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Abstract— One challenge in gene network inference is dis-
tinguishing between direct and indirect regulation. Some algo-
rithms, including ARACNE and Phixer, approach this problem
by using pruning methods to eliminate redundant edges in an
attempt to explain the observed data with the simplest possible
network structure. However, we hypothesize that there may
be a cost in accuracy to simplifying the predicted networks
in this way, especially due to the prevalence of redundant
connections, such as feed forward loops, in gene networks.
In this paper, we evaluate the pruning methods of ARACNE
and Phixer, and score their accuracy using receiver operating
characteristic curves and precision-recall curves. Our results
suggest that while pruning can be useful in some situations, it
may have a negative effect on overall accuracy that has not
been previously studied. Researchers should be aware of both
the advantages and disadvantages of pruning when inferring
networks, in order to choose the best inference strategy for
their experimental context.

I. INTRODUCTION
A. Biology Concepts

Much of the complex functionality of cells is due to gene
interaction networks (GINs), in which genes can influence
the expression of other genes, or of themselves [1,2]. If a
gene codes for a protein that increases the expression of
another gene, the first gene is said to “activate” the second
gene. This can occur, for example, if the protein produced by
the first gene is a transcription factor for the second gene.
If a gene increases its own expression, that act is referred
to as “self-activation”. If a gene codes for a protein that
decreases the expression of another gene, the first gene is said
to “inhibit” the second gene. This can occur, for example, if
a gene codes for a protein that blocks the promoter region of
another gene, preventing RNA polymerase from binding to it.
If a gene decreases its own expression, that act is referred to
as “self-inhibition” [1,2]. Activation and inhibition between
genes can give rise to complex GINs that underlie many
cellular processes [1,2].

Understanding these GINs is important for understanding
many diseases. Cancer, for instance, is caused by a loss
of regulation of cellular growth, which is regulated at the
genetic level by GINs [1]. Knowing the structure of the
network can help us to find potential drug targets (such as
upstream regulators of oncogenes) [3].

B. Abstraction into Graph Theory

For simplicity, it can be helpful to think of gene networks
in an abstract graph theory framework. The network of all
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genes and their interactions can be viewed as a graph in
which the genes are nodes, and the interactions between them
are edges [1,2].

<z

Fig. 1. Example of an unsigned, directed network involving 7 genes.

A graph is said to be undirected if for every edge X — Y
there exists an equally weighted edge Y — X. In other words,
undirected graphs make no attempt to predict the direction
of causality in gene interactions. On the other hand, in a
directed graph the edges X — Y and Y — X may have
different weights, or one may exist independently, without
the other. Both directed and undirected graphs are commonly
used to describe GINs [1,2], but directed graphs are prefer-
able (and more difficult to construct) as they describe the
direction of causality in gene interactions, making them more
biologically accurate.

A network can also be either signed or unsigned. A signed
network distinguishes between activation edges and inhibi-
tion edges. An unsigned network makes no such distinction.
In collaborations with biologists, it is important to produce a
signed network to help them make sense of the interactions
biologically. However, for theoretical research on network
inference, it is common for unsigned networks to be used
[4], since the difficult part of inferring a network structure is
finding the edges, and once an edge is known, determining
whether it is positive or negative becomes trivially easy
(this can be found with a simple correlation or covariance
measurement).

C. Network Inference

It can be difficult to experimentally detect interactions
between genes. However, high-throughput sequencing tech-
niques like RNA-Seq make it feasible to measure the expres-
sion levels of many different genes simultaneously [2]. Then,
the challenge is to use computational techniques to analyze



the expression data and find the gene interactions. This task
is known as network inference.

There are several broad classes of network inference al-
gorithms based on different computational techniques. Some
of the most successful algorithms are based on information
theory, conditional probability, and regression [2]. Simpler
and computationally faster, though less accurate, techniques
are based on correlation [2]. Bayesian techniques were
popular at one point, but have fallen out of favor due to their
inability to detect cycles [2,6]. ODE-based methods are also
popular, but can only be used on time-series data [2].

D. Evaluation

To evaluate the performance of a network inference
algorithm, it must be tested on expression data from a
“gold standard” network, for which all of the edges are
already known, and scored based on its ability to recover
the true network structure from the input data. Fortunately
for researchers, several gold standard networks have been
made publicly available by Sage Bionetworks, a nonprofit
organization that hosts network inference competitions called
DREAM Challenges. In this paper, the DREAMS5 Challenge
Networks 1, 3, and 4 will be used for benchmarking [4].
Network 2 is omitted because it was not included in the
publicly available DREAMS download package.

