Comparison of feedback strategies for noise suppression in protein level
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Abstract— Stochastic variation in the level of a protein among
cells of the same population is ubiquitous across cell types and
organisms. These random variations are a consequence of low-
copy numbers, amplified by the characteristically probabilistic
nature of biochemical reactions associated with gene-expression.
We systematically compare and contrast negative feedback
architectures in their ability to regulate random fluctuations
in protein levels. Our stochastic model consists of gene synthe-
sizing pre-mRNAs in transcriptional bursts. Each pre-mRNA
transcript is exported to the cytoplasm and is subsequently
translated into protein molecules. In this setup, three feedbacks
architectures are implemented: protein inhibiting transcription
of its own gene (I), protein enhancing the nuclear pre-mRNA
decay rate (II), and protein inhibiting the export of pre-mRNAs
(IIT). Explicit analytic expressions are developed to quantify
the protein noise levels for each feedback strategy. Mathemat-
ically controlled comparisons provide insights into the noise-
suppression properties of these feedbacks. For example, when
the protein half-life is long, or the pre-mRNA decay is fast, then
feedback architecture I provides the best noise attenuation. In
contrast, when the timescales of export, mRNA, and protein
turnover are similar, then III is superior to both II and I. We
finally discuss biological relevance of these findings in context
of noise suppression in an HIV cell-fate decision circuit.

I. INTRODUCTION

Random variability in protein levels among a homoge-
neous cell population is referred to as gene-expression noise.
This variability arises due to the characteristically probabilis-
tic biochemical reactions associated with gene-expression
and the low copy numbers of the species involved [1], [2].
Prevalence of noise in gene-expression suggests that cells
must have mechanisms to cope with it, suppress it, or even
utilize it to their advantage [3]-[14].

In this work, we are specifically interested in strategies that
suppress the noise in gene-expression. Many prior studies
have investigated feedback control strategies, wherein a
protein self-regulates its own production, as mechanisms of
noise suppression [15]-[23]. However, these models tend
to exclusively consider feedback at the transcriptional or
translational level, while failing to investigate feedback loops
at the precursor mRNA level. Recent work indicates that
feedback at the pre-mRNA level can play an important role
in noise suppression [24]-[29]. Therefore, we incorporate
different feedback loops in a model that includes retention of

IMadeline Smith is an undergraduate student in the Department of
Bio-medical Engineering, University of Delaware, Newark, DE, USA.
smithmad@udel.edu

2Khem Raj Ghusinga is a PhD student in the Department of Electrical
and Computer Engineering, University of Delaware, Newark, DE, USA.
khem@udel.edu

3Abhyudai Singh is with the Faculty of Electrical and
Computer Engineering, University of Delaware, Newark, DE, USA.
absingh@udel.edu

pre-mRNAs in the nucleus. We explore three different forms
of negative feedback. The noise suppression abilities of each
feedback mechanism are quantified, and then compared and
contrasted.

T
e,
r__I_I_I____| T
: mi
1 Lre_ H
i I VR

Gene o Promoter ON

K
E Gene

Fig. 1: Process of gene-expression modeled by precursor
mRNA produced in transcriptional bursts inside the nucleus
from the active gene promoter. Precursor mRNA is spliced
and exported out of the nucleus as functional mRNA, and fi-
nally translated into protein. Proposed feedback mechanisms
affecting pre-mRNA transcription (I), decay (II), or export
(IIT) are depicted as dashed lines. The arrow head denotes
activation, while the flat arrow denotes inhibition.
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We describe gene-expression in the cells nucleus where the
promoter produces a burst of multiple pre-mRNAs. Modeling
transcription by bursting allows incorporation of the active
(ON) and inactive (OFF) intervals of promoter activity [30],
[30]-[38]. Next, the pre-mRNA is spliced and exported from
the nucleus as functional mRNA. It is then translated and
encodes a single protein. The three feedback architectures
that we study are implemented in this model as follows:

I: the protein inhibits transcription of its own gene,
II: the protein enhances the nuclear pre-mRNA decay rate,
and
III: the protein inhibits the export of pre-mRNAs.
We compare and contrast the noise suppression abilities

of these three models in a mathematically controlled fashion
[39]. To that end, the mean level of protein is kept constant



among all architectures. We find that when the protein half-
life is long, or the pre-mRNA decay is fast, then feedback
architecture I provides the best noise attenuation. In contrast,
when the timescales of export, mRNA, and protein turnover
are similar, then III is superior to both II and 1.

