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Abstract— Sequestration of a protein by another decoy
molecule, such that the protein is no longer available to perform
its biological function, forms a fundamental layer of regulation
in biomolecular systems. To quantify how fluctuations in protein
level is controlled by decoys, we formulate a model where
both proteins and decoys are stochastically expressed, with fast
binding/unbinding of the protein to the decoy. Our analysis
reveals that when the noise in the decoy copy number is small,
the noise in the free protein numbers (as quantified by the
Fano factor) monotonically decreases to the Poisson limit with
the increasing average number of decoys. In contrast, for a high
noise in decoys production, the response becomes nonmonotonic
— the noise level in protein counts is amplified at first with
the increasing decoy numbers, before attenuating back to the
Poisson limit. Motivated by recent biological examples, we next
implement feedback control in the sequestration process by
having the free proteins upregulate the decoy synthesis. Thus
any random increase in the abundance of free proteins also
results in higher decoy numbers, and hence more sequestered
proteins. Intriguingly, our results show that as before, noise
in free protein levels can get amplified with increasing decoys,
albeit with a lesser magnitude as compared to the no feedback
case. In summary, molecular decoys can play a key role in either
amplifying or dampening the stochastic fluctuation of protein
levels, and this study systematically quantifies this behavior
across parameter regimes.

I. INTRODUCTION

Genetically identical cells in the same external environ-
ment express proteins exhibiting remarkable cell-to-cell vari-
ability [1], [2], [3], [4]. This variation in protein expression
level of a gene commonly known as gene expression noise.
A major source of the noise arises from the inherent stochas-
ticity of biochemical reactions (such as binding/unbinding,
production and degradation) occurring at low molecular copy
number. The noise in gene expression has several important
roles in establishing phenotypic diversity in a population of
organism [5], [6], [7], [8], [9], deciding the fate of cells
during lysis-lysogenic bifurcation in phage lambda [2] and
other circumstances [10], and determining cellular fitness
[11], [12]. However, in many cases, the stability against
the noise is essential [13], e.g. the cell differentiation in
developing embryos [14], [15], [16].

Generally, the regulation of a protein synthesis happens by
binding of proteins (known as transcription factor proteins)
to the specific region of a target gene (promoter) and thereby
activating or inhibiting the transcription process. A protein
for a target gene not only binds to the promoter but also
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can bind to other nonfunctional sites of a genome [17],
[18], [19], [20], [21], [22], [23]. These nonspecific binding
sites for proteins are known as decoy binding sites. The
binding of proteins is not limited to specific and nonspecific
binding sites of a genome. A protein can also bind to other
partner proteins and indirectly regulates expression of a gene
[24]. For example, in the case of heat shock response, such
protein-protein interaction exists [25], [26]. There are some
RNAs such as long non-coding RNAs can also serve as
binding sites of proteins [27], [28]. We refer these molecules
with protein binding sites as decoy molecules. While the total
genomic decoy binding sites are fixed in a cell, the total
number of decoy molecules fluctuates as their productions
and decays are stochastic. In past, several theoretical studies
[29], [30], [31], [32], [33] have addressed the role of decoys
by considering the number of the total decoy sites constant
and have found that the protein binding to decoy sites
suppresses noise in gene expression. However, the role of
decoy binding of a protein is not well studied when the
number of total decoy site fluctuates.

To quantify how the random fluctuations in protein levels
are controlled by decoys, we formulate a model where both
proteins and decoys are stochastically expressed in the pres-
ence and absence of any feedback mechanisms (Fig. 1). The
binding of proteins to the decoys can enhance “cooperative
stability” of proteins [34], [30]. In our model, we assume
proteins bound decoy do not degrade like several previous
studies [30], [35], [32], [33]. First, we write down the
chemical master equation and then solve its moment statistics
using the Linear Noise Approximation (LNA) method [36].
We quantify noise for protein counts in terms of the Fano
factor which is the ratio of the variance to the mean and
derive analytical expressions of the mean and noise at the
steady state. We find that a sufficiently noisy decoy synthesis
can enhance noise in the protein count even in the presence
of negative feedback.

