ad hoc implementation of this scheduling methodology.
This last capability further enables a more profound understanding of the FR-based schedul-
ing method itself, and it can also be used for (a) the further tuning of the method in order
to enhance various aspects of its performance (as it was the case with the selection of the
time-discretizing parameter �t and the time-horizon length H that were employed by the
proposed LP relaxation of Eqs. 17–22), or (b) the extension of its applicability (as it was
the case in the discussion of Section 4). In fact, another interesting extension of the pre-
sented developments would be the systematic investigation of the reasons that the FR-based
scheduling method will fail to reach an optimal decision in the operational context of the
CRL and the other complex RAS classes that have motivated this work; a first set of results
along this line can be found in Chapter 5 of Ibrahim (2019).

4We emphasize, however, that this claim presumes that the structure of the DC-RAS modeling PN N will
also encode, both, the applied deadlock avoidance policy and the imposed production-ratio constraints.

Discrete Event Dynamic Systems (2019) 29:393–409 407



References

Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1994) Modeling with Generalized
Stochastic Petri Nets. Wiley, New York

Balduzzi F, Giua A, Menga G (2000) First-order hybrid P,etri nets: a model for optimization and control.
IEEE Trans Robot Autom 16:382–399

Balduzzi F, Di Febbraro A (2001) Combining fault detection and process optimization in manufacturing
systems using first-order hybrid Petri nets. Inproceedings of ICRA 2001. IEEE, pp 40–45

Bertsekas DP (2012) Dynamic Programming and Optimal Control, vol 2, 4th edn. Athena Scientific, Belmont
Bertsimas D, Nasrabadi E, Paschalidis I. C. h. (2015) Robust fluid processing networks. IEEE Trans Autom

Control 60:715–728
Cavone G, Dotoli M, Seatzu C (2016) Management of intermodal freight terminals by first-order hybrid Petri

nets. IEEE Robot Autom Lett 1:2–9
Choi JY, Reveliotis S (2003) A generalized stochastic P,etri net model for performance analysis and control

of capacitated re-entrant lines. IEEE Trans Robot Autom 19:474–480
Dai JG, Vande Vate JH (2000) The stability od two-station multitype fluid networks. Oper Res 48:721–744
Dotoli M, Fanti MP, Iacobellis G, Mangini AM (2009) A first-order hybrid Petri net model for supply chain

management. IEEE Trans Autom Sci Eng 6:744–758
Giua A, DiCesare F, Silva M (1992) Generalized mutual exclusion constraints on nets with uncontrollable

transitions. In: Proceedings of the 1992 IEEE Intl. Conference on Systems, Man and Cybernetics. IEEE,
pp 974–979

Hu H, Zhou M, Li Z (2012) Liveness and ratio-enforcing supervision of automated manufacturing systems
using Petri nets. IEEE Trans Syst Man Cybern – Part A: Syst Hum 42:392–403

Ibrahim M (2019) Scheduling Techniques for Complex Resource Allocation Systems. PhD thesis, ISye,
Georgia Tech, Atlanta

Ibrahim M, Reveliotis S (2018) Throughput maximization of complex resource allocation systems through
timed-continuous-Petri-net modeling Technical report, ISyE, Georgia Tech

Ibrahim M, Reveliotis S (2019) Throughput maximization of capacitated re-entrant lines through fluid
relaxation. IEEE Trans Autom Sci Eng 16:792–810

Li R, Reveliotis S (2015) Performance optimization for a class of generalized stochastic Petri nets. Discret
Event Dyn Syst: Theory Appl 25:387–417

Li R, Reveliotis S (2016) Designing parsimonious scheduling policies for complex resource allocation
systems through concurrency theory. Discret Event Dyn Syst: Theory Appl 26:511–537

Mahulea C (2007) Timed Continuous Petri Nets:Quantitative Analysis, Observability and Control. PhD
thesis, Universidad de Zaragoza, Zaragoza

Moody JO, Antsaklis PJ (1998) Supervisory Control of Discrete Event Systems using Petri nets. Kluwer
Academic Pub, Boston

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New
York

Recalde L, Teruel E, Sliva M (1999) Autonomous continuous P/T systems. In: Applications and Theory of
Perti Nets 1999, pp 107–126

Reveliotis S (2017) Logical Control of Complex Resource Allocation Systems. NOW Ser Found Trends Syst
Control 4:1–224

Reveliotis S (2000) The destabilizing effect of blocking due to finite buffering capacity in multi-class
queueing networks. IEEE Trans Autom Control 45:585–588

Silva M, Teruel E, Colom JM (1998) Linear algebraic and linear programming techniques for the analysis
of place/transition net systems. In: Reisig W, Rozenberg G (eds) Lecture Notes in Computer Science,
vol 1491. Springer, Berlin, pp 309–373

Weiss G (2000) Scheduling and control of manufacturing systems - a fluid approach. In: Proceedings of the
37th Allerton Conference. University of Illinois, pp –

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Discrete Event Dynamic Systems (2019) 29:393–409408



Michael Ibrahim received the Bachelor’s (2012) and Master’s (2015) degrees from the Department of Com-
puter Engineering at Cairo University, Egypt, and his Ph.D. degree in Industrial Engineering from the School
of Industrial & Systems Engineering at the Georgia Institute of Technology (2019). He is about to join the
Faculty of the Department of Computer Engineering at the Cairo University.

His research interests include discrete event systems, operations research, and machine learning.

Spyros Reveliotis received the Diploma degree in electrical engineering from the National Technical Univer-
sity of Athens, Athens, Greece (1989), the M.Sc. degree in computer systems engineering from Northeastern
University, Boston, MA, USA (1992), and the Ph.D. degree in industrial engineering from the University of
Illinois at Urbana–Champaign, Champaign, IL, USA (1996).

He is a Professor with the School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, USA. His main research interests are in discrete-event systems theory and its applications.

Dr. Reveliotis is an IEEE Fellow and a member of INFORMS. He has served on the editorial boards
of many journals and conferences on his areas of interest. Currently, he serves as a Senior Editor for the
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, an Associate Editor for
the Journal of Discrete Event Dynamic Systems, and the Editor-in-Chief of the Editorial Board at the IEEE
Conference on Automation Science and Engineering (CASE). He has also served as the Program Chair at
the 2009 IEEE CASE Conference, and the General Co-Chair of the 2014 edition of the same conference.
Finally, he has been a recipient of a number of awards, including the 2014 Best Paper Award of the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING.

Discrete Event Dynamic Systems (2019) 29:393–409 409


	Throughput maximization of complex resource allocation systems through timed-continuous-Petri-net modeling
	Abstract
	Introduction
	GSPN-based modeling of the CRL operation and the throughput maximization problem
	The basic CRL model
	GSPN-based modeling of the considered CRL
	The considered scheduling problem and its MDP formulation



	Fluid-relaxation-based scheduling of CRLs through tc-PN-based modeling and analysis
	Some notation, semantics and properties for the employed tc-PN models
	Steady-state markings of the controlled tc-PN N(tc)
	The marking set OSS(N(tc)) and its reachability
	The proposed LP relaxation for the considered scheduling problem
	The induced scheduling policy for MDP(N)



	Extending the presented methodology to other RAS classes
	Conclusions
	References


