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One of the most interesting, difficult, and potentially useful
topics in computational biology is the inference of gene
regulatory networks (GRNs) from expression data. Although
researchers have been working on this topic for more than a
decade and much progress has been made, it remains an
unsolved problem and even the most sophisticated inference
algorithms are far from perfect. In this paper, we review the
latest developments in network inference, including state-of-
the-art algorithms like PIDC, Phixer, and more. We also discuss
unsolved computational challenges, including the optimal
combination of algorithms, integration of multiple data sources,
and pseudo-temporal ordering of static expression data.
Lastly, we discuss some exciting applications of network
inference in cancer research, and provide a list of useful
software tools for researchers hoping to conduct their own
network inference analyses.
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Introduction

Networks of gene interactions, in which genes activate
and repress the transcription of other genes, are responsi-
ble for much of the complexity of cellular life [1,2], and
their malfunction can be disastrous for an organism [3].
So, understanding these networks has long been a goal of
systems biology. Discovering gene interactions experi-
mentally can be very difficult, and given the approxi-
mately 20,000 genes in the human genome, it is not
feasible to do an experiment for every possible pair to
check for an interaction. However, with traditional DNA
microarray [4], or next-generation sequencing technolo-
gies, most notably (single-cell or bulk) RNA-sequencing
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(RNA-Seq) [5,6], one can get a quantitative peek into the
transcriptomic profile of an individual cell, or a population
of cells. Unfortunately, these measurement techniques
involve killing the cell, so each cell can provide only one
timepoint of data. A hypothetical temporal dataset may
allow one to detect self-edges (in which a gene regulates
itself) by using auto-regression, which attempts to predict
observations at a future timestep using observations at a
previous timestep as an input, or some similar technique.
However, with the static data that results from RNA-Seq
and similar measurements, this advantage is lost, unless a
pseudo-temporal order is constructed.

In some cases, it may be possible to construct pseudo-
temporal data from static single-cell measurements by
administering a stimulus to a set of cells, and then
performing an RNA-Seq experiment on some cells after
one hour, then on some cells after two hours, and so on, in
order to collect data on the post-stimulus gene expression
dynamics. In other cases, it may be possible to infer the
temporal ordering of a set of gene expression measure-
ments using computational methods (more on that in
the Computational Challenges section). In this paper,
the input gene expression data will be assumed to be
static single cell data (meaning that each measured cell
provides us with only one timepoint of data), unless
otherwise noted.

Problem formulation

For convenience, it can be useful to abstract the problem
of network inference into a graph theory framework.
Figure 1 shows the workflow of a hypothetical network
inference scheme where, for example, single-cell RNA-
Seq is used to measure the expression of a large number of
genes in many individual cells. Given the large number of
genes measured in these experiments it may be prudent
to select a smaller subset of genes with high biological
variance for further analysis. Such genes are typically
identified by first plotting the Coefficient of Variation
or CV (standard deviation over mean) in expression levels
across cells with respect to the mean expression levels for
all genes, and then selecting genes with significantly
higher CVs than what is expected for a gene at the same
mean level. Consider N genes that are identified for
network analysis and let their expression levels be repre-
sented by random variables {X1,X5,...,Xy}. Each vari-
able corresponds to a node in the GRN, and each edge
X, — X represents a regulatory relationship between X;
and X;. We can think of the true biological network as a
real, unknown set of interactions, and our goal is to
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A typical workflow to identity genes with high biological variance for
network mapping studies. RNA-Seq typically quantifies the expression
of thousands of genes across individual cells or environmental/genetic
conditions. The Coefficient of Variation or CV (Standard deviation over
mean) in the expression level across cells or conditions is plotted as a
function of the mean expression level for all genes. Fitting a trend line
through this data provides the expected CV of a gene at given mean
level, and this trend line is then used to select genes that have
significantly higher CVs (representing high biological variance) while
filtering out genes with low CVs that could result from technical noise.

approximate it by constructing a set of weighted inter-
actions, where each weight corresponds to our confidence
that an edge exists in the true network.

A network prediction can be either directed, meaning that
a prediction is made about the direction of causality for
each interaction, or undirected, meaning that no such
prediction is made. Directed networks are preferable, as
they convey more information, but are also more difficult
to construct. A network can also be signed, meaning that
activation edges are labeled with a “+” and repression
edges are labeled with a “-”; or unsigned, meaning the
edges are not labeled as positive or negative. Signed
networks are important for drawing biological insights.