II. MODEL FORMULATION

We study how the protein-decoy interaction affects the
gene expression noise using a simple model as schematically
shown in Fig. 1. The synthesis of protein and decoy species
are assumed to occur from consecutive genes in bursts. In the
case of a protein synthesis, in this bursty limit, the dynamics
of mRNA is neglected assuming the lifetime of mRNA is
very short compared to that of the protein [37], [38], [39].
The decoy species binds to proteins reversibly to form bound
complex. We again note that this protein-decoy binding are
different from the binding of proteins to the nonspecific
genomic sites as the productions of decoy molecules are
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Fig. 1. A schematic representation of the models with
protein-decoy interaction. The protein X and decoy species
Y are synthesized in bursts. A protein X molecule reversibly
binds to a decoy Y and form complex C. We assume the
binding/unbinding reactions are very fast compared to the
production and degradation reactions. (I) In the absence
of feedback, Y syntheis is independent of X . (II) In the
presence of negative feedback, X activates Y synthesis.

fluctuating whereas the total number of nonspecific binding
sites is constant. The free protein not only binds to free decoy
molecules, but it also can act as transcription factors for the
gene producing decoy molecules and directly enhances its
production. Consequently, it increases the sequestration of
proteins and creates a negative feedback loop for the decoy
production. We investigate both the cases: (I) no feedback
case i.e. protein does not influence decoy production, and
(II) negative feedback case, i.e, protein enhances decoy
production (see Fig. 1).

Let us denote the protein species by X and decoy species
by Y and their copy numbers by x and y, respectively.
During X synthesis which occurs at rate kx, Bx copies
of X are released. Similarly, By copies of Y are produced
during Y synthesis. The rate for this event ky(x) may depend
on the copy number of x. We choose a linear dependence,
ky(x) = k0y + k1yx/〈x〉. The scaling with the steady state
mean level of X , 〈x〉, makes the dimension of k0y and k1y
the same, and it does not affect the results presented in
this paper. For the no-feedback case k1y = 0, meaning X
does not influence Y production (case (I)). For k1y > 0 i.e.,
when X activates Y imply a negative feedback. In the latter
case, we consider ky(x) = k1yx/〈x〉 by choosing k0y = 0
for simplicity (case (II)). The random variables Bx and By
are drawn from the probability distributions αx(Bx) and
αx(Bx). The protein reversibly binds to a decoy molecule
with rate kb to form a complex C and unbinds with rate
ku. The species X and Y degrade with rates γx and γy ,
respectively. As the binding/unbinding of molecules happens
very fast, we assume the binding and unbinding rates are very
large compared to other reactions.

The distributions of protein bursts follow geometric dis-
tributions [40], [41]. We choose the following geometric

distributions for species X and Y [35],

αx(i) = (1− 1/〈Bx〉)i−1/〈Bx〉, and (1a)

αy(i) = (1− 1/〈By〉)i−1/〈By〉, (1b)

for i ∈ [1, 2, ...), where 〈Bx〉 and 〈By〉 is the average burst
sizes for X and Y , respectively. For these shifted geometric
distributions, the second order moments are related to their
first order moments as, 〈B2

x〉 = 2〈Bx〉2 − 〈Bx〉 and 〈B2
y〉 =

2〈By〉2−〈By〉. These relations will be useful to write down
the final expressions of the noise in terms of the average
burst sizes.

The mathematical description of the all the reactions
and their probabilities of occurrences at time t during an
infinitesimal time dt are summarized below:

Synthesis of X :

Prob{x(t)→ x(t) +Bx} = kx αx(Bx) dt, (2a)
Synthesis of Y :

Prob{y(t)→ y(t) +By} = ky(x)αy(By) dt, (2b)
Binding :

Prob{x(t)→ x(t)− 1, y(t)→ y(t)− 1, c(t)→ c(t) + 1}
= kb x(t) y(t) dt, (2c)
Unbinding :

Prob{x(t)→ x(t) + 1, y(t)→ y(t) + 1, c(t)→ c(t)− 1}
= kuc(t)dt, (2d)
Degradation of X :

Prob{x(t)→ x(t)− 1} = γx x(t) dt, (2e)
Degradation of Y :

Prob{y(t)→ y(t)− 1} = γy y(t) dt, (2f)

where, c(t) is the number of the bound complex C at time
t.

