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MOMENT ANALYSIS OF LINEAR TIME-VARYING DYNAMICAL
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Abstract. Stochastic dynamics of several systems can be modeled via piecewise-deterministic
time evolution of the state, interspersed by random discrete events. Within this general class of
systems, we consider time-triggered stochastic hybrid systems (TTSHS), where the state evolves
continuously according to a linear time-varying dynamical system. Discrete events occur based on
an underlying renewal process (timer), and the intervals between successive events follow an arbitrary
continuous probability density function. Moreover, whenever the event occurs, the state is reset based
on a linear affine transformation that allows for the inclusion of state-dependent and independent
noise terms. Our key contribution is derivation of necessary and sufficient conditions for the stability
of statistical moments, along with exact analytical expressions for the steady-state moments. These
results are illustrated in an example from cell biology, where deterministic synthesis and decay of a
gene product (RNA or protein) is coupled to random timing of cell-division events. As experimentally
observed, cell-division events occur based on an internal timer that measures the time elapsed since
the start of cell cycle (i.e., last event). Upon division, the gene product level is halved, together
with a state-dependent noise term that arises due to randomness in the partitioning of molecules
between two daughter cells. We show that the TTSHS framework is conveniently suited to capture
the time evolution of gene product levels, and we derive unique formulas connecting its mean and
variance to underlying model parameters and noise mechanisms. Systematic analysis of the formulas
reveal counterintuitive insights, such as if the partitioning noise is large, then making the timing of
cell division more random reduces noise in gene product levels. In summary, the theory developed
here provides novel tools for characterizing moments in an important class of stochastic dynamical
systems that arises naturally in diverse application areas.
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1. Introduction. We study a class of stochastic systems that couple continuous
linear dynamics with random discrete events that occur based on an underlying re-
newal process. Such systems have been referred to in the literature as time-triggered
stochastic hybrid systems (TTSHS) [17, 12, 18, 13] and are an important subclass of
piecewise-deterministic Markov processes [25, 24, 14, 19] with applications in different
disciplines. For example, TTSHS have been shown to arise ubiquitously in networked
control systems, where a dynamical system is controlled over a noisy communication
network, and signals are received at discrete random times [3, 33, 4, 30, 32, 6, 84,
2, 41, 35]. Other TTSHS applications include modeling disturbances in nanosensors
[83], capturing stochastic effects in cellular biochemical processes [5, 86, 82, 15, 85],
and neuroscience [71].

Previously, we studied a subclass of TTSHS where the continuous dynamics was
modeled by a linear time-invariant system, and the time intervals between successive
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discrete events was restricted to follow a phase-type distribution (i.e., mixture and/or
sum of exponential random variables) [83]. Further, the states of the system after
each reset are random. For such systems, statistical moments of the state space can
be computed exactly by numerically solving a system of differential equations [83].
Building on this prior work, here we generalize the results in several new directions:

e Time intervals between events follow an arbitrary positively valued and con-
tinuous probability density functions (pdf).

e We provide an explicit condition for the existence and convergence of statis-
tical moments, together with their exact closed-form formulas.

e We use TTSHS to study the fundamental process of gene expression inside
cells, where production/decay of a protein is coupled to random cell-division
events.

o We allow continuous dynamics to be a time-varying linear system.

The main contribution of this paper is the inclusion of time-varying dynamics in
TTSHS and allowing the states after each reset to be random. We start by introducing
the notation used throughout the paper, followed by a mathematical description of
TTSHS. Before presenting the results on TTSHS with time-varying dynamics, we first
consider the simpler case of linear time-invariant systems.

Notation. The set of real number is denoted by R. Constant vectors are indicated
by a hat, e.g., a, and matrices are denoted by capital letters. Further, the transpose
of a matrix A is given by AT and the n-dimensional identity matrix is denoted by I,,.
We show zero vectors and matrices with the same notation, e.g., A = @ = 0. Random
variables are indicated by bold letters. The expected value of a random variable x at
time ¢ (x(t)) is denoted by (x), where we drop ¢ for simplicity. The expected value
in steady-state is denoted by (z) = lim;_, oo ().

2. Linear time-invariant TTSHS. The state of the system x € R™*! evolves
as per the following ordinary differential equation:

(1) = =i+ Az(t)

for a given constant vector @ € R"*! and matrix A € R"*". Random events are
assumed to occur at times tg, s € {1,2,...}, and the time interval between events

(2) Ts=ts —ts_1

is an independent and identically distributed (iid) random variable that follows a
continuous positively valued pdf f. Throughout the paper we assume a finite mean
time interval (7T,) < oo, but higher-order moments of 7, can be infinite, allowing for
heavy-tailed timing distributions.

Whenever the events occur the state is reset as
(3) 2(t) > (t?),

where x(t; ) and x(t!) denote the state of the TTSHS just before and after the event,
respectively. We assume x(t) to be a random variable, whose average value is related
to its value just before the event by a linear affine map

(4) (@(t])) = Ja(ts) +7,

where J € R™ " and # € R™™! are a constant matrix and vector, receptively. Fur-
thermore, the covariance matrix of x(t!) is defined by

(@tD)a " (t))) — (et (=)’

(5) = Qx(t;)x" (t;)Q" + Bx(t;)é +éx'(¢;)B" + D.
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Here Q € R™ ™ and B € R"*" are constant matrices, and é € R™*! is a constant
vector. Moreover D € R™*"™ is a constant symmetric positive semidefinite matrix.
Intuitively, (5) formalizes the noise added to the state during the reset (event), with
Q = B =D = ¢ = 0 implying that x(t]) is simply a deterministic linear function
of z(t]). A constant state-independent noise can be incorporated through a nonzero
matrix D with @ = B = ¢ = 0. The generality of (5) allows for state-dependent
noise terms that can potentially be quadratic (nonzero @) or linear (nonzero B and
¢) functions of the state, and we will see an example of it later in the manuscript.

