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Abstract

Action potential-triggered release of neurotransmitters at chemical
synapses forms the key basis of communication between two neurons.
To quantify the stochastic dynamics of the number of neurotransmitters
released, we investigate a model where neurotransmitter-filled vesicles at-
tach to a finite number of docking sites in the axon terminal, and are
subsequently released when the action potential arrives. We formulate
the model as a Stochastic Hybrid System (SHS) that combines three key
noise mechanisms: random arrival of action potentials, stochastic refilling
of docking sites, and probabilistic release of docked vesicles. This SHS
representation is used to derive exact analytical formulas for the mean
and noise (as quantified by Fano factor) in the number of vesicles released
per action potential. Interestingly, results show that in relevant param-
eter regimes, noise in the number of vesicles released is sub-Poissonian
at low frequencies, super-Poissonian at intermediate frequencies, and ap-
proaches a Poisson limit at high frequencies. In contrast, noise in the num-
ber of neurotransmitters in the synaptic cleft is always super-Poissonian,
but is lowest at intermediate frequencies. We further investigate changes
in these noise properties for non-Poissonian arrival of action potentials,
and when the probability of release is frequency dependent. In summary,
these results provide the first glimpse into synaptic parameters not only
determining the mean synaptic strength, but also shaping its stochastic
dynamics that is critical for information transfer between neurons.

1 INTRODUCTION

We present a mechanistic stochastic model to characterize the statistics of the
number of neurotransmitters released at a neuronal synapse. While there is
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rich literature regarding synaptic transmission as a deterministic process [1–
5], increasing evidence points to diverse noise mechanisms at play during this
process [6–10]. Counterintuitively, noise has been shown to sometimes enhance
signaling and information transfer between neurons [11–16].

Stochastic Hybrid Systems (SHS) constitute an important class of math-
ematical models that integrate discrete stochastic events with continuous dy-
namics. Given their generality and scope, SHS have been successfully used
for modeling stochastic phenomena in a variety of biological processes [17–33],
including neuronal dynamics [34, 35]. Building up on our previous work [36],
we consider the SHS framework for modeling the neurotransmitter dynamics.
More specifically, the model consists of M ∈ {1, 2, . . .} docking site at the axon
terminal (Fig. 1). Neurotransmitter-filled vesicles attach to these docking sites
with a given probabilistic rate that is proportional to M − n, where n is the
number of already docked vesicles. Action Potentials (APs) arrive at a given
frequency, such that, the time between two successive APs follows an arbitrary
positively-valued probability density function g. Each docked vesicle has a cer-
tain probability of release, and based on this probability, APs cause a fraction
of the docked vesicles to release their neurotransmitter content into the synaptic
cleft (gap between neurons). Finally, released neurotransmitters decay (or are
removed) at a constant rate. Details of the model along with sample stochastic
realizations are shown in Fig.1.

The level of neurotransmitters in the synaptic cleft ultimately determines the
downstream biological activity through binding and opening of ion channels in
the postsynaptic neuron. How does noise in the neurotransmitter level depend
on the frequency of AP arrivals, the probability of vesicular release, and other
synaptic parameters? To address this question, we derive exact analytical results
for the statistical moments of the SHS state space. While solving moment
dynamics for SHS often suffers from the problem of moment closure [37–39], here
we find exact analytical formulas for the steady-state mean and noise levels for
both the number of neurotransmitters released per AP, and the neurotransmitter
level in the synaptic cleft.

