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a b s t r a c t

This paper proposes a method based on semidefinite programming for estimating moments of
stochastic hybrid systems (SHSs). The class of SHSs considered herein consists of a finite number
of discrete states and a continuous state whose dynamics as well as the reset maps and transition
intensities are polynomial in the continuous state. For these SHSs, the dynamics of moments evolve
according to a system of linear ordinary differential equations. However, it is generally not possible
to exactly solve the system since time evolution of a specific moment may depend upon moments of
order higher than it. Our methodology recasts an SHS with multiple discrete modes to a single-mode
SHS with algebraic constraints. We then find lower and upper bounds on a moment of interest via
a semidefinite program that includes linear constraints obtained from moment dynamics and those
arising from the recasting process, along with semidefinite constraints coming from the non-negativity
of moment matrices. We illustrate the methodology via an example of SHS.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A Stochastic Hybrid System (SHS) consists of a finite number
of discrete states (or modes), stochastic dynamics of a continuous
state, and a set of transitions which are specified by transition
intensities with corresponding reset maps that define how the
states change after each of these transitions (Hespanha, 2006;
Teel, Subbaraman, & Sferlazza, 2014). SHSs are applicable to a
wide range of phenomena (Hespanha, 2005; Li, Omotere, Qian, &
Dougherty, 2017), however their formal analysis (e.g., computing
probability density function) is typically challenging. Alterna-
tively, computing or estimating moments of an SHS also provides
important insights into its dynamics. It is well-known that for an
SHS described via polynomials, the time evolution of its moments
is governed by a system of linear ordinary differential equa-
tions (Hespanha, 2005). However, except for few special cases,
e.g., see Soltani and Singh (2017), the time-evolution of a moment
of certain order depends on moments of order higher than it. It
is desirable to develop methods that provide approximate values
of moments with provable guarantees.
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Many methods to approximate moments of polynomial sto-
chastic systems have been proposed (Kuehn, 2016; Socha, 2007).
Most of these methods, however, provide point approximations
to moments of interest without any guarantee on errors (Kuehn,
2016). We and others have addressed this issue by proposing
a semidefinite programming based method for estimating mo-
ments of polynomial jump diffusion processes and their special
cases (Ghusinga, Vargas-Garcia, Lamperski, & Singh, 2017; Kuntz,
Ottobre, Stan, & Barahona, 2016; Lamperski, Ghusinga, & Singh,
2019; Sakurai & Hori, 2018). This method utilizes semidefinite
inequalities that moments must satisfy and finds monotonic se-
quence of lower and upper bounds on a moment of interest.
Here, we extend this method to SHSs, which encompass a large
class of stochastic systems. We show that an SHS with multiple
discrete modes can be transformed to one with single discrete
mode and some algebraic constraints. This transformation makes
the moment analysis of SHSs amenable to the semidefinite pro-
gramming setup. Finally, we use an example to illustrate the
proposed method.

Notation. We denote random variables in bold. Unless deemed
necessary, we omit explicit time dependence of states/moments.
Rn denotes the n-dimensional Euclidean space. N represents the
set of non-negative integers. E(x) is the expectation of a random
variable x. 1si represents the N-dimensional unit vector with 1 in
the ith position.
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2. Background on stochastic hybrid systems

An SHS combines continuous-time evolution with discrete
transitions. Let t denote continuous time and let k count the
discrete transitions. The state space consists of a continuous state
x(t, k) ∈ Rn and a discrete state q(t, k) ∈ Q = {s1, s2, . . . , sN}. The
continuous state evolves as per a stochastic differential equation
(SDE)

dx = f (q, x)dt + g(q, x)dw, (1a)

where f : Q × Rn
→ Rn and g : Q × Rn

→ Rn×l are respec-
tively the drift and diffusion terms, and w is an l-dimensional
Wiener process. The state (q, x) can also change through R tran-
sitions/resets that are characterized by the transition intensities

λr (q, x), λr : Q × Rn
→ [0,∞), r = 1, 2, . . . ,R. (1b)

The probability that the r th transition takes place in an infinitesi-
mal time interval (t, t + dt] is given by λr (q, x)dt . Each transition
has an associated reset map

(q, x) ↦→ (θr (q), φr (q, x)) ,

θr : Q → Q , φr : Q × Rn
→ Rn, (1c)

that defines how the pre-transition discrete and continuous states
map into the post-transition discrete and continuous states.

