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Proportional and derivative controllers for buffering noisy gene
expression
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Abstract—Inside individual cells, protein population counts
are subject to molecular noise due to low copy numbers
and the inherent probabilistic nature of biochemical processes.
Such random fluctuations in the level of a protein critically
impact functioning of intracellular biological networks, and
not surprisingly, cells encode diverse regulatory mechanisms
to buffer noise. We investigate the effectiveness of proportional
and derivative-based feedback controllers to suppress protein
count fluctuations originating from two noise sources: bursty
expression of the protein, and external disturbance in protein
synthesis. Designs of biochemical reactions that function as
proportional and derivative controllers are discussed, and the
corresponding closed-loop system is analyzed for stochastic
controller realizations. Our results show that proportional
controllers are effective in buffering protein copy number
fluctuations from both noise sources, but this noise suppression
comes at the cost of reduced static sensitivity of the output
to the input signal. Next, we discuss the design of a coupled
feedforward-feedback biochemical circuit that approximately
functions as a derivate controller. Analysis reveals that this
derivative controller effectively buffers output fluctuations from
bursty stochastic expression, while maintaining the static input-
output sensitivity of the open-loop system. As expected, the
derivative controller performs poorly in terms of rejecting
external disturbances. In summary, this study provides a
systematic stochastic analysis of biochemical controllers, and
paves the way for their synthetic design and implementation to
minimize deleterious fluctuations in gene product levels.

I. INTRODUCTION

Advances in single-cell technologies over the last decade
have revealed striking differences between individual cells of
the same population. For example, the level of a given protein
can vary considerably across cells within a population, in
spite of the fact that cells are identical clones of each other
and are exposed to the same environment [1]-[3]. Such in-
tercellular stochastic differences in gene expression patterns
have tremendous consequences for biology and medicine
[4]-[6], including stochastic cell-fate assignment [7]-[10],
microbial bet hedging [11], [12], bacterial and cancer drug-
resistance [13], [14].

Stochastic variations in the level of protein primarily arise
from two main sources:

o Low-copy number fluctuations in underlying biomolec-
ular components (genes, mRNA, proteins). Moreover,
this shot noise is amplified by the fact that transcription
of genes is not a continuous process but happens in
sporadic bursts [15]-[17].
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« External disturbances in the protein synthesis rate due
to fluctuations in expression-related machinery (RNA
polymerases, Ribosomes, etc.) or intercellular differ-
ences in cell-cycle stage/cell size [18], [19].

Given these noise sources, cells encode diverse regulatory
mechanisms to suppress stochasticity in the level of a protein
around a set point. Perhaps the simplest example of this
is a negative feedback loop, where the protein directly or
indirectly inhibits its own synthesis [20]-[27]. Furthermore,
design of in-vitro/in-silico synthetic feedback system based
on linear PID or nonlinear controllers is an intense area
of current research [28]-[36]. In this contribution, we in-
vestigate design of biochemical circuits that function as
approximate proportional and derivative-based controllers,
and systematically investigate their effectiveness in buffering
protein noise levels.

In Section II, we introduce an open-loop model of stochas-
tic gene expression where the protein is expressed in random
bursts, and its expression is impacted by an upstream noisy
input (Fig. 1). We provide exact analytical formulas for the
protein mean and noise levels in open loop. Section II also
introduces the mathematical tools to be used throughout the
paper for the analysis of stochastic dynamical systems. In
Section III and IV, we discuss designs of nonlinear bio-
chemical circuits that function as approximate proportional
and derivate controllers, respectively. Given the nonlinearities
introduced by feedback loops, we use the Linear Noise
Approximation method [37], [38] to derive closed-form
expressions for the noise levels and investigate the noise
suppression properties of feedback controllers.