Analysis of these formulas reveals that depending on the parameter regime,
the noise in the number of vesicles released can vary monotonically or non-
monotonically with the arrival frequency. In the latter case, noise is sub-
Poissonian at low frequencies, super-Poissonian at intermediate frequencies, and
approaches a Poisson limit at high frequencies. In contrast, noise in the num-
ber of neurotransmitters in the synaptic cleft is always super-Poissonian, but
is lowest at intermediate frequencies. The paper is organized as follows: in
Section II we recast synaptic transmission models in the SHS framework, and
systematically analyze this class of stochastic models in Section III to derive
exact moment dynamics. Based on these results, we present our key findings in
Section IV, followed by the Conclusion section.
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Figure 1: (a): Illustration of a chemical synapse. Neurons communicate
via synaptic transmission, where APs in the presynaptic neuron trigger release of
neurotransmitters into the synaptic cleft. (b): Stochastic Hybrid Systems
model of neuronal synaptic transmission. Two families of random resets
characterize the SHS: the first is the arrival of APs based on an internal timer
that measures the time elapsed from the previous AP. As shown in (3), this
can be used to model any probability distribution for the inter-arrival time.
The second reset is the creation of new release-ready vesicle that happens with
rate k(M − n), where M is the maximum possible number of docking sites,
k is the refilling rate per site. If n is the number of docked vesicles, then
M − n is the number of empty sites. (c): Sample realization for the
number of neurotransmitters in the synaptic cleft. For this plot we
assumed deterministic arrival of APs with inter-arrival time τ s = 0.1 sec, k =
1 sec−1, γ = 5 sec−1 and probability of release pr = 0.5. The number of
neurotransmitters in each vesicle is assumed to be c = 30.
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2 Model Formulation

Fig.1(a) shows the structure of a (chemical) synapse that permits communi-
cation between neurons via released neurotransmitters. Briefly, this process is
triggered when an electrical stimulus or Action Potential (AP) reaches the axon
terminal of the presynaptic neuron. Inside the axon terminal, vesicles filled with
neurotransmitters are synthesized, and they become release-ready by docking
close to the cell membrane. Arrival of an AP leads to opening of calcium ion
channels, and the influx of calcium causes these docked vesicles to release their
neurotransmitter content in the synaptic cleft (extracellular space between the
two neurons). The vesicular release process is known to be probabilistic, with
each docked vesicle having a certain probability of release. Released neuro-
transmitters bind to receptors on the cell membrane, triggering an AP in the
postsynaptic neuron.

We model the stochastic dynamics of synaptic transmission by a SHS shown
in Fig.1(b). The SHS state-space x = [n z]>, where n(t) is the number of
docked vesicles, and z(t) is the number of neurotransmitters in the cleft at
time t. Two families of resets occur randomly over time that impact the time
evolution of x. The first reset is the arrival of an AP that results in the release
of vesicles, and the second reset is the replenishment of the vesicle pool from
newly synthesized vesicles. We describe these resets in further detail below,
starting with the AP arrival process.

2.1 Timer-based arrival of Action Potentials

We assume that APs arrive at times ts, s ∈ {1, 2, 3, . . .}, such that the time
intervals τ s ≡ ts − ts−1 are independent and identically distributed random
variables following an arbitrary positively-valued continuous probability density
function (pdf) g. To model the timing of APs, we introduce a timer τ that
linearly increases over time

τ̇ = 1, (1)

and resets to zero
τ 7→ 0 (2)

whenever an AP arrives. The arrival of the next AP depends on the state of the
timer, and this introduces memory in the arrival process. More specifically, the
probability that the AP arrives in the next infinitesimal time interval (t, t+ dt]
is given by h(τ )dt, where the hazard rate

h(τ) ≡ g(τ)

1−
∫ τ
y=0

g(y)dy
(3)

[40–42]. Defining the arrival of events as per (3) ensures that τ s follows the
pdf g

τ s ∼ g(τ) = h(τ)e−
∫ τ
y=0

h(y)dy, (4)
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and the corresponding pdf of τ is given by

τ ∼ p(τ) =
1

〈τ s〉
e−

∫ τ
y=0

h(y)dy. (5)

For example, if g is exponentially-distributed with mean 〈τ s〉, then h(τ) =
1/〈τ s〉 would be a constant corresponding to a Poisson arrival of events.