For completeness, we sketch how dynamics defined by (1) can
be posed as a jump diffusion (Applebaum, 2009) by modifying
a construction from Ghosh, Arapostathis, and Marcus (1997) and
Yin and Zhu (2009). With slight abuse of notation, identify Q with
the integers {1, 2, . . . ,N} and let ∆r (q, x) be intervals of length
λr (q, x), defined by ∆r (q, x) = [

∑r−1
i=1 λi(q, x),

∑r
i=1 λi(q, x)). Let

IS denote the indicator function of a set, S. Let p(dt, dz) be a
Poisson random measure over [0,∞) × R, which is independent
of w(t), with intensity defined by the Lebesgue measure. Then the
dynamics can be expressed as

dq =

∫
∞

z=0

R∑
r=1

(θr (q) − q)I∆r (q,x)(z)p(dt, dz), (2a)

dx = f (q, x)dt + g(q, x)dw

+

∫
∞

z=0

R∑
r=1

(φr (q, x) − x)I∆r (q,x)(z)p(dt, dz). (2b)

This construction shows that (q(t), x(t)) is a Markov process
which is adapted to the filtration generated by (w(t),

∫ t
0 p(dy, ·)).

An extended generator is a commonly used mathematical char-
acterization for the SHS in (1). For a scalar test function ψ :

Q×Rn
→ R that is twice continuously differentiable with respect

to its second argument (i.e., x), the extended generator is defined
as

lim
t↓0

Eq,x
[ψ(q(t), x(t))] − ψ(q, x)

t
= (Lψ)(q, x), (3a)

where Eq,x denotes the expectation operator conditioned on
q(0) = q and x(0) = x, while L is given by Hespanha (2005)
and Teel et al. (2014)

(Lψ)(q, x) :=
∂ψ(q, x)
∂x

f (q, x)

+
1
2
Trace

(
∂2ψ(q, x)
∂x2

g(q, x)g(q, x)⊤
)

+

R∑
r=1

(ψ (θr (q), φr (q, x))− ψ(q, x)) λr (q, x). (3b)

The terms ∂ψ(q,x)
∂x and ∂2ψ(q,x)

∂x2 respectively denote the gradient
and the Hessian of ψ(q, x) with respect to x. The formulas in
(3) can be derived from Itô’s lemma and the interlacing method
of Applebaum (2009). With the extended generator described
above, it is possible to compute time evolution of moments of
the SHS that we discuss next.

3. Moment dynamics of SHS

In this section, we describe how the extended generator gives
time evolution of its moments. The SHSs considered here are
defined over polynomials: for each discrete state q, the functions
f , g , λr , and φr are polynomials in the continuous state x.

3.1. Moment dynamics for SHS with single discrete state

Consider an SHS that has only one discrete state/mode. To
simplify notation, we can drop q here. For a given n-tuple m =

(m1,m2, . . . ,mn) ∈ Nn, moment dynamics is computed by plug-
ging in a monomial test function

ψ(x) = xm1
1 xm2

2 . . . xmn
n (4)

in (3). Here order of the moment E(xm1
1 xm2

2 . . . xmn
n ) is given by∑n

i=1 mi, and there are
(∑n

i=1 mi+n−1
n−1

)
moments of order

∑n
i=1 mi.

The following standard result shows how dynamics of a collection
of moments of x evolves over time for a polynomial SHS.

Lemma 1. Let f (x), g(x), λr (x) and φr (x) be polynomials in x.
Denoting the vector consisting of all moments up to a specific order
of x by X , its time evolution can be compactly written as
dX
dt

= AX + BX (5)

for appropriately defined matrices A, B. Here X is a collection of
moments whose order is higher than those stacked up in X .

Proof. Since f (x), g(x), λr (x) and φr (x) are polynomials, the ex-
tended generator in (3b) maps monomials of the form xm1

1 xm2
2 . . .

xmn
n to a linear combination of monomials of different orders.

Upon collecting all moments up to some order in a vector X , the
form in (5) follows from (3a). □

The form of moment dynamics in (5) is well-known (Hes-
panha, 2005). The matrix B is typically non-zero and the moments
contained in X cannot be computed exactly. This is known as the
problem of moment closure (Hespanha, 2005).

3.2. Moment dynamics for SHS with multiple discrete states

Consider an SHS that has a finite, but more than one, discrete
states. In this case, it is of interest to know moments of the
continuous state given a discrete state and the probability that
the system is in the given discrete state. To compute these, we
define an N-dimensional state

b = (b1, b2, . . . , bN ) ∈ RN (6a)

such that each bi, i = 1, 2, . . . ,N serves as an indicator of the
discrete state being q = si

bi =

{
1, q = si,
0, otherwise.