However, unsigned networks are often used for theoreti-
cal work on network inference, since the difficult problem
is determining which edges represent true interactions.
Once an interaction is known, determining its sign is very
easy and can be found with a simple covariance. Inferred
networks have been shown to contain several motifs
(smaller modules that occur more often in the network
than expected by random chance), and these motifs are
illustrated in Figure 2.

The output of a network inference algorithm is a set of
weighted edge predictions, where each edge-weight cor-
responds to the confidence that a real interaction exists
between two genes. So, the accuracy of these algorithms
can be evaluated by running them on a “gold standard”
dataset for which the true network structure is already
known. The algorithms’ ability to recover the true inter-
actions can then be scored using receiver operating char-
acteristic (ROC) curves or precision-recall (PR) curves.
Some researchers have suggested that PR curves are the
superior metric [7], although both metrics are commonly
used.

Fortunately for network inference researchers, several gold
standard datasets are publicly available in the form of
DREAM Challenges [8]. These are computational biology
competitions for which researchers are invited to design
new algorithms to make predictions from data, and many
involve predicting GRN structures from expression data.
Once each competition is over, the datasets and true
network structures are released to the public, and are
commonly used for algorithm evaluation [9-11].

Algorithms

Several broad classes of algorithms are used for network
inference. An excellent introductory overview of these
can be found in Huynh-Thu and Sanguinetti 2019 [12°°].
A thorough evaluation of the different types of algorithms
can be found in Marbach et al. [9], in which many
different algorithms were benchmarked on the DREAMS5
gold standard networks, with varying results. To put it
simply, there is no overall “best” class of algorithms.
Rather, each has its own advantages and disadvantages,
so choosing the best one depends on the context. Here,
we will give a brief description of each class, but will
mainly focus on recent developments and unsolved chal-
lenges. Figure 3 provides a summary of some of the
properties of different algorithm types.

Correlation

One of the most basic methods of network inference is to
simply compute the correlation for each pair of genes.
"T'his method is very simplistic, but is also fast and scalable
for large datasets. It can be especially useful in cases
where researchers want a general idea of which genes are
related, without caring much about causal direction or
distinguishing between direct and indirect regulation. For
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Figure 2
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lllustration of some common GRN motifs. 1. Modularity (clustering of
nodes), 2. Self-edge, 3. Fan-out, 4. Fan-in, 5. Feed-back loop,

6. Feed-forward loop, 7. Cascade, 8. Cascade false positive error (a
feed-forward loop is incorrectly predicted). In the “Algorithms” section,
we will discuss the strengths and weaknesses of various algorithm
classes when it comes to detecting different network motifs.

this reason, the resulting network prediction may some-
times be referred to as a “gene co-expression network”
rather than a GRN. In general, correlation-based algo-
rithms tend to perform relatively well on detecting feed-
forward loops, fan-ins, and fan-outs, but also have an
increased false positive rate for cascades [9] (please see
Figure 2 for an explanation of these motifs).

Though simplistic, correlation networks can yield powerful
insights when the proper analytical tools are applied. For
example, Weighted Gene Co-expression Network Analysis
(WGCNA) [13], based on correlation, was an early and
widely-used method in gene network analysis. Further-
more, improvements to correlation-based network infer-
ence are still being made. Care et al. [14] describes how to
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deal with the problem of over-connectivity in correlation
networks, effectively reducing the number of edges to get
to the point where the network is sparse enough for a cluster
analysis to be performed.

Regression
Another common method of network inference is regres-
sion analysis. In its simplest form, this method involves
solving the following linear regression equation to predict
X, from X;:

X; =B+ B Xi+e (1)

Here, B, is the intercept, B; is the slope, and ¢ is the
random error term. So, since f; represents the relation-
ship between X; and X, we can assign it as the weight of
the edge X; — X;. This is only the simplest version of
regression analysis, and many regression-based algo-
rithms use more advanced methods. Two notable,
highly-regarded examples are TIGRESS [15] and
GENIE3 [16].