3. Statistical analysis of linear time-invariant TTSHS. A convenient ap-
proach to implement the TTSHS represented by (1)—(5) is via a timer 7 that measures
the time elapsed since the last event (Figure 1). The timer increases between events
and resets to zero whenever the events occur. Let the probability that an event occurs
in the next infinitesimal time (¢,¢ + dt] be h(7)dt, where

f(7)
1— f;—:() f(y)dy

(6) h(r)

is the event arrival rate (hazard rate). Then, 7, follows the continuous positively
valued pdf

(7) T~ (1) = h(r)e IO MWW
[65, 26, 23], and the timer follows the continuous positively valued pdf
1

e foT h(y)dy
(Ts)

(8) T~ p(7) =

[94]. Note that f(7) and p(7) are connected but are not always equal. As a simple
example, a constant (timer-independent) hazard rate h(7) = 1/(7s) leads to expo-
nentially distributed 74 and 7. Similarly, a monomial function

-4 6)°

Fic. 1. Schematic of TTSHS with continuous dynamics described by a linear time-invariant
system. As the state evolves according to a linear system, events occur at discrete times that change
the state of the system according to (3). The timing of events is controlled by renewal transitions
defined through a timer T that linearly increases over time between events and is reset to zero each
time an event occurs. Choosing the event arrival rate h(T) based on (6) ensures that the time
interval between events is iid with probability distribution f.
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with positive constants k and A results in a Weibull distribution for 7, with pdf
k k—1
(1) iy =K (0) T o

and mean (75) = A T'(1+1/k), where I is the gamma function. In this case the timer
follows the following distribution:

1 P

Having defined the probability distributions of 74 and 7, we next summarize our main
results in theorems/corollaries, and we refer the reader to the appendix for proofs.

3.1. Mean of vector x. In general, the expected value of & depends on the
entire distribution of 74, as shown below.

THEOREM 3.1. For the TTSHS (1)—(5) the steady-state mean of x is given by

(12

(@) = (A7) (I — J (A7) <J <eAfs / b e"‘”ddl> n r) n <6A" / ’ e“‘”ddl>

if and only if the expected value

~

(13) (A7) = /OOO f(r)etmdr

exists and all the eigenvalues of the matriz J{(eAT=) are inside the unit circle.

Please see Appendix A for a detailed proof. In this theorem, the vector

(14) <eAfs /0 - e—Aladl> — /0 ~ (eAT /0 ’ e—Aladz> dr

is obtained by taking the expected value with respect to 75, and

(15)

(A7) = /O h p(r)edr, <eAT /0 . e—Aladl> = /0 h p(7) (eAT /O ’ e—Aladz) dr

is obtained by taking the expected value with respect to 7. While Theorem 3.1
represents the most general result, we consider simplifications of (12) in special cases.

COROLLARY 3.2. If the TTSHS (1)—(5) satisfies stability condition of Theorem
3.1 and the matriz A is invertible, then

1
I, — (7)) A% — A 'a.
<T5> ( n < >)
Thus, for an invertible matrix A, the steady-state expected value can directly be com-
puted from the moment generating function <eA"S> (see Appendix B). Interestingly,
there are some scenarios where knowing a few lower-order moments of 7 are sufficient

to determine (x) (see Appendix C).
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COROLLARY 3.3. Consider the TTSHS (1)—(5) with A = 0, and all eigenvalues
of the matriz J are inside the unit circle; then

(r2) .
2<TS>

only depends on the first- and the second-order moments of T.

(17) (@)= I, =) (J{rda+7) +

We will revisit this corollary later on, as it is pertinent to the example of gene
expression.

Note that Theorem 3.1 by itself is not guaranteeing divergence of the states of
system. To illustrate this point, consider a simple scalar system

dx

18 — =ax(t),
(18) = ax(t)
where a > 0 is a constant parameter. Any time that a reset occurs, the state of the
system exactly halves (J = 1/2, # = 0), and there is no added noise to the states of
the system (Q = B=D =¢=0)

(19) (@(t])) ==, (@) — (@(t]))” =0.

Now assume that events happen in exponentially distributed time intervals, so based
on Theorem 3.1 the steady-state mean of x is zero if

1, o0 1 1
7<e s>_

s lm(r) < —
2 3T apry 17 (T <

(20) J (eA7) = oo

Further, for linear systems with exponentially distributed discrete events there exist
well-established methods to derive moment dynamics [72, 34, 73]. We can write the
second-order moment dynamics as

d{z?)

(21) A~ o 5

2> - m<$2>-

8

For having a zero steady-state second-order moment we need to have (1) < &.

These two different conditions mean that depending on the period of events, we can
have different scenarios:

(22)
(Ts) < & Zero mean and variance,
Exponentially distributed 7 : % <{1s) < i Zero mean, infinite variance,
2= < (Ts) Infinite mean and variance.

Hence, it is possible to have a system where the steady-state mean is almost zero
but sample paths diverge with probability one (infinite variance). In order to obtain
meaningful information about a system we need to study the second-order moments
as well.

3.2. Second-order moments of TTSHS. In order to calculate the second-
order moments, we start by deriving the dynamics of xa | between two successive
events,

d(wa) _dx + dax’

(23) =’ + T = Azz" +xx" AT +ax’ +xa’.
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To proceed further, we introduce a new transformation called “vectorization,” i.e., a
linear transformation that converts a matrix into a column vector. For instance,

)

(24) A= [ i Giz ] =vec(A) =[ ai1 an a2 as ]T
a1  a22

where vec() stands for the vectorization of a matrix. By putting all the columns of
the matrix xx " into one vector vec (zx') € R *1) (23) can be transformed as
dvec (zx ")
dt
where ® denotes the Kronecker product. Note that in transforming (23) to (25) we
used the fact that for three matrices My, M, and M3,
vec(My MyMs) = (M3 @ M;)vec(Msy)
vec(Axx ") = vec(Azx " I,,) = (I, ® A)vec(zzx "),
(26) vec(zxTAT) = vec(I,zx " AT) = (A® I,)vec(zx "),
vec(ax ) = vec(ax ' I,,) = (I, ® &)z,
vec(za') = vec(l,xa') = (a® I,,)x

(25) =, @A+ A®I,)vec(zz') + ([, ®a+a®I,)z,

[48]. It turns out that if we define a vector u = [T  vec (:cw—'—)—l—]—r € R(nn?)x1
its time evolution can also be represented by a TTSHS, albeit a more complex one.
More specifically,

dp
(27) E = al" + A/JIJ’)
between two successive events, where
. A 1 0 . | a
(28) A = 1n®a+a®fn‘zn®A+A®fJ = { 0 ] :

Furthermore, whenever an event occurs, p is reset as

(29) plts) = p(t),
where the expected value of u(t!) is given by (see Appendix D.1)

(30a)  (u(t)) = Jup(ts) + i,

J l 0 .

7777777777777777777777 (R 7
30b J, = Beé+JRF ! oy = [-mmmmeaee- S
(300) g +E§CB++72<§§§TJ JeJ+ReQ T [vec(D+rrT) ]

In summary, we have recast the stochastic dynamic of p as a TTSHS (27)—(30), and
a similar analysis as in Theorem 3.1 leads to the following result (see Appendix D.2).