Symbols and Notation: Throughout the paper we denote
chemical species by capital letters, and use corresponding
small letters for molecular counts. For example, if Y denotes
a protein species, then y(¢) is the number of molecules of Y at
time ¢ inside the cell. We use angular brackets to denote the
expected value of random variables and stochastic processes.
Given a scalar random process y(¢) € {0,1,2,...} that takes
non-negative integer values, then

O™ = i}i’“l@@(r)ﬂ» me{l2,.} ()

represent its m'"* order uncentered moment and P(y(¢) = i) is
the probability of having i molecules. Steady-state statistical
moments are denoted by

) = Lim (y(r)"). @)

Finally, noise in the level of protein species is quantified
by the steady-state coefficient of variation squared (variance
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divided by mean squared) that is defined as

— 2
<y2>; 2<y> . 3)
o

II. SYSTEMS MODELING OF GENE EXPRESSION

CVi =

We start by introducing simple models of the gene expres-
sion process with a particular focus on incorporating noise
mechanisms that drive fluctuations in the level of a protein.

A. Incorporating bursty dynamics

Transcription of individual genes inside single cells has
been shown to occur in bursts of activity, followed by periods
of silence [39]-[42]. Motivated by these experimental find-
ings, we phenomenologically model protein copy-number
fluctuations via a bursty birth-death process [43]-[45]. More
specifically, bursts arrive at a constant Poisson rate k, that
corresponds to the frequency with which the gene becomes
active. Each bursts arrival event, results in the synthesis of
B, €{1,2,...} protein molecules, where the burst size By is
an independent and identically distributed random variable
that is drawn from an arbitrary positively-valued probability
distribution.

Let y(¢) denote the intracellular copy number of protein
Y at time ¢. Then, based on the above model description,
the probability of a burst event of size By, = j molecules
occurring in the next infinitesimal time interval (z,7 + dt] is

P(y(t +dt) = y(t) + jly(t)) = k,P(By = j)dt. 4)

Assuming each protein molecule decays with a constant
rate %, defines the probability for the protein death event
occurring in the time interval (¢,7+ dt] as

P(y(t +dt) = y(1) — 1]y(z)) = pydt. (5)
Having defined an integer-valued continuous-time Markov
process y(t) via the probabilities (4)-(5), we now focus our
attention on its statistical moments. We refer the reader
to [46] for a thorough analysis of moment dynamics for
stochastic systems of the form (4)-(5), and only provide the
main result here — the time evolution of the expected value
of y(¢)™ is given by

abo") _
S~ (6w,

where the infinitesimal generator G takes the form

G0) = Y kBB, = )+ )" "]+ olr— 1) — "]
j=0
@)

Intuitively, the right-hand-side of (7) is simply the product of
the change in " when an event occurs and the probabilistic
rate at which it occurs, summed across all possible events.
Substituting the appropriate value of m in (6) yields the
following moment dynamics

me{1,2,...} (6)

where (B,) is the mean protein burst size, and (B}) is
its second-order moment. Subsequent steady-analysis of (8)
reveals the protein mean and noise levels to be

G bR (B (B

KT 2AB)D)

respectively. By = 1 with probability one leads to Poissonian
fluctuations in ¥ copy numbers with CV? = 1 /(). If the burst
size By is assumed to be a geometrically-distributed random
variable with mean burst size (By) (as shown experimentally
for an E. coli gene [47]), then <B§> = 2(By)? — (B,), and the
above noise levels reduce to

cvp= B _ %

) ky
A key point worth mentioning is that the product CV}? x @
is independent of the burst frequency k,, while CVY2 in (10) is
independent of the mean burst size (B,). Thus, simultaneous
measurements of both the mean and protein noise levels

allows for discerning whether a change in (y) is a result
of alterations in ky or (By).

. €))

(10)

B. Incorporating external disturbance

Next, we introduce another important source of stochas-
ticity that arises from external disturbances in the protein
synthesis rate. These disturbances correspond to fluctuations
in the abundance of enzymes, such as, transcription factors,
RNA polymerases, etc. We lump these factors into a single
species X and model its stochastic dynamics via a bursty
birth-death process analogous to (4)-(5):

P(x(t +dt) = x(t) + jlx(¢)) = kP(By = j)dt, (11a)
P(x(r+dr) = x(t) — 1|x(¢r)) = yxdr. (11b)

Here k, is the arrival rate of bursts in X, B, is the burst size,
and 7 is the decay rate of X. Then, as per (9)
e kx<Bx>7 Ve — (B) + (BY) .
Yx 2(By){x)
The disturbance is connected to the synthesis of Y by assum-
ing that the frequency of protein Y bursts is proportional to
x(¢), and is given by kyx(¢)/(x). The division by (x) ensures
that the average burst arrival rate is k. This leads to a system
of coupled bursty birth-death processes given by (11) and