Regression methods are more computationally expensive
than correlation, but also provide the advantage of pre-
dicting causal direction. In general, regression-based
methods perform well compared to other methods over-
all, but perform poorly on the specific network motifs of
feed-forward loops, fan-ins, and fan-outs [9]. It is also
important to note that regression methods that resample
data (by bootstrapping, for example) typically outperform
regression methods that do not [9]. One limitation of
regression-based methods, at least in their simplest form,
is that they typically assume linear relationships between
genes, and may fail to detect non-linear regulatory inter-
actions. However, some progress has been made on this
matter: bLARS [17], a modification of the Least Angle
Regression method [18], is a regression-based algorithm
designed to detect both linear and pre-defined non-linear
interactions.

Bayesian methods

Bayesian methods have long been used in gene network
inference [19,20]. In these methods, an interaction
between genes is represented as a conditional probability.
For two genes with expression levels X; and X, the con-
ditional probability P(X/;|X;) corresponds to the edge
X; — Xj, and X; is said to be the parent of X;. The
graphical representation of a set of these conditional
probabilities is called a Bayesian network. Given a gene
expression dataset, a maximum likelihood estimation can
be applied to determine which Bayesian network struc-
ture has the highest posterior probability. In other words,
the goal of the maximum likelihood estimation is to
determine which network structure is the most likely
to have produced the observed data.
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Figure 3
Algorithm Class | Temporal Data |Directionality Advantages Disadvantages Examples
Required?

Correlation No Undirected * Fast, scalable * Possibly WGCNA [13]
* Detection of over-simplistic PGCNA [14]
feed-forward loops, » False positives for
fan-ins, and fan-outs cascades

Regression No Directed + Good overall accuracy |+ Bad detection of TIGRESS [15],

feed-forward loops, GENIES [16],
fan-ins, and fan-outs bLARS [17]
Bayesian - No Directed * Performance on small | - Performance on large |[19,20]
Simple networks networks.
« Inability to detect
cycles
Bayesi'fln - Yes Directed - Performance on small | « Performance on large |[21]
Dynamic networks networks.
+ Detection of cycles
and self-edges
Information No Undirected (at |+ Detection of - False positives for ARACNE [25],
Theory least in feed-forward loops, cascades CLR [26],
simplest fan-ins, and fan-outs MRNET [27],
form) « Similar to correlation PIDC [28]
methods, with better
accuracy
Phixer No Directed + Parsimonious output * Possible loss of [31]
due to pruning step. overal accuracy due to
pruning step (this can
be removed if the
user chooses)
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Summary of the properties, advantages, and disadvantages of different types of algorithms.

An advantage of Bayesian methods is the ease with which
prior knowledge of interactions can be integrated [12°°].
Unfortunately, Bayesian methods are typically very com-
putationally expensive. In general, they tend to perform
poorly on large datasets compared to other methods, and
may be better suited to small networks for which their
heuristic searching method can more easily converge on
the true optimal network structure [9]. Attempting to
improve their scalability to large datasets is a current
computational challenge.

Another significant disadvantage of Bayesian methods, at
least in their simplest form, is their inability to detect
cycles. In other words, the conditional probabilities only
flow one way, so they will be unable to detect something
like a feedback loop, which is a common motif of GRNs.
However, a subtype of Bayesian methods has been devel-
oped in an attempt to correct for this problem: Dynamic

Bayesian Networks (DBNs). While a node in simple
Bayesian methods corresponds to a gene, a node in DBNs
corresponds to a gene af a specific timepoint. While this
solves the problem of detecting cycles (and allows us to
detect self-edges), it also presents some new challenges.
First of all, either temporal or pseudo-temporal data is
required. Obtaining temporal data may not always be
feasible, and pseudo-temporal ordering is a complex
computational challenge in itself (this will be discussed
in the next section). Also, DBNs are more computation-
ally expensive than the already expensive simple Bayes-
ian methods. However, despite these challenges, DBNs
are still fairly widely used [21-23].

Information theory

Information theory, first developed by Claude Shannon in
1948, provides a theoretical framework for quantifying
information and studying its properties. One fundamental
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measure of information theory is entropy, which gives a
numerical measure of a random variable’s “uncertainty”.
For a discrete random variable X, the entropy is defined
as:

H(X) == p)log(p(x)) (2)

xeX

where p(x) is the probability distribution of the random
variable. If the expression data is continuous, then it must
first be discretized through a binning process before being
used in this formula, and development of an optimal
binning strategy is itself an active area of research
[29,30]. For two random variables X; and X, one can
quantify their “mutual information” as the amount by
which the entropy of their joint distribution is reduced
compared to their combined individual entropies:

16,%) = 3 Zz)oc,»,x,)logl% (3)
x;€X; V\j/-EX/ z Y/

where p(x;,x;) is the joint probability distribution of X;
and X;.