Having modeled the timing of the AP arrival process, we next describe its
impact on the SHS state space. We assume that each vesicle has a certain
probability of release (pr). Thus, an AP causes the SHS state space to jump as
per the following reset

n 7→ n− b, z 7→ z + cb, (6)

where b is the number of vesicles released and follows a Binomial distribution

b ∼ β(n, pr), (7)

and c is the number of neurotransmitters in each vesicle. The reset (6) can be
written in terms of x as

x 7→ x+ (8)

where random variable x+ is the state of system immediately after an AP. Using
(7) and (8), the mean and covariance matrix of x+ is given by

〈x+〉 = Jx, J =

[
1− pr 0
cpr 1

]
. (9)

and
〈x+x+

>〉 − 〈x+〉〈x+〉> = B〈x〉ĉ> + ĉ〈x〉>B>,

B =

[
pr(1−pr)

2
0

−cpr(1−pr)
2

0

]
, ĉ =

[
1
−c

]
,

(10)

respectively. Note that the stochastic jumps in x+ are state-dependent due to
the binomial nature of the release process [43,44].

2.2 Stochastic hybrid system model

In addition to timer-based arrival of APs, we also have a second family of resets
corresponding to replenishment of vesicles. We assume that the docked-vesicle
pool replenishes with a rate k(M −n), where M is the total number of docking
sites (i.e., maximum possible number of vesicles), and k represents the refilling
rate per empty site. We rewrite this rate in terms of x as

k1 + k̂>2 x, (11)

where k1 = kM , k̂2 =
[
−k 0

]>
. The replenishment process is assumed

to occur independently of APs. In the stochastic sense, the probability that
a replenishment event occurs in the next time interval (t, t + dt] is given by
k(M − n)dt, and whenever this event occurs

x 7→ x+ r̂, (12)
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where r̂ =
[
1 0

]>
and corresponds to n increasing by one. In between the two

families of resets, the state evolves continuously via a linear system

ẋ(t) =

[
ṅ
ż

]
= A

[
n
z

]
, A =

[
0 0
0 −γ

]
, (13)

where γ is the constant rate of removal or decay of released neurotransmitters.
In summary, we have defined a SHS model for synaptic transmission with

continuous dynamics (13), two family of rests that occur with rates (3) and (11),
and when they occur, the state space resets via (8) and (12), respectively. It
is important to point out that this model with just the timer-dependent reset
has been referred to in literature as time-triggered SHS [45–48]. Allowing for a
second family of resets that occurs at a rate linearly dependent on x is a novelty
of this work.

3 Solving moment dynamics

Next, we derive exact analytical formulas for the first- and second-order mo-
ments of x = [n z]>. In this sections we use 〈 〉 to denote the expected value,
and 〈 〉 to show the expected value at steady-state.

3.1 First-order moment

As shown in Appendix, in between two successive AP arrivals, the conditional
moment 〈x|τ 〉 evolves as

d〈x|τ 〉
dt

= Ax〈x|τ 〉+ âx, Ax =

[
−k 0
0 −γ

]
, âx =

[
kM

0

]
(14)

[49]. By solving (14) we have

〈x|τ = τ〉 = eAxτ 〈x|τ = 0〉+ eAxτ
∫ τ

0

e−Axlâxdl, (15)

where 〈x|τ = 0〉 is the expected value just after AP arrival. Given that the
time interval between two APs is τ s and the reset in mean levels (9), then at
steady-state

〈x|τ = 0〉 = J〈x|τ = τ s〉. (16)

Using (15) for τ = τ s together with (16) solves 〈x|τ = 0〉, and then using (5)
to make 〈x|τ 〉 unconditioned with respect to τ , yields

〈x〉 = 〈eAxτ 〉(I2 − J〈eAxτs〉)−1J〈eAxτs
∫ τs

0

e−Axlâxdl〉

+ 〈eAxτ
∫ τ

0

e−Axlâxdl〉,
(17)

where I2 is an identity matrix of size 2. Additionally, the system is stable if
eighenvalues of J〈eAxτs〉 are inside the unit circle. Using all the constant vector
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and matrices defined in (9)-(12), we can solve for the mean number of docked
vesicles

〈n〉 = M +
(−1 + 〈e−kτs〉)Mpr

k〈τ s〉(1 + (pr − 1)〈e−kτs〉) , (18)

and the mean neurotransmitters level

〈z〉 =
(1− 〈e−kτs〉)cMpr

γ〈τ s〉(1 + (pr − 1)〈e−kτs〉) . (19)

3.2 Second order moment

To obtain the second-order moments we define a new vector

µ ≡ [x>vec(xx>)>]>, (20)

where vec(xx>) ∈ Rn×1 is a vector representation of the matrix xx> ∈ Rn×n.