THEOREM 3.4. Assuming the original TTSHS given by (1)—(5) satisfies Theorem
3.1, then

<[1,>—<6A“T/0 eA*‘ldel>

+ (€M7 (Lo = Ty (7)) (JM <eAﬂs / S e—Al‘rlaMdz> + m)
0

if and only if all the eigenvalues of the matriz (J @ J + Q ® Q) <eA"-* ® eA"'S> are
inside the unit circle.

(31)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/26/19 to 141.2.140.67. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2666 MOHAMMAD SOLTANI AND ABHYUDAI SINGH

Theorems 3.1 and 3.4 provide sufficient conditions for the existence of the first
two moments of x.

Remark 1. 1f A is a symmetric Hurwitz matrix, J is a diagonal positive definite
matrix, and all of its eigenvalues are inside the unit circle, then the steady-state mean
of x exists. Moreover, if @ is diagonal, J ® J + Q ® @ is positive definite, and all
of its eigenvalues are inside the unit circle, then the second-order moments of x also
exist (see Appendix E). Note that in these cases the first two moments of & remain
bounded even though higher-order moments of 75 may be unbounded.

The different corollaries of Theorem 3.1 that consider special cases can also be
generalized to Theorem 3.4. For instance, if A, is invertible, then similar to Corollary
3.2, the steady-state mean of vector p takes the form

(32)
1

(p) = )

X (S (In2en = (M 7)) At +7y) —

(L= (A7) 437 (L = T (7))

1 AT -2 -1
o (B (A7) AP0, A%,
Moreover, as an extension of Corollary 3.3, we show in Appendix F that when A = 0,
(xzxT) only depends on the first three moments of .

Finally, we apply Theorem 3.4 to a subclass of TTSHS where matrix A is Hurwitz

and Q =7 =0, J = I, in (4)—(5), which corresponds to (z(t!)) = x(¢;) and

(33) (=t (1) — (@t (x(t]))" = Bz(t;)e" +ex' ((7)B" + D.

Here discrete events do not affect the mean behavior of the system but function
to impart noise at random times. We have previously studied these systems in the
context of nanosensors, where gas molecules impinging on the sensor strike at random
times and change the sensor velocity by adding a zero-mean noise term [83]. Using
Corollary 3.2 and Theorem 3.4 for this subclass results in (z) = —A~'a and

vee((@aT)) = —(I, @ A+ A® I,)"}

(34) x((lB®é+1é®B+In®&+d®In>(w>+ : vec(D)).
(Ts) (Ts)

As expected, the steady-state mean is independent of 7,. Counterintuitively, the

second-order moment only depends on the mean arrival times (7), and making the

timing of events more stochastic for fixed (75) will not have any effect on the magni-

tude of random fluctuations in . We next illustrate the theory developed for TTSHS

with the biological example of gene expression.

4. Quantifying noise in gene expression via TTSHS. The process of gene
expression by which information encoded in DNA is used to synthesize gene products
(RNA and proteins) is fundamental to life. Measurements of gene product levels in-
side individual cells reveal a striking heterogeneity: the level of a gene product can
vary considerably among cells of the same population, in spite of the fact that cells are
genetically identical and are exposed to the same extracellular environment [22, 9, 62].
Such cell-to-cell variation or expression noise critically impacts functioning of intracel-
lular circuits [21, 61], drives seemingly identical cells to different fates [47, 1, 97, 55],
and is implicated in emerging medical problems, such as HIV latency [77, 70, 63], can-
cer drug resistance [69], and bacterial persistence [7, 49, 42]. Thus, uncovering noise
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mechanisms that lead to cell-to-cell expression variation has tremendous implications
for both biology and medicine.

Considerable theoretical and experimental research over the last decade has pri-
marily focused on characterizing stochasticity inherent in the different steps of gene
expression [76, 80, 75, 11, 58, 16, 60]. Here we focus on a different mechanism: noise
in the timing of the cell cycle, or time taken by a newborn cell to complete its cell
cycle and divide into two daughter cells. While much work coupling gene expression
with the cell cycle considers deterministic timing of division [40, 38], data across or-
ganisms point to cell-cycle times following a nonexponential distribution that is often
approximated by a lognormal or gamma distribution [45, 91, 89]. We have previously
studied the contribution of noisy cell-cycle times in driving stochastic variations of a
stable protein, i.e., protein with no active degradation [86], or have ignored random-
ness in the partitioning of molecules between the two daughters at the time of division
[5]. Exploiting the TTSHS framework, we present a novel unified theory of how noisy
cell-cycle times combine with randomness in the molecular partitioning process to
shape variations in the level of gene product with an arbitrary decay rate.

4.1. Average gene product level for random cell-cycle times. Consider
a gene product synthesized at a constant rate k, > 0 and degrading via first-order
kinetics with rate v, > 0. Then, its level x(t) within the cell at time ¢ evolves as

der
dt
Cell-division events occur at times ts, s € {1,2,...} with cell-cycle times 74 = t; —

ts_1 being iid random variables. Assuming perfect partitioning of molecules between
two daughters for now, the level is exactly halved at the time of division,

(35) ky — vox(2).

(36) z(th) = z(t) with probability one.

In the context of the original TTSHS (1)—(5) this corresponds to A = —v,, & = ka,
J=1/2,and?7=Q=B=¢=D=0.
Since A = —, < 0 and J < 1, then as per Remark 1 the mean of x exists, and
using Corollary 3.2
— ks ky 1= (e 7=Ts)

) R e RN

If the gene product happens to be a protein whose half-life is much longer than the
average cell-cycle time (1/v, > (7)), then taking the limit v, — 0 in (37) yields

(38) = ki (Ts) (32+ cvfs)’ ove = <Tg><T_S ><278>2,

where C’Vfﬁ represents the noise in cell-cycle times as quantified by its coefficient of
variation squared. Note that (38) could also have been derived directly from Corollary
3.3. These results exemplify the earlier point that while in general, the average gene
product level depends on the entire distribution of the cell-cycle time, in some limiting
cases it is completely characterized by just the first two moments of 75. Moreover, in
proving Corollary 3.3 we showed that

(ri)

. SV
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Hence, (1) = $(7,)(CV2 + 1), and the mean of a gene product in a cell in (38) can
be represented as

(40) (@) = ko (Ts) + ka(T),

where the first term in the right-hand side shows the products inherited from the
mother cell and the latter is the products synthesized in the cell.