Network 1 is an in silico dataset containing expression data
for 1643 genes. Network 3 is an E. coli dataset containing
expression data for 4511 genes. Network 4 is a S. cerevisiae
dataset containing expression data for 5950 genes. Each
dataset also includes a list of “potential transcription factors”.
Some inference algorithms utilize these transcription factor
lists while others do not.

The output of an inference algorithm is a set of predicted
edges, with each edge assigned a weight corresponding to
its confidence level. From there, the researcher can choose
which weight threshold to use for the final predicted network.
It is typically the case that if one wants to increase the
detection rate for true edges, then one must be willing to
accept a higher false positive rate. Conversely, changing
the threshold to decrease false positives will typically also
decrease the true positive detection rate. When it comes to
choosing a threshold, there is not necessarily a “right” or
“wrong” answer, as different experimental contexts can lead
to different priorities for balancing the maximization of true
positives with the minimization of false positives.

Despite the subjective nature of picking a threshold for
the final network prediction, there are two commonly used
metrics to objectively measure the accuracy of the inference
algorithm output: receiver operating characteristic (ROC)
curves and precision-recall (PR) curves [2,7]. There is cur-
rently some debate over which metric is better for evaluating
performance, and a strong case has been made that the PR
metric is superior in the GIN context [2,7]. However, since
the official DREAMS Challenge scoring methodology uses
both metrics, we will also use both in this paper.

ROC curves describe the recall (true positive rate) of the
predicted network as a function of the false positive rate.

Equations 1 and 2 show the definitions of recall and false
positive rate. TP represents the number of true positives. FP
represents the number of false positives. TN represents the
number of true negatives. FN represents the number of false
negatives.

TP
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The area under the ROC curve (AUROC) is typically used
as a numerical accuracy score. A perfect inference algorithm
would have an AUROC score of 1. However, no inference
algorithm currently reaches this level of accuracy. AUROC
scores for reasonably accurate inference algorithms typically
fall within the 0.5 - 0.8 range [4], depending on how difficult
the network is.
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Fig. 2. Receiver operating characteristic (ROC) curve example.

PR curves describe the percentage of predicted edges that
are correct (precision, defined in Equation 3 below) as a
function of the percentage of true edges recovered (recall,
defined in Equation 1). Area under the PR curve (AUPR) is
used as a numerical accuracy score, and an AUPR of 1 is a
perfect score.
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Fig. 3. Precision-Recall (PR) curve example.

All ROC and PR curvres in this paper were computed
using the official DREAMS Challenge scoring code, which
has been made publicly available along with the gold stan-
dard networks [4]. For this scoring methodology, an edge
prediction must have the correct direction to receive credit.
So for a true edge X — Y, if an undirect algorithm predicts
both edges X — Y and Y — X, then the former will be



marked as a true positive while the latter will be marked as
a false positive. However, even with this limitation, it is still
possible for a highly accurate but undirected algorithm to
perform well under this scoring protocol.

II. DIRECT AND INDIRECT REGULATION
A. False Positive Problem

One difficult challenge in network inference is distinguish-
ing between direct and indirect regulation [5,6].
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Fig. 4. An indirect connection between A and C increases the chance of
the edge A — C being falsely predicted.

In Figure 4, A regulates B, and B regulates C, but
A does not directly regulate C. However, in many cases,
the non-existent edge A — C will be more likely to be
falsely predicted than two other randomly selected nodes,
because of the indirect path between them. Some inference
algorithms have attempted to correct for this problem by
using pruning methods to eliminate redundant edges from the
predicted network [5,6,9,10]. Much has been written about
the potential advantages of these pruning methods, but their
potential disadvantages have not yet been as widely studied.

B. Feed Forward Loops

One of the difficulties in correcting for the overprediction
of edges between indirectly connected nodes is that feed-
forward loops, in which a node both directly and indirectly
regulates another node, are a common feature of many
genetic networks [1]. The statistical overrepresentation of
the feed forward loop network motif has been established
in a variety of organisms [11,12]. The evolutionary reasons
for this overrepresentation have also been studied, and it is
thought that the functional role of feed forward loops is to
allow for delayed response to a stimulus [13].

Feed forward loops present a challenge for the pruning
methods discussed in the previous section, since they utilize
the type of redundancy that the pruning methods are attempt-
ing to minimize. So, if an algorithm over-corrects the false
positive problem, it could result in the under-prediction of
real edges in feed-forward loops.
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Fig. 5. In a feed-forward loop with edges A — B, B — C, and A — C,
a suboptimal pruning strategy could wrongly eliminate the edge A — C.