The time evolution of the probability density pt(x, y, c),
for having x copies of X , y copies of Y and c copies of C
at time t, is given by the chemical master equation (CME),

∂pt(x, y, c)

∂t
= kx

x∑
i=1

αx(i)pt(x− i, y, c)

+

y∑
i=1

αy(i)ky(x)pt(x, y − i, c)

+ kb(x+ 1)(y + 1)pt(x+ 1, y + 1, c− 1)

+ ku(c+ 1)pt(x− 1, y − 1, c+ 1) + γx(x+ 1)pt(x+ 1, y, c)

+ γy(y + 1)pt(x, y + 1, c)

− [kx + ky(x) + kbx y + kuc+ γxx+ γyy] pt(x, y, c).
(3)

The analytical solution for the pt(x, y, c) is a hard problem.
As our goal is to quantify noise, we solve the moment
dynamics of the above equation rather than solving for
the full probability density function. In particular, we are
interested in the first order and second order statistical
moments. To obtain a moment equation of an arbitrary order
〈xm1ym2cm3〉, we multiply xm1ym2cm3 (for m1,m2,m3 ∈
0, 1, 2, ..) both side of the Eq. (3) and sum over all possible
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values of x, y, and c. The general form of moments equations
for a set of reactions is given by Dynkin’s formula [42].
For our system, the Dynkin’s formula is presented in the
appendix.

As the terms associated with binding events in the above
equation are nonlinear, the moments dynamics are not closed
in a sense that the time derivative of moments of a given
order depend on their higher-order moments [43], [44]. For
example, in this model, the mean dynamics of species X
depends on the second order moment 〈x y〉. In such cases,
an approximation solution can be obtained using various
moment closure approximation schemes [45], [46], [47],
[44], [48], [49], [50], [43]. We use the method of linear
noise approximation (LNA) [36], [43], [51] to obtain close
moment dynamics. Under this approximation, we linearise
the nonlinear term x y around steady state mean by, x 〈y〉+
〈x〉 y − 〈x〉 〈y〉, where 〈x〉 and 〈y〉 are the mean copy
numbers of species X and Y in the steady-state. Under this
approximation, from the Dynkin’s formula, we get the first
order moment dynamics,

d〈x〉
dt

= 〈Bx〉kx + kuc− kb(〈x〉〈y〉+ 〈x〉〈y〉 (4a)

− 〈x〉 〈y〉)− 〈x〉γx,
d〈y〉
dt

= 〈By〉(k0y + k1y〈x〉/〈x〉) + kuc− kb(〈x〉〈y〉 (4b)

+ 〈x〉〈y〉 − 〈x〉 〈y〉)− 〈y〉 γy,
d〈c〉
dt

= −kuc+ kb(〈x〉〈y〉+ 〈x〉〈y〉 − 〈x〉 〈y〉), (4c)

where, 〈·〉 and 〈·〉 denote the ensemble averages at the
transient and steady state, respectively.

III. RESULTS

By solving Eqs. (4) at the steady state, we obtain the
mean count of X , Y , and C at the steady state and these
are given by, 〈x〉 = kx〈Bx〉/γx, 〈y〉 = (k0y + k1y)〈By〉/γy ,
and 〈c〉 = 〈x〉 〈y〉/k, where k = ku/kb is the dissociation
constant. Note that 〈x〉 is independent Y . However, we will
observe that the noise in X copy number depends on Y in
an interesting way.

To calculate noise, we need to solve the dynamical equa-
tions of the second order moments using the LNA in the
steady state. Similar to calculations of the first moments, we
use the following steps for the second moments: (1) We write
down the dynamical equations for all the second moments
(〈x2〉, 〈y2〉, 〈c2〉, 〈x y〉, 〈x c〉, and 〈y c〉) using the Dynkin’s
formula presented in the appendix. (2) We use the LNA
to linearize the binding term. (3) We solve the dynamical
equations at the steady state by setting time derivatives to
zero. (4) Finally, we simplify the Fano factor expression in
the fast binding/unbinding limit, ku/kb = k = finite, with
kb →∞.

In the case of a simple bursty production, the problem
becomes linear, and the exact expression of the Fano factor
can be obtained. For this case, the Fano factor for species
X is given by, (〈B2

x〉+ 〈Bx〉)/(2〈Bx〉) [52] which becomes

〈Bx〉 for the shifted geometric distribution (Eq. (1b)). If the
value of the Fano factor for X copy numbers in the presence
of decoy binding is higher than 〈Bx〉, then the decoy acts
as a noise enhancer, and if it reduces the noise level from
〈Bx〉, then the decoy behaves as a noise buffer. Below, we
present the expression of the Fano factors for X counts in
the presence of decoy molecules.