4.2. Stochasticity in gene product levels for random cell-cycle times.
In order to calculate the second-order moments, we define a new vector u = [z x?]7,
whose time evolution can also be described by a TTSHS. From (27) it follows that

dp . | e 0 PO
(41) %7%4“4#“, Aﬂ{%m _2%],%[ 0 },
and at the time of division
_ R 1/2 0 R
2) R P R I A R

Since A = —y, < 0, J =1/2,Q =0, and J®J+Q ® Q = 1/4 < 1, then
(J®J+Q®Q) e @ eATs) = 1/4(e=?'™s). Hence, based on Theorem 3.4 the
steady-state second-order moment of x exists, and (see Appendix G)
ﬁ . k2 —14+417(e77=Ts) 4 (e72aTs) (2 — 5 V=T=))
i 16Rm) (L= glem ) (L= gle=m))
Using the coefficient of variation squared to quantify the noise in x,
(14)
— —2
@) - @)
C‘/Czell cycle T —a
(x)
— T — YT 2 — Yz T — T
_ 8 (1- (e )) (1 () ) (1 3 (eTT?) (1 ()
2
8 (1— He21m)) (~1+ () + 2y fra)(1 — bem7))

(43)  (=?) =

Y

where CV2, cycle denotes the noise in the gene product level due to randomness in
cell-cycle times. Before analyzing this formula further, we next consider another

physiologically relevant noise source that arises from molecular partitioning errors.

4.3. Inclusion of randomness in the molecular partitioning process. In
reality, biomolecules in the mother cell are probabilistically partitioned between the
two daughters at the time of division. For a discrete number of molecules, this process
is well characterized via a binomial distribution [29, 64]. Recent work has also re-
ported several scenarios (such as protein multimerization) that lead to higher noise
than expected from simple binomial partitioning [37, 38]. Randomness in the par-
titioning process can be incorporated in the TTSHS framework with each division
event resetting x(t; ) — x(t}), where

x(ty) _
(45) (@(th) = =52, (@*(t])) — (x(th))? = ba(t]).
Intuitively, (45) implies that on average, each daughter inherits half the number of
molecules in the mother cell, with the variance in @(t]) scaling linearly with x(¢;).

The motivation for this linear variance scaling comes from the binomial distribution
and phenomenologically captures the notion that lower number of molecules x(t;) will
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lead to much higher noise in z(t), i.e., higher coefficient of variation. The positive
parameter b can be interpreted as the magnitude of stochasticity in the partitioning
process.

With the above modification we have a TTSHSH where A = —v,, a = kg,
J=1/2, B=b,¢=1/2, and # = Q = D = 0. While the steady-state mean of gene
product level is still the same as (37), inclusion of the nontrivial noise term in (45)
leads to (from Theorem 3.4)

— by 11— (e72¥eTs) 1 — (e VeTs)
293(7s) 1= 3{e7207e) 1 — 5(e7™7)

k2 k2 =14+ 17(e™eTe) 4 (e 2eTe) (2 — He 1= Te))
B TIeHr) G- Her ) (G- He )

which yields the following elegant decomposition for gene product noise levels:

(46)

o (2?) — (=) 2 2
Total Noise = N = C‘/cell cycle + CVpartitioning’
(47) (@?)
ov? _b 1— <€_2’Y$Ts> 1— (e 7=Ts) 1
partitionng = U7 L (e=21.70) Z1 (e1e7) + 29a(m) (1 — He 7)) (@)

Here CV2, cycle 18 the noise contribution for random cell-cycle times as determined
earlier, and the new term C'V]‘f&rtitioming quantifies the contribution from partitioning
noise. Note that unlike CV2, cycles CVp2artitioming is inversely related to the mean (x)
and would become the dominating noise term at low molecular levels.

Both noise contributions CV2, cycle and CVp2artitioning monotonically decrease to

zero with increasing degradation rate -, for a fixed mean (z) (Figure 2). This makes
intuitive sense, as rapid turnover rates allow for faster convergence to mean levels after

A) Noise contribution from cell cycle B) Noise contribution from partitioning errors
0.5 0.5
16 2
2
_ _ 8
1 TL 1.4 %
= = 2
8 £ =)
] © 1.2 o
= = 7
g 0.3 g 0.3 S.
=) =] 1.0 B
5] 5] s
° ° o
[ s =]
& ob 0s °
3} J3) e}
A A 3
a.
06 £
3
—+
0.1 0.1
0 0.15 0.3 0 0.15 0.3
Cell-cycle time noise (C V,ﬁ) Cell-cycle time noise (C V,ﬁ

Fic. 2. The noise contributions show similar behavior with respect to decay rate, but con-
trasting behavior with respect to noise in cell-cycle times. A two-dimensional color plot of the two
noise contributions in (47) as a function of the gene product decay rate and the noise in cell-cycle
times. Increasing CV.,?S increases the noise contribution from random cell-cycle times but decreases
the contribution form random partitioning. Both noise contributions decrease monotonically with
increasing decay rate. Noise levels are normalized to their value when CV.,?S =0 and~y; = 0.1 hr—1.
We used gamma distributed Ts with a fized mean cell-cycle time of (Ts) = 2hrs. The mean of x is
fized at 100 molecules by simultaneously changing ko .
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random perturbations. In the limit of fast decay rate (v, — o0), we have e™7=7 — 0
and e~27=7 — ( for any given value of 7 > 0. Hence, (e 7=7¢) — 0 and (e~27%7+) — 0
for any continuous distribution of 74 and we obtain the asymptotes

1 1 b
48 CV::% eycle ¥ o0 CV2ar itioning ~ 5. -\ >
) ove X gty o ™ g () )

which only depend on the mean cell-cycle times and show very similar scaling that
differs by a factor of 4b over mean. Interestingly, noise contributions show contrasting
behavior to increasing noise in cell-cycle times—increasing CV,?S for fixed T4 increases
CV2, cycle DU decreases OV iitioning (Figure 2(b)) This implies that depending on
the degree of randomness in partitioning (parameter b), the total noise may decrease,
increase, or remain somewhat invariant of C’V_,?S (Figure 3). Finally, taking the limit

vz — 0 in (47), we recover our prior result for stable gene products [86]

C‘/CQEH cycle CV2
partitioning
(r3) —_——
() Total noise = i + ! <9 <:S>3 0 6CVT28 _ 70‘/;18) + 160 L
27 27 (34 CV2)? 3B3+CV2) (x)

explicitly showing C’szartmomng to be a decreasing function of CV? and the depen-

dence of gene product noise levels on just the first three moments of 7.