The paper is organized as follows. Section II introduces the
gene-expression model and resulting moment dynamics used
to quantify the protein noise levels. Feedback strategies are
incorporated and noise equations are obtained in Section III.
Next, Section IV provides stability analysis of each feedback
architecture. In Section V, we compare and contrast noise
suppression of feedback architectures I-III under different
regimes. A discussion of biological relevance of these find-
ings in context of the role noise suppression plays in an HIV
cell-fate decision concludes the work in Section VI.

II. GENE-EXPRESSION MODEL WITH NO
REGULATION

We model gene-expression starting with nuclear pre-
mRNA transcripts produced in bursts. Transcriptional burst-
ing at the gene promoter occurs at a rate of k,., creating B
number of pre-mRNA transcripts, where B is drawn from a
positive-valued distribution. The pre-mRNA is spliced and
exported out of the nucleus at a rate of k,, to become
functional mRNA, which is then translated into proteins
at a rate kp. Other parameters of the model include the
degradation rate of pre-mRNA (v,), degradation rate of
mRNA (v,,), and degradation rate of protein (7).

TABLE I: Frequency of gene-expression events and corre-
sponding reset map.

Reset in
Population Count

Event Probability Event will

Occur in (t,t + dt)

Transcriptional Bursting ~ 7(¢t) — r(t) + B krdt

pre-mRNA Degradation r(t) —»r(t)—1 yrr(t)dt
pre-mRNA Export m(t) = m(t) + 1 kmr(t)dt
mRNA Degradation m(t) = m(t) — Ymm(t)dt
Protein Translation p(t) = p(t) +1 kpm(t)dt
Protein Degradation p(t) = p(t) —1 Ypp(t)dt

Let (t), m(t), and p(t) represent the count of pre-mRNA,
mRNA, and protein molecules at time ¢, accordingly. The
probabilities of occurrences of these events in an infinitesi-
mal time-interval (¢,¢+ dt) are described in Table 1. Only a
single event, other than the bursts, can occur at a time and
with each event that occurs, the count of each state r(t),
m(t), and p(t) are reset.

To quantify the noise in protein levels of the gene-
expression model, we write differential equations for time
evolution of the statistical moments. For the gene-expression
model without feedback, time derivative of the expected

value of a differentiable function ¢(r, m, p) is given by [40],
[41]
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Here, and for the remainder of the paper, {.) is used to
represent the expected value. Choosing appropriate functions
for ¢ gives the following moment dynamics:
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The steady-state moments can be computed from the above
moment dynamics equations by equating each of them to
zero. We are particularly interested in studying the noise
in protein level, which is quantified via the coefficient of
variation squared (C'V2, variance divided by squared of the
mean). We also introduce two new parameters that allow
simplification:

(B - (B)
W PeT )

Here, f represents a fixed ratio of pre-mRNA export from the
nucleus and pre-mRNA degradation, which is kept constant
during analysis, and B, relates to the transcriptional burst
size of pre-mRNA.
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Solving (2) for steady-state moments, and substituting the
above parameters yields

ovr= Ly
(D)
Yo(rm¥p + (i (Y + %) + 2 (L+ £))(A + f + Bef))
(Ym + )V +Ym + 7 F) O + 9 + 00 f) (M)
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where (p) = (m) k,, /7, is the steady-state mean protein level.
Note that in (4), the first term is the intrinsic Poissonian
noise due to stochastic births and deaths of single protein
molecules. This term can be ignored when considering the
order of magnitude size difference in population counts of
mRNA and protein ((/m) /(p)) ~ 1073 [2]. In such a case,
the noise in protein levels depends inversely on the average
steady-state level of mRNA (m). The simplified coefficient
of variation squared in the center column of Fig. 2 represents
the noise at the protein level of the gene expression model
with no feedback.

We next explore the noise expression of this model in
different limits. For fixed f and very fast pre-mRNA decay
(7r), the equation simplifies to:

'Yp(1+f+Bef)
(ym + 7)1+ f) (M)

When the export of pre-mRNA (f) is very fast, the equation
simplifies to:
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However, when the export rate (f) is very slow, the equation
then simplifies to:

lim CV? =

f—o0

(6)
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Thus, regimes of either fast pre-mRNA decay or fast export
result in an increasing relationship of noise and transcrip-
tional burst size (5,6), while the noise in the case of slow
export unaffected by transcriptional burst size (7). In all
regimes, there is an inverse relationship of mRNA count and
noise.