Case I: No feedback

First, we focus on the no-feedback case. Here, ky = k0y
and k1y = 0. When γx = γy , the expression of the Fano
factor is given by,

FanoI =
〈x2〉 − 〈x〉

2

〈x〉
=

k〈Bx〉+ 〈y〉
k + 〈x〉+ 〈y〉

+

(〈Bx〉〈x〉+ 〈By〉〈y〉+ 2k〈Bx〉)〈x〉
(k + 〈x〉+ 〈y〉)(2k + 〈x〉+ 〈y〉)

,

(5)

where k = ku/kb is the dissociation constant. Note that in the
limit of the small Y count, i.e., 〈y〉 → 0, the noise is purely
coming from the bursty production of X , and FanoI =
〈Bx〉, as expected. In the limit of large Y count, 〈y〉 → ∞,
the noise in X counts approaches to the Poisson limit, i.e.,
FanoI = 1. For 〈Bx〉 > 1, the approach to the Poisson
limit as a function of 〈y〉 can be non-monotonic, depending
on the value of burst size 〈By〉. For example, in the limit of
strong binding (i.e., dissociation constant k → 0), neglecting
all the terms associated with k, it can be shown that the
peak in the Fano factor appears for 〈By〉thno−feedback ≥
2 〈Bx〉 − 1. It implies that for a given 〈Bx〉, there exists
a threshold burst size for Y , 〈By〉th,no−feedback, below
which no enhancement and nonmonotonicity in the noise
are observed.

Case II: With negative feedback

We now focus on the negative feedback case. Here, ky =
k1yx/〈x〉 and k0y = 0.The analytical expression of the Fano
factor for γx = γy is given by,

FanoII =
〈x2〉 − 〈x〉

2

〈x〉
=

k〈Bx〉+ 〈y〉
k + 〈x〉+ 〈y〉

+

〈Bx〉(〈x〉
2
+ 2k〈x〉 − k〈y〉) + 〈By〉〈x〉 〈y〉

(k + 〈x〉+ 〈y〉)(2k + 〈x〉+ 2〈y〉)
.

(6)

As in the case of no feedback, in the limit 〈y〉 → 0,
FanoII = 〈Bx〉, and in the limit 〈y〉 → ∞, FanoII = 1.
For 〈Bx〉 > 1, the approach to the Poisson limit as a
function of 〈y〉 can be non-monotonic, depending on the
value 〈By〉. In the limit of strong binding (k → 0), it
can be shown that the peak in the Fano factor appears for
〈By〉th,neg−feedback ≥ 3 〈Bx〉− 1. It should be stressed that
even in the presence of negative feedback noise enhancement
is observed. However, the negative feedback increases the
threshold in the burst size 〈By〉 to observe a noise enhance-
ment.
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Fig. 2. Nonmonotonic behavior of noise in the protein copy number due to noisy production of decoys. The noise
The Fano factor in free protein counts is plotted against the mean decoy abundance. We vary burst frequencies k0y or k1y
to increase the mean decoy abundance at the steady state. (Top panel): The decay rates for both the protein and decoy
molecules are the same. The noise in the decoy production (〈By〉) increases as we move from the left to right plot. (Left)
The decoy production is less noisy than that of protein production. (Middle) Both productions are equally noisy. (Right) The
decoy production noise is very high compared to that of the protein. For the less noisy decoys, the noise decay monotonically
to the Poisson limit as a function of the mean free decoy number (〈x〉). It is interesting to see that the noise in the protein
count remains smaller than that of the fixed decoy case. When both the decoy and protein productions are equally noisy, the
noise in the no-feedback case and fixed decoy site case the same. A nonmonotonic behaviour in the noise is seen for high
decoy noise. (Bottom panel): The decay rate for the decoy is large than that of the protein. For high decoy production noise,
the protein count noise becomes very large compared to the top panel. For a low decoy production noise, the noise becomes
sub-Poissonian in the presence of negative feedback. Parameter used: Parameters for the proteins 〈Bx〉 = 4, kx = 1, and
γx = 0.01. Parameters for the decoy: 〈By〉 = 1 (left panel), 〈By〉 = 4 (middle panel) and By = 20. Dissociation constant
for the binding, k = ku/kb = 1 (right panel); γy = γx (top panel) and γy = 50γx (bottom panel).

Case III: Fixed decoy species
Here, we discuss another case where the decoys are

not expressed stochastically, but the total number is fixed.
This case was studied earlier, and results are known [35].
However, to understand the role of a stochastically expressed
decoy, we should compare our results with fixed decoy case.
In this case the noise in protein count is given by [35],

FanoIII =
〈Bx〉(k + 〈x〉) + 〈y〉

k + 〈x〉+ 〈y〉
, (7)

where 〈y〉 is the steady state mean of free decoy abundance.
Here, the total number of decoy sites, 〈y〉 + c, is constant.
It is important to note that the noise formula (Eq. (5))
in the no-feedback case of stochastically expressed decoys,

surprisingly, reduces to the equation for the fixed decoy case
(Eq. (7)) when the burst sizes for both the protein and decoy
are the same, i.e., 〈Bx〉 = 〈By〉.