(6b)

For example, when the discrete state q = s1, then we represent
it by the tuple b = (1, 0, . . . , 0). It follows that the following
properties hold

N∑
i=1

bi = 1; bibj = 0, i ̸= j; b2
i = bi. (6c)



K.R. Ghusinga, A. Lamperski and A. Singh / Automatica 112 (2020) 108634 3

Furthermore, E(bi) is equal to the probability of q = si, while
E(bix

m1
1 xm2

2 . . . xmn
n ) is equal to the product of the probability that

q = si and the moment of xm1
1 xm2

2 . . . xmn
n , conditioned on q = si.

We can recast the SHS in (1) to the new state space (b, x) as
described via the following lemma.

Lemma 2. Consider the SHS described in (1). With b ∈ RN defined
in (6), let a single-discrete mode SHS with state space (b, x) ∈ RN+n

be described by the continuous dynamics

d
[
b
x

]
=

[
0∑N

i=1 bif (si, x)

]
dt +

[
0∑N

i=1 big(si, x)dw

]
, (7a)

reset intensities
N∑
i=1

biλr (si, x), r = 1, 2, . . . ,R, (7b)

and reset maps

(b, x) ↦→

(
b −

N∑
i=1

bi1si +

N∑
i=1

bi1θr (si),

N∑
i=1

biφr (si, x)

)
. (7c)

Then (7) recasts (1) in (b, x) space.

Proof. Let q = sj ∈ Q . Then (6) implies that dynamics of x in (7a)
becomes

dx = f (sj, x)dt + g(sj, x)dw, (8)

which is same as (1a). Likewise, the reset intensities for both (7)
and (1) take the form

λr (sj, x), r = 1, 2, . . . ,R. (9)

As for the reset maps, (7c) yields(
1sj , x

)
↦→
(
1sj − 1sj + 1θr (sj), φr (sj, x)

)
, (10)

which by definition in (6) is same as (1c)(
sj, x

)
↦→
(
θr (sj), φr (sj, x)

)
. (11)

Since we arbitrarily chose q = sj ∈ Q , the equivalence between
the two SHSs will hold true for any q. □

To write the moment dynamics of SHS in (7), we can use
monomial test functions

ψ(b, x) = bm1
1 bm2

2 . . . bmN
N xmN+1

1 xmN+2
2 . . . xmN+n

n , (12)

supplemented with the constraints in (6c). It is worth noting
that (7) is a polynomial SHS in (b, x) space if the original SHS is
polynomial in x. The following result provides a general form for
the moment dynamics.

Theorem 3. Consider the SHS in (7). Let f , g, λr and φr be
polynomials in x. Denoting the vector consisting of all moments up
to a specific order of the state (b, x) by X , its time evolution can be
compactly written as

dX
dt

=AX + BX̄ , (13a)

0 =CX + DX̄ (13b)

for appropriately defined matrices A, B, C, D. Here X̄ is a collection
of moments whose order is higher than those stacked up in X .

Proof. Since (7) is polynomial in (b, x), the form in (13a) follows
from Lemma 1. The property bibj = 0 in (6c) implies that
for a non-zero mi ∈ N, all moments except those of the form

E
(
bmi
i xmN+1

1 xmN+2
1 . . . xmN+n

n
)
are zero. Furthermore, b2

i = bi results
in

E
(
bmi
i xmN+1

1 xmN+2
1 . . . xmN+n

n
)

= E
(
bix

mN+1
1 xmN+2

1 . . . xmN+n
n

)
, (14)

for all mi ≥ 1. The constraint
∑N

i=1 bi = 1 results in

N∑
i=1

E
(
bix

mN+1
1 xmN+2

1 . . . xmN+n
n

)
−E

(
xmN+1
1 xmN+2

1 . . . xmN+n
n

)
= 0. (15)

These three constraints can be compactly represented by
(13b). □

Remark 4. Many of the moments contained in X and X in
Theorem 3 are equal to zero. In practice we do not include them
in X and X . Similarly, higher order moments that are equal to
lower order moments, as in (14), are not included.

4. Bounding moment dynamics

Although the higher order moments appear in X in (13),
they cannot take arbitrary values and must conserve semidefinite
properties (Lamperski et al., 2019). The following lemma, adapted
from Lamperski et al. (2019), formally states this.