ITII. INTRODUCING REGULATORY MECHANISMS
IN GENE-EXPRESSION

Here, we implement three different feedback loops and
systematically compare their abilities to suppress noise.
Feedback is incorporated by no longer assuming that the
rate being regulated is fixed and constant (as described in
Table 1), but instead assuming that it is either a monoton-
ically increasing or decreasing function of protein count.
We perform this procedure for each feedback loop, as de-
picted in Fig. 1. To allow computation of comparable noise
expressions, the protein dependant rates are then quantified
by linear noise approximation. This involves linearizing the
rate about the steady-state average protein count (p) [42].
Note, these assumptions are only valid for small fluctuations
in protein counts. This holds as regulatory protein levels

in cells are tightly maintained within certain bounds. After
linearizing the protein dependant rate, the new term is then
substituted into the differential equations and it replaces the
original constant rate associated with the gene-expression
model without regulation in (1). The new time evolution
and corresponding moment dynamics are obtained for each
feedback architecture respectively.

A. Protein-Mediated Transcriptional Bursting Inhibition

First, we model transcriptional bursting regulation, de-
picted as feedback architecture I in Fig. 1, by assuming
that transcriptional bursting events occur as a monotonically
decreasing function k,(p) of the protein count p(¢). This
results in a negative feedback strategy where an increase
(decrease) in protein count will result in a decrease (increase)
in bursting. Following the convention in [22], the rate k,.(p)
is linearized about the steady-state average number of protein
(p) and we assume

- (5
k) ~ k()1 (P2E] g
(p)
with an average transcription rate of &, ((p)). The dimension-
less constant
(p) dk.(p)
kr((p))  dp
corresponds to the sensitivity of the transcription rate to

changes in p(t) [22]. In simpler terms, this represents the
strength of the feedback.
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B. Protein-Mediated Enhancement of pre-mRNA Decay

Next, regulation by protein enhancement of pre-mRNA
decay, feedback architecture II described in Fig. 1, is incor-
porated into the model. In this feedback strategy, pre-mRNA
degrades at a rate of +,(p). This form of regulation is not
only dependent on protein count p(t), but also on the count
of pre-mRNA r(t), resulting in a more complex form of
feedback. We model this by ~,.(p)r that is assumed to be
a monotonically increasing function of protein count p(¢).
The approximated rate ~y,.(p)r is linearized around both the
average pre-mRNA count () and protein count (p). Again,
it is assumed that r(¢) and p(t) are tightly regulated and have
small fluctuations from their respective steady-state averages.
We find

_ L _(p(t) =P
o)~ (@) [0 + (e (B2
(p)
as the average pre-mRNA degradation rate +,((p))r and
dimensionless constant:

(10)
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that is the sensitivity of the degradation rate to change in
p(t).




C. Protein-Mediated Inhibition of pre-mRNA Export

Last, we consider regulation of the export of pre-mRNA
from the cell nucleus to the cytoplasm, depicted as feedback
architecture III in Fig. 1. Here, we assume that export is a
monotonically decreasing function based of protein count,
but is also dependant on the count of pre-mRNA. The
total export rate k,,(p)r is dependant on both p(t) and
r(t). The linear approximation of k,,(p)r about (7) and (p)
assumes that r(t) and p(t) are tightly regulated and have
small fluctuations from their steady state averages. The total
conversion rate can be approximated as:

bl i () [r0) = 0= (PO a2y

with an average degradation rate of k., ((p))r and dimen-
sionless constant of

o __ () dkn(p) (13)

km((P))  dp
that corresponds to the negative feedback strength.

The time evolution of the statistical moments of each
feedback mechanism are obtained by substituting the cor-
responding average rate found by linear approximation for
the original rate in (1). This results in a unique solution of
moment dynamics for each feedback architecture I-1II. Based
on the moment dynamics, the resulting protein noise levels
of each feedback architecture is quantified as CVE, Xe {I,
II, 11} and displayed in the middle row of Fig. 2. Note
that in the remainder of the paper, CV)Q(,X e {L, II, 11}
denotes the coefficient of variation squared of architecture
X. Additionally, when there is no feedback strength, ¢ = 0,
the resulting noise expressions correspond to the protein level
noise when there is no feedback present CVZ = CV2.

IV. STABILITY ANALYSIS

A close examination of the gene-expression noise equa-
tions in Fig. 2 reveals that noise can become unbounded for
some values of feedback strength (¢). Here, we find the con-
ditions that result in bounded noise when feedback regulation
is included in the model and analyze noise behavior under
changing parameters.