Take, for example, Figure 5. Here, A regulates B, B
regulates C, and A also regulates C. A pruning method
based on minimizing redundancy could incorrectly identify
the edge A — C as a false positive and eliminate it from the
predicted network.

III. ALGORITHMS
A. ARACNE

ARACNE [5], published in 2006, is one of the most tried
and tested inference algorithms currently in use. Despite
being more than a decade old, it is still commonly used
and cited in many more recent papers in this field [2,6,8].
The algorithm is based on the information theory concepts
of entropy and mutual information [5,6].

For a discrete random variable X, the entropy is defined
as:

H(X)=->" p(x)log(p(x)) e

zeX

The logarithm here is usually base-2 in information theory,
but a natural logarithm is used in ARACNE [5].

Entropy gives a numerical measure of the random vari-
able’s “uncertainty”, and can also be thought of as the
amount of new information gained when the value of a
random variable becomes known.

Given two discrete random variables, X and Y, the mutual
information between them is defined as:

I(X,Y)=H(X)+H(Y) - H(X,Y) (5)

=y Zp(w,y)logpp(xi’y) 6)

o=y St (@)p(y)

If two random variables are independent, then their mutual
information is 0. If two random variables are dependent, then
the entropy of their joint distribution will be less than the sum
of their individual entropies, giving them a positive mutual
information level.



The ARACNE algorithm also contains several more com-
plex computational steps on top of this information theory
foundation. For a more in-depth explanation of the algorithm,
please see the original paper: “ARACNE: An Algorithm
for the Reconstruction of Gene Regulatory Networks in a
Mammalian Cellular Context” (Margolin et al, 2006) [5].

A key feature of ARACNE is the use of the Data Process-
ing Inequality (DPI) [5,6,8] to prune the network after the
raw edge weights have been computed. For every possible
triplet of nodes X, Y, and Z, the following inequality is
checked:

I(X,Z) <min{I(X,Y),1(Y, Z)} (7)

If this statement is true, then the edge X — Z is eliminated.
The goal of this pruning step is to yield a sparse network
with minimal redundancy and maximal explanatory power.

B. Phixer

In the Phixer algorithm [6], developed by Nitin Singh
in 2012, edge weights are computed using the phi-mixing
coefficient. For random variables X and Y taking values in
sets A and B, the phi-mixing coefficient ¢(X|Y") is defined
as:

H(X|Y)= max 5 |Pr{X € S|Y € T} — Pr{X € S}

SCA,TC
®)
#(X]Y) is the weight of the edge Y — X. Since the phi-
mixing coefficient is an asymetric measure, the weight of the
edge X — Y may be different.
The Phixer algorithm includes its own pruning step, in-
spired by the DPI. For every possible triplet of nodes X, Y,
and Z, the following inequality is checked:

¢(X]Z) < min{p(X]Y), ¢(Y|Z2)} )

If this statement is true, then the edge Z — X is eliminated.
As with ARACNE, the goal is to yield a sparse network that
can explain the observed data with the least redundancy.

C. PIDC

The Partial Information Decomposition and Context
(PIDC) [8] algorithm was developed by Chan et al. in
2017, and is one of the more recent and better performing
algorithms in the field of network inference. Although the
PIDC paper references the DPI pruning method, the algo-
rithm does not actually use the pruning method. However,
we have included PIDC in order to compare the results
from ARACNE and Phixer to a recently developed, highly
accurate algorithm.

PIDC, like ARACNE, is based on the entropy and mutual
information concepts seen in Equations 4, 5, and 6. However,
instead of computing mutual information scores in a pairwise
manner, PIDC computes the partial information decomposi-
tion between triplets of genes. For each target gene Z and
source genes X and Y, the partial information decomposition
is defined as:

I(Z; X,Y) = Synergy(Z; X,Y) + Uniquey (Z; X) 0
+Uniquex (Z;Y) + Redundancy(Z; X,Y) (19)

The “Synergy” term is the part of the information about Z
that can be provided only by the combination of X and Y. The
“Unique” terms are the parts of the information about Z that
can be provided by only X or only Y. The “Redundancy”
term is the part of the information about Z that can be
provided by either X or Y, without needing to combine both
of them.

This is only a very brief summary of the foundation of
PIDC. For a more in-depth explanation of how to compute
these terms and use them to calculate the final edge weights
for the predicted network, please see the original paper
“Gene Regulatory Network Inference from Single-Cell Data
Using Multivariate Information Measures” (Chan et al, 2017)
[8].

