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One of the most interesting, difficult, and potentially useful

topics in computational biology is the inference of gene

regulatory networks (GRNs) from expression data. Although

researchers have been working on this topic for more than a

decade and much progress has been made, it remains an

unsolved problem and even the most sophisticated inference

algorithms are far from perfect. In this paper, we review the

latest developments in network inference, including state-of-

the-art algorithms like PIDC, Phixer, and more. We also discuss

unsolved computational challenges, including the optimal

combination of algorithms, integration of multiple data sources,

and pseudo-temporal ordering of static expression data.

Lastly, we discuss some exciting applications of network

inference in cancer research, and provide a list of useful

software tools for researchers hoping to conduct their own

network inference analyses.
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Introduction
Networks of gene interactions, in which genes activate

and repress the transcription of other genes, are responsi-

ble for much of the complexity of cellular life [1,2], and

their malfunction can be disastrous for an organism [3].

So, understanding these networks has long been a goal of

systems biology. Discovering gene interactions experi-

mentally can be very difficult, and given the approxi-

mately 20,000 genes in the human genome, it is not

feasible to do an experiment for every possible pair to

check for an interaction. However, with traditional DNA

microarray [4], or next-generation sequencing technolo-

gies, most notably (single-cell or bulk) RNA-sequencing
www.sciencedirect.com 
(RNA-Seq) [5,6], one can get a quantitative peek into the

transcriptomic profile of an individual cell, or a population

of cells. Unfortunately, these measurement techniques

involve killing the cell, so each cell can provide only one

timepoint of data. A hypothetical temporal dataset may

allow one to detect self-edges (in which a gene regulates

itself) by using auto-regression, which attempts to predict

observations at a future timestep using observations at a

previous timestep as an input, or some similar technique.

However, with the static data that results from RNA-Seq

and similar measurements, this advantage is lost, unless a

pseudo-temporal order is constructed.

In some cases, it may be possible to construct pseudo-

temporal data from static single-cell measurements by

administering a stimulus to a set of cells, and then

performing an RNA-Seq experiment on some cells after

one hour, then on some cells after two hours, and so on, in

order to collect data on the post-stimulus gene expression

dynamics. In other cases, it may be possible to infer the

temporal ordering of a set of gene expression measure-

ments using computational methods (more on that in

the Computational Challenges section). In this paper,

the input gene expression data will be assumed to be

static single cell data (meaning that each measured cell

provides us with only one timepoint of data), unless

otherwise noted.

Problem formulation
For convenience, it can be useful to abstract the problem

of network inference into a graph theory framework.

Figure 1 shows the workflow of a hypothetical network

inference scheme where, for example, single-cell RNA-

Seq is used to measure the expression of a large number of

genes in many individual cells. Given the large number of

genes measured in these experiments it may be prudent

to select a smaller subset of genes with high biological

variance for further analysis. Such genes are typically

identified by first plotting the Coefficient of Variation

or CV (standard deviation over mean) in expression levels

across cells with respect to the mean expression levels for

all genes, and then selecting genes with significantly

higher CVs than what is expected for a gene at the same

mean level. Consider N genes that are identified for

network analysis and let their expression levels be repre-

sented by random variables fX1; X2; :::; XNg. Each vari-

able corresponds to a node in the GRN, and each edge

Xi ! Xj represents a regulatory relationship between Xi

and Xj . We can think of the true biological network as a

real, unknown set of interactions, and our goal is to
Current Opinion in Biotechnology 2020, 63:89–98
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Figure 1
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A typical workflow to identity genes with high biological variance for

network mapping studies. RNA-Seq typically quantifies the expression

of thousands of genes across individual cells or environmental/genetic

conditions. The Coefficient of Variation or CV (Standard deviation over

mean) in the expression level across cells or conditions is plotted as a

function of the mean expression level for all genes. Fitting a trend line

through this data provides the expected CV of a gene at given mean

level, and this trend line is then used to select genes that have

significantly higher CVs (representing high biological variance) while

filtering out genes with low CVs that could result from technical noise.
approximate it by constructing a set of weighted inter-

actions, where each weight corresponds to our confidence

that an edge exists in the true network.