12)

P(y(t+dt) = y(t) + jly(t),x(t)) = ]Z;CP(By = j)dt (13a)
P(y(t+dt) = y(t) — 1|y(t),x(t)) = wydt. (13b)

The statistical moments of this joint process evolve as per

db"x(n)"™) _
SR — (60u),

G(y,x) = i :]P’(By = j)[(erj)mlxmz 7ymlxm2]

mi,mp € {0,1,2,...}

o
=

~
Il
<
=
Re

d + ) kP(Be = j)D" (x+ j)" —y™xm

2 k) -0 o EEEB

d{y? + %™ (= 1)"2 =y iy (y — 1) a2 — yMx]

W) ) 207 kB + 2 ) (B (8 > o
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[46]. To write moment dynamics in a compact form we
define a vector
= [00, O, (o), (), 7)) (15)
that consists of all the first and second order moments of
x(¢) and y(¢). Then, its time evolution is given by a system
of linear differential equations

p=a+Ap, (16)

where vector @ and matrix A are obtained via (15) by
choosing appropriate values of mj, my. Steady-state analysis
of (16) results in the same mean Y level as (9), and the
following noise level

Intrinsic

o External disturbance

2
Vot 5 vz vz = BB g
(% +%) 2(By) ()
that can be decomposed into two components. The first com-
ponent CV2, is the noise contribution from stochastic bursts
computed earlier in (9), and has been referred to in literature
as the intrinsic noise in Y [48]-[51]. The second component
is the noise contribution of the external disturbance, and has
been referred to as the extrinsic noise in Y. Note that the
ratio %,/(% + 7.) quantifies the time-averaging of upstream
fluctuation in X by Y. For example, fast fluctuations in X
are efficiently averaged out by Y, and this ratio approaches
zero for Y, — oco. In contrast, slow fluctuations in X lead to

inefficient time-averaging that increases Y noise levels to

CVP = CV2+CVE, 1% <. (18)

Next, we investigate how negative feedback regulation sup-
presses different noise components in (17) to minimize

fluctuations in Y copy numbers around it mean (y).

IIT. NOISE SUPPRESSION USING PROPORTIONAL
CONTROLLER

To implement a negative feedback loop we first introduce
a new protein species Z that functions as a noisy sensor
of Y. Protein Z is also assumed to be synthesized in bursts
of size B;, and senses Y via its burst frequency k. y(¢) that
responds linearly to any changes in Y levels. This leads to
the following bursty birth-death process for z(r)

B(a(t +dr) = 2(t) + j1y(0),2(0)) = koyB(B; = j)dr,
P(a(t +dr) = 2(1) — 1y(t),2(0)) = y.zdr,

(19a)
(19b)

where 7, is the decay rate of protein Z. Recall from Section
II-B that the frequency of bursts in the Y protein was
kyx(t)/{x) in the open-loop system. To close the feedback
loop, we now modify this burst frequency to kyg(z)x(t)/(x),
where g(z) is a positively-valued monotonically decreasing
function of z(¢). Typically, g takes the form of a Hill function
that mechanistically arises from the fast binding-unbinding
of the protein to the gene’s promoter region to regulate
transcriptional activity. Within this feedback there are three
noise mechanisms at play: external disturbance X impacting
synthesis of Y, expression of Y in stochastic bursts, and a

noisy sensor Z that measures Y and inhibits it (Fig. 1). The
overall stochastic system is given by (11), (19) and

POt +dr) = y(0) + jly(0).x(0),2(0)) = 5D BB, = s

(x)
(20a)
P(y(t +dt) = y(t) = 1y(1),x(1),2(1)) = pydr. (20b)
A. Analysis of Mean levels

At equilibrium, the mean levels of the random processes
x(1), y(¢) and z(r) satisfy

21

Assuming copy-number fluctuations are tightly regulated by
the feedback system, and that they are small,

(8()x) _g(()x) -
— =~ === =¢({2)).
(x) (x)
Given that g(z) is a positively-valued monotonically decreas-
ing function, using (21) and (22), the steady-state mean level
of Y is the unique solution to the equation

kg <“B><y>> (B,) = 1.