The new vector µ =
[
n z n2 nz zn z2

]>
contains all the first and

second order moments. It can be shown after some algebraic steps (see also
Appendix),

d〈µ|τ 〉
dt

= Aµ〈µ|τ 〉+ âµ, (21)

Aµ =

[
Ax 0

I2 ⊗ âx + âx ⊗ I2 + k̂2 ⊗ r̂r̂ I2 ⊗Ax +Ax ⊗ I2

]
,

âµ =

[
âx

k1r̂ ⊗ r̂

]
.

(22)

where ⊗ is Kronecker product. Solving (21) gives

〈µ|τ = τ〉 = eAµτ 〈µ|τ = 0〉+ eAµτ
∫ τ

0

e−Aµlâµdl, (23)

Similar to (16), based on the resets (9) and (10) we can write

〈µ|τ = 0〉 = Jµ〈µ|τ = τ s〉, (24)

Jµ =

[
J 0

B ⊗ ĉ+ ĉ⊗B J ⊗ J

]
, (25)

and then using an approach analogous to the first order moment results in

〈µ〉 = 〈eAµτ 〉(I6 − Jµ〈eAµτs〉)−1Jµ

〈
eAµτs

∫ τs

0

e−Aµlâµdl

〉
+

〈
eAµτ

∫ τ

0

e−Aµlâµdl

〉
,

(26)

〈eAµτ 〉 =
1

〈τ s〉

∫ ∞
0

e−
∫∞
0 h(y)dyeAµτdτ

=
−1

〈τ s〉
(I6 − 〈eAµτs〉)A−1

µ ,

(27)

〈
eAµτs

∫ τs

0

e−Aµldl

〉
= (〈eAµτs〉 − I6)A−1

µ , (28)
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where I6 is an identity matrix of size 6. The eighenvalues of Jµ〈eAµτs〉 should
be inside the unit circle in order for the system to be stable.Using (26) and the
first order moments (18) and (19), we obtain the second order moments (43)
and (44). Due to the size of these formulas they are presented at the end on
the last page.

Throughout the paper we use the steady-state Fano factor (variance over
mean) defined by

FFb =
〈b2〉
〈b〉
− 〈b〉, FFz =

〈z2〉
〈z〉
− 〈z〉 (29)

as a metric to quantify noise. Here, FFb and FFz denote the Fano factor
for the number of vesicles released, and the Fano factor for the number of
neurotransmitters, respectively. While FFz can be calculated using the first
and second order moments in (19) and (44), to obtain FFb we recall that given
n, b ∼ β(n, pr) follows a binomial distribution. Hence,

〈b〉 = 〈n〉pr, (30)

〈b2〉 = p2r〈n2〉+ pr(1− pr)〈n〉. (31)

Given formulas for 〈n〉 and 〈n2〉 in (18) and (43), respectively, FFb is com-
puted by applying (30) and (31) in (29). Interestingly, with these formulas one
can show the following limits for low (f → 0) and high frequency (f → ∞)
stimulation regardless of τ s:

lim
f→0

FFb = 1− pr, lim
f→∞

FFb = 1 (32)

lim
f→0

FFz =
c

2
((M − 1)pr + 1), lim

f→∞
FFz =

c

2
. (33)

This result assumes that the probability of release pr is constant. As Fano
factor is one for a Poisson distribution, the number of vesicles released follows
Poissonian statistics at high frequencies, and is sub-Poissonian at low frequen-
cies. Assuming c � 1, the noise in neurotransmitter levels is super-Poissonian
at both low and high frequencies.

4 Noise Analysis

In this section, we consider specific distributions for the arrival of APs.