A network prediction can be either directed, meaning that

a prediction is made about the direction of causality for

each interaction, or undirected, meaning that no such

prediction is made. Directed networks are preferable, as

they convey more information, but are also more difficult

to construct. A network can also be signed, meaning that

activation edges are labeled with a “+” and repression

edges are labeled with a “-”, or unsigned, meaning the

edges are not labeled as positive or negative. Signed

networks are important for drawing biological insights.
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However, unsigned networks are often used for theoreti-

cal work on network inference, since the difficult problem

is determining which edges represent true interactions.

Once an interaction is known, determining its sign is very

easy and can be found with a simple covariance. Inferred

networks have been shown to contain several motifs

(smaller modules that occur more often in the network

than expected by random chance), and these motifs are

illustrated in Figure 2.

The output of a network inference algorithm is a set of

weighted edge predictions, where each edge-weight cor-

responds to the confidence that a real interaction exists

between two genes. So, the accuracy of these algorithms

can be evaluated by running them on a “gold standard”

dataset for which the true network structure is already

known. The algorithms’ ability to recover the true inter-

actions can then be scored using receiver operating char-

acteristic (ROC) curves or precision-recall (PR) curves.

Some researchers have suggested that PR curves are the

superior metric [7], although both metrics are commonly

used.

Fortunately for network inference researchers, several gold

standard datasets are publicly available in the form of

DREAM Challenges [8]. These are computational biology

competitions for which researchers are invited to design

new algorithms to make predictions from data, and many

involve predicting GRN structures from expression data.

Once each competition is over, the datasets and true

network structures are released to the public, and are

commonly used for algorithm evaluation [9–11].

Algorithms
Several broad classes of algorithms are used for network

inference. An excellent introductory overview of these

can be found in Huynh-Thu and Sanguinetti 2019 [12��].
A thorough evaluation of the different types of algorithms

can be found in Marbach et al. [9], in which many

different algorithms were benchmarked on the DREAM5

gold standard networks, with varying results. To put it

simply, there is no overall “best” class of algorithms.

Rather, each has its own advantages and disadvantages,

so choosing the best one depends on the context. Here,

we will give a brief description of each class, but will

mainly focus on recent developments and unsolved chal-

lenges. Figure 3 provides a summary of some of the

properties of different algorithm types.

Correlation

One of the most basic methods of network inference is to

simply compute the correlation for each pair of genes.

This method is very simplistic, but is also fast and scalable

for large datasets. It can be especially useful in cases

where researchers want a general idea of which genes are

related, without caring much about causal direction or

distinguishing between direct and indirect regulation. For
www.sciencedirect.com
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Illustration of some common GRN motifs. 1. Modularity (clustering of

nodes), 2. Self-edge, 3. Fan-out, 4. Fan-in, 5. Feed-back loop,

6. Feed-forward loop, 7. Cascade, 8. Cascade false positive error (a

feed-forward loop is incorrectly predicted). In the “Algorithms” section,

we will discuss the strengths and weaknesses of various algorithm

classes when it comes to detecting different network motifs.
this reason, the resulting network prediction may some-

times be referred to as a “gene co-expression network”

rather than a GRN. In general, correlation-based algo-

rithms tend to perform relatively well on detecting feed-

forward loops, fan-ins, and fan-outs, but also have an

increased false positive rate for cascades [9] (please see

Figure 2 for an explanation of these motifs).

Though simplistic, correlation networks can yield powerful

insights when the proper analytical tools are applied. For

example, WeightedGene Co-expressionNetworkAnalysis

(WGCNA) [13], based on correlation, was an early and

widely-used method in gene network analysis. Further-

more, improvements to correlation-based network infer-

ence are still being made. Care et al. [14] describes how to
www.sciencedirect.com 
deal with the problem of over-connectivity in correlation

networks, effectively reducing the number of edges to get

to the point where the network is sparse enough for a cluster

analysis to be performed.

Regression

Another common method of network inference is regres-

sion analysis. In its simplest form, this method involves

solving the following linear regression equation to predict

Xj from Xi:

Xj ¼ b0 þ b1Xi þ e ð1Þ

Here, b0 is the intercept, b1 is the slope, and e is the

random error term. So, since b1 represents the relation-

ship between Xj and Xi, we can assign it as the weight of

the edge Xi ! Xj . This is only the simplest version of

regression analysis, and many regression-based algo-

rithms use more advanced methods. Two notable,

highly-regarded examples are TIGRESS [15] and

GENIE3 [16].