Please note that PIDC predicts an undirected network,
so for every predicted edge X — Y, an equally weighted
edge Y — X is also predicted. Despite this limitation, it still
performs well when compared to directed algorithms.

IV. ANALYSIS
A. Overview

We began our analysis by testing the ARACNE and Phixer
algorithms on the DREAMS Networks 1, 3, and 4 gold
standard datasets. The algorithms were run both in their
original form (with pruning), as well as with the pruning
step removed, in order to compare the results.

ARACNE was run without bootstrapping, using the sug-
gested parameters from the official documentation [5], in-
cluding taking the lists of potential transcription factors as
an argument. After running it on each network in its original
form, the pruning step was removed by adding the “—nodpi”
option to the run command, and it was run on each network
again without pruning.

Phixer was run with its default parameters, including 10
bootstrapping runs. It does not utilize the lists of transcription
factors (although still performs reasonably well despite this).
After running it on each network in its original form, we
edited the code to remove the pruning step and then ran it
on each network again.

PIDC was also run on each dataset, with its default
parameters, for the purpose of comparing the ARACNE and
Phixer results to those of a relatively new algorithm known
for its high level of accuracy.

B. Results

Figures 6, 7, and 8 show the ROC curves for each network.
The dotted lines are the curves for the unpruned versions of
ARACNE and Phixer, while the solid lines are the curves
for the pruned versions of these algorithms, as well as for
PIDC.

The ROC analyses show that in each test case, the un-
pruned versions of ARACNE and Phixer achieved a higher
recall than the pruned versions at nearly every possible false
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Fig. 7. Network 3 ROC curves.
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Fig. 8. Network 4 ROC curves.
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positive rate. In addition, the unpruned versions are able to
compete with PIDC in terms of ROC curve accuracy, unlike
the original pruned versions of the algorithms.

Figures 9, 10, and 11 show the PR curves for each
network. Please note that the scale of the Y axis in Figure
11 is from O to 0.1, rather than from O to 1 as in the
other figures. This is to make the differences between lines
more visible, since Network 4 was very difficult and each
algorithm achieved relatively low precision on it.

While the results of the ROC analyses clearly favored the
unpruned strategy, interpreting the results of the PR analyses
requires more nuance.

Figure 9 illustrates an interesting trend in which the pruned
strategy, for both ARACNE and Phixer, achieves a higher
precision rate for low levels of recall, while the unpruned
strategy achieves a higher precision rate for intermediate
and high levels of recall. This general trend also appears
in Figures 10 and 11, although it is more difficult to see
visually due to the smaller differences in precision between
the algorithms.

So, the pruned strategy may indeed be useful for certain
situations in which the goal is to generate a simplified
network prediction composed of a small subset of high-
confidence interactions. However, if the goal is precision
at an intermediate or high recall level, then the unpruned
algorithm outperforms the pruned algorithm.

C. Performance Summary - Unpruned vs. Pruned

Table I shows the AUROC scores of the ARACNE and
Phixer algorithms for all three gold standard networks, and
the percentage change in AUROC from the unpruned strategy
to the pruned strategy. Please note that in all six test cases,
the unpruned strategy achieved a higher AUROC score than

Table II shows the AUPR scores of the ARACNE and
Phixer algorithms for all three gold standard networks, and
the percentage change in AUPR from the unpruned strategy
to the pruned strategy. Please note that the unpruned strategy
achieved a higher AUPR score than the pruned strategy in
five out of six test cases.

So, although pruning may be be useful in some contexts,
as discussed in the previous section, the unpruned strategy
appears to be the superior choice when the goal is overall
accuracy, as measured by either the AUROC score or AUPR
score.

D. Comparison to PIDC

To put our results into context, we tested PIDC [8] on the
DREAMS gold standard datasets and compared its accuracy
to that of the unpruned ARACNE and Phixer algorithms.
Table III shows the AUROC scores for all three algorithms
on all three gold standard networks, while Table IV shows
the AUPR scores.

TABLE III
AUROC SCORES

Dataset ARACNE#* | Phixer* PIDC | Winner
Network 1 0.7299 0.7848 0.7753 Phixer
Network 3 0.6465 0.6467 0.6313 Phixer
Network 4 0.5286 0.5401 0.5314 Phixer
*Unpruned strategy

TABLE IV
AUPR SCORES
Dataset ARACNE* | Phixer* | PIDC Winner
Network 1 0.1874 0.1417 0.2255 PIDC
Network 3 0.0745 0.0337 0.0711 | ARACNE
Network 4 0.0199 0.02 0.0219 PIDC

the pruned strategy.