4.1 Poisson arrival of APs

Let τ s be an exponentially-distributed random variable with mean 〈τ s〉 = 1/f ,
where f is the frequency of AP arrival. Then, as per the moment generating
function,

〈e−kτs〉 =
1

1 + k〈τ s〉
=

f

f + k
, k > 0. (34)
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Figure 2: Top: Noise in the number of released vesicles can be maxi-
mized at an intermediate AP arrival frequency. The Fano factors FFb in
(36) and (38) are plotted as a function of frequency f assuming a constant pr for
Poisson and deterministic arrivals. Depending on the values of M and pr, the
noise can increase monotonically as a function of f , or first increase followed by
a decrease. See text for exact analytical conditions. For this plot k = 1 sec−1.
Bottom: Noise in the neurotransmitter level is minimized at an in-
termediate AP arrival frequency. The Fano factors FFz in (37) and (39)
as a function of frequency f showing that while noise is always super-Poissonian
(i.e., Fano factor bigger than one), it can be minimal at an optimal frequency.
Other parameters are taken as k = 3 sec−1, γ = 5 sec−1, M = 5, c = 10 and
pr = 0.15.
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Using (18), (19), (30) and (34), we obtain the following simplified steady-state
means

〈b〉 =
kMpr
k + fpr

, 〈z〉 =
cfkMpr
γ(k + fpr)

. (35)

The number of vesicles released per AP decreases with increasing frequency
of stimulation due to vesicular depletion in the axon terminal. In contrast,
neurotransmitter levels increase monotonically with f . Similarly, using (43)
and (44), the respective Fano factors can be calculated as

FFb = 1− kMpr
fpr + k

+
2k(M − 1)pr

2k − f(pr − 2)pr
, (36)

FFz =
1

2(fpr + k)(2k − f(pr − 2)pr)(fpr + k + γ)
×(

c
(
− f2(pr − 2)p2r(fpr + γ) + k2

(
2γ((M − 1)pr + 1)−

f(pr − 2)pr
)

+ fkpr(2fpr + γ(2Mpr − 3pr + 4))+

2k3((M − 1)pr + 1)
))
.

(37)

Further analysis reveals an intriguing find: if Mpr < 2, then FFb monotonically
increases with frequency approaching the Poisson limit FFb → 1 as f →∞
(Fig. 2). Note in this case FFb < 1 and is always sub-Poissonian. However, if
Mpr > 2, then FFb has a non-monotonic profile, where FFb > 1, i.e., super-
Poissonian at an intermediate frequency. Our results further show that FFz
also varies non-monotonically with f , but exhibits a minima (Fig. 2).

4.2 Deterministic arrival of APs

Next consider a deterministic arrival process where τ s = 1/f with probability
one. In this case, the Fano factors are given by

FFb =
−1

2k (ek/f + pr − 1) (ek/f (k − fpr) + fpr + k(pr − 1))
×(

2f2Mp3r(e
k/f − 1)2 + 2k2(pr − 1)(ek/f + pr − 1)2−

fkpr(e
k/f − 1)(ek/f (pr((M − 1)pr + 4)− 2)+

pr((M + 3)pr − 6) + 2)
)
,

(38)

FFz =
c

2(ek/f + pr − 1)
×

(ek/f (γ − pr(2fM + γ)) + 2pr(fM + γ)− γ
γ

+

Mpr(e
k/f − 1) coth(2fγ) +

2(pr − 1)pr(e
k/f − 1)

e
k+γ
f + pr − 1

)
.

(39)

As in the Poisson case, depending on the values of M and pr, FFb can be a
monotonic/non-monotonic function of frequency f (Fig. 2). More specifically,
if Mp2r > 4(3 − 3pr + 4pr2), then FFb is non-monotonic, and monotonic for
Mp2r < 4(3− 3pr + 4pr2).
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4.3 Frequency-dependent probability of release

Up till now, we have assumed that the probability of release is a constant.
We relax this assumption by allowing for a frequency-dependent probability of
release. Mechanistically, an increased frequency of APs cause a higher buildup
of calcium in the axon terminal which enhances pr. This frequency-dependence
is modeled as

pr =
pmax

1 + (F
f

)h
, (40)

with positive constants h, pmax and F . As per this formulation, pr → 0 for
f → 0, and pr approaches a maximum value of pmax as f → ∞. In the case,
the Fano factor limits in (32) and (33) are modified to

lim
f→0

FFb = lim
f→∞

FFb = 1 (41)

lim
f→0

FFz = lim
f→∞

FFz =
c

2
, (42)

and are the same for low and high-frequency stimulation. While the statistic
of vesicle release is Poissonian (FFb = 1) in the extreme frequency limits, it
shows dramatic changes for in-between frequencies with first having a minimum,
and then a maximum (Fig. 3). The Fano factor of the neurotransmitter level
mirrors these fluctuations with opposite effects – a maximum first followed by
a minimum (Fig. 3).