Regression methods are more computationally expensive

than correlation, but also provide the advantage of pre-

dicting causal direction. In general, regression-based

methods perform well compared to other methods over-

all, but perform poorly on the specific network motifs of

feed-forward loops, fan-ins, and fan-outs [9]. It is also

important to note that regression methods that resample

data (by bootstrapping, for example) typically outperform

regression methods that do not [9]. One limitation of

regression-based methods, at least in their simplest form,

is that they typically assume linear relationships between

genes, and may fail to detect non-linear regulatory inter-

actions. However, some progress has been made on this

matter: bLARS [17], a modification of the Least Angle

Regression method [18], is a regression-based algorithm

designed to detect both linear and pre-defined non-linear

interactions.

Bayesian methods

Bayesian methods have long been used in gene network

inference [19,20]. In these methods, an interaction

between genes is represented as a conditional probability.

For two genes with expression levels Xi and Xj , the con-

ditional probability PðXj jXiÞ corresponds to the edge

Xi ! Xj , and Xi is said to be the parent of Xj . The

graphical representation of a set of these conditional

probabilities is called a Bayesian network. Given a gene

expression dataset, a maximum likelihood estimation can

be applied to determine which Bayesian network struc-

ture has the highest posterior probability. In other words,

the goal of the maximum likelihood estimation is to

determine which network structure is the most likely

to have produced the observed data.
Current Opinion in Biotechnology 2020, 63:89–98
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Figure 3
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Summary of the properties, advantages, and disadvantages of different types of algorithms.
An advantage of Bayesian methods is the ease with which

prior knowledge of interactions can be integrated [12��].
Unfortunately, Bayesian methods are typically very com-

putationally expensive. In general, they tend to perform

poorly on large datasets compared to other methods, and

may be better suited to small networks for which their

heuristic searching method can more easily converge on

the true optimal network structure [9]. Attempting to

improve their scalability to large datasets is a current

computational challenge.

Another significant disadvantage of Bayesian methods, at

least in their simplest form, is their inability to detect

cycles. In other words, the conditional probabilities only

flow one way, so they will be unable to detect something

like a feedback loop, which is a common motif of GRNs.

However, a subtype of Bayesian methods has been devel-

oped in an attempt to correct for this problem: Dynamic
Current Opinion in Biotechnology 2020, 63:89–98 
Bayesian Networks (DBNs). While a node in simple

Bayesian methods corresponds to a gene, a node in DBNs

corresponds to a gene at a specific timepoint. While this

solves the problem of detecting cycles (and allows us to

detect self-edges), it also presents some new challenges.

First of all, either temporal or pseudo-temporal data is

required. Obtaining temporal data may not always be

feasible, and pseudo-temporal ordering is a complex

computational challenge in itself (this will be discussed

in the next section). Also, DBNs are more computation-

ally expensive than the already expensive simple Bayes-

ian methods. However, despite these challenges, DBNs

are still fairly widely used [21–23].

Information theory

Information theory, first developed by Claude Shannon in

1948, provides a theoretical framework for quantifying

information and studying its properties. One fundamental
www.sciencedirect.com
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measure of information theory is entropy, which gives a

numerical measure of a random variable’s “uncertainty”.

For a discrete random variable X, the entropy is defined

as:

HðXÞ ¼ �
X

x2X
pðxÞlogðpðxÞÞ ð2Þ

where pðxÞ is the probability distribution of the random

variable. If the expression data is continuous, then it must

first be discretized through a binning process before being

used in this formula, and development of an optimal

binning strategy is itself an active area of research

[29,30]. For two random variables Xi and Xj , one can

quantify their “mutual information” as the amount by

which the entropy of their joint distribution is reduced

compared to their combined individual entropies:

IðXi; XjÞ ¼
X

xi2Xi

X

xj2Xj

pðxi; xjÞlog pðxi; xjÞ
pðxiÞpðxjÞ ð3Þ

where pðxi; xjÞ is the joint probability distribution of Xi

and Xj .

In network inference, mutual information can serve as

a measure of dependence between genes. Since it is a

symmetric measure, IðXi; XjÞ is assigned as the weights of

both edges Xi ! Xj and Xj ! Xi (this can also be repre-

sented as the undirected edge Xi$Xj). Despite this

disadvantage of not predicting causal direction, mutual

information has the advantages of being able to detect

non-linear interactions (unlike simple correlation mea-

sures) and of being scalable to whole-genome networks.