5. Linear timer-dependent TTSHS. While our analysis has been restricted
to continuous dynamics modeled as a linear time-invariant system, we now generalize

Total noise decreases with C V,ﬁ

= 1.10 g
= o}
5 5
g &
3] N
00 1052
S 2 Total noise is independent of C V,f .
g 2
2 o
] —
] 1 B
3 e,
[a ¥ [

a

0.95

Total noise increases with CV;2

0 0.25 0.5
Cell-cycle time noise (CV2)

F1ac. 3. Gene product noise levels can either increase or decrease with increasing noise in cell-
cycle times. The total noise in (47) is plotted as a function of parameter b in the partitioning process
and notse in cell-cycle times. While for small (large) values of b the noise levels increase (decrease)
with increasing CV.,?S, intermediate values of b can make the total noise approximately invariant
of C’V.,?S. Noise levels are normalized to their value when CVES = 0, the mean of x is fized at 20
molecules by simultaneously changing ky, and vz = 0.1 hr~1. The rest of parameters are chosen
equal to their value in Figure 2.
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these results to time-varying systems. It is important to point out that by time
varying we imply

dx

(50) u

=a(7) + A(T)z(t),

where the vector a(7) and the matrix A(7) vary arbitrarily with the timer state. This
extension is particularly relevant to the gene expression example discussed previously.
As a newborn cell progresses through its cell cycle, it increases in size, and the number
of copies of a given gene has to double before cell division. These changes in cell size
and gene dosage within the cell cycle critically influence the production rates of RNA
and proteins [81, 66, 59, 52, 101, 54, 39, 78] and correspond to k, in (35) being timer-
dependent. Such a timer-dependent production rate is also needed for analyzing genes
that are expressed at specific instants or durations within the cell cycle [67, 66, §].
Thus, (50) captures expression dynamics of a wide class of genes, and looking beyond
biology, it aids in the analysis of physical, ecological, and engineering systems with
time-varying dynamics. In addition to (50), we also generalize the reset value x(t!) by
allowing J(7), #(7) in (4), and Q(7), B(7), é(7), D(7) in (5) to be timer dependent.

5.1. The steady-state moments of linear timer-dependent TTSHS. Sup-
pose that the states of the system after the sth reset are given by x(¢!); then the
states of the system for any 7 before the s + 1th event are

(51) z(ts +71)=&(T,0)x(t]) + /T o(r,Da(l)dl, &(1,1) =w(r)T ()
0

[90]. Here ¥(7) is called the fundamental matrix and satisfies the following:

aw
(52) 5 = AME(r), ()] #0,
where | | denotes determinant of a matrix. Building upon this introduction, the

following theorem gives the steady-state mean of x.

THEOREM 5.1. The steady-state mean of the states of the timer-dependent TTSHS
given by (50) and (3) is

() = (®(7,0)) (In = (J(7,)B(7,,0)))

(53) < (s [ orsvawa) + ¢e) + ([T ornana)

if and only if (P(7s,0)) exist and all the eigenvalues of (J(T5)P(Ts,0)) are inside the
unit circle.

Please see Appendix H for the proof. Here we use the notation 75 when we
take expected value with respect to 75 (e.g., (¥(75,0))) and we use 7 when we take
expected value with respect to 7 (e.g., (®(7,0))). Note that for a general A(7), one
needs to calculate @ for obtaining mean of x. However, except in a few cases, the
closed form of @ does not exist [90]. One of these few cases is A(T) = 0, where @ in
(53) is simply I,,. In this case

60 @l = (- ey (s [T awary+ i)+ [ aoar).
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This equation simplifies to (17) for time-invariant J, #, and a. Another limit in which
the matrix @ can be derived easily is when A(7) and els AWy can commute, in this
case

T T
(55)  &(7,0) = elo AW, / &(r,l)a(l)dl = eld AWy / ™ o AWa(1)al,
0 0

and as a result (53) simplifies to
() = <efJ A(y)dy> <]n _ <J(TS)BIUTS A(y)dy>>*1
(56) x (<J(7-S)ef0"'s Aly)dy /OTs - folA(y)dyd(l)dl> n (f(‘rs)>>
+ <ef5 Ay / e A<y>dya<z)dz> .
0

Examples of this case include A(7) being diagonal (dynamics of each state depends
only on itself), and if A(T) = Ak(7), where A is a constant matrix and k(7) is a
scalar time-varying function.

Moreover, similar to section 3.2, we can define the vector p=[x
where its dynamics between the events is given by

T
Y

vec(zxT)T]T

dp
dt
Here a,(7) and A, (7) are similar to (28) for time-varying a(7) and A(7). This
system is in the form of (50) and hence its solution between the events is similar to

(51) for appropriate @,. Further, during an event, the states of vector p change as
(29), where the mean of u(t]) is related to u(t;) as

(58) (p(t))) = Ju(T)u(tS) + 7, (7).

In this equation J,(7) and 7, (7) are time-varying counterparts of J,, and 7, in (30).
Given this reformulation, similar to Theorem 3.4, we can derive the second-order
moments of  through the vector p. The steady-state mean of p is

<7> = <¢u(7a0)> (In — <JH(TS)¢M(7-S)O)>)_1

) ((am) [ amaaa) + Gum) + [ o a,0ar)

if and only if all the eigenvalues of the matrix ((J(7s) ® J(7s) + Q(7s) ® Q(7Ts))
(®(75,0) ® D(75,0))) are inside the unit circle. Furthermore, it is straightforward to
see that (55) can be extended to vector , i.e., if A,(7) and es 4#®)9Y can commute,
then

(60)

@, (7,0) = els Anw)dy, / @, (1, )a,(l)dl = elo Au(y)dy/ e Jo AuWyg (1)l
0 0

(57) =a,(T) + Au(T)pe.

Finally, Remark 1 also can be generalized to the timer-dependent case if (1) A(T)
is a symmetric negative definite matrix for all the values of 7, and (2) the matrices
J(t) and J(1) ® J(7) + Q(7) ® Q(7) are diagonal positive definite and all of their
eigenvalues are inside the unit circle. Then the first- and second-order moments of x
exist irrespective of distribution of 75. In the next part, we use our results to study
the time-varying synthesis rate.
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5.2. Timer-dependent gene expression dynamics. Revisiting the gene
expression example, (35) is now modified as

(61) 9 — kolr) —lt),

where k,(7) represents a generalized timer-dependent production rate. Assuming the
same structure of resets as in (45), Theorem 5.1 yields

(62) (@) = <;ZTT>> ; - 22_::; </OT e%lkx(l)dl> + <ew /OT e%lkx(l)dl> .