Lemma 5 (Lamperski et al., 2019). Let v1(x), . . . , vp(x) be any
collection of polynomials. There is an affine matrix-valued function
M such that the following holds:⟨⎡⎢⎣v1(x)...
vm(x)

⎤⎥⎦
⎡⎢⎣v1(x)...
vm(x)

⎤⎥⎦
⊤⟩

= M(X ,X ) ⪰ 0. (16)

Furthermore, if hi(x) ≥ 0 and ν1(x), . . . , νpi (x) are polynomials, then
there is a different affine matrix-valued function Mhi such that⟨
hi(x)

⎡⎢⎣ν1(x)...
νpi (x)

⎤⎥⎦
⎡⎢⎣ν1(x)...
νpi (x)

⎤⎥⎦
⊤⟩

= Mhi (X ,X ) ⪰ 0. (17)

Utilizing the matrices from Lemma 5, the problem of comput-
ing bounds on a moment of interest, i.e., an element of X , can
be formulated as an optimal control problem. Suppose that Xj
denotes the jth element of X . A lower bound on Xj(τ ) ∈ X (τ )
can be computed as (Lamperski et al., 2019)

minimize
X (t),X (t)

Xj(τ ) (18a)

subjectto
dX
dt

= AX (t) + BX (t) (18b)

0 = CX (t) + DX (t) (18c)

M(X (t),X (t)) ⪰ 0 (18d)

Mhi (X (t),X (t)) ⪰ 0 (18e)

X (0) = X0 (18f)

for all t ∈ [0, τ ]. An upper bound can be computed by maximizing
the objective function. Moreover, if the number of moments
stacked in X is increased and correspondingly the sizes of M and
Mhi are increased, the lower and upper bounds often improve
(Lamperski et al., 2019). Theoretically, the increase in sizes of M
and Mhi implies that more constraints are added and therefore
the bounds cannot get worse. However, in practice they improve
and converge to the true moment value.
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Note that in (18), the vector X (t) depends on t but not the
transition count, k. This is because transitions are averaged out
by the extended generator, (3).

If bounds on only stationary moments are desired, then the
semidefinite program becomes simpler. Specifically, if the given
SHS has a stationary distribution then lower bound a stationary
moment Xj ∈ X can be computed as

minimize
X ,X̄

Xj (19a)

subjectto 0 = AX + BX̄ (19b)

0 = CX + DX̄ (19c)

M(X ,X ) ⪰ 0 (19d)

Mhi (X , X̄ ) ⪰ 0 (19e)

Here we require that the SHS has finite stationary moments.
This assumption avoids some pathological cases wherein the
stationary moments may not exist (Glynn, Zeevi, et al., 2008).
The reader may refer to DeVille, Dhople, Domínguez-García, and
Zhang (2016) and Meyn and Tweedie (2012) for details on the
existence of stationary distributions.

Remark 6. If the first column of A has all its elements zeros
then we obtain trivial lower bounds on stationary moments. This
happens because for such systems, the degenerate distribution is
always a stationary distribution.

Remark 7. In principle, additional algebraic constraints can be in-
cluded in the setup in (18) or in (19). Thus, our setup is amenable
to moment analysis of non-polynomial SHSs as long as they
could be cast as polynomial SHSs with algebraic constraints via
augmentation of states. These algebraic constraints have to be
linear in X and X .

5. Illustrative example

We illustrate our methodology using an example. To this end,
we use a modified version of an SHS model of Transmission
Control Protocol (TCP) from Hespanha (2005, 2006).

Example 1 (TCP On–Off Hespanha, 2005, 2006). Let v be the contin-
uous state, which represents the congestion window size of the
TCP. There are three discrete states/modes, namely, {off , ss, ca},
which stand for off, slow start, and congestion avoidance, re-
spectively. During these modes, the continuous-state evolves as

dv =

⎧⎨⎩
( log 2R v + δ)dt, q = ss
1
Rdt + σvdw, q = ca
0 dt, q = off

(20)

Here R is the round trip time, δ is a basal rate of increase in win-
dow size, and σ is the noise intensity. We note that in Hespanha
(2006), these equations do not have the terms δ and σ .

The transitions between the discrete modes are of three types:
drop occurrences (ss ↦→ ca, ca ↦→ ca), start of new flow (off ↦→

ss), and termination of flows (ss ↦→ off and ca ↦→ off ). These are
described via the reset maps

φdrop(q, v) =

{(
ca, v

2

)
, q ∈ {ss, ca}

(off , v), q = off
(21a)

φstart (q, v) =

{
(q, v) , q ∈ {ss, ca}
(ss, v0), q = off

(21b)

φend(q, v) =

{
(off , 0) , q ∈ {ss, ca}
(off , v), q = off

(21c)

with reset intensities

λdrop(q, v) =

{ pv
R , q ∈ {ss, ca}
0, q = off

(22a)

λstart (q, v) =

{
0, q ∈ {ss, ca}
1
τoff
, q = off (22b)

λend(q, v) =

{
v
kR , q ∈ {ss, ca}
0, q = off ,

(22c)

where p is packet drop rate.