In network inference, mutual information can serve as
a measure of dependence between genes. Since it is a
symmetric measure, / (X;, X;) is assigned as the weights of
both edges X; — X; and X; — X (this can also be repre-
sented as the undirected edge X;<X;). Despite this
disadvantage of not predicting causal direction, mutual
information has the advantages of being able to detect
non-linear interactions (unlike simple correlation mea-
sures) and of being scalable to whole-genome networks.
In general, information theory-based algorithms tend to
perform better than correlation methods, but experience
similar biases: increased detection of feed-forward loops,
fan-ins, and fan-outs, but also an increased rate of false
positives for cascades [9].

One of the most famous network inference methods
based on information theory is ARACNE [25], introduced
by Margolin et al. (2006). In this method, the mutual
information is estimated for each pair of genes, and then
assigned as their edge weight. Then, all edges with a
weight below a certain threshold of statistical significance
are eliminated. Finally, and perhaps most importantly,
the remaining edges are pruned according to the Data
Processing Inequality. For each triplet of nodes X;, X,
and X, the following inequality is checked:

1(X;, X)) < min{/(X;, X;), [(X;, X¢)} 4)

If this statement is true, then the edge X;<-X; is elimi-
nated. The goal of this pruning step is to yield a sparse
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network with minimal redundancy and maximal explan-
atory power. This is only a brief overview of ARACNE,
and for a more in-depth explanation we refer readers to
the original paper [25].

Other methods based on information theory and similar to
ARACNE include Butte and Kohane’s method [24], CLR
[26], and MRNET [27]. Several newer algorithms also
make use of concepts from information theory. An excit-
ing new method is Partial Information Decomposition
and Context (PIDC) [28°°]. PIDC computes informa-
tional relationships in a triplet-wise, rather than pair-wise,
manner, so as to determine the proportion of the mutual
information between two genes that cannot be explained
in terms of any other third gene, thereby eliminating
indirect and redundant relationships in the predicted
network. For a detailed explanation of how this is calcu-
lated, please see the original paper [28°°].

Phixer

Another new algorithm that is different from but inspired
by information theory is Phixer, introduced in Singh et al.
[31°°]. Phixer has the advantage of producing an output
graph that is both directed (unlike most information
theory methods) and can contain cycles (unlike most
simple Bayesian methods). In Phixer, one computes
the so-called ¢-mixing coefficient for the edge X; — X; as

¢(X/|X,) = maxsg,rgﬂpr{X/ € S|X, S T}
— Pr{X; € S}| (5)

which in essence quantifies the maximum distance
between conditional probability of X; given X;, and the
unconditional probability of X;. Here A and B are
the finite sets in which the random variables X; and X;
take values, respectively. § and 7 represent the different
subsets of A and B, and ¢(X/|X;) is the maximum distance
between the conditional and the unconditional probabil-
ity across subsets. The ¢-mixing coefficient comes with
some useful properties. It is bounded in the interval [0, 1],
and ¢(X;|X;) = 0 if and only if X; and X, are indepen-
dent. Moreover, unlike correlation or mutual information
it is asymmetric ¢(X;|X;) # ¢(X4|X,), and hence can
discriminate the direction of the influence.

The inference starts by first computing the ¢-mixing
coefficient for each directed edge between two nodes,
and then the network is pruned to eliminate redundant
edges. For every possible triplet of nodes X;, X;, and X},
the following inequality is checked:

(Xl X7) < min{p(X;|X7), p(X4|X;)} (6)

If this statement is true, then the edge X; — X; is
eliminated, and hence the statistical relationship between
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X; and X; can be fully explained by the edges X; — X;
and X; — Xj. This pruning method is similar to the Data
Processing Inequality (Equation 4), used in ARACNE
[25]. Importantly, the goal of the pruning step is to
produce the most parsimonious network consistent with
the data, which is not necessarily the same as producing
the most accurate network prediction [32]. So, depending
on their priorities, researchers may choose to include or
omit the pruning step.

Miscellaneous

In addition to correlation, regression, Bayesian networks,
information theory, and Phixer, many more interesting
and creative types of network inference algorithms exist.
Some examples are Gaussian graphical models [33,34,
ODE-based methods [35,36], Boolean methods [37,38],
and deep learning with neural networks [39]. Unfortu-
nately, we do not have time to summarize every single
method here, so we refer the reader to the original papers.