In general, information theory-based algorithms tend to

perform better than correlation methods, but experience

similar biases: increased detection of feed-forward loops,

fan-ins, and fan-outs, but also an increased rate of false

positives for cascades [9].

One of the most famous network inference methods

based on information theory is ARACNE [25], introduced

by Margolin et al. (2006). In this method, the mutual

information is estimated for each pair of genes, and then

assigned as their edge weight. Then, all edges with a

weight below a certain threshold of statistical significance

are eliminated. Finally, and perhaps most importantly,

the remaining edges are pruned according to the Data

Processing Inequality. For each triplet of nodes Xi, Xj ,

and Xk, the following inequality is checked:

IðXi; XkÞ � minfIðXi; XjÞ; IðXj ; XkÞg ð4Þ

If this statement is true, then the edge Xi$Xk is elimi-

nated. The goal of this pruning step is to yield a sparse
www.sciencedirect.com 
network with minimal redundancy and maximal explan-

atory power. This is only a brief overview of ARACNE,

and for a more in-depth explanation we refer readers to

the original paper [25].

Other methods based on information theory and similar to

ARACNE include Butte and Kohane’s method [24], CLR

[26], and MRNET [27]. Several newer algorithms also

make use of concepts from information theory. An excit-

ing new method is Partial Information Decomposition

and Context (PIDC) [28��]. PIDC computes informa-

tional relationships in a triplet-wise, rather than pair-wise,

manner, so as to determine the proportion of the mutual

information between two genes that cannot be explained

in terms of any other third gene, thereby eliminating

indirect and redundant relationships in the predicted

network. For a detailed explanation of how this is calcu-

lated, please see the original paper [28��].

Phixer

Another new algorithm that is different from but inspired

by information theory is Phixer, introduced in Singh et al.

[31��]. Phixer has the advantage of producing an output

graph that is both directed (unlike most information

theory methods) and can contain cycles (unlike most

simple Bayesian methods). In Phixer, one computes

the so-called f-mixing coefficient for the edge Xi ! Xj as

fðXj jXiÞ ¼ maxS�A;T�BjPrfXj 2 SjXi 2 Tg
� PrfXj 2 Sgj ð5Þ

which in essence quantifies the maximum distance

between conditional probability of Xj given Xi, and the

unconditional probability of Xj . Here A and B are

the finite sets in which the random variables Xj and Xi

take values, respectively. S and T represent the different

subsets of A and B, and fðXjjXiÞ is the maximum distance

between the conditional and the unconditional probabil-

ity across subsets. The f-mixing coefficient comes with

some useful properties. It is bounded in the interval ½0; 1�,
and f XijXkð Þ ¼ 0 if and only if Xi and Xk are indepen-

dent. Moreover, unlike correlation or mutual information

it is asymmetric f XijXkð Þ 6¼ f XkjXið Þ, and hence can

discriminate the direction of the influence.

The inference starts by first computing the f-mixing

coefficient for each directed edge between two nodes,

and then the network is pruned to eliminate redundant

edges. For every possible triplet of nodes Xi, Xj , and Xk,

the following inequality is checked:

fðXkjXiÞ � minffðXj jXiÞ; fðXkjXjÞg ð6Þ

If this statement is true, then the edge Xi ! Xk is

eliminated, and hence the statistical relationship between
Current Opinion in Biotechnology 2020, 63:89–98
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Xi and Xk can be fully explained by the edges Xi ! Xj

and Xj ! Xk. This pruning method is similar to the Data

Processing Inequality (Equation 4), used in ARACNE

[25]. Importantly, the goal of the pruning step is to

produce the most parsimonious network consistent with

the data, which is not necessarily the same as producing

the most accurate network prediction [32]. So, depending

on their priorities, researchers may choose to include or

omit the pruning step.

Miscellaneous

In addition to correlation, regression, Bayesian networks,

information theory, and Phixer, many more interesting

and creative types of network inference algorithms exist.

Some examples are Gaussian graphical models [33,34,

ODE-based methods [35,36], Boolean methods [37,38],

and deep learning with neural networks [39]. Unfortu-

nately, we do not have time to summarize every single

method here, so we refer the reader to the original papers.

Computational challenges
Although the field of network inference has progressed a

great deal since its inception, there are several problems

that are unsolved and require more research. In this

section, we will discuss some of these problems.