A system is considered stable if the roots of its “real
polynomial” (P) lie in the left half plane of the complex
plane. The systems presented in this paper have three states
that can be represented by a third-order polynomial, given
by:

A=z>+az’+bx+ec. (14)

The polynomial (A) is stable, and thus a stable system,
when A is greater than 0. This is true when the following

conditions are met:
a>0,b>0,0<c<ab. (15)

We can describe feedback architecture I by the following
square matrix A.

Bek,
A
A= km —Ym 0
O

Next, the characteristic polynomial is obtained to
ultimately find a, b, and c¢. Feedback architecture
I has a characteristic = polynomial given by:

_ (=vmYpekm (Yr+km)+km (=¥m —2) (vr+) (yr+km +x)) (M) (B)
(km (M) (D))

and the following corresponding roots:

a =% (Ym + ’Yp) + Ypkm + ’Ym(’)/p +km)

1
b= 7(2(77“ +Ym + 7+ km) (16)

2
c= ’Ym’Yp(l +&) (v + km)

Based on the above values for a, b, and ¢, we find that the
following condition for stability:

0<c<ab o))

is only met when the following condition of feedback
strength (¢) is met:

Y 4+ V) (Ve + Y + k) (Ve +p + ki)
’Ym’Yp('Yr + km)

The above procedure is additionally performed in the same
manner for feedback architectures II and III. We find that
feedback II is stable for the same conditions as found above
(same stability as feedback architecture I) (18). These stable
and unstable regions of feedback architectures I and II are
illustrated in relation to corresponding values of feedback
strength (¢) and protein decay rate (v,) in Fig. IV. This figure
also displays the region of stability when the mRNA decay
rate is altered (v,,). The region of stability is much smaller
for low values of ~,,, but the system exhibits a greater region
of stability when mRNA decays very fast. Additionally, the
stability analysis of protein regulation of pre-mRNA export
(feedback architecture IIT) results in a stable system for all
values of feedback strength ¢.

c< ! (18)

V. COMPARISON BETWEEN FEEDBACK
STRATEGIES

Mathematically controlled comparisons are performed to
determine which architecture best attenuates noise. These
comparisons are controlled by assuming all steady-state
average values to be the same among the three feedback
strategies.

The first observation is made by comparing noise attenua-
tion when the pre-mRNA degradation rate (,) is considered
to be very fast. In this limit, the ratio of pre-mRNA export
and pre-mRNA degradation is kept constant. The resulting
analytical noise expressions while approaching this limit can
be found in the third column of Fig. 2. When comparing
transcriptional regulation to regulation of pre-mRNA decay,
we find that:

. CV[ 1 + e+ f
lim = <1 19
yr—o00 CVrp 1+e+ f+ fe (19)
This indicates that under the regime of very fast pre-mRNA

degradation, feedback architecture I is always better than II,
regardless of feedback strength. However, when comparing
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Fig. 3: Depiction of stability analysis of feedback architec-
tures I and II. The system will remain stable for values
of feedback strength (¢) and protein degradation rates (7,)
that fall within the shaded region. For combinations of these
parameters that fall above the shaded region, the noise will
become unbounded and unstable. The darkest shade depicts
the stable region when mRNA decay -, is equal to 1, the
middle shade correlates to the stable region when ~,, = 10,
and the lightest shaded region correlates to the stable region
when 7, = 20. The remaining parameters include: k,, = 1
and v, = 1.

regulation of pre-mRNA decay rate to regulation of pre-
mRNA export rate, the following result is found:

lim CViir =
yr—oo V] I

Under this condition, the noise attenuation of feedback
architectures II and III is the same, regardless of feedback
strength. Based on these results, we conclude that when pre-
mRNA quickly decays, feedback architecture I will always
provide better noise attenuation than feedback architecture II
and III, as well as the no feedback case.

Next, we compare and contrast the feedback architectures
based on the corresponding noise equations in the center
column of Fig. 2 (not the limiting case in the rightmost
column). Here, we investigate noise attenuation in relation
to different species half-lives and pre-mRNA export rate. A
species half-life is approximately equal to In(2)/v,, where
v, denotes the decay rate of species x.