In the top panel of Fig. 2, we plot the noise in the protein
counts due to stochastically expressed decoy molecules as
a function of the steady-state free decoy counts 〈y〉, when
both the decay rates are the same, γx = γy . We vary the
decoy burst frequency to increase 〈y〉. The Fano factor for
all the three cases are plotted for different values of decoy
burst sizes and decoy decay rates. As we discussed before,
for a simple bursty process with the geometric burst size
distribution given by Eq. (1b), the Fano factor in protein
copy numbers is the average burst size. This implies the
noise in the decoy production can be increased by increasing
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the average burst size for the decoy. In the limit when
the average number of decoy sites are very very large, the
molecular sequestration by decoys makes the noise in protein
counts Poissonian. The noise in the negative feedback case
is always smaller compared to the no-feedback case. When
the decoy sites are highly noisy (large decoy burst size),
the noise curves show a nonmonotonic behavior for both
with and without feedback cases and stays above the fixed
decoy species case. It should be noted that the noisy decoys
suppress the noise better than the fixed for 〈By〉 < 〈Bx〉.
For 〈Bx〉 = 〈By〉, interestingly, the noise level for case-I
and case-III are the same. In the bottom panel of Fig. 2,
we plot the noise for λy > λx. We see a similar noise
behavior as λx = λy . However, in this case, the noise gets
further amplified. The noise enhancement becomes smaller
for λy < λx compared to that of when λy = λx (not shown
here).

The results presented above agree quite well with the
exact stochastic simulations performed using the Gillespie
algorithm [53]. If the binding affinity is very large (i.e. the
effect of the nonlinear term is large), it shows a deviation.
However, the qualitative behavior of the results does not
depend on the approximation due to the LNA.

IV. DISCUSSION

The decoy species can play a vital role in gene expression
sequestering proteins and building feedback loops in regula-
tory circuits [26]. While the most previous studies consider
the total number of decoy species fixed, this number can
fluctuate when partner proteins or RNAs act as a decoy. In
this work, we have studied the role of decoy-protein inter-
action in the gene expression noise, considering fluctuation
in decoy numbers. We formulate a model where both the
protein and decoy are expressed stochastically. Using the
linear noise approximation, we quantify the noise in the
protein count by the Fano factor. We find that the noise
in protein counts crucially depends on the noisy production
of the decoy molecules. Our main findings on the noise in
protein counts include: (i) the molecular sequestration of
proteins by decoys can make the noise Poissonian, in the
limit of large decoy abundance, (ii) if the synthesis of decoy
species “sufficiently” noisy compared to that of the proteins,
noise in protein copy number show an enhancement as we
vary the decoy abundance, (iii) the enhancement in noise
persists even in the presence of a negative feedback but
in lesser magnitude compared to that of no feedback case,
(iv) if the decoy species synthesis is less noisy, the negative
feedback can reduce the noise to below the Poisson limit, and
finally, (iv) the noise enhancement gets further amplified if
decoy species are less stable than the protein.

The gene expression noise could be beneficial for the sur-
vival of organisms in a population under fluctuating external
environments. It can cause diseases and induce defects in
developing embryos where precision is important. Our results
show that, depending on contexts, the decoy can be used to
amplify or suppress gene expression noise.

APPENDIX

Dynamical equation for moments
Let φ(x, y, c) = xm1ym2cm3 (for m1,m2,m3 ∈ 0, 1, 2, ..)
be any arbitrary moment. The time evolution of φ(x, y, c)
obeying the chemical master equation Eq. (3) in the main
text is given by,

d〈φ(x,y,c)〉
dt = 〈kx

∑∞
i=1 αx(i) [φ(x+ i, y, c)− φ(x, y, c)]〉

+〈ky(x)
∑∞
i=1 αy(i) [φ(x, y + i, c)− φ(x, y, c)]〉

+〈γxx [φ(x− 1, y, c)− φ(x, y, c)]
+〈γyy [φ(x, y − 1, c)− φ(x, y, c)]〉

+〈kuc [φ(x+ 1, y + 1, c− 1)− φ(x, y, c)]〉
+〈kbxy [φ(x− 1, y − 1, c+ 1)− φ(x, y, c)]〉.
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