Combining algorithms

It has long been thought that combining an assortment of

different algorithms could prove beneficial in network

inference. Hill et al. [40] confirmed this empirically with

a computational experiment in which they aggregated

results from randomly-chosen inference algorithms, and

evaluated the results for accuracy using the area under the

ROC curve measure. The results showed a general trend in

which the more algorithms were included in the aggrega-

tion, the more accurate the results were. Another similar

computational experiment was performed in which the

results from the top performing algorithmswere aggregated

(rather than the algorithms being randomly chosen). In this

case, the aggregated results generally achieved higher

accuracy than even the best individual algorithms. (Please

note that Hill et al. (2016) is about the inference of networks

from phosphoprotein data, which is computationally very

similar to gene network inference.) These results confirm

thefindings of an earlier analysis found in Marbach et al. [9].

However, while there is ample evidence that combining

algorithms can be beneficial, more research is needed to

find the optimal combination strategy.

Multiple data sources

Up to this point in the paper, we have been under the

assumption that we have only gene expression data to

work with when inferring the structure of a GRN. How-

ever, in some cases, we may have access to more infor-

mation. So, an interesting current problem is how best to

combine information from multiple data sources in order

to generate a prediction.
Current Opinion in Biotechnology 2020, 63:89–98 
Some recent papers on the integration of multiple data

sources are Yuan et al. [41], Liang et al. [42�], Lam et al.

[43], and Aibar et al. [44]. Yuan et al. (2019) combines

gene expression data with DNA methylation and copy

number variation data. Liang et al. (2019) combines gene

expression data with genome-wide binding data, gene

ontologies, pathway data, and ChIP-Seq data. Lam et al.

(2016) is an especially creative application of this concept.

Here, analysis of gene expression data from the species in

question is combined with analysis of gene expression

data from homologous species. Aibar et al. (2017) intro-

duces SCENIC, a method that combines the raw results

of a GENIE3 [16] analysis with transcription factor bind-

ing motif information from RcisTarget (also introduced in

[44]) to select out a subset of high-confidence interac-

tions, and then uses AUCell (also introduced in [44]) to

classify the cells into transcriptional states.

In some cases, it may be necessary to study a change in a

GRN, for which something is already known about the

GRN’s prior structure. This could be in the context of

cellular differentiation, or in a pathological context, as

with cancer. In these cases, the challenge is to incorporate

the prior structural knowledge into the inference of the

new structure. Some algorithms have been developed

specifically for this purpose [33,45��]. Also of note is

the database Transcriptional Regulatory Relationships

Unravelled by Sentence-based Text-mining (TRRUST)

[46], which contains known gene regulatory interactions

in humans and mice. This resource can be used for

constructing prior networks from which to infer the

reprogrammed differential networks [33].

Pseudo-temporal ordering

As discussed before, most of the expression data we rely

on for network inference is static data collected by

methods such as RNA-Seq. This is disadvantageous, in

part, because it doesn’t allow us to detect self-edges. In an

ideal situation, we would have dynamic data for each

gene. While this is not currently feasible, some methods

have been developed which attempt to create “pseudo-

time series” data from static data [47–50]. An excellent

review of pseudo-temporal ordering methods is Cannoodt

et al. [51].

Sanchez-Castillo et al. [52�] is a great example of how

pseudo-temporal ordering can be can be useful in net-

work inference. The researchers attempt to infer the

GRN structure of a set of 48 genes, using a sample of

442 expression profiles from mouse embryos. The expres-

sion profiles are static, from single-cell qPCR, but the

algorithm the researchers are using requires time series

data. So, they employ the MOLO algorithm [53] to

construct a pseudo-time series. The researchers then infer

the GRN and draw biological insights about cell differ-

entiation in mice from its structure. Moreover, a compu-

tational experiment is conducted to show how differences
www.sciencedirect.com
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Figure 4
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Gene regulatory network inferred in [60] in the context of drug resistance in melanoma. More specifically, RNA Fluorescent In Situ Hybridization

(FISH) was used to count the number of mRNAs of 19 different genes in single melanoma cells. The joint distribution of mRNA levels measured

across thousands of cells was then used to infer the network using Phixer. This network was shown to play a key role in driving drug-sensitive

cells into a transient drug-tolerant state even in the absence of the drug. Such drug-tolerant cells survive exposure to the drug, and drug-induced

reprogramming of this network allows these to become stably resistant to the drug.
in the temporal order can affect the results of the network

inference. In addition to the analysis of the mouse embryo

data, another inference analysis is performed on pseudo-

temporally ordered RNA-Seq data from zebrafish.