5 Conclusion

We have applied SHS-based modeling and analysis to systematically characterize
the stochastic dynamics of neuronal synaptic transmission. It is important to
mention that this contribution also advances the theory for SHS. For example,
prior work was focused on either a single timer-dependent reset [33, 46], or two
resets where the other occurred at a constant rate [49]. Here we allow the second

family of reset to occur at a rate k1 + k̂>2 x for a constant vector k̂2 and scalar
k1. Hence, the results on moment derivations presented in Section III are by
themselves novel.

Applying the results of Section III to the SHS model in Fig. 1b yields exact
analytical formulas for the mean synaptic strength (quantified by (18) and (19)),
and the extent of random fluctuations around it (quantified by (43) and (44)).
While the noise formulas are quite complicated, they have provided valuable
insights in different limits. For example, the limits (32), (33), (41) and (42)
show the expected Fano factor at low and high-frequency stimulation for either
a constant pr or frequency-dependent pr. Apart from predicting noise levels,
these limits may prove useful for actually inferring parameters by experimentally
measuring the corresponding Fano factor, thus providing a unique method that
exploits stochastic fluctuations for determining synaptic parameters.

Another interesting finding in the non-monotonicity of noise levels shown
in Fig. 2 and Fig.3. For the case of Poisson and deterministic arrivals, we
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Figure 3: Top: Noise in the number of released vesicles for a frequency-
dependent probability of release: The inset shows an increase in the prob-
ability of release with frequency as per (40). The corresponding FFb from
(36) and (38) are plotted for the same value of h, showing noise levels can be
both minimal or maximal at intermediate frequencies. In the limit of low and
high frequency, FFb converges to one as per (41). Parameters are taken as
k = 3 sec−1, M = 30, F = 10 Hz and pmax = 0.7. Bottom: Noise in the
neurotransmitter level for a frequency-dependent probability of re-
lease: FFz from (37) and (39) is plotted for frequency-dependent probability
of release as shown in the inset. While noise in the neurotransmitter level is
always super-Poissonian (assuming c >> 1) from (42), it has a non-monotonic
profile that can exhibit a minimal or maximal as in the top plot. Parameters
are taken as k = 1 sec−1, γ = 5 sec−1, M = 5, c = 20, F = 20 and pmax = 0.7.
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identified parameter regimes that exhibit such behaviors, and these results can
be expanded to Gamma or lognormally-distributed AP arrivals. The predictions
made in Fig. 2 and Fig.3 can be tested experimentally and, they present an
exciting direction of future research in collaboration with neuroscientists.

〈n2〉 =
1

2k〈τ s〉
(
〈e−2kτs〉(pr − 1)2 − 1

)
(〈e−kτs〉(pr − 1) + 1)

×
(
M2 +

(
Mpr

(
p2r(〈e−2kτs〉(

〈e−kτs〉(3M − 1)− 4M + 2
)

+ 〈e−kτs〉(M − 1)) + pr
(
−M(〈e−2kτs〉(7〈e−kτs〉 − 9)+

〈e−kτs〉+ 1) + 3〈e−2kτs〉〈e−kτs〉 − 5〈e−2kτs〉+ 〈e−kτs〉+ 1
)

+ 2(〈e−2kτs〉 − 1)(〈e−kτs〉
− 1)(2M − 1)

)))
,

(43)

〈z2〉 =
(
p3r
(
〈e−2kτs〉M

(
〈e−γτs〉(〈e−kτs〉(〈e−(k+γ)τs〉 − 2)− 2〈e−(k+γ)τs〉+ 2) + 〈e−kτs〉

〈e−(k+γ)τs〉
)

+ 〈e−2kτs〉〈e−(k+γ)τs〉(〈e−γτs〉 − 1)〈e−kτs〉〈e−(k+γ)τs〉(〈e−γτs〉 − 1)