Computational challenges

Although the field of network inference has progressed a
great deal since its inception, there are several problems
that are unsolved and require more research. In this
section, we will discuss some of these problems.

Combining algorithms

It has long been thought that combining an assortment of
different algorithms could prove beneficial in network
inference. Hill et al. [40] confirmed this empirically with
a computational experiment in which they aggregated
results from randomly-chosen inference algorithms, and
evaluated the results for accuracy using the area under the
ROC curve measure. The results showed a general trend in
which the more algorithms were included in the aggrega-
tion, the more accurate the results were. Another similar
computational experiment was performed in which the
results from the top performing algorithms were aggregated
(rather than the algorithms being randomly chosen). In this
case, the aggregated results generally achieved higher
accuracy than even the best individual algorithms. (Please
note that Hill etal. (2016) isabout the inference of networks
from phosphoprotein data, which is computationally very
similar to gene network inference.) These results confirm
the findings of an earlier analysis found in Marbach etal. [9].
However, while there is ample evidence that combining
algorithms can be beneficial, more research is needed to
find the optimal combination strategy.

Multiple data sources

Up to this point in the paper, we have been under the
assumption that we have only gene expression data to
work with when inferring the structure of a GRN. How-
ever, in some cases, we may have access to more infor-
mation. So, an interesting current problem is how best to
combine information from multiple data sources in order
to generate a prediction.

Some recent papers on the integration of multiple data
sources are Yuan et al. [41], Liang et al. [42°], Lam et al.
[43], and Aibar et al. [44]. Yuan et al. (2019) combines
gene expression data with DNA methylation and copy
number variation data. Liiang et al. (2019) combines gene
expression data with genome-wide binding data, gene
ontologies, pathway data, and ChIP-Seq data. Lam et al.
(2016) is an especially creative application of this concept.
Here, analysis of gene expression data from the species in
question is combined with analysis of gene expression
data from homologous species. Aibar et al. (2017) intro-
duces SCENIC, a method that combines the raw results
of a GENIE3 [16] analysis with transcription factor bind-
ing motif information from RcisTarget (also introduced in
[44]) to select out a subset of high-confidence interac-
tions, and then uses AUCell (also introduced in [44]) to
classify the cells into transcriptional states.

In some cases, it may be necessary to study a change in a
GRN, for which something is already known about the
GRN’s prior structure. This could be in the context of
cellular differentiation, or in a pathological context, as
with cancer. In these cases, the challenge is to incorporate
the prior structural knowledge into the inference of the
new structure. Some algorithms have been developed
specifically for this purpose [33,45°°]. Also of note is
the database Transcriptional Regulatory Relationships
Unravelled by Sentence-based Text-mining (TRRUST)
[46], which contains known gene regulatory interactions
in humans and mice. This resource can be used for
constructing prior networks from which to infer the
reprogrammed differential networks [33].

Pseudo-temporal ordering

As discussed before, most of the expression data we rely
on for network inference is static data collected by
methods such as RNA-Seq. This is disadvantageous, in
part, because it doesn’t allow us to detect self-edges. In an
ideal situation, we would have dynamic data for each
gene. While this is not currently feasible, some methods
have been developed which attempt to create “pseudo-
time series” data from static data [47-50]. An excellent
review of pseudo-temporal ordering methods is Cannoodt

et al. [51].

Sanchez-Castillo et al. [52°] is a great example of how
pseudo-temporal ordering can be can be useful in net-
work inference. The researchers attempt to infer the
GRN structure of a set of 48 genes, using a sample of
442 expression profiles from mouse embryos. The expres-
sion profiles are static, from single-cell qPCR, but the
algorithm the researchers are using requires time series
data. So, they employ the MOLO algorithm [53] to
construct a pseudo-time series. The researchers then infer
the GRN and draw biological insights about cell differ-
entiation in mice from its structure. Moreover, a compu-
tational experiment is conducted to show how differences
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Gene regulatory network inferred in [60] in the context of drug resistance in melanoma. More specifically, RNA Fluorescent In Situ Hybridization
(FISH) was used to count the number of mRNAs of 19 different genes in single melanoma cells. The joint distribution of MRNA levels measured
across thousands of cells was then used to infer the network using Phixer. This network was shown to play a key role in driving drug-sensitive
cells into a transient drug-tolerant state even in the absence of the drug. Such drug-tolerant cells survive exposure to the drug, and drug-induced

reprogramming of this network allows these to become stably resistant to the drug.

in the temporal order can affect the results of the network
inference. In addition to the analysis of the mouse embryo
data, another inference analysis is performed on pseudo-
temporally ordered RNA-Seq data from zebrafish.