However, while pseudo-temporal ordering has been use-

ful in some cases, it has also faced criticism. Moris et al.

[54] questions one of the underlying assumptions of many

of these algorithms, that cell fate transitions are smooth
www.sciencedirect.com 
and continuous. More research is needed on the subject to

improve upon these algorithms and address these

criticisms.

It should also be noted that most of the work on pseudo-

temporal ordering has focused on cellular differentiation,

and the application of these methods to cells that switch

between transient expression states is a more difficult

problem that requires further study.
Current Opinion in Biotechnology 2020, 63:89–98
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Applications in cancer research
While network inference can be an invaluable tool for the

investigation of many different diseases, the most obvious

applications are in cancer research. Some important roles

of GRNs are to regulate cell cycle timing, proliferation,

and apoptosis. Cancer arises from a loss of regulation of

these processes, and understanding the structure of the

underlying networks can yield powerful insights into

discovery of relevant genes [55], clinical outcome predic-

tion [56], drug target identification [57,58,37], elucidation

of sex-linked differences [59�], investigation of transcrip-

tional reprogramming [33], and more. For example,

Figure 4 shows as inferred network of genes using Phixer

from [60] that is critical in driving drug resistance in

BRAF V600E-mutated melanoma. Also, many of the

papers previously cited include a testing section in which

the algorithm is applied to a cancer dataset to test its

efficacy [14,21,41,42�,33,34,37,31��,44].

There have been so many exciting new applications of

network inference that we cannot provide an in-depth

explanation of all of them here. So, we will focus on one

specific paper to serve as a case-study: Moore et al. [61��].
This is an excellent example of how network inference

can be used to understand cancer at the cell systems level.

The researchers apply the BC3Net [62] inference algo-

rithm to the gene expression profiles of 333 prostate

cancer patients, obtained from The Cancer Genome Atlas

(TCGA) [63]. The resulting network is then analyzed,

using Gene Pair Enrichment Analysis (GPEA) [64]

and the Cancer Gene Census [65], with a focus on gene

interactions that the researchers feel could be exploited

for clinical benefits, including targeted therapy. This

paper is valuable not only because of its interesting

insights on prostate cancer, but also because the meth-

odology is described in such a clear way that it could serve

as a step-by-step guide for researchers hoping to conduct

their own analysis of data from another disease. Similar

analyses have been performed on data from lymphoma

[66], colon cancer [67], and breast cancer [68], but there

are still hundreds of different cancer types and subtypes

that have yet to be analyzed, many of which are available

on TCGA and just waiting for an eager computational

biologist to take up the challenge.

Tools
Here are some useful, freely available tools for network

inference researchers:

� DREAM Challenges [8] - network inference competi-

tions, for which gold standard datasets are made pub-

licly available. These are often used for benchmarking.

Available online at: http://dreamchallenges.org

� The Cancer Genome Atlas (TCGA) [63] - a collection

of genomic, epigenomic, transcriptomic, and proteomic

cancer data, including expression profiles that can be
Current Opinion in Biotechnology 2020, 63:89–98 
used for gene network inference. Available online at:

https://portal.gdc.cancer.gov

� TRRUST [46] - a database of experimentally-validated

gene interactions in humans and mice. Available online

at: https://www.grnpedia.org/trrust

� Cancer Gene Census [65] - a catalogue of genes known

to be related to cancer. Available online at: https://

cancer.sanger.ac.uk/census

� The Cancer Network Galaxy (TCNG) - an online data-

base of cancer gene networks, predicted from public

expression data. Not yet officially published, but a beta

release is available online at: http://tcng.hgc.jp

� GeNeCK [69] - an online tool for gene network infer-

ence and visualization, for which the user can choose

from 8 different inference algorithms. Available online

at: http://lce.biohpc.swmed.edu/geneck

Conclusion
In this paper, we have given a brief overview of the basics

of network inference, different types of algorithms, some

unsolved computational challenges, and exciting new

applications in cancer research. While we hope this

review has been helpful, it is not completely comprehen-

sive, and we encourage the reader to further explore this

topic by reading the papers cited here, and by testing out

the algorithms and data sources for themselves.
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