TABLE I

ROC CURVE SUMMARY

*Unpruned strategy

From these results, we cannot conclusively say which is
the best method of the three. However, it appears that once
their pruning steps are removed, ARACNE and Phixer are
at least competitive with PIDC, one of the most accurate
algorithms in the field.

During the testing process, it also came to our atten-
tion that the unpruned ARACNE and Phixer algorithms
outperform PIDC in terms of runtime. Runtimes for the
three algorithms are shown in Table V and Figure 12.
Measurements were taken on an OptiPlex 7060 Dell, with
an Intel Core 17-8700 CPU and 7.6 GB RAM, running 64-
bit Ubuntu 18.04.1.

TABLE V
RUNTIME (MINUTES:SECONDS)

Algorithm Dataset AUROC
Unpruned | Pruned | % Change
ARACNE | Network 1 0.7299 0.6547 -10.30%
ARACNE | Network 3 0.6465 0.5434 -15.94%
ARACNE | Network 4 0.5286 0.5053 -4.40%
Phixer Network 1 0.7848 0.6157 -21.54%
Phixer Network 3 0.6467 0.5209 -19.45%
Phixer Network 4 0.5401 0.5033 -6.81%
TABLE 1T
PR CURVE SUMMARY
Algorithm Dataset AUPR
Unpruned | Pruned | % Change
ARACNE | Network 1 0.1874 0.2266 +20.91%
ARACNE | Network 3 0.0745 0.0488 -34.49%
ARACNE | Network 4 0.0199 0.0185 -7.03%
Phixer Network 1 0.1417 0.0984 -30.55%
Phixer Network 3 0.0337 0.0289 -14.24%
Phixer Network 4 0.02 0.0179 -10.50%

Dataset ARACNE#* | Phixer* PIDC
Network 1 1:06 14:11 16:22
Network 3 1:29 107:31 488:00
Network 4 1:05 114:09 3398:44

*Unpruned strategy
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Fig. 12. Runtime comparison.

In each case, ARACNE is the fastest and PIDC is the
slowest, with Phixer in the middle. As the number of genes in
the dataset increases, the difference becomes more evident.
For Network 4 (the largest dataset, containing expression
data for 5950 genes) ARACNE ran in about one minute,
while Phixer ran in under two hours, and PIDC took more
than two days.

The difference in runtime scalability is likely due to
the fact that ARACNE and Phixer perform edge weight
calculations on pairs of nodes, while PIDC performs edge
weight calculations on triplets of nodes. To give a simplistic
example, consider a dataset with 100 genes. Since self-edges
are not being considered, there are 100¥99=9900 possible
pairs of genes for ARACNE and Phixer to check, and
100*%99*%98=970200 possible triplets for PIDC to check.

So, we believe that unpruned versions of ARACNE and
Phixer can be considered viable alternatives to PIDC, since
they deliver comparable levels of accuracy at faster runtimes,
and scale better to large datasets.

V. DISCUSSION

In this paper, we have shown that the pruning strategies
used by ARACNE and Phixer reduced AUROC score in six
out of six test cases and reduced AUPR score in five out of
six test cases. While more research is needed to further con-
firm this, we tentatively conclude that these pruning methods
have a negative overall effect on accuracy. Furthermore, we
have shown that simply removing the pruning step allowed
ARACNE and Phixer to attain accuracy levels similar to
those of PIDC, a truly state-of-the-art inference algorithm.

However, we certainly do not mean to suggest that the
pruning strategies are useless. Rather, it appears that they
may be advantageous in some situations (such as when the
goal is precision at a low recall level) and disadvantageous in
others (such as when the goal is precision at an intermediate
or high recall level). So, it is important for researchers to
understand both the advantages and disadvantages of pruning
in order to choose the appropriate inference strategy for their
experimental context.

From a software development perspective, we suggest that
inference software that includes a pruning step should also
include an easy way to opt out of it, if the user so chooses.

ARACNE has already done this, with the “—nodpi” option,
but for Phixer we had to manually edit the code to remove
the pruning step.

Next steps for this research will include analysis of other
algorithms that include pruning strategies, such as CLR [9]
and MRNET [10].

Further work will include an investigation into why prun-
ing leads to a drop in accuracy. We suspect that it is related
to a loss of detection of redundant edges within feed forward
loops, but this has yet to be confirmed. Once we can identify
the root of the problem both empirically and theoretically, we
will attempt to develop a new pruning strategy that achieves
the goals of simplicity and false positive minimization with-
out sacrificing accuracy.
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