To recast this SHS as a single-mode SHS, we define the indi-
cator state variables b1, b2, and b3 as in (6b). The equivalent SHS
is described via the continuous dynamics

d
[
b1 b2 b3 v

]⊤
=
[
0 0 0 b1

( log 2
R v + δ

)
+

b2
R

]⊤
dt

+
[
0 0 0 b2σvdw

]⊤
. (23)

The reset maps and the reset intensities are given by

φdrop(b, v) = b1
[
b1 − 1 b2 + 1 b3 v/2

]⊤
+ b2

[
b1 b2 b3 v/2

]⊤
, (24a)

φstart (b, v) = b3
[
b1 + 1 b2 b3 − 1 v0

]⊤
, (24b)

φend(b, v) = b1
[
b1 − 1 b2 b3 + 1 0

]⊤
+ b2

[
b1 b2 − 1 b3 + 1 0

]⊤
, (24c)

λdrop(b, v) = (b1 + b2)
pv
R
, λstart (b, v) =

b3

τoff
,

λend(b, v) = (b1 + b2)
v

kR
. (25)

To obtain moment dynamics, we can write time evolution of
E
(
bm1
1 bm2

2 bm3
3 vm4

)
. However, algebraic constraints in (6c) and the

absence of continuous dynamics in off mode imply that we only
need dynamics of moments of the form E(b1v

m4 ), and E(b2v
m4 ).

All the other moments are either zero or can be obtained via a
linear combination of these. Their dynamics is given by
dE(b1v

m4 )
dt

=
m4 log(2)

R
E
(
b1v

m4
)
+ m4δE

(
b1v

m4−1)
+
v
m4
0

τoff
E(b3) −

(
p
R

+
1
kR

)
E(b1v

m4+1), (26a)

dE(b2v
m4 )

dt
=

m4

R
E
(
b2v

m4−1)
+
σ 2m4(m4 − 1)

2
E
(
b2v

m4
)
+

p
2m4R

E(b1v
m4+1)

−

(
p(2m4 − 1)

2m4R
+

1
kR

)
E(b2v

m4+1). (26b)

Using these moment equations, along with the semidefinite con-
straints and algebraic constraints arising from the definition of
b1, b2, b3, a semidefinite program as in (19) is set up. The matrices
Mi are generated using the non-negativity of b1, b2, 1 − b1, and
1−b2. We solved these programs using YALMIP wrapper (Löfberg,
2004), with SDPA-GMP solver (Nakata, 2010). Taking specific
values of R = 2, τoff = 1, k = 3, p = 0.5, v0 = 1,
δ = 0.1, and σ = 0.01, we obtain bounds on E(b1) and E(b2).
As expected, incorporating higher order moments improves the
moment estimates (see Fig. 1). Recall that b3 = 1 − b1 − b2, so
bounds on E(b3) can be obtained from these.

6. Conclusion

Moments of an SHS are described via infinite dimensional
coupled differential equations, which typically cannot be solved
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Fig. 1. Bounds on E(b1) and E(b2) (i.e., the probability that the system is in
the mode ss and ca, respectively). The bounds for both moments improve and
converge to their respective true values as the order of moments equations used
in the semidefinite program is increased. To numerically verify these bounds,
10 000 simulation runs were averaged.

for a few lower order moments without knowing the higher order
moments. In this paper, we presented a semidefinite program-
ming based method to compute exact bounds on the moments of
an SHS. Although theoretically our method computes bounds on
both transient and stationary moments, its applicability is limited
by the scaling of and numerical conditioning of the semidefinite
programs. The transient case is particularly challenging because
discretization of the time interval leads to large semidefinite
programs. On the positive side, whenever the semidefinite pro-
gram is solvable using current solvers, the estimate on moments
is significantly faster than those obtained via simulations. For
Example 1, a personal machine (2.9 GHz Intel Core i7 processor, 8
GB 1600 MHz DDR3 RAM) takes less than one second to compute
the 7th-order moment bounds whereas it takes several minutes
for 10 000 simulations. Our focus of future research would be to
improve scalability and robustness of the technique.
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