(M − 1)
)

+ p2r
(
〈e−2kτs〉M(−2〈e−kτs〉〈e−(k+γ)τs〉(〈e−γτs〉+ 1) + 3〈e−kτs〉〈e−γτs〉+

〈e−kτs〉+ 3〈e−(k+γ)τs〉〈e−γτs〉+ 〈e−(k+γ)τs〉 − 2〈e−γτs〉 − 2)− 〈e−2kτs〉(〈e−γτs〉 − 1)

(〈e−kτs〉(〈e−(k+γ)τs〉 − 2) + 3)− (〈e−γτs〉 − 1)(M − 1)(〈e−kτs〉+ 〈e−(k+γ)τs〉)
)
+

(〈e−kτs〉 − 1)pr
(
(〈e−2kτs〉 − 1)(〈e−(k+γ)τs〉 − 1)(〈e−γτs〉+ 1)M + (〈e−γτs〉 − 1)

(〈e−2kτs〉(2〈e−(k+γ)τs〉 − 3) + 1)
)
− (〈e−2kτs〉 − 1)(〈e−kτs〉 − 1)(〈e−(k+γ)τs〉 − 1)(〈e−γτs〉 − 1)

)
× −c2Mpr

2(〈e−γτs〉 − 1)γ〈τ s〉 (〈e−2kτs〉(pr − 1)2 − 1) (〈e−kτs〉(pr − 1) + 1)(〈e−(k+γ)τs〉(pr − 1) + 1)
.

(44)

APPENDIX

In order to prove (14) we use forward Kolmogrov equation as we need to gain
the joint probability density function of states x and timer τ

∂p(τ, x)

∂t
+

∂

∂x
(Axp(τ, x)) = −h(τ)p(τ, x)+

(k1 + k̂>2 (x− r̂))p(τ, (x− r̂))− (k1 + k̂>2 x)p(τ, x),

(45)

where ∂/∂x defined as partial derivative vector. Now, having joint probability
distribution from (45), conditional mean is

〈x|τ 〉 ≡ 〈x|τ = τ〉 =
1

p(τ)

∫ +∞

0

xp(τ, x)dx. (46)

By taking derivative with respect to t in (46) we have

∂〈x|τ 〉
∂t

= −

∂p(τ)

∂t
p(τ)2

∫ +∞

0

xp(τ, x)dx

+
1

p(τ)

∫ +∞

0

x
∂p(τ, x)

∂t
dx.

(47)
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Substituting (5) and (45) into mean dynamics, we have

∂〈x|τ 〉
∂t

= − 1

p(τ)

∫ +∞

0

x
∂

∂x
(Axp(τ, x)) dx

+
1

p(τ)

∫ +∞

0

x(k1 + k̂>2 (x− r̂))p(τ, (x− r̂))dx

− 1

p(τ)

∫ +∞

0

x(k1 + k̂>2 x)p(τ, x)dx.

(48)

By solving for (48) we get

d〈x|τ 〉
dt

= (A+ r̂k̂>2 )〈x|τ 〉+ k1r̂. (49)

For simplicity, Ax = (A+ r̂k̂>2 ) and âx = k1r̂ and so we get (14). Similar to
(46), conditional second order moment is

〈xx>|τ 〉 ≡ 〈xx>|τ = τ〉 =
1

p(τ)

∫ +∞

0

xx>p(τ, x)dx. (50)

After taking the same steps as (47) and (48) and also also using vectorization
[50], vec(A1A2A3) = (A>3 ⊗A1)vec(A2) we have

dvec〈xx>|τ 〉
dt

= (I2 ⊗A+A⊗ I2) vec〈xx>|τ 〉

+ (k1r̂ ⊗ I2)〈x|τ 〉+
(
I2 ⊗ r̂k̂>2

)
vec〈xx>|τ 〉

+ (I2 ⊗ k1r̂)〈x|τ 〉+
(
r̂k̂>2 ⊗ I2

)
vec〈xx>|τ 〉

+
(
k̂2 ⊗ r̂r̂>

)
〈x|τ 〉+ k1r̂ ⊗ r̂.

(51)
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