In the limit of constant synthesis rate k,(7) = ks

(63a) < / Se%lkw(l)dl> —k, < / Se“ldl> _ By
0 0 Ya

(63b) <€—’Yz‘l'/ e’hlkz(l)dl> =k, <€—’Yz7'/ e’ymldl> _ ki

0 0 Y

By putting (63) back in (62), the mean of & simplifies to (65) for constant synthesis
rate. Moreover, by taking the limit v, — 0 in (62), we obtain the mean of stable gene
products

(64) @) = </OT kw(l)dl> + </OT kw(l)dl> :

Interestingly, from (64) it follows that for a given constant mean level of @, high values
of k;(7) when 7 is small (beginning of cell cycle) result in lower (k,(7)). This means
that production at the beginning of the cell cycle needs fewer production events and
fewer resources to keep a given mean of . Finally, suppose that k,(7) = k,; then

(63) @ = { [ o)+ [ ko) = ki) + @)

which is equal to (40).

For a general k, (7) providing the analytic formulas for noise of an unstable gene
product is convoluted. On the other hand, for a stable product (v, & 0) the noise
contribution from cell-cycle time variations and partitioning errors is

(66a) cv?2 _2(fy " (ka(7) [y Ba(D)dl) d7) — ([ (di)?
cell cycle 3 (T k(D) dl> TR dl>)
+ <for ( ) > — <f0T kx(l)dl>2’
(< dl>+< ko (1))’
(66b) ov? 8b < o ka(D)dl) iy

partitioning = 3 < 0 > <f0 x( >< )

These results simplify to (49) for a constant synthesis rate.

As an example, we study protein count and noise in a mammalian cell. The vol-
ume of mammalian cells is highly variable within a population [92, 10]. However, a key
necessity for maintaining cellular functions is to keep concentration of different pro-
teins constant. This means that the number of proteins should scale with the volume
of a cell [50, 100, 51]. To cover this case, consistent with measurements, we assume
that the synthesis rate scales with the cell volume which is an exponential function
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of the cell cycle [93]. Thus, we assume that synthesis rate k,(7) is exponentially
increasing throughout the cell cycle and eventually doubles at the end of cell cycle
[95]; the synthesis rate is

in(2)T

(67) ko(T) = kye o7,

where k, is a nonnegative constant. Since a large number of proteins in mammalian
cells are stable [68], we do not need to consider the degradation of . Hence we can
replace (67) in (64) to derive the mean

(68)

T ka(Ts) ((1 + 1n(2)1)n<2?2<§§>> -1- 21n(2)> ’ <2<:—>> _ /0“’ F(r)2F dr.

While for a constant synthesis rate, the mean of a stable gene product just depends
on the mean and noise of cell-cycle times, for an exponentially increasing production
rate the mean of & depends on the entire distribution of cell-cycle times.

In the next step, we calculate the noise contribution from cell-cycle time variations
and partitioning errors by replacing (67) in (66),

(69a) oV In(2) (475 ) ~1) —2 (2% ) - 1)2

cell cycle —

)
Ts

2 ((1 +1n(2)) <2<,S>> 1 21n(2)>2

oo - sbin(2) (27 ) — 1) )

partitioning —

3 ((1 +1n(2)) <2<%>> 1- 21n(2)) ()

Our analysis shows that these noise terms are more affected by statistical charac-
teristics of cell-cycle time than the case of constant synthesis rate (Figure 4). This

5} 1 8
.
& 1”8
op 0.95 | 5
of =
5 IS
g o)
B L U4 [oR
'E 0.9 . ) \~\ ° Constant 154
o ime-varying Y synthesis rate | 2
& synthesis rate C2IAN =
0.85 - N g
g v 0 S %
- N~ °F
E - >
08 -7 . 2
E P N, 190
IS R N 25
2 - ~ @

L L

0.75 - . .
0 0.05 0.1 0.15 0.2 0.25 0.3
Cell-cycle time noise (CV;?)

-

Fic. 4. The noise in a gene product is more sensitive to cell-cycle time variations when the
synthesis rate is not constant. For a time-varying synthesis rate, the noise contribution from parti-
tioning errors and cell-cycle time is affected more by CV.,?S when kg (T) is timer-dependent. Noise
levels are normalized to their value when CV_,{ = 0. The mean cell-cycle time is 75 = 20 min (fast
growing bacteria) and the rest of parameters are chosen equal to their value in Figure 2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/26/19 to 141.2.140.67. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MOMENT ANALYSIS OF LINEAR TIME-VARYING TTSHS 2675

means that keeping concentration constant will make cells more vulnerable to cell-
cycle noise. However, in the limit of large b, a cell can exploit this dependency to
reduce the contribution of noisy cell-cycle times (Figure 4). Moreover, in the limit
of deterministic cell-cycle times, noise values in (69) are slightly higher than those of
constant synthesis rate in (49). This implies that keeping the concentration constant
also may come with the price of having higher noise levels in the count level.

In addition to mammalian cells, measurements show that in fast growing bacteria
the synthesis rate is continuously increasing [95]. In these cells multiple gene replica-
tion occurs throughout the cell cycle and the amount of other components required
for expression (e.g., RNA polymerases and ribosomes) is limited. Hence, maybe con-
sidering a linearly increasing instead of exponentially increasing synthesis rate is more
physiological. Our analysis reveals that in this case the noise behavior is similar to
Figure 4 qualitatively.

Finally, our analytical results provide a unique method for inferring partitioning
noise in a gene product. Current expreiments are able to quantify distribution of cell-
cycle time [96]. By measuring noise in a gene product we can use (69a) to calculate
the contribution of cell-cycle time variations to total noise. The subtraction of total
noise from (69a) provides the noise contribution from partitioning and hence it can
be used to infer the partitioning scenario of a specific protein (parameter b).

6. Conclusion. Moment analysis of stochastic hybrid systems often relies on
deriving a set of differential equations for the time evolution of moments [34, 73]. For
linear stochastic systems, moments can be obtained exactly by solving these sets of
differential equations. However, nonlinearities within stochastic hybrid systems, such
as the hazard rate (6), lead to unclosed dynamics in the sense that time evolution
of lower-order moments depends on higher-order moments. In such cases, moment
computations are performed by employing either approximate closure schemes [53,
08, 44, 43, 79, 31, 74, 87, 27, 20] or constraints imposed by positive semidefiniteness
of moment matrices [28, 46].