(22)

23
" (23)

Having solved for the means, the burst frequency of ¥ can
now be approximated using Taylor series as

ks @5/ T ~ k() ( e <Z>> 24)
@ TR

where

(25)

7=(2)

is the log sensitivity of the function g evaluated at steady
state. Note that if the sensor dynamic is very fast compared
to the measurand Y (i.e., % > %), then z(¢) o< y(r), and
the burst frequency in (24) will be proportional to the error
y—@. Hence, this circuit architecture can be interpreted as
an approximate proportional controller with feedback gain
fp. Finally, if we consider the parameter k, in Y’s burst
frequency as an environmental input, then one can define

a static sensitivity of (y) to k,

b)Y dky

which using (21) and (25) is given by

o1
S = L+ fp

and monotonically decreases with increasing gain. Note for

the open-loop system f, =0 and S,g ) =1 as mean @ is

simply proportional to k, from (9).

27
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Implementation and noise decomposition for a proportional feedback controller. (a) Schematic of a proportional controller where the protein

Y is sensed by a noisy sensor Z that inhibits the synthesis of Y. (b) Different components in the noise levels of protein ¥ from (28) plotted as a function
of the feedback gain f,. While feedback selectively attenuates noise due to external disturbance and stochastic expression of Y, it amplifies the sensor
noise, leading to a non-monotonic profile for the total noise. The noise contribution from the external disturbance decreases rapidly as a function of f)
and approaches zero for f, — . In contrast, the intrinsic noise decreases slowly and asymptotically approaches a non-zero limit. In this plot, noise levels

are normalized to the open-loop noise (f, = 0), with other parameters chosen as CVZ2 =04, CV2

=CV2,=0.2. 1, = 5% = 15%. (c) The normalized total

int
2

noise in Y from (28) with respect to the feedback gain f), for different levels of sensor noise. The total noise CVy; is minimized at an optimal feedback

gain, which critically depends on the extent of sensor noise CVZZ.

B. Analysis of Noise levels

Next, we focus on computing the noise levels in Y for
the overall feedback system. As before, we define a vector
U that consists of all the first and second order moments
of x(t), y(tr) and z(z). The time evolution of p can be
obtained by expanding (15) to the three-species system,
where Y’s nonlinear burst frequency is replaced by its linear
approximation (24). Having linear probabilistic rates for
all birth-death events results in a linear dynamical system
(16) that can be solved analytically to obtain steady-state
moments. This analysis yields the following noise level for

protein Y
Intrinsic noise

B+ o+ %) cv2
Ut D+
External disturbance
B+ %) (B +7%) +%%fp) V2
I+ )+ + 1) (n+ 1)+ 1efp)

Sensor noise

2% 2
— e _(CV5. 28
G Dnrm) 2 (28)

which can be decomposed into three components. The
first component is the intrinsic noise in ¥ due to its bursty
expression, and it decreases with increasing feedback gain
f,» approaching a non-zero lower bound ¥%,CVZ2, /(% + V) as
fp — . This lower bound represents a fundamental limit
to which intrinsic noise can be decreased, and this limit is
determined by how fast the sensor dynamics is compared
to Y’s decay rate. The second component is the noise
contribution from the external disturbance that monotonically
decreases to zero as f, — oo. The third component arises from
the fact that the sensor Z is itself noisy, where

o (B)+(BY)
27 2B

is the noise in Z due to its own expression occurring
in random bursts. This third component is amplified with

CVy =

J’_

(29)

increasing feedback gain, and as a consequence, the total
noise CV is a non-monotonic function of f, with noise
being minimal at an optimal feedback strength (Fig. 1). When
fp =0, (28) reduces to the open-loop noise (17).

To further simplify the formula we assume that sensor
dynamics is sufficiently fast (¥, > %), and the time-scale
of disturbance fluctuations are slow (% < ¥). In this case,
the sensor noise contribution becomes minimal, and (28)
simplifies to

External disturbance

1 1
CVZ=—CV? + ———CV .
U N (R D

Intrinsic noise

(30)

Note that the contribution from external disturbance de-
creases as 1/ fg compared to 1/f, for the intrinsic noise.
Hence, proportional feedback is much more effective in
buffering stochasticity from external inputs rather than the
intrinsic noise. This point relates to the static sensitivity

S,g =1 /(14 f,) defined in (26), where increasing feedback
gain suppresses noise, but it comes at the loss of adapting Y
levels to changes in the environmental input.