First, in Fig. 4A, pre-mRNA decays faster than mRNA
and protein. The ratio of pre-mRNA export and pre-mRNA
decay, we denote as f, is held constant, thus pre-mRNA
export (k,,) is also very fast. From this relationship, we
conclude that when pre-mRNA has a faster decay rate, thus
a shorter half-life, feedback architecture I always attenuates
noise better than feedback to pre-mRNA decay (architec-
ture II), feedback to pre-mRNA export (III), and the gene
expression model without feedback. Next, we consider a
condition when all rates of export and decay are similar.
Fig. 4B depicts results of this condition, indicating that when
feedback strength is low: inhibition of transcriptional burst-
ing (feedback architecture I) and inhibition of mRNA export

(20)

(feedback architecture III) exhibit similar noise attenuation,
but as feedback strength increases: feedback architecture
IIT attenuates noise best. Last, in Fig. 4C, we consider the
case when protein has a long half life. This case resembles
gene-expression featuring a very stable protein. Here, we
conclude that feedback architecture I exhibits the greatest
noise reduction for all feedback strengths.

VI. CONCLUSIONS

This paper explores possible regulatory motifs utilized by
cells to reduce the inherent stochasticity of gene-expression.
Explicit analytical expressions were developed to compare
noise suppression of three possible feedback loops (Fig. IV).
After investigation through mathematically controlled com-
parisons, it is discovered that the best feedback architecture is
dependant on the various parameters associated with gene-
expression. Transcriptional feedback (feedback architecture
I) provides the best random noise regulation under the
conditions of long protein half-life and also fast pre-mRNA
export. When pre-mRNA export rate and species half-lives
all occur at similar rates, negative feedback of pre-mRNA
export (feedback architecture III) is best, although feedback
architecture I has similar noise suppression abilities under
this condition when feedback strength is low.

A. Relevance to Human Immunodeficiency Virus Type 1

Methods and findings from this paper can be applied to
studying Human Immunodeficiency Virus type 1 (HIV-1).
This virus undergoes a noise driven commitment decision
between active replication or pro-viral latency [43], [44].
The later has been identified as the major obstacle in the
way of finding a cure for HIV [45]. In this latent state, the
cells become quiescent and unable to be identified, while
maintaining the ability to become active at any time [46]. The
long terminal repeat promoter in HIV-1 takes part in bursting
events that contribute to the probabilistic fate selection of the
virus. The feedback mechanisms explored in this work can
further our insight of possible reduction of randomness by
attenuating the noisy transcriptional bursting present in HIV
that affects its commitment decisions and fate stability [32].

B. Future Work

Biological systems include time delays that alter stability
by creating realistic oscillations in the system. Incorporation
of these intrinsic delays will allow further investigation
of noise suppression properties under more physiologically
relevant conditions. Future work will include the addition
of time delays to the gene-expression model proposed in
this paper and resulting analysis of feedback strategies I-1II
performance.
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Fig. 2: Steady-state average protein level noise of each feedback architecture is quantified by the coefficient of variation
squared (C'V2) to enable comparison. The first column describes the form of feedback present: no feedback, (I) protein
inhibition of its own transcription, (II) protein enhancing nuclear pre-mRNA decay, and (III) protein inhibition of pre-mRNA
export. The center column contains the quantified average protein level noise equations. The rightmost column features a
simplified version of the gene-expression noise equations, representing noise when the degradation of pre-mRNA is considered
to be very fast and the ratio of pre-mRNA export and pre-mRNA degradation (f) is held constant. The parameters ,., Y,
and vy, denote the degradation of pre-mRNA, mRNA, and protein, respectively. The parameters f and B, are described in
(3). (m) represents the steady state average of mRNA. ¢ represents the normalized feedback strength. Note that Poisson
noise due to random births and deaths of protein molecules is ignored in these expressions.
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Fig. 4: Gene-expression noise (C'V'?2) of feedback architectures I-III are normalized by the case of no feedback. Noise is
plotted as a function of increasing feedback strength. (A): Plot A depicts gene-expression noise when pre-mRNA decay is
much faster than mRNA decay and protein decay. Under this limit, feedback architecture I attenuates noise the best for all
values of feedback strength, and feedback architectures II and III exhibit similar behavior. The parameters have the following
values: v, =10, v, = 1, v, = 1, f =1, (B.) = 10, and steady-state average number of mRNA molecules () = 20. (B): Plot
B investigates noise attenuation when pre-mRNA export rate and species half-lives all have similar values. Here, feedback
architecture I and IIT exhibit similar values of noise for low values of feedback strength, but at higher feedback strength,
feedback architecture III is best. The parameters have the following values: v, = 1, v, = 1,7, = 1, f = 1, (B,) = 10, and
(m) = 20. (C): In plot C, protein decay rate is much less than pre-mRNA decay, pre-mRNA export, and mRNA decay rates.
Here, feedback architecture I is best for all values of feedback strength €. The parameters in the model consist of: 7, = 1,
Ym = 1,7, =001, f =1, B, = 10, and (m) = 20.