However, while pseudo-temporal ordering has been use-
ful in some cases, it has also faced criticism. Moris et al.
[54] questions one of the underlying assumptions of many
of these algorithms, that cell fate transitions are smooth

and continuous. More research is needed on the subject to
improve upon these algorithms and address these
criticisms.

It should also be noted that most of the work on pseudo-
temporal ordering has focused on cellular differentiation,
and the application of these methods to cells that switch
between transient expression states is a more difficult
problem that requires further study.
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Applications in cancer research

While network inference can be an invaluable tool for the
investigation of many different diseases, the most obvious
applications are in cancer research. Some important roles
of GRNs are to regulate cell cycle timing, proliferation,
and apoptosis. Cancer arises from a loss of regulation of
these processes, and understanding the structure of the
underlying networks can yield powerful insights into
discovery of relevant genes [55], clinical outcome predic-
tion [56], drug target identification [57,58,37], elucidation
of sex-linked differences [59°], investigation of transcrip-
tional reprogramming [33], and more. For example,
Figure 4 shows as inferred network of genes using Phixer
from [60] that is critical in driving drug resistance in
BRAF V600E-mutated melanoma. Also, many of the
papers previously cited include a testing section in which
the algorithm is applied to a cancer dataset to test its
efficacy [14,21,41,42°,33,34,37,31°°,44].

There have been so many exciting new applications of
network inference that we cannot provide an in-depth
explanation of all of them here. So, we will focus on one
specific paper to serve as a case-study: Moore et al. [61°°].
This is an excellent example of how network inference
can be used to understand cancer at the cell systems level.
The researchers apply the BC3Net [62] inference algo-
rithm to the gene expression profiles of 333 prostate
cancer patients, obtained from The Cancer Genome Atlas
(T'CGA) [63]. The resulting network is then analyzed,
using Gene Pair Enrichment Analysis (GPEA) [64]
and the Cancer Gene Census [65], with a focus on gene
interactions that the researchers feel could be exploited
for clinical benefits, including targeted therapy. This
paper is valuable not only because of its interesting
insights on prostate cancer, but also because the meth-
odology is described in such a clear way that it could serve
as a step-by-step guide for researchers hoping to conduct
their own analysis of data from another disease. Similar
analyses have been performed on data from lymphoma
[66], colon cancer [67], and breast cancer [68], but there
are still hundreds of different cancer types and subtypes
that have yet to be analyzed, many of which are available
on TCGA and just waiting for an eager computational
biologist to take up the challenge.

Tools
Here are some useful, freely available tools for network
inference researchers:

e DREAM Challenges [8] - network inference competi-
tions, for which gold standard datasets are made pub-
licly available. These are often used for benchmarking.
Available online at: http://dreamchallenges.org

e The Cancer Genome Atlas (TCGA) [63] - a collection
of genomic, epigenomic, transcriptomic, and proteomic
cancer data, including expression profiles that can be

used for gene network inference. Available online at:
hteps://portal.gdc.cancer.gov

e TRRUST [46] - a database of experimentally-validated
gene interactions in humans and mice. Available online
at: hteps://www.grnpedia.org/trrust

e Cancer Gene Census [65] - a catalogue of genes known
to be related to cancer. Available online at: https://
cancer.sanger.ac.uk/census

e The Cancer Network Galaxy (T'CNG) - an online data-
base of cancer gene networks, predicted from public
expression data. Not yet officially published, but a beta
release is available online at: http://teng.hge.jp

e GeNeCK [69] - an online tool for gene network infer-
ence and visualization, for which the user can choose
from 8 different inference algorithms. Available online
at: htep://lce.biohpc.swmed.edu/geneck

Conclusion

In this paper, we have given a brief overview of the basics
of network inference, different types of algorithms, some
unsolved computational challenges, and exciting new
applications in cancer research. While we hope this
review has been helpful, it is not completely comprehen-
sive, and we encourage the reader to further explore this
topic by reading the papers cited here, and by testing out
the algorithms and data sources for themselves.
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