Instead of relying on moment dynamics, here we used an alternative approach to
derive exact analytical expressions for the first two steady-state moments of TTSHS.
Our main results (Theorems 3.1, 3.4, and 5.1) connect these moments to the system
dynamics and the distribution of event arrival times. While knowledge of the entire
distribution of 74 is generally needed to compute the moments, if A = 0, then the
mean of x just depends on the first two moments of 74, and the second-order mo-
ments of x depend on the first three moments of 75 (Corollary 3.3 and Appendix F).
Interestingly, if A is Hurwitz, and the resets only add a zero-mean noise term that
can be state-dependent, then the extent of random fluctuations in x is affected only
by the average frequency of events 1/(7) (equation (34)). Analogous results were
derived for time-varying TTSHS where @ and A vary with the timer between events.
Finally, applying the theory of TTSHS to the biological example of gene expression
resulted in novel formulas for the mean and variance at the level of a gene product and
how these levels are impacted by stochasticity in cell-cycle times and the molecular
partitioning process.

Recent works has provided stability results for multimode TTSHS (systems that
allow for stochastic switching between systems) when the states of the system do
not change after resets [56, 57]. Future works will extend our method to consider
multimode TTSHS where values of the states after each reset are random. Further,
recent work has shown that for some nonlinear stochastic systems moment dynamics
become automatically closed at some higher-order moments, and hence moments can
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be computed exactly in spite of unclosed moment dynamics of lower-order moments
[88]. It will be interesting to explore classes of TTSHS with nonlinear continuous
dynamics, or state-dependent event arrival rates for which moments can be computed
exactly.

Appendix A. Proof of Theorem 3.1. Using (1), the states of TTSHS right
before the sth event x(t; ) are related to the states of TTSHS right after the s — 1th
event x(t ;) as

(70) 2(t7) = AT / e~ Madl + AT ().
0
Thus, by using (4), the mean of the states after the sth event is

(71) (x(thH)) =J <eA"5 /OTS e_Alddl> + J (e ) (m(t] ) + 7.

Note that in order to obtain (71) we took expectation with respect to 75 and hence
similar to (4) the right-hand side of the above equation is deterministic. In order to
have a finite (z(t])) in (71), (€27 [J* e~ adl) and (e”7+) should be finite. If these
matrices are not finite, then concluding (71) from (70) is not possible because the
expected values can be indeterminant This proves the only-if part of Theorem 3.1.
In the following, we show that (e7+) being finite means that (eA7= [* e~ adl) is
also finite.

The fact that a matrix exponential e4” can be written as
o0 Ti
AT i
(72) =>4 i!
i=0

means that A and e4”™ can commute. Thus

A<eATs / ! e—Alad1> — A / F()er™ / e~ Madldr
0 0 0
- . / F(r)e / e~ Aadidr

/ f(r)eAT (I, — e AT)adr
I _ < AT3>)G,,
and existence of (¢A7+) means that all the terms in (71) are finite so (x(t!)) is finite
if and only if (e/7) is finite.
Moreover, from (71) the mean of the states right after an event in steady-state
(s — 00) exists if and only and if eigenvalues of J(eA7+) are inside the unit circle. In

this limit the steady-state mean of the states (s — oo) right after an event can be
written as

(74) lim (2(t])) = (I, — J (A7) 7 (J <eA"'°‘ /OT e—Aladz> + r) .

S§—00

By using (1) and (74), the steady-state mean of the states between events for any
values of 7 is

Jim ottt 71) = (1= (e470) " (5 (et [ e Maat) 1)

(75) ]
+eAT / e~ AMadl.
0
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The mean of the states can be obtained by taking the expected value of (z(ts + 7))

in (75) with respect to all the values of T by using (8). However, to have a finite (x)

we need to show that (eA7) and (eA™ [ e~*adl) are also finite.
In the following we show that when all the elements of (e7+)

(eAAT) exists and is finite. To do so we first expand (e7#),

are bounded then

(76) <eAT'*>:/ h(r)e~ Jo MWy AT g
0

Then we aim to apply the integral by parts,

(77) / udv = (uv)g® —/ vdu,
0 0

by assuming that u = e” and dv = h(7)e~ Jo M)y Note that

(78) ie— Jo hy)dy — —h(r)e” Jo hv)dy,

dr
hence

(79) / h(fr)ef Jo h(y)dyeA‘rd,r _ <767 Iy h(y)dyeA'r)
0

o0

Jr/ e Jo W)y AT g
0 0

Finally
(80)
<6ATS > _ (767 Iy h(y)dyeAT)

- + / e~ o MWy AT pAqr — I, 4 (1) (e7) A,
0 0

where we used the fact that lim,_, ., e~ Jg Mw)dyeAT — (). For the sake of simplicity of
mathematical notation we proof this for the scalar case of A = a. From (8) it follows
that

(81) / p(r)dr =1= / e ST MW g — (1) < 00 = lim e Jo MWW =,
0 0

T—00

In the following, assume that lim,_,., €*” is infinite, hence

(82) lim e Jo M¥dYeem — 0 x oo
T—>00

We use 'Hopital’s rule

. 1 .
(83) lim e Jo M®dyear — _Z i h(r)e~ Jo M)y gar
T—00 a T—0

Note that we assumed a moment generating function exists, hence

(84) (e%7#) < 0o = lim h(r)e” Jo hy)dygar — (.

T—00

Moreover, similar to (73) we have

(85) A <eA"' /OT e—Aladz> = —(I, — (e*7))a.
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Hence, existence of (eA7+) means that all the matrices in (12) exist and this completes
our proof. On a final note, we consider the random initial condition for all the systems
presented in this paper.

Appendix B. Proof of Corollary 3.2. Taking integral by parts, (¢47) can be
written as

(eAT) = ! /oo e~ Jo hw)dy AT g 1 (e— I h(y)dyeArAq)
Ts> Ts
1

( 0
+ 7(7' ; / h(r)e~ Jo @)y AT g1, —
s) Jo

oo

(86) » ’

(Ts)

(I — (eAm)) AL,
Moreover

(87) <eA*s /OTS e—Alddz> = (e (I, —e ") A a)y = —(I,, — (e"7) ) A a.
Finally, the last integral in (12) can be written as

/ e~ Jo M)y AT / e Madldr = / e Jo MWy AT ([ o= AT AV adr
(88) 0 0 0
=— (I, = (e"™)) A4 — (r,)A .
Appendix C. Proof of Corollary 3.3. When A = 0 we have the following;:
(89) AT =1,, 7 / e Madl = ra.
0

Further

(90) <r13> ( /O Tk h@)dy) _ /0 () = 1.