IV. NOISE SUPPRESSION USING DERIVATIVE
CONTROLLER

Having completed the analysis for a proportional con-
troller we next turn our attention to a derivative controller.
Given the space constraints, we refer the read to [52] for
details on the derivative-controller design and its subsequent
mathematical analysis. The basic design is shown in Fig. 2,
where the protein activates the sensor Z as per (19), and
then Z activates the burst frequency of Y, and Y inhibits it
own burst frequency. Consider the burst frequency of Y to
be ky(x/(x))(z/y)". Then, the stochastic dynamics of Y is
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Feedback gain

Implementation and noise decomposition for a derivative-based controller (a) Schematic of the derivative controller where Y activates the

sensor Z, Z activates the burst frequency of Y, while Y represses its own burst frequency (b) Different noise components in (32) are plotted as a function
of the derivative feedback gain f;. Noise levels are normalized by the open-loop noise (17) and other parameters are chosen as CV?2, = 0.25, CVZ2 =0.1,

int

CV)? =045, %, = %}{v, Y. = 3%. While both the intrinsic noise, and the noise contribution from the external disturbance decrease with increasing fy, the
noise contribution from the sensor increases. In contrast to the proportional feedback, the intrinsic noise decreases faster than the disturbance contribution.
(c) The noise in Y as a function of the derivative feedback gain f; emphasizes the nonmonotonic noise profile for different levels of sensor noise C sz.

described by
P(y(t +dt) = y(1) + jly(1),x(1),2(r))

h
(2
) (y) Py
P(y(t +dt) = y(t) = 1|y(1),x(1),2(1)) = pydt.

As before, the external disturbance is described by (11). Then
Linear Noise Approximation yields the following noise in
protein Y

= j)dt (31a)

(31b)

Intrinsic noise

(h+%) 2
Wt+rfat+ry "

2 __
External disturbance

% (B + %)+ %+ %+ 1fa) V2
X
W+ Yfa + ) B (h+%) +n(e+Yfa+ 7))

Sensor noise
2,2

_Jave cv;. (32)

BB+ Vefa+ )
where fy :=hy,/y. > 0 is the derivative feedback gain [52].
Analysis of the resulting noise components reveals that
both the intrinsic noise, and the noise contribution from the
external disturbance, decrease with increasing gain f;, with
the former showing a much faster decay (Fig. 2). The noise
contribution from the sensor amplifies with increasing feed-
back gain resulting in the total noise CV;? being minimized at
an intermediate gain (Fig. 2). Interestingly, noise reduction

occurs in spite of the fact that the mean protein level for Y

is proportional to k, and the sensitivity S,i?

open-loop system [52].

=1 as in the

V. CONCLUSION

While PID controllers have become quite standard in
industry, designing biochemical circuits that perform anal-
ogous functions inside cells is a highly nontrivial problem.
Here we present simple circuits that function as approximate

proportional and derivative controllers assuming fluctua-
tions in molecular counts are small around their respective
means. Our analysis of biochemically-implemented propor-
tional feedback reveals the following properties:

« Proportional feedback is more efficient in suppressing
stochasticity arising from noisy input signals, compared
to noise arising from protein expression occurring in
random bursts (Fig. 1).

e Any form of measurement noise (for example, due to
stochastic expression of the sensor protein), leads to
an optimal feedback gain for minimizing total protein
noise, reminiscent of traditional feedback controllers.

« Noise suppression comes at the cost of reduced static
input-output sensitivity, i.e., the protein levels are pre-
cisely regulated for a given environment, but do not
respond to new environments.

We further provide design of a biochemical circuit for
derivate-based control. In essence, the derivative of a signal
is sensed by taking the difference of a delayed-signal (the
sensor output) and the original signal. Intriguingly, our
analysis shows that this controller suppresses intrinsic noise
in the protein while preserving the open-loop static input-
output sensitivity (Fig. 2). As part of future work, we will
investigate biochemical networks for integral feedback con-
trol, and constructing biological PID controllers for a given
static input-output sensitivity, noise in the target protein, and
transient response.
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