Hence (12) simplifies to

(x) = — D) Nroa )i [T e I g
©1) @) =J (=) rda+ (I, —J) +<Ts>/0 dra.

Moreover, from (6) we can calculate the second-order moment (7:+1) as

(92) <7-i+1> _ / Ti+1h(7’)e_ I h(y)dydT,
0
in which integrating by parts results in
(93) <Ti+1> = (l + 1) / Tief foT h(y)dyd,r.
0

Hence from (8) we have
) 1 oo - <Ti+1>
4 iy i,— [5 h(y)dy _ s
(94) () = ooy [ rie i hovngr - AT

and by picking ¢ = 1, (91) simplifies to (17).
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Appendix D. Proof of Theorem 3.4.
D.1. Statistical moments of u after an event. Based on (5)

(@tD)x" (7)) = (@) (@) " + Q)= (t7)Q"

95
%) + Bx(t;)e¢" +eéx' (t;)BT + D.

Further from (4), (z(t5))(x(t5))T can be written as

S

(@) (@th) " = Jat)z" (¢

)"
(96) T T T T
+Jx(t])P T +ra (8]) T + P

Combining these two equations and using (26) results in (30).

D.2. Necessary and sufficient condition on existence of p. Let us define

Ts
(97) u=elTs / e~ Madl.
0

Using (70), the zx " right before the sth event (x(¢t; )z (¢;)) is related to (¢, ) as

(98) itz (t;) =uu' +u (eATSm(t:_l))T + (e (] ) u”
+ (A Toa(th) (A mea(th)
Thus the mean of the second-order moment of the states after the sth event is
(tDHz" (7)) = Q{uu™) QT + J (uu) JT
1Q (<um<t;ufe“s> + (ua(tt 1>TeAT*s>T) QT

( T A Ts >+< (t;i- 1)T6ATTS>T) JT
<eAT5:c t+ T(t;tl)eATTs> QT
J{AT 2t aT (¢ e AT“>JT Y Buer
Bl Tea(ty )e’ +J (u) i’
- 6<u yBT + c<wT(ttl) AT >BT
+ i (uT)JT 4@ (5 )er TN T + DT
By using vectorization, we have
vee((z(tH)a " (t1)) = (J© J + Q ® Q)(e"T ®@ T )vec((x(tf ) (t] )
+(J@J+QeQ)(e"™ @ u) + (u@ e 7)) (@(t] )
(100)  +((B@é+J @) ([, @e’™) + (0 B+7 @ J) ('™ @ I,)) @(t]_,)
+vec(Q(uu') Q"+ J(uu" Y J T +Bu)e" +J (u)i'
+e{u )BT +7#{u")J +D+7F").
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Hence, the steady-state moments of vector p right after an event exists if and only if
all the eigenvalues of (J ® J + Q ® Q)(eA™s ® eA7¢) are inside the unit circle. The
rest of the proof is similar to Appendix A.

Appendix E. Proof of Remark 1. Based on Corollary 11 of [99], for a negative
definite symmetric matrix M; and a positive semidefinite matrix Mo we have
(101) Amin (M1 Mz) 2 Anin (M1) Amaz (M2),

where A, and A, denote the smallest and the largest eigenvalue of a matrix,
respectively. Based on the fact that the exponential of a symmetric matrix is positive
definite and —J is symmetric negative definite (J is diagonal positive definite) we
have

(102) Amin (_J <eATS >) 2 /\min(_J))‘max (eATS)'
Given the fact that A\nin(—J) = —Amaz(J) and Apin (=T (€2T4)) = = Anae (J(€4T4)),

we have

(103) Amaz (T (eAT2)) < N () Amaz (€1T2).

The proof of the second part of this remark is from the fact that the eigenvalues of
the Kronecker product of two matrices are the multiplication of their eigenvalues [36].

Appendix F. Extension of Corollary 3.3. In the limit of A = 0, (e“»7+) in
(31) simplifies to

(104) A, = [ ********* R lo] ,=> (eMTe) = [AI ——————————— ;O} :

L@atyaol, 0 (In®a+a®I,)(Ts) 1 I
Moreover
105 AT, i —Auls Al = | -5 @ {Tﬁ) ,,,,,,,,,,,, )
( ) <€ /0 e Qy > | %(In®d+d®ln)&<7'g>
Similarly
(eAnTs) = |oroe oo L 0
eA;n's /‘rS e—Aul& dl ) = [ ,d,<,7t>, ,,,,,,,,,,,,
0 " | sUn@a+aeL)a(r?) |

By using (94) we see that all the terms in (31) only depend on the first three moments
of T,.

Appendix G. Matrices needed to calculate (i) for a gene product.

iy _ (em) 0
(ehnTe) = { 2% ((e77Te) + (e721=7s))  (e720=Ts) ] )

(107) (o [ ) B (eey)
o % ((e721=7s) — 2 (e =Ty + 1) |’
and
Ay _ (e77=T) 0
108 = [ 28 ((e77=7) + (e72%7))  {e™7) ] ’
o <6A“T /T e la dl> |, g
| T B (e By —2(emy +1) |
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Using the fact that

1 1 —VaTs e 27Ty — 1 1
e LT T = e,

(109) () = (1= (e-2meY)
(see Appendix C), (108) can be changed to just contain expected values with respect

to T,5. Putting these matrices and vectors back in Theorem 3.4 we derive () as in
(43).

Appendix H. Proof of Theorem 5.1. Using (50), the states of TTSHS right
before the sth event are

(110) z(t;) = /OTS d(1s,Da(l)dl + D(15,0)x(t] ).

Thus, the mean of the states after the sth event is

(111) ((t))) = <J<rs> / ¢<TS,Z>6L<Z>dZ> (B 0) () + (o)),

Hence, for the steady-state mean of states to not blow up, eigenvalues of (J(75)®(7s,0))
should be inside the unit circle. In this limit the mean of the states just after an event
in steady-state (s — o) is

(112)
i (a(65)) = (1, U Jatr o)™ ({5 [ #ranawar) + 6r).

5§—00
By using (112), the steady-state mean of the states between events for any T is

(113)
lim (2(t, + 7)) = (7,0) (I — (J(T:)D(T4,0)) "

o y (<J(Ts)/0” q&(rs,l)d(l)dl> + <f(rs)>) +/OT o(r. Da)dl

Thus, taking the expected value of (z(ts + 7)) with respect to 7 results in the mean
of the states as in (53). The rest of proof is similar to that of Theorem